
 

 1 

Evaluating China’s anthropogenic CO2 emissions inventories: a 
northern China case-study using continuous surface observations 
from 2005-2009. 

 
Archana Dayalu1,*, J. William Munger2,3, Yuxuan Wang4,5, Steven C. Wofsy2,3, Yu Zhao6, Thomas 5 
Nehrkorn1, Chris Nielsen3, Michael B. McElroy3, Rachel Chang7 

1Atmospheric and Environmental Research, Lexington, MA, USA 
2Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA 
3School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA 
4Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA 10 
5Department of Earth System Sciences, Tsinghua University, Beijing, China 
6School of the Environment, Nanjing University, Nanjing, China  
7Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada 
*Formerly at Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA 

 15 

Correspondence to: Archana Dayalu (adayalu@aer.com) 

Abstract. China has pledged reduction of carbon dioxide (CO2) emissions per unit GDP by 60-65% 
relative to 2005 levels, and to peak carbon emissions overall by 2030. However, the lack of 
observational data and disagreement among the many available inventories makes it difficult for China 
to track progress toward these goals and evaluate the efficacy of control measures. To demonstrate the 20 
value of atmospheric observations for constraining CO2 inventories we track the ability of CO2 
concentrations predicted from three different CO2 inventories to match a unique multi-year continuous 
record of atmospheric CO2. Our analysis time window includes the key commitment period for the Paris 
accords (2005) and the Beijing Olympics (2008). One inventory is China-specific and two are spatial 
subsets of global inventories. The inventories differ in spatial resolution, basis in national or subnational 25 
statistics, and reliance on global or China-specific emission factors. We use a unique set of historical 
atmospheric observations from 2005–2009 to evaluate the three CO2 emissions inventories within 
China's heavily industrialized and populated Northern region accounting for ~33–41 % of national 
emissions. Each anthropogenic inventory is combined with estimates of biogenic CO2 within a high-
resolution atmospheric transport framework to model the time series of CO2 observations. To convert 30 
the model-observation mismatch from mixing ratio to mass emission rates we distribute it over a region 
encompassing 90% of the total surface influence in seasonal (annual) averaged back-trajectory 
footprints (L_0.90 region). The  L_0.90 region roughly corresponds to northern China. Except for the 
peak growing season, where assessment of anthropogenic emissions is entangled with the strong 
vegetation signal, we find the China-specific inventory based on subnational data and domestic field-35 
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studies agrees significantly better with observations than the global inventories at all timescales. 
Averaged over the study time period, the unscaled China-specific inventory reports substantially larger 
annual emissions for northern China (30%) and China as a whole (20%) than the two unscaled global 
inventories. Our results, exploiting a robust timeseries of continuous observations, lend support to the 
rates and geographic distribution in the China-specific inventory Though even long-term observations at 40 
a single site reveal differences among inventories, exploring inventory discrepancy over all of China 
requires a denser observational network in future efforts to measure and verify CO2 emissions for China 
both regionally and nationally. We find that carbon intensity in the northern China region has decreased 
by 47% from 2005 to 2009, from approximately 4kgCO2/USDPPP in 2005 to about 2kgCO2/USDPPP in 
2009 (Figure 9c). However, the corresponding 18% increase in absolute emissions over the same time 45 
period affirms a critical point that carbon intensity targets in emerging economies can be at odds with 
making real climate progress. Our results provide an important quantification of model-observation 
mismatch, supporting the increased use and development of China-specific inventories in tracking 
China’s progress as a whole towards reducing emissions. We emphasize that this work presents a 
methodology for extending the analysis to other inventories and is intended to be a comparison of a 50 
subset of anthropogenic CO2 emissions rates from inventories that were readily available at the time this 
research began. For this study’s analysis time period, there was not enough spatially distinct 
observational data to conduct an optimization of the inventories. The primary intent of the comparisons 
presented here is not to judge specific inventories, but to demonstrate that even a single site with a long 
record of high time resolution observations can identify major differences among inventories that 55 
manifest as biases in the model-data comparison. This study provides a baseline analysis for evaluating 
emissions from a small but important region within China, as well a guide for determining optimal 
locations for future ground-based measurement sites. 
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1 Introduction 

China’s contribution to world CO2 emissions has been steadily growing, becoming the largest in the 60 
world in 2006. China has accounted for 60% of the overall growth in global CO2 emissions over the 
past 15 years (EIA, 2017). Under the United Nations Framework Convention on Climate Change 
(UNFCCC) 2015 Paris Climate Agreement, China has committed to reduce its carbon intensity (CO2 
emissions per unit GDP) by 60-65% relative to the baseline year of 2005, and to peak carbon emissions 
overall by or before 2030. Demonstration of progress on emissions reduction and evaluation of how 65 
well specific policies are working is hindered by large uncertainty in the existing Chinese emission 
inventories. In 2012 the discrepancy between data reported at national and provincial levels was 
approximately half of China’s 2020 emission reduction goals (EIA, 2017; NDRC, 2015; Guan et al., 
2012; Zhao et al., 2012). Moreover, China is under mounting pressure to address severe regional air 
pollution events that are often associated with CO2 emissions sources—vehicles, power plants and other 70 
fossil fuel-burning operations. China’s 11th Five Year Plan (11th FYP) of 2006-2010 included aggressive 
measures to retire inefficient coal-fired power plants and improve energy efficiency in other industries 
starting in 2007 (Zhao et al., 2013; Nielsen & Ho, 2013). A number of pollution control measures that 
were implemented specifically in preparation for the 2008 Beijing Summer Olympics were also largely 
in effect by the end of 2007 (Nielsen & Ho, 2013; Wang et al., 2010).  75 
 
A variety of top-down approaches including inverse analysis (Le Quere et al., 2016) and comparison 
between atmospheric observations and Eulerian forward model predictions (Wang, X. et al., 2013) have 
been used to evaluate and constrain emission estimates, albeit at coarse spatial resolution. As noted by 
Wang et al. (2011) grid-based atmospheric models have difficulty in simulating high-concentration 80 
pollution plumes at specific receptor sites that are too near the source region. The expanding network of 
high accuracy CO2 observations coupled with high spatial resolution transport models is emerging as a 
viable tool for evaluating high resolution emission inventories (e.g. Sargent et al., 2018). In this paper 
we adopt a Lagrangian transport model to simulate atmospheric mixing and transport. Continuous 
observations of CO2 for the period 2005-2009 at Miyun, an atmospheric observatory about 100km NE 85 
of Beijing provide a top-down constraint for evaluating persistent bias among emissions rates obtained 
from a suite of three independent anthropogenic emission inventories that were readily available as 
spatially gridded fluxes.  
 
