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Abstract. The strength of the stratospheric polar vortex influences the surface weather in the Northern Hemisphere in winter; 

a weaker (stronger) than average stratospheric polar vortex is connected to negative (positive) Arctic Oscillation (AO) and 

colder (warmer) than average surface temperatures in Northern Europe within weeks or months. This holds a potential for 

forecasting in that time-scale. We investigate here if the strength of the stratospheric polar vortex at the start of the forecast 

could be used in improving the Extended-Range temperature Forecasts of the European Centre for Medium-Range Weather 15 

Forecasts (ECMWF) and in finding periods with higher prediction skill scores. For this, we developed a stratospheric wind 

indicator, SWI, based on the strength of the stratospheric polar vortex and the phase of the AO during the following weeks. 

We demonstrate that there was a statistically significant difference in the observed surface temperature in Northern Europe 

within the 3–6 weeks depending on the SWI at the start of the forecast.   

 20 

When our new SWI was applied in post-processing the ECMWF’s two-week mean temperature reforecasts for weeks 3–4 and 

weeks 5–6 in Northern Europe during boreal winter, the skill scores of those weeks were slightly improved. This indicates 

there is some room to improve the Extended Range Forecasts, if the stratosphere-troposphere links were better captured in the 

modelling. In addition to this, we found that during the boreal winter, in cases the polar vortex was weak at the start of the 

forecast, the mean skill scores of the 3–6 weeks surface temperature forecasts were higher than average. 25 

1 Introduction 

Extended-range forecasts (ERF; lead time up to 46 days) by dynamical models have been developed since the 1990s with the 

aim to fill the gap between the medium-range weather forecasts and the seasonal forecasts. It is known that ERF skills are still 

rather modest in forecast weeks 3–6 especially in the Northern latitudes. If the skill of the forecasts improves, ERFs have the 

potential to become an essential element in climate services e.g., in the form of early warnings of climatic extremes. In an 30 

academic project CLIPS (CLImate services supporting Public mobility and Safety), climatic impact outlooks and early 

warnings of extremes (CLIPS forecasts) were developed by employing the ERF datasets (Ervasti et al. 2018). The CLIPS 
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forecasts were co-designed with the general public in Finland and experimented by a one year piloting phase. As many 

industries, e.g., energy and food production, as well as users from the general public considered they could use and would 

benefit from reliable ERFs (Ervasti et al. 2018), development of more skillful ERFs is clearly needed. 

 

The European Centre for Medium-Range Weather Forecasts (ECMWF) has produced ERFs routinely since March 2002 (Vitart 5 

2014). The verification results of the ECMWF model’s ERF (Buizza and Leutbecher 2015; Vitart 2014) on a sub-continental 

and a regional scale (e.g., Monhart et al. 2018) demonstrated predictive skill beyond 2 weeks for temperature reforecasts over 

Northern Europe. ECMWF uses bias-correction of the mean in their automatic products, removing the mean bias computed 

from the reforecasts, depending on the time of the year (Buizza and Leutbecher 2015). We consider the bias over Northern 

Europe not to be dependent only on the time of the year but also on the prevailing weather pattern, and therefore, we aim to 10 

explore whether known teleconnections such as the strength of the stratospheric polar vortex and the phase of the Arctic 

Oscillation (AO) could be used in improving the forecasts. 

 

The stratospheric polar vortex is an upper-level low-pressure area that forms over both the northern and southern poles during 

winter due to the growing temperature gradient between the pole and the tropics. Strong westerly winds circulate the polar 15 

vortex, isolating the gradually cooling polar cap air. The strength of the northern polar vortex varies from year to year and can 

be indicated by, e.g., the zonal mean zonal wind (ZMZW) at 60°N and 10 hPa or polar cap temperatures. The stronger the 

circumpolar winds and the colder the polar cap temperatures are, the stronger is the polar vortex. Planetary waves from the 

troposphere disturb the northern stratospheric polar vortex, leading to meandering and weakening of the westerlies and 

occasionally to reverse, i.e., easterly flow (Schoeberl, 1978). This weakening of the stratospheric polar vortex also leads to 20 

warming of the polar cap temperatures, sometimes even > 30–40 K within several days. A warming of this magnitude together 

with a reversal of the ZMZW at 60°N and 10 hPa is commonly defined as a major sudden stratospheric warming (SSW), albeit 

other definitions have also been used (Butler et al. 2015).  