The three inventories that are evaluated span a range of bottom-up inventory approaches. They are not 90 
intended to be an exhaustive set, but are examples to demonstrate the capability to identify significant 
differences in the ability of different inventories to match the long time series of observations. Emerging 
inventory approaches based on updated (yet non-China-specific) point-source data and satellite-
observations of night lights as a proxy for spatial allocation of energy production (Oda et al., 2018) 
were not readily available when this analysis began. Two of the inventories, the Emissions Database for 95 
Global Atmospheric Research (EDGAR; European Commission, 2013) and Carbon Dioxide 
Information Analysis Center (CDIAC), are spatial subsets from larger global models of CO2 emissions 
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(PBL, 2013; Andres et al., 2016). They rely on national-level energy statistics and global default values 
for sectoral emission factors, and they estimate activity levels using generalized proxies (e.g. 
population). The third inventory (ZHAO) is specific to China, with greater reliance on energy statistics 100 
at provincial and individual facility levels as well as emission factors from domestic field studies (Zhao 
et al., 2012). The ZHAO inventory was readily accessible at the time of this research and represents 
increased efforts in recent years to incorporate more China-specific data into emissions inventories. 
Other China-specific inventories that have been recently developed but were not readily available at the 
time of this research include the Multi-resolution Emissions Inventory (MEIC, 105 
http://www.meicmodel.org/) and an inventory by Shan et al., 2016. The primary intent of the 
comparisons presented here is not to judge specific inventories, but to demonstrate that even a single 
site with a long record of high time resolution observations can identify the potential impact of major 
differences among inventories that manifest as biases in the model-data comparison. 
 110 
A study by Turnbull et al. (2011) used weekly flask observations to evaluate a hybrid approach to 
inventory construction where CDIAC and EDGAR estimates were spatially allocated to a provincial 
emissions-based grid. However, to our knowledge, none of the truly China-specific CO2 inventories 
have been evaluated with independent high-temporal resolution atmospheric observations. The official 
national total for China’s 2005 CO2 emissions from energy related activities, used as the benchmark for 115 
the Paris commitment, is approximately 5.4Gton CO2 (NDRC, 2015). ZHAO, EDGAR, and the CDIAC 
national total (Boden et al., 2016) report total 2005 energy-related CO2 emissions that are higher by 
31% (7.1Gton), 9%(5.9Gton), and 7%(5.8Gton), respectively. As the official national total is not 
available in a spatially allocated format, it cannot be tested by observations and we refer to it only as a 
benchmark in our analysis. We will show that the China-specific inventory (ZHAO) provides excellent 120 
agreement with observations, and markedly more so than EDGAR and CDIAC. The result provides 
guidance for efforts to assess China’s emissions at larger scales as well as potential updates for the Paris 
agreement base year emissions. 
 
In order to independently evaluate and scale existing bottom-up estimates of China’s CO2 emissions, we 125 
employ a top-down approach using five years of continuous CO2 observations. Modeled concentrations 
of CO2 are obtained from convolving hourly CO2 surface flux estimates with surface influence 
estimates (“footprints”) derived from the Stochastic Time-Inverted Lagrangian Transport Model driven 
with meteorology from the Weather Research and Forecasting Model version 3.6.1 (WRF-STILT; Lin et 
al., 2003; Nehrkorn et al., 2010). NOAA CarbonTracker (CT2015) provides modeled estimates of 130 
advected upwind background concentrations of CO2 that are enhanced or depleted by processes in the 
study region. As atmospheric CO2 concentrations are significantly modulated by photosynthetic and 
respiratory fluxes, we additionally prescribe hourly biosphere fluxes of CO2 using data-driven outputs 
from the Vegetation, Photosynthesis, and Respiration Model (VPRM) adapted for China (Mahadevan et 
al., 2012; Dayalu et al., 2018). VPRM provides a functional representation of biosphere fluxes based on 135 
data from remote sensing platforms and eddy flux towers, with significantly better observationally-
validated performance relative to subsets of global vegetation models (Dayalu et al., 2018). The WRF-
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STILT-VPRM framework has been successfully adapted for similar emissions evaluation studies in 
North America in regions where biogenic fluxes dominate surface processes (e.g., Sargent et al., 2018; 
Karion et al. 2016; Matross et al., 2008). For the Northern China region, anthropogenic fluxes exceed 140 
biogenic fluxes for all but the peak of growing season, when they are roughly comparable (Dayalu et 
al., 2018), which reduces the magnitude of overall error from incorrect modeling of the biosphere. In 
contrast to extensive measurement networks that exist in North America, continuous high-temporal 
resolution measurements of CO2 necessary for inventory evaluation applications are sparse and very 
few datasets are available in China (Wang et al. 2010). Despite this limitation, our site provides valuable 145 
information and constraints on emissions inventories: the long time series and spatial sampling 
heterogeneities where the site receives both clean continental air as well as air from one of the heaviest 
emitting regions of China, present a powerful and unique dataset for the region.  Our inventory scaling 
is confined to the Northern China region, but this region accounts for 33-41% of China’s total annual 
CO2 emissions from fossil-fuel combustion. Model-observation mismatches can be converted from 150 
concentration units (ppm) to mass units (Mton CO2) across the most relevant area subset from modeled 
annual average surface sensitivity footprints (µmol-1 m2 s). Ultimately, we compare the inventories by 
quantifying model-observation mismatch for seasons (using additive mass units) and annually (using 
scaling factors). We note that identical transport fields and modeled biogenic fluxes are applied to all the 
anthropogenic emission fields. Unresolved transport error and error in biogenic fluxes undoubtedly 155 
contributes to scatter in the model-data comparison. While random transport errors are unlikely to 
generate consistent biases among the inventories, systematic transport errors can be attributed to biases 
among inventories with differing spatial allocations. Although the interaction of systematic transport 
errors with differences in spatial distribution could bias individual observations, averaging over longer 
timescales (seasons, years) minimizes the bias of individual points. With the available observational 160 
data it is not possible to evaluate the error in spatial allocation of individual emissions inventories. For 
example, future access to total column measurements and/or aircraft vertical profiles would provide 
additional constraints on spatial allocations of sources and sinks. 
  