 

During boreal winter the strength of the polar vortex affects the phase of the AO, which characterizes air mass flow between 25 

the Arctic and the mid-latitudes. At the surface, the AO index is affected by the strength of the polar vortex with a time lag of 

about two to three weeks (Baldwin and Dunkerton 1999). A strong polar vortex is characterized by lower than average surface 

pressure in the Arctic, positive AO index, and strong westerly winds keeping the cold Arctic air locked in the polar region and 

bringing milder and wetter than average weather to Northern Europe (Limpasuvan et al. 2005). In contrast, a weak polar vortex 

is characterized by higher than average surface pressure in the Arctic, negative AO index, and the meandering and/or 30 

weakening of the polar jet stream and tropospheric jet stream enabling cold arctic/polar air outbreaks to Northern Europe 

(Thompson et al. 2002, Tomassini et al. 2012). 
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During boreal winters, the strength of the stratospheric polar vortex influences the surface weather in the Northern Hemisphere 

within weeks or months (Baldwin and Dunkerton 2001, Kidston et al. 2015), hence holding a potential for forecasting in that 

time scale. However, challenges related to the realistic modelling of the dynamical stratosphere-troposphere coupling have 

been adduced, e.g., by Shepherd et al. (2018) and Polichtchouk et al. (2018). Therefore, we investigate if the known 

stratospheric-tropospheric connection could be used to improve the ERFs by statistical post-processing.  5 

 

In this paper, we first verify the raw and the mean bias-corrected surface temperature reforecasts of the ECMWF’s ERFs for 

forecast weeks 1 to 6 over Northern Europe against ERA-Interim surface temperature re-analysis (Dee et al. 2011). After that, 

our aim is to find out which thresholds of the ZMZW at 60°N and 10 hPa are followed by a statistically significantly weaker 

AO index. For this, we explore the observed daily AO index during boreal winters 1981–2016, 1–2 weeks, 3–4 weeks, and 5–10 

6 weeks after different strengths of the observed the ZMZW at 60°N and 10 hPa. According to the observed daily AO index, 

after different thresholds of the ZMZW at 60°N and 10 hPa, we define a novel Stratospheric Wind Indicator (SWI). For a 

statistically significantly weaker mean AO index, the SWI is defined as SWIneg; otherwise, SWI is defined as SWIplain. Further, 

we study the mean surface temperature anomalies observed in Northern Europe 1–2 weeks, 3–4 weeks, and 5–6 weeks after 

SWIneg in comparison to SWIplain and we utilize these anomalies in post-processing the temperature forecasts of the ECMWF 15 

reforecasts. Finally, we compare the SWI based post-processed ECMWF reforecasts with the mean bias-corrected ECMWF 

reforecasts. Our paper is constructed as follows: First, we present the datasets and methods. Then, we present results about the 

selection of the SWIneg and SWIplain and the skill scores of the forecasts without post-processing and with post-processing. In 

the Discussions and Conclusions section, we present our view on our findings and the possible next steps. 

2 Datasets and Methods  20 

We verified and post-processed ERFs of the ECMWF’s IFS Cycle 43r1 (Vitart, 2014), which belongs to the models of the 

Sub-seasonal to seasonal (S2S) prediction project of the World Weather Research Program/World Climate Research Program 

(Vitart et al. 2017). These forecasts are run twice a week, on Mondays and Thursdays, in a horizontal resolution of 0.4 degrees. 

We first studied the weekly mean temperatures of the Monday runs over Northern Europe (52° N to 71.2° N and 10° E to 33.2° 

E) with lead times of 1 to 6 weeks, here called forecast weeks 1 to 6. We verified the 20 years × 52 weeks = 1040 reforecasts 25 

(11 members ensemble) for 1997–2016 run for the same dates as the operational forecasts, i.e., as Mondays in 2017. The 

weekly averages of the raw, mean bias-corrected (Section 2.2), and post-processed (Sections 2.3 and 2.4) surface temperature 

forecasts over Northern Europe were verified against ERA-Interim 1981–2016 temperature re-analyses (Dee et al. 2011). Years 

1981–2010 of the ERA-Interim data were used as the climatological reference period and as the statistical/climatological 

forecast. 30 
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2.1 Skill scores of the forecasts  

A commonly used measure for the probabilistic forecasts is the continuous ranked probability score (CRPS, Hersbach 2000) 

calculated by the following Eq. (1): 

𝐶𝑅𝑃𝑆 = ∫|𝐹(𝑦) − 𝐹𝑜(𝑦) | 2𝑑𝑥,           (1)  

where F(y) and Fo(y) are the cumulative distribution functions of the forecast and the observation, respectively.  5 

The CRPSs were calculated by the R package ‘ScoringRules’ (Jordan et al. 2018) for the ECMWF’s reforecast (CRPSrf) and 

the climatological forecasts (ERA-Interim weekly mean temperatures in 1981–2010), which were used as the reference 

(CRPSclim). As the ensemble size of the reforecasts, m, was only 11, and the ensemble size of the operational forecasts of the 

ECMWF’s IFS, M, was 51, the expected CRPS, the CRPSRF of the ECMWF’s reforecast was calculated for 51 members using 

equation 26 in Ferro et al. (2008): 10 

𝐶𝑅𝑃𝑆𝑅𝐹 =
𝑚(𝑀+1)

𝑀(𝑚+1)
𝐶𝑅𝑃𝑆𝑟𝑓           (2). 

We calculated the annual means of the expected CRPSRF across all weeks (1 to 52) of the years 1997–2016 reforecasts. These 

annual means were computed separately for lead times of 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, and 6 weeks, here 

called forecast week 1, forecast week 2, forecast week 3, forecast week 4, forecast week 5, and forecast week 6, respectively.  

Further, the skill scores of the annual mean CPRSs, the annual mean CRPSSs, for each lead time were calculated as follows: 15 

𝐶𝑅𝑃𝑆𝑆 = 1 −
𝐶𝑅𝑃𝑆𝑅𝐹

𝐶𝑅𝑃𝑆𝑐𝑙𝑖𝑚
           (3). 

 The statistical significances of each forecast week's annual mean CRPSS was determined for each grid point. The p-value 

with the null hypothesis that the CRPSS is zero was calculated by bootstrap resampling procedure with replacement and a 

sample size of 5000 for significance level 0.05. 

2.2 Bias-correction of the ensemble mean 20 

The mean bias-correction (as in Buizza and Leutbecher 2015, eq. 7a) removed the mean bias computed from the ensemble 

reforecasts for the 20 years (1997–2016) depending on the forecast week date. For the 1997–2016 reforecasts, the average bias 

was calculated considering 19 × 11 × 5 = 1045 ensemble reforecast members: 11 members’ reforecast with initial dates defined 

by five weeks centred on the forecast week date for the 19 years reforecasts (1997–2016 excluding the reforecast year). The 

mean bias-corrected weekly mean temperatures were verified against the ERA-Interim data by calculating the annual mean 25 

CRPS separately for each lead time, i.e., forecast weeks 1 to 6. The skill scores of the mean bias-corrected forecasts and their 

statistical significance were calculated as explained in Section 2.1. 
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2.3 Definition of the stratospheric wind indicator (SWI) 

As numerous observational and modelling studies have shown, the stratospheric polar vortex influences the weather in the 

Northern Hemisphere during boreal winter; strong polar vortex coincides more often with positive AO index and mild surface 

weather in Northern Europe, whereas weak polar vortex is more often followed by negative AO index and cold air outbreaks 

(Thompson and Wallace 1998, 2001, Kidston et al. 2015 and references therein). We aimed to find a stratospheric precursor 5 

for a statistically significantly weaker AO index available at the start of the forecast. The daily surface AO index were 

downloaded from the National Centers for Environmental Prediction (NCEP), Climate Prediction Center (CPC). This daily 

AO index from the NCEP CPC is produced by projecting the daily 1000 hPa geopotential height anomalies north of 20° N 

onto the loading pattern of AO, which is defined as the first leading mode from the Empirical Orthogonal Function (EOF) 

analysis of monthly mean 1000 hPa height anomalies poleward of 20° N during 1979–2000.  As a precursor for the AO index 10 

we used the daily ZMZW at 60°N and 10 hPa during 1981–2016 of the Modern-Era Retrospective analysis for Research and 

Applications, Version 2 (MERRA-2; Rienecker et al. 2011) reanalysis data provided by the National Aeronautics and Space 

Administration (NASA).  