Section 2 of this paper describes the observational CO2 record used in this analysis. Section 3 details the 165 
analysis methods, including WRF-STILT model configuration, a discussion of the main features of the 
inventories, error evaluation, and inventory scaling methods. We present the results in Sect. 4, beginning 
with an assessment of seasonality impacts. We then compare inventory performance against 
observations across multiple timescales from hourly to annual. We conclude Sect. 4 with scaling results, 
and a brief examination of regional carbon intensity over the study period. Concluding remarks are 170 
provided in Sect. 5. Additional methodological details are provided in the accompanying Supplementary 
Information (SI) and at https://doi.org/10.7910/DVN/OJESO0. 
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2 CO2 observations 

This study uses five years (2005-2009) of continuous hourly averaged CO2 observations (LI-COR 
Biosciences Li-7000; 2-s analytical precision of 0.08ppm), measured at a site in Northern China 175 
(Miyun; 40°29'N, 116°46.45'E). The Miyun receptor is an atmospheric measurement station in a rural 
site 100 km northeast of the Beijing urban center (Fig. SI S2). It was established in 2004 by 
collaborating researchers at the Harvard China Project and operated by researchers at Tsinghua 
University. The site is strategically located to capture both clean continental background air from the 
west/northwest and polluted air from the Beijing region to the southwest. Miyun is located south of the 180 
foothills of the Yan mountains; the region consists of grasslands, small-scale agriculture intermingled 
with rural villages and manufacturing complexes, and mixed temperate forest. Land use grades from 
rural to suburban and dense urban to the south towards Beijing center and sparsely populated and 
wooded mountains to the north and west. Further descriptions of the site and details of the 
instrumentation including calibration strategy and assessment of long-term drifts  are in provided in 185 
Wang et al. (2010). Average annual data coverage (based on hourly data) over the study time period was 
83% (range: 78% to 92%). 

3 Methods 

We evaluate the performance of the ZHAO, EDGAR, and CDIAC inventories coupled with biogenic 
fluxes by modelling five years of hourly CO2 observations using the Stochastic Time-Inverted 190 
Lagrangian Transport Model (STILT; Lin et al., 2003) run in backward time mode driven by high 
resolution meteorology from the Weather Research and Forecasting Model version 3.6.1 (WRF). The 
WRF-STILT tool models the surfaces that influenced each measurement hour in the study domain 
(Figure 1). Hourly vegetation CO2 fluxes are prescribed by the VPRM adapted for China (Mahadevan et 
al., 2008, Dayalu et al., 2018). We categorize seasons by months based on regional growing season 195 
patterns, which are heavily dominated by winter wheat/corn dual-cropping regions in the North China 
Plain (Dayalu et al. 2018). Winter wheat emergence in the spring and corn emergence in later summer 
shift the seasonal patterns such that regional seasons are more appropriately represented as January, 
February, March (JFM/Winter); April, May, June (AMJ/Spring); July, August, September 
(JAS/Summer); and October, November, December (OND/Fall). 200 
 
Ultimately, modeled concentrations of CO2 are obtained from convolving hourly surface flux estimates 
with footprints derived from the WRF-STILT framework. NOAA CarbonTracker (CT2015) provides 
estimates of advected upwind background concentrations of CO2 that are enhanced or depleted by 
processes in the study region. Our final modeled-measurement data set is the subset consisting of local 205 
daytime values (hourly data from 1100h to 1600h). Of this subset, only individual hours for which 
observational data exists (i.e., non-missing data) is included. The final data set was further filtered to 
include only CT2015 background values satisfying true background criteria as described in Sect. 3.5 
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and in the SI, Sect. S4. As is typical for studies of this nature, our analysis focuses on observations 
during the 1100 to 1600 local time period. The stronger vertical mixing in the daytime atmosphere 210 
(notably absent at night) reduces the influence of extremely local emissions. We select the 1100-1600 
window to avoid the presence of shallow inversion layers that are poorly represented in STILT and use 
the period when vertical mixing through the entire boundary layer is at its maximum (McKain et al., 
2015; Sargent et al., 2018). We adjust fluxes based on model-measurement mismatch of this final data 
subset, focusing on the region that we model as most influential to the signal measured at the receptor.   215 
Method details and model components are described individually below.  