 

We explored the mean AO index 1 to 6 weeks after the beginning of each week in November–February (1981–2016) and the 15 

minimum daily ZMZW at 60°N and 10 hPa during the preceding 10 days to find a threshold for the ZMZW at 60°N and 10 

hPa to be followed by statistically significantly weaker AO index 1–2, 3–4, and 5–6 weeks later. The statistical significance 

of the difference between the AO index following the different thresholds of the ZMZW at 60°N and 10 hPa , was determined 

using a two-sided Student's t-test with the null hypothesis that there is no difference. The threshold of the ZMZW at 60°N and 

10 hPa for statistically significantly weaker (at the 99% confidence level) AO index observed 1–2 weeks, 3–4 weeks, and 5–20 

6 weeks later, was used to define the SWI as follows: below the threshold the SWI was defined negative, SWIneg, and above the 

threshold the SWI was defined as plain, SWIplain. 

2.4 Utilizing the stratospheric winds indicator (SWI) in forecasting 

In this section, we investigated the observed and reforecasted surface temperature anomalies 1–2 weeks, 3–4 weeks, and 5–6 

weeks after SWIneg/SWIplain defined in Section 2.3. First, we calculated the two-week mean temperature anomalies of the ERA-25 

Interim reanalyses (Dee et al. 2011) of the 1–2 weeks, the 3–4 weeks, and the 5–6 weeks from the beginning of each week in 

January, February, November, and December in 1981–2016 in Northern Europe. Subsequently, we divided the observed two-

week mean temperature anomalies to sets of anomalies, representing SWIneg, and SWIplain according to the minimum ZMZW 

at 60°N and 10 hPa during the preceding 10 days. Thereafter, we determined the statistical significance of the difference 

between the surface temperatures after SWIneg and SWIplain using a two-sided Student's t-test with the null hypothesis that there 30 

is no difference between SWIneg and SWIplain. This same procedure to define the difference between the surface temperatures 

after SWIneg and SWIplain was used for the ERA-Interim reanalyses for the period 1997–2016 to see how the selection of a 
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shorter period affects the temperature anomalies. Further, the mean surface temperature anomalies 1–2 weeks, 3–4 weeks, and 

5–6 weeks after SWIneg and SWIplain in the ECMWF reforecasts run in the beginning of each week in  November–February 

1997–2016 were calculated to examine how the model reproduced the anomalies. 

 

For post-processing the ECMWF reforecasts we calculated TASWIneg and TASWIplain representing mean temperature anomalies 5 

in November–February 1981–2016 after SWIneg and SWIplain, respectively.  The TASWIneg and the TASWIplain were calculated 

separately for each 0.4° × 0.4° grid point over Northern Europe.  

 

For the post-processing of the ECMWF reforecasts, we first defined the SWI either SWIneg or SWIplain at the start of the forecast 

according to the minimum ZMZW at 60°N and 10 hPa during the preceding 10 days. According to the SWI, we added either 10 

TASWIneg or TASWIplain to the ERA-Interim mean temperature during 1981–2016, corresponding to forecast weeks 1–2, 3–4, and 

5–6 to get a SWIneg and SWIplain based mean temperatures, TSWIneg and TSWIplain, for weeks 1–2, 3–4, and 5–6, respectively. The 

TSWIneg and TSWIplain were used in post-processing the ECMWF reforecasts’ mean bias-corrected ensemble members, TBC, by 

calculating a weighted average, TSWI_BC, for SWIneg as follows: 