3.1 WRF-STILT Model Configuration 

The WRF-STILT particle transport framework and optimal configuration have been extensively tested 
in several studies using mid-latitude receptors (e.g., Sargent et al., 2018; McKain et al., 2014; Kort et 

Figure 1. Study domain configuration. Miyun receptor and Beijing center are 
located within the innermost domain at a resolution of 3x3km. NOAA 
ESRL/WMO (WMO) flask sampling sites used to evaluate bias in CT2015 
modeled backgrounds are the solid shapes; nearest CT2015 comparison pixel is the 
corresponding unfilled shape.  
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al., 2013; McKain et al. 2012; Miller et al., 2012). WRF is configured with 41 vertical levels and two-220 
way nesting in three domains, with the outermost domain covering nearly seven administrative regions 
(Figure 1, Figure 2), defined according to convention in Piao et al. (2009). The domain resolutions from 
coarsest to finest are 27km (d01), 9km (d02), and 3km (d03). Initial and lateral WRF boundary 
conditions are provided by NCEP FNL Operational Model Global Tropospheric Analyses at 1°x1° 
spatial 6-hourly temporal resolution (NCEP, 1999). Nudging of fields is implemented in the outer 225 
domain only, and never within the Planetary Boundary Layer (PBL). WRF output is evaluated against 

publicly accessible 24-hourly averaged observational datasets from the Chinese Meteorological 
Administration (CMA); finer temporal resolution meteorological data is not publicly available. WRF 
run details are presented in Dayalu (2017) and at http://dx.doi.org/10.7910/DVN/OJESO0. A snapshot 

Figure 2. 2005-2009 mean seasonal (a-d) and Annual (e) footprint contours, as percentiles of influence 
highlighted by administrative region.  Red, blue, and black contour lines represent 50th, 75th, and 90th 
percentile regions, respectively. Stippling represents location of 0.25º x 0.25º footprint and inventory 
gridcell centers, colored by relevant administrative regions. Northern China (red stippling) is the 
administrative region with predominant influence on Miyun observations, followed by Inner Mongolia 
and Northeast China. Southeast and Central China have minimal representation, and only during the 
spring and summer seasons.  
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of results from comparison with China Meteorological Administration ground-station measurements is 230 
presented in SI Sect. S1 and Figures S1-S4. 
 
The STILT model is configured in backward time mode. The particle release point is set as the Miyun 
measurement sample inlet (the receptor). The inlet height is 158m above sea level (masl), corresponding 
to 6m above ground level (magl). In our study, the hilltop site was located in an area where the 235 
surrounding land was not very productive or intensively cultivated (SI Fig. S2). There is a long history 
of using short towers in low productivity areas for regional studies (e.g. NOAA Earth Systems Research 
Laboratory—NOAA ESRL Barrow, Alaska observatory at 11 magl). In addition, the station is located 
on a small hilltop, so even though the actual inlet height above ground is low, it has a topographic 
advantage in that it effectively samples air from a greater height relative to the surroundings.  240 
Topographic advantage was exploited in a similar manner in Karion et al. (2016) in the context of an 
Alaskan CO2 study. However, Karion et al. (2016) were able to use a suite of additional data to confirm 
the validity of their assumption including comparisons to concurrent aircraft measurements and multiple 
inlets at 31.7magl, 17.1magl, and 4.9magl. In our study, independent verification from concurrent 
aircraft measurements (for example) or multi-level inlet locations were not available to quantify the 245 
impact of absolute and relative inlet location on transport uncertainty.  
 
Each hourly footprint (CO2 concentration attributed to each unit of flux as ppm µmol-1 m2 s) provides an 
estimate of surface influence on the measurement and is calculated from releasing 500 particles from 
the measurement site (receptor) until they reach the outer domain boundaries up to seven days back in 250 
time. The STILT 0.25º x 0.25º footprint map for each measurement hour up to 7 days back in time 
enables assessment of regions in the study domain to which the receptor is most sensitive. These entire 
gridded footprints are convolved with anthropogenic and biogenic CO2 flux estimates to provide a final 
modeled concentration (ppm) of CO2 at the receptor. For clarity, we display the regions of importance to 
the receptor based on contours calculated from the overall STILT footprints at the 50th (L_0.50 region), 255 
75th (L_0.75 region), and 90th (L_0.90 region) percentile levels (Figure 2). The percentile contours are 
calculated as follows: the average (seasonal, annual) footprints from 2005 to 2009 are ordered from 
high to low. We multiply each fraction (0.5,0.75,0.9) with the summed footprints and use cumulative 
sums of the ordered footprints as a guide to select all points with influence magnitude equal to or 
greater than this cutoff value. SI Figure 11 illustrates a single footprint map along with the average 260 
influence and a plot of cumulative influence to demonstrate the percentile level selection process. We 
emphasize that we use the entire STILT footprint convolved with fluxes to estimate the receptor CO2 
concentration. We only use the L_0.90 region to provide a reasonable area across which to ascribe the 
effective inventory adjustment (converted from ppm model-observation mismatch to mass units). As SI 
Figure 11c shows, the L_0.90 region strikes a balance between capturing sufficient influence while 265 
avoiding an unrealistically large adjustment region for a single observation site. Conversely, corrections 
based on the smaller L_0.75 region would include larger uncertainties from the diffuse influence of 
emissions outside the L_0.75 region (not accounting for 25% of average surface sensitivity), yet the 
model-observation mismatch would be ascribed to a region approximately half the area of the L_0.90 
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region.  Deriving correction factors based on integration over the entire L_0.90 region is a more 270 
conservative approach where the model-observation mismatch in mass units is distributed over a larger 
area.  
 
Further model details are available in SI Sect. S2. Complete WRF-STILT settings and STILT footprint 
files are available from http://dx.doi.org/10.7910/DVN/OJESO0. 275 
 

3.3 Anthropogenic CO2 Emissions Inventories 

ZHAO, EDGAR, and CDIAC report estimates of total annual emissions of CO2 at 0.25º x 0.25º, 0.1º x 
0.1º, and 1º x 1º original grid resolutions, respectively. We regridded the EDGAR and CDIAC 
inventories to the 0.25º x 0.25º resolution, using NCAR Command Language version 6.2.1 Earth 280 
System Modeling Framework conserve regridding algorithm to preserve the integral of emissions 
(Brown et al., 2012). Differences between annual total emissions for EDGAR and CDIAC inventories 
introduced by regridding are smaller than the interannual trends or differences between the inventories 
(SI Sect. S3 and Figure S5). We present the main components and defining features of the three 
anthropogenic CO2 inventories below.  285 
 
The ZHAO inventory provides estimates of total annual emissions for 2005 through 2009. In addition, 
spatial location of emissions is given for years 2005 and 2009 on a 0.25º x 0.25º grid. Using 2005 and 
2009 gridded values, we calculate an average percent contribution of each grid cell to the total 
emissions. The average contributions are used as weights to spatially allocate 2006, 2007, and 2008 290 
total annual emissions. We evaluate and justify this assumption in detail in SI Sect. S3 and Figure S6. 
The ZHAO inventory represents one of the first statistically rigorous bottom-up CO2 inventories for 
China. It relies on provincial- and facility-level data rather than national level data, which has been 
noted previously as major uncertainty in Chinese emission inventories; total CO2 emissions estimates 
based on provincial data are typically higher than those using national statistics (Zhao et al., 2013). 295 
Satellite observations of criteria air pollutants (e.g., nitrogen dioxide, which serves as a proxy for fossil 
fuel combustion) show greater agreement with provincial statistics (Zhao et al., 2012). The increased 
use of China-specific emission factors and activity levels based on domestic field studies is a shift from 
other inventories that rely heavily on global averages to estimate processes occurring in China.  Despite 
the increased incorporation of China-specific field data, the largest sources of uncertainty to the ZHAO 300 
inventory are industrial emission factors, and activity levels across all sectors. Total uncertainty in the 
inventory is estimated as -9% to +11%. (Zhao et al., 2012). 
 
The EDGAR emissions database continues to be a major prior in atmospheric studies, and the CO2 
inventory is used to inform key global scientific results considered by the UNFCCC Conference of 305 
Parties. The EDGAR global inventory (atemporal EDGAR v4.2 FT2010 gridded emissions) takes total 
annual estimates of national emissions and downscales emissions to a 0.1º x 0.1º as a function of 
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road/shipping networks, population density, energy/manufacturing point sources, and agricultural land. 
Estimates for China are available for all five years as gridded inventories. Reported uncertainties for 
global emissions are ±10% 310 
(http://themasites.pbl.nl/tridion/en/themasites/edgar/documentation/uncertainties/index-2.html).  
However, this applies to global averaged uncertainty; we expect uncertainty for China to be much 
higher. 
  
We include the CDIAC inventory here due to its historical prevalence as a benchmark inventory for 315 
global indicators, including evaluations of carbon intensity provided by the World Bank (World Bank, 
2017). The CDIAC inventory (v2016; https://dx.doi.org/10.3334/CDIAC/ffe.ndp058.2016) allocates 
estimates of national emissions to a 1º x 1º grid, primarily distributed according to human population 
density. A thorough assessment of 2s uncertainties in the CDIAC spatial allocation of emissions shows 
considerable spread in regional uncertainties (Andres et al., 2016).  320 
 
Our study is not intended to be an exhaustive sampling of inventory approaches but serves to 
demonstrate the utility of continuous high-accuracy observations as a top-down constraint on emissions 
evaluations. Our inventory list notably does not include emerging spatially resolved global inventories 
(e.g. Open Data Inventory for Anthropogenic Carbon Dioxide, ODIAC) (Oda et al., 2018) that were not 325 
readily available at the time this work was conducted. At 1km x 1km, ODIAC does have a high spatial 
resolution of nightlight proxy-based emissions; while this is a valuable method for regions in Europe 
and North America for example, it is less valuable for China where it is analogous to the CDIAC 
population-based proxy. In China, power plant emissions are typically located far from end-use regions 
and the night-light proxy can often break down (Wang, R. et al., 2013). Furthermore, ODIAC power 330 
plant emissions use the 2012 Carbon Monitoring for Action (CARMA) database, which notably does 
not incorporate China-specific power plant data; in these instances, CARMA categorizes China’s power 
plants as “non-disclosed plants” and reports using estimates derived from statistical models using 
averaged emissions factors – comparable to methods in global inventories subset over China (Ummel, 
2012). One of our main goals is to quantify model-observation mismatch associated with use of China-335 
specific power plant data, and ODIAC does not address that issue particularly differently from other 
global emissions inventories subset over China. For completeness, however, evaluation of global 
inventories like ODIAC and a suite of increasingly available China-specific inventories (e.g., MEIC) 
would provide value as part of future model-observation comparison efforts. 
 340 
Based on multi-year means (2005 to 2009) and 95% confidence intervals derived from two-sample t-
tests, we find that within the L_0.90 evaluation region EDGAR and CDIAC report emissions that are 
significantly lower than ZHAO by typically 20% (-24%, -16%) and 36% (-37%, -34%), respectively. 
Across China’s administrative regions, the highest discrepancy between the global and regional 
inventories is in Northern China (ZHAO is approximately 30% higher than both EDGAR and CDIAC). 345 
In addition, Northern China represents one of the administrative regions with the highest CO2 emissions 
density (2300 to 3300 Megagrams of CO2 per square kilometer, compared to the average of 700 MgCO2 
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km-2 averaged across China) and is therefore a particularly rich spatial subset for emissions inventory 
evaluation. A detailed breakdown of emissions by region of China is provided in the SI Table S1. 
Spatial differences are displayed in SI Figure S7. 350 
 
Previous work has found that temporal variations in CO2 sources can be significant and surface CO2 can 
be perturbed from 1.5-8 ppm within source regions based on time of day and/or day of week, resulting 
from a combination of changes in activity patterns as well as synoptic scale transport effects (Nassar et 
al., 2013). However, appropriate data for establishing reasonable temporal scaling factors for data-355 
sparse regions such as China are difficult to obtain, and as in the case of Nassar et al. (2013) China’s 
activity factors are based on United States activity factors weighted according to China’s EDGARv4.2 
emissions patterns. We applied the weekly and diurnal Nassar et al. (2013) scaling factors to our 
emissions, but these did not generate statistically significant differences from the unscaled versions. 
These statistically insignificant results suggest that a more rigorous set of temporal scaling factors need 360 
to be developed for China. CDIAC does provide monthly gridded inventories with seasonality 
embedded. However, predictions based on that seasonality deviated even further from the observations 
than predictions based on constant annual emissions. In the CDIAC global dataset, the seasonality in 
emissions are based upon generalized global activity factors that are not necessarily appropriate for 
estimating seasonality of human activity in China. Therefore, in this study we do not explicitly consider 365 
diel and seasonal variation in anthropogenic CO2 fluxes.  