𝑇𝑆𝑊𝐼_𝐵𝐶 = (1 − 𝑘𝑆𝑊𝐼) ∗ 𝑇𝐵𝐶 + 𝑘𝑆𝑊𝐼 ∗ 𝑇𝑆𝑊𝐼𝑛𝑒𝑔         (4) 15 

And for SWIplain, 

𝑇𝑆𝑊𝐼_𝐵𝐶 = (1 − 𝑘𝑆𝑊𝐼) ∗ 𝑇𝐵𝐶 + 𝑘𝑆𝑊𝐼 ∗ 𝑇𝑆𝑊𝐼𝑝𝑙𝑎𝑖𝑛         (5) 

where TSWI_BC was a post-processed ensemble member. kSWI was the weight of the TSWIneg or  TSWIplain, which was tested between 

0–1 and defined according to the best improvement in the skill scores of the post-processed forecast. By Eq. (4) and Eq. (5), 

we adjusted each ensemble member with the same weight, and hence, the original spread of the ECMWF reforecasts remained 20 

unchanged. The skill scores of the SWI based post-processed forecasts, and their statistical significance, were calculated as 

explained in Section 2.1. 

3 Results 

3.1 Skill scores of the forecasts  

The annual mean of the expected CRPSS and its 95% level of confidence of the raw and the mean bias-corrected (Section 2.2) 25 

weekly mean temperature of the ECMWF reforecasts for 1997–2016 are displayed in Figure 1. In grid points where the CRPSS 

was higher than zero and the confidence level was higher than 95% (dotted areas), the reforecasts were statistically significantly 

better than just the statistical forecast based on 1981–2010 climatology. Figure 1 illustrates that for forecast weeks 1–6 the 

mean bias-corrected ERF reforecasts were on average significantly better than climatology. The annual mean CRPSS values 
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show that in forecast weeks 1–3 the CRPSSs are for the most part above 0.1, whereas on in forecast weeks 4–6 they are mostly 

lower, between 0 and 0.1. 

3.2 The stratospheric observations and the thereafter observed AO index and surface temperature  

Figure 2 shows boxplots of the observed mean of the daily AO index 1–2 weeks, 3–4 weeks, and 5–6 weeks after different 

strengths of the ZMZW at 60°N and 10 hPa. In Fig. 2 the first box (brown) represents the mean AO index after all the cases in 5 

1981–2016 November–February, i.e., 36 years * 17 weeks=612 cases. The blue, yellow, and red boxes in Fig. 2 show the mean 

AO index after cases in which the daily ZMZW at 60°N and 10 hPa was during the preceding 10 days below its 10th (2.5ms-

1), 15th (6.7ms-1), and 20th (10ms-1) percentile, respectively. The observed mean AO index was statistically significantly weaker 

at the 99% confidence level 1–2 weeks, 3–4 weeks, and 5–6 weeks after the daily ZMZW at 60°N and 10 hPa had been below 

its overall wintertime 15th percentile, 6.7ms-1. Based on this, we defined the SWI to be negative (positive) and to indicate 10 

statistically significantly lower (higher) AO index in cases the minimum ZWZW at 60°N and 10 hPa was below (above) its 

15th percentile, 6.7ms-1, during the preceding 10 days.  

 

Figure 3 shows the ERA-Interim (1981–2016 and 1997–2016) and model forecasted mean temperature anomalies 1–6 weeks 

after SWIneg and SWIplain. Cases with ZMZW at 60°N and 10 hPa weaker than 6.7ms-1, i.e., SWIneg, in Fig. 3a–3c and Fig 3g–15 

3i (stronger than 6.7ms-1, i.e., SWIplain, in Fig. 3d–3f and Fig. 3j–l) were on average followed by colder (warmer) than average 

mean temperature. The ECMWF reforecasts (Fig. 3m–r) capture these mean anomalies clearly, in some areas even too strong 

in comparison to the ERA-Interim 1997–2016 (Fig. 3g–l). 