3.4 Vegetation Flux Inventory 

We prescribe biotic contributions to the CO2 signal by adapting the VPRM model output for the study 
domain to generate 0.25º x 0.25º gridded estimates of hourly CO2 net ecosystem exchange (NEE) from 
2005 to 2009. Details of the VPRM model and output for China are presented in Dayalu et al., 2018. 370 
The VPRM is driven by 8-day 500m MODIS surface reflectance values and 10-minute averages of 
WRF downward shortwave radiation and surface temperature fields. The VPRM parameters are 
calibrated using eddy flux measurements in the study domain representing each ecosystem type 
classified according to the International Geosphere-Biosphere Programme (IGBP) scheme. Calibration 
and evaluation eddy-flux data are obtained from FluxNet and ChinaFlux collaborators. The L_0.90 375 
region is dominated by croplands (Figure S8), in particular the winter wheat and corn dual cropping that 
characterizes the North China Plain (Dayalu et al., 2018). We use one biosphere model in this study to 
simplify our assessment of variations across the different emissions inventories. Our selection of the 
VPRM in particular is based on results from Dayalu et al. (2018), where the VPRM was shown to have 
significantly lower regional bias than an ensemble of global 3-hourly flux products subset over China.  380 

3.5 Background Concentrations 

Appropriate quantification of background CO2 concentrations (i.e., the CO2 concentration at the lateral 
edges of the model domain and/or prior to interaction with domain surface processes) enables realistic 
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assessment of the study domain’s contribution to atmospheric CO2 at varying timescales. CT2015 
estimates of CO2 concentrations are provided on a 3º x 2º grid at upwind background locations. 385 
Background values are selected and corrected for large-scale biases using methodology similar to 
Karion et al. (2016) where a particle must originate from the outermost domain edge and/or 3000 masl; 
further details are provided in the SI Sect. S4. The predicted background CO2 is shown together with 
observed CO2 at Miyun for the 1100h-1600h period over the 5-year observational record Figure 3a. For 
most of the year the measured CO2 shows large enhancements above background and only in mid-390 
summer is there a small depletion relative to background values. 

3.6 Quantifying Regional Changes to Background CO2 Concentrations: DCO2  

We define hourly DCO2 as a regional change (enhancement or depletion) imparted to concentrations of 
CO2 advected from the boundary (CO2,CT2015) such that for each observation hour 𝛥𝐶𝑂$,&'(:  
 395 

𝛥𝐶𝑂$,&'( = 	𝐶𝑂$,&'( − 	𝐶𝑂$,,-$./0 (1) 
 
 
For each modeled hour 𝛥𝐶𝑂$,1&2, i and j represent the surface gridcell locations and h represents the 
hour of the 7-day back trajectory:  
 400 

 

𝛥𝐶𝑂$,1&2 = 	 3 3𝑓𝑜𝑜𝑡78 	× (𝐴𝑁𝑇𝐻78 + 𝑉𝑃𝑅𝑀78
78

D/EFG

.G

) (2) 

 
 
Note that for the modeled enhancement or depletion, only the VPRM fluxes change hourly; as stated 
previously, the annual anthropogenic fluxes are atemporal. 405 
  
Without a sufficiently dense network of high temporal resolution observations, full-scale inverse 
modeling approach to inventory scaling is inappropriate. At annual timescales, where anthropogenic 
sources dominate the CO2 signal, we compare annual observed and modeled DCO2 to define a mean 
bias and derive a scale factor to quantify the model-observation mismatch based on the slope of the 410 
comparison. Isotopic analysis of atmospheric CO2 from a site in Beijing in 2014 suggests that annually 
the fossil fuel burning does dominate the region, contributing 75±15% to the annual signal (Niu et al., 
2016). Annually, the biospheric impact in the region is not zero; rather, the anthropogenic signal 
dominates. The biospheric quantity of relevance annually is the net carbon flux as a balance of GPP and 
respiration, and is highly uncertain in both sign and magnitude in this region (Piao et al., 2009). In the 415 
Piao et al. (2009) study, regional inversions are based on the very limited dataset of nine sites across all 
of Asia. Our assumption of dominant anthropogenic influence in northern china is in keeping with the 
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priors and process-based models from the relevant regions in Piao et al. (2009) that assume zero and are 
not significantly corrected by relatively poorly constrained inversions. At seasonal timescales, we use 
the difference between observed and modeled DCO2 normalized by L_0.90 area to obtain a mass flux 420 
offset that combines vegetation and anthropogenic inventories. With the available data it is not possible 
to independently evaluate both the anthropogenic and biogenic CO2 fluxes. For further details of the 
scaling technique, please refer to SI Sect. S5. 

3.6.1 Uncertainty Analysis 

The sources of uncertainty in calculations of DCO2 include uncertainty in CT2015 background 425 
concentrations, CO2 observations, STILT footprints, anthropogenic inventories, and the biogenic CO2 

fluxes from the VPRM. We obtain 95% confidence bounds for DCO2 by following a procedure similar 
to McKain et al. (2015) and Sargent et al. (2018) that involves bootstrapping daily averages of hourly 
afternoon values. For monthly and seasonal timescales, we obtain 95% confidence intervals for DCO2,obs 
by performing a bootstrap on probability distributions of errors in both the CT2015 and observations 430 
1000 times. (See SI Sect. S4 and Figure S9 for details on parameterizing CT2015 uncertainty.) The 
relevant quantiles are obtained from the resulting distribution, and are reported relative to the mean 
DCO2,obs of the original data subset. We follow a slightly modified approach for DCO2,mod in that we 
construct monthly and seasonal residual pools from daily averages of hourly afternoon CO2,mod-CO2,obs. 
The residuals—the deviation of the model from the true observed values—represent the total 435 
uncertainty in the model and therefore aggregates the effects of uncertainty in the footprints, 
background, and inventories. Monthly and seasonal 95% confidence intervals of CO2,mod-CO2,obs are 
then obtained from the distribution of bootstrapping the residual pools 1000 times. We then obtain the 
mean and 95% confidence interval of DCO2,mod by applying the relevant quantiles of the residuals to the 
mean DCO2,obs of the original data subset. Similar to Sargent et al. (2018) and McKain et al. (2015), 440 
distributions of seasonal averages obtained from the above method are used to estimate annual averages 
and 95% confidence intervals. 
 
Sargent et al. (2018) note that applying the same meteorological model over a long time period (15 
months) allows for detection of trends in transport uncertainty. In this study, the drawback of a single 445 
location is offset somewhat by a much longer time series (60 months). Absent a dense network of 
observations, a more sophisticated and extensive error analysis cannot be conducted with meaningful 
results. Turnbull et al. (2011) faced a similar issue, where weekly flask data collected between 2004 and 
2010 from two sites in the NOAA ESRL/WMO sampling network were used to evaluate a bottom-up 
fossil inventory based on CDIAC and EDGAR estimates. Turnbull et al. (2011) noted the difficulty in 450 
assessing the transport error given the paucity of regional observations but also demonstrate the power 
of top-down assessments given improvements in regional transport modeling and density of 
observations.  
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4 Results & Discussion 

4.1 Impact of Seasonality on Evaluation Region 455 

As shown in Figure 2, we find strong seasonality in the footprint percentile contours, in agreement with 
previous analysis of Miyun observations by Wang et al. (2010). At annual timescales, the L_0.90 region 
is comparable to the WRF d02 extent. Northern China, including Inner Mongolia, dominate the L_0.90 
region both seasonally and annually. Due to the heavy biosphere influence in the regional growing 
season, previous work by Wang et al. (2010) used Miyun non-growing season measurements of CO2 460 
and carbon monoxide (CO) as an anthropogenic tracer to estimate combustion efficiency for China. 
When compared to bottom-up estimates of national combustion efficiency, observations suggested 25% 
higher combustion efficiency than bottom-up estimates of national combustion efficiency; however, 
Wang et al. (2010) note that the regional (Northern China) and seasonal (winter) subsets could 
contribute to such a discrepancy. The seasonality exhibited in Figure 2 indeed suggests that combustion 465 
efficiency estimates derived from non-growing season measurements alone do not represent 
anthropogenic processes in provinces south of Miyun that are visible in the observations primarily 
during the growing season. Low emitting regions northwest of Miyun such as Inner Mongolia influence 
the site more in the fall and winter relative to other seasons. In the spring and summer, higher emitting 
regions in provinces south of Miyun are more influential. However, non-growing season CO2 is 470 
influenced by often inefficient district heating in the northwest. And, while growing season CO2 is 
influenced by intense urban activities from Beijing and other cities to the south, vegetation draws down 
both background and locally-observed CO2 significantly (Figure 3a).   

4.2 Unscaled Models: Performance at multiple timescales 

Table 1. Quantification of model-observation mismatch at hourly timescales averaged over 2005-2009 and 475 
pooled by season (W=Winter; Sp=Spring; Su = Summer; F = Fall). We provide Standard Major Axis (SMA) 
slopes and 95% confidence intervals; R2 quantities (those  > 0.2 are in bold); and mean bias and root mean square 
error (RMSE) in ppm. 

  SMA Slope (95%CI) 

  All W (JFM) Sp (AMJ) Su (JAS) F (OND) 
DCO2,ZHAO+VPRM 0.89 (0.88,0.91) 1.0 (1.0,1.1) 0.74 (0.72,0.77) 0.88 (0.84,0.92) 0.92 (0.90,0.95) 
DCO2,EDGAR+VPRM 0.77 (0.76, 0.78) 0.83 (0.81, 0.86) 0.62 (0.60, 0.65) 0.83 (0.80, 0.87) 0.77 (0.74, 0.79) 
DCO2,CDIAC+VPRM 0.63 (0.62, 0.64) 0.63 (0.62, 0.65) 0.48 (0.46, 0.50) 0.79 (0.75, 0.82) 0.56 (0.54, 0.58) 
  R2 
  All W (JFM) Sp (AMJ) Su (JAS) F (OND) 
DCO2,ZHAO+VPRM 0.49 0.56 0.26 0.22 0.56 
DCO2,EDGAR+VPRM 0.47 0.55 0.21 0.18 0.55 
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DCO2,CDIAC+VPRM 0.43 0.55 0.17 0.13 0.54 
  Mean Bias (RMSE), ppm 
  All W (JFM) Sp (AMJ) Su (JAS) F (OND) 
DCO2,ZHAO+VPRM 0.32 (9.2) 0.014 (7.9) -0.033 (8.3) 3.1 (11) -1.1 (9.7) 
DCO2,EDGAR+VPRM -2.0 (9.3) -2.2 (7.7) -1.9 (8.7) 0.25 (10.8) -3.4 (10.1) 
DCO2,CDIAC+VPRM -3.3 (9.9) -3.1 (8.1) -3.3 (9.2) -1.1 (11.3) -5.0 (11.1) 

 
We evaluate unscaled model performance relative to observations at hourly, seasonal, and annual 480 
timescales. While inventory scaling is performed at the policy relevant scales of seasons and years, 
examination of the models at shorter timescales provides insight into model bias and error aggregation 
at longer timescales. Table 1 summarizes hourly model bias across all years and pooled by season. 
  