 

3.3 The SWI and the forecasted mean temperatures  20 

The mean temperature anomalies in Fig. 3(a–f) for Northern Europe were used for the SWI based post-processing as described 

in Section 2.4. Figure 4 shows how the post-processing based on the SWI affected the forecasting skill scores, in cases of 

SWIneg and SWIplain. The CRPSSs of the mean temperatures of the forecast weeks 3–4 and 5–6 were improved by the SWI based 

post-processing and the best median CRPSS was achieved by kSWI=0.3, for forecast weeks 3–4 in cases of SWIplain, and by 

kSWI=0.6 for all the other cases.  25 

 

Figure 5 shows the forecast skill of the mean bias-corrected mean temperature reforecasts of forecast weeks 3–4 and 5–6 in all 

cases (Fig. 5a and 5c), in cases the ZMZW at 60°N and 10 hPa was below 6.7 ms-1 at the start of the forecast (SWIneg, Fig. 5e 

and g),  and in cases the ZMZW at 60°N and 10 hPa was above 6.7 ms-1 at the start of the forecast (SWIplain, Fig. 5i and 5k). In 

cases of weak ZMZW at 60°N and 10 hPa at the start of the forecast (Fig. 5e and g) the CRPSSs of forecast weeks 3–4 and 5–30 
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6 reached even higher than 0.4 values in some areas, indicating there higher predictability in comparison to cases in which the 

ZMZW at 60°N and 10 hPa was stronger than 6.7 ms-1 at the start of the forecast (Fig. 5i and 5k). 

 

Figure 5 depicts also  the mean CRPSS of  the mean bias-corrected and SWI post-processed reforecasts in all cases (Fig. 5b 

and 5d), in cases the ZMZW at 60°N and 10 hPa was below 6.7 ms-1 (SWIneg) at the start of the forecast (kSWI =0.6 and kSWI 5 

=0.6 in  Fig. 5e and Fig. 5g, respectively), and in cases the ZMZW at 60°N and 10 hPa was above 6.7 ms-1, (SWIplain) at the 

start of the forecast (kSWI =0.3 and kSWI =0.6 in  Fig. 5j and Fig. 5l, respectively). In comparison to the only mean bias corrected 

ECMWF reforecasts (see Fig. 5a, 5c, 5e, 5g, 5i, 5k), adding the SWI based post-processing to the ECMWF reforecasts (see 

Fig. 5b, 5d, 5f, 5h, 5j), the CRPSSs for weeks 3–4 and weeks 5–6 were slightly improved and the area of these forecasts being 

significantly better than just the climatological forecast was expanded.  10 

4 Discussion and Conclusions 

Based on ECMWF’s extended-range reforecasts for the period 1997–2016, we found that the weekly mean surface temperature 

forecasts over Northern Europe were on average significantly better than just the climatological forecast in weeks 1–6, 

however, in weeks 4–6, the CRPSSs were quite low, mostly between 0 and 0.1. 

 15 

We studied the mean AO index after different thresholds of ZMZW at 60°N and 10 hPa. We found that the mean AO index 

was statistically significantly weaker 1–2 weeks, 3–4 weeks, and 5–6 weeks after the daily ZMZW at 60°N and 10 hPa had 

been below its November-February 15th percentile, 6.7ms-1. 

 

Cases preceded by weaker (stronger) than 6.7 ms-1 ZMZW at 60°N and 10 hPa were defined as SWIneg (SWIplain). As negative 20 

AO index enables cold air outbreaks to Northern Europe (Thompson et al. 2002, Tomassini et al. 2012) and positive AO index 

tends to bring milder and wetter than average weather to Northern Europe (Limpasuvan et al. 2005), we investigated how the 

mean surface temperatures were in November-February (1981–2016) in Northern Europe 1–6 weeks after SWIneg/SWIplain. We 

found that the mean surface temperature anomalies in Northern Europe in November–February in 1981–2016 after SWIneg and 

SWIplain were in many places statistically significantly different, with anomalously cold surface temperatures more common 25 

1–6 weeks after SWIneg. The mean temperature anomalies corresponding to SWIneg/SWIplain were used in post processing the 

ECMWF’s mean temperature reforecast for weeks 3–4 and 5–6 in Northern Europe during boreal winter, and thereby, those 

weeks’ forecast skills were slightly improved.  

 

We also investigated the forecast skill in cases of ZMZW at 60°N and 10 hPa below or above the threshold of 6.7 ms-1. We 30 

found that cases of weaker than 6.7 ms-1 ZMZW at 60°N and 10 hPa at the start of the forecast were followed by higher than 

average forecasting skill scores of mean surface temperature for forecast weeks 3–4 and 5–6. Also earlier studies have reported 
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enhanced forecast skill during periods of negative AO, e.g., in 500 hPa geopotential height forecasts in the northern mid-

latitudes in both medium-range (Langland and Maue 2012) extended range  (Minami and Takaya 2020). 

 

In future the SWI based post-processing method introduced in this paper could also be tested for other northern areas affected 

by the polar vortex and to precipitation and windiness forecasts, and it could be further developed by, e.g., the Madden-Julian-5 

Oscillation (Madden and Julian 1994; Zhang 2005; Jiang et al. 2017; Vitart 2017; Vitart and Molteni 2010; Robertson et al. 

2018, Cassou 2008) and the quasi‐biennial oscillation (Watson and Gray 2014; Scaife et al. 2014; Garfinkel et al. 2018; Gray 

et al. 2018). In this study, the effect of global warming was not filtered from the temperature anomalies used for statistical 

post-processing. In future work, the impact of filtering the effect of global warming could be tested. Moreover, the next step 

would be looking for the stratospheric signal from the forecast model. 10 
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Figure 1: Annual mean of the expected CRPSS of the weekly mean temperature of the mean bias-corrected (upper row) and raw 

(lower row) ECMWF reforecasts for years 1997–2016 using ERA-Interim climatology of 1981–2010 as the reference. The dotted 5 

areas represent the 95% level of confidence that the CRPSS is above zero. 
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Figure 2: Observed mean AO index in November-March (1981-2016) a) 1–2, b) 3–4 and c) 5–6 weeks after different thresholds of 

the zonal mean zonal wind at 60°N and 10 hPa (ZMZW). The horizontal line dividing each box into two parts shows the median of 

the data, the ends of the box show the lower and upper quartiles, and the whiskers represent the highest and the lowest values 

excluding outliers. The n written above each box indicates the number of observations in each group. The p-value written below 5 

each boxplot pair indicates the likelihood of such a pair of distributions arising from a random sampling of a single distribution as 

given by a Student's t-test, i.e., p-values less than 0.01 indicate that the means of the data sets differ significantly at the 99% level of 

confidence. The notches of each side of the boxes were calculated by R boxplot.stats. If the notches of two plots do not overlap, this 

is ‘strong evidence’ that the two medians differ (Chambers et al., 1983, p. 62).   
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Figure 3. ERA-Interim observed (a-l) and ECMWF reforecasted (m-r) mean temperature anomalies in comparison to the 1981-2016 

mean during boreal winters (November-February) in cases the previous week’s SWI was negative (SWIneg, covering about 17% of 

the winter weeks) or plain (SWIplain, covering about 83% of the winter weeks). The dotted areas represent the 95% level of confidence 

where the means of surface temperature anomalies after SWIneg and SWIplain differ significantly. 5 
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Figure 4. Sensitivity of the expected CRPSS of the post-processed ECMWF surface temperature reforecasts to the kSWI ranging from 

0.0 to 1.0 in forecast weeks 3–4 (a and c) and 5–6 (b and d) in cases of SWIneg (upper row) and SWIplain (bottom row). The black boxes 

show the lower and upper quartiles, and the whiskers illustrate the extremes of the November-February mean CRPSSs of all the 

grid points in Northern Europe. 5 
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Figure 5. Expected CRPSS of forecast weeks 3–4 and 5–6 of the ECMWF’s two-weeks mean temperature reforecasts for November–

February 1997–2016 in all cases (upper row), after SWIneg (middle row), and after SWIplain (bottom row) with mean bias-correction 

only (a, c, e, g, i, and k) and with both mean bias-correction and SWI based post-processing (b, d, f, h, j, and l). ERA-Interim 

climatology of 1981–2010 was used as the reference. The dotted areas represent the 95% level of confidence that the CRPSS is above 5 

zero. 
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