All modeled hourly quantities include the same biological component from VPRM, background 485 
concentrations, and transport model such that the only source of variation among models is the 
anthropogenic inventory. With a few exceptions that are discussed in the following sections, 
CO2,EDGAR+VPRM, CO2,CDIAC+VPRM, DCO2,EDGAR+VPRM, and DCO2,CDIAC+VPRM systematically underestimate 
observations as indicated by larger deviation below the 1:1 line in the comparison of modeled to 
measured DCO2 (Table 1, Figure 3b-d.) 490 
 

4.2.1 Hourly 

 
We examine the distribution of modeled-measured residuals at hourly timescales for each anthropogenic 
inventory. While standard deviations are consistent across all models of CO2 flux (1s=9ppm; Figure 495 
3.e-g) DCO2,ZHAO+VPRM exhibits the least bias relative to observations with a mean residual of 
0.32(0.12,0.53) ppm. In contrast, DCO2,EDGAR+VPRM and DCO2,CDIAC+VPRM display significantly greater 
bias by typically underestimating observations by large amounts: -2.0(-1.8,-2.2) ppm and -3.3(-3.1,-3.5) 
ppm, respectively. Here, the 95% confidence intervals are derived from a two-sample t-test. The 
EDGAR and CDIAC underestimation of DCO2 at the hourly scale is consistent across longer timescales 500 
of seasons and years as discussed in the following sections, but we note where there are likely aliased 
effects of the uncertainty in the VPRM biogenic component. 

4.2.2 Seasonal 

The seasonally averaged modeled and measured DCO2 values shown in Figure 4 illustrate the overall 
biases for the four inventories. Outside of June, July, August, and September, the anthropogenic signal 505 
dominates in northern China (Wang et al., 2010). We see from Table 1 that during seasons where 
biological activity is lower or significantly lower than anthropogenic activity, there is a consistent 
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discrepancy among the CO2 modeled by the three different anthropogenic inventories suggesting  
systematic differences largely attributable to the anthropogenic component (as we do not vary any other 
component) . In the fall, where respiration is the dominant biological process, all three modeled 510 

quantities are consistently lower than observations—a likely a consequence of the known underestimate 
of ecosystem respiration by the VPRM (Dayalu et al., 2018). Even so, China’s significant anthropogenic 

Figure 3. Hourly (1100 to 1600 Local Time) Modeled and Measured CO2 and DCO2. Measured 
CO2 and modeled CT2015 background concentrations are displayed in (a). Modeled versus 
measured DCO2 for each anthropogenic inventory is shown in (b)-(d), colored by season. 
Histograms of modeled-measured residuals are shown in (e)-(g). The VPRM vegetation 
component is included in all modeled DCO2 values. 

(a) 

(b) (c) (d) 

(e) (f) (g) 
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component still dominates during these months. During the winter season, where all biospheric activity 
is at a minimum, the model-observation mismatch is most reflective of biases among anthropogenic 
inventories rather than aliased impacts from the VPRM. As shown in the winter data in Table 1, ZHAO 515 
displays the least bias relative to observations (0.01ppm) followed by EDGAR(-2.2ppm) and CDIAC (-
3.1ppm). 

With the exception of the peak JAS growing season, DCO2,EDGAR+VPRM and DCO2,CDIAC+VPRM typically 
underestimate DCO2,OBS, even within the 95% uncertainty bounds. The VPRM has a limited calibration 
network that contributes to an underestimate of regional CO2 drawdown during the growing season 520 
(Dayalu et al., 2018). Therefore, while DCO2,ZHAO+VPRM agrees within 95% confidence bounds with 
DCO2,OBS during the non-growing seasons, DCO2,ZHAO+VPRM generally overestimates CO2 concentrations 
in the growing season (Figure 4a). DCO2,EDGAR+VPRM (Figure 4b) and DCO2,CDIAC+VPRM (Figure 4c) 
display lower CO2 concentrations and generally result in better agreement with observations during the 
peak growing season than at other times of the year; however, our wintertime and overall analysis at 525 
hourly timescales (Figure 4, Table 1) suggests this is an artifact of lower anthropogenic emissions 

Figure 4. Modeled and Measured Seasonal DCO2. CT2015 background is subtracted from observations to 
provide observed DCO2 (black line). 95% confidence bounds are derived from bootstrapping hourly 
afternoon concentrations for each season. 

(a) 

(b) 

(c) 
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estimates relative to ZHAO that counteracts the VPRM underestimating drawdown. Even during the 
growing season, DCO2,CDIAC+VPRM agrees with observations typically at its upper confidence limits. 
However, during times of the year where the impacts of underestimated respiration become more 
significant (e.g., Fall) it is possible that the seemingly better agreement of ZHAO+VPRM is linked to a 530 
counteracting effect of overestimated anthropogenic emissions.  

 
As ZHAO+VPRM demonstrates the least bias relative to observations at hourly and seasonal scales, we 
model the relative contributions to the monthly signal during the May through September peak regional 
growing season as defined by Wang et al. (2010). Figure 5 displays the results from partitioning the 535 
mean monthly DCO2,ZHAO+VPRM signal as a multi-year average into anthropogenic and vegetation 
contributions. While the WRF-STILT-VPRM framework has been successfully adapted for similar CO2 
inventory evaluation studies in North American regions where biogenic fluxes dominate surface 
processes (Karion et al., 2016; Matross et al., 2006), Figure 5 shows the relative magnitude of biogenic 
fluxes and anthropogenic emissions in the Northern China region is comparable during peak summer, 540 
making it difficult to independently constrain them with observational data. As noted in Sect. 3, the 
regional peak uptake during the growing season occurs with the onset of the corn growing season 
around July and August. The atypical lower uptake during June represents the winter wheat/corn 
transition period. These results are consistent with the biological component estimated by Turnbull et al. 
(2011). Furthermore, knowledge of the relative contribution of vegetation and anthropogenic processes 545 

Figure 5. Modeled mean monthly contribution (ppm) to Miyun CO2 concentrations from vegetation 
(VPRM) and anthropogenic (ZHAO) sources. Enhancement and depletion are relative to advected 
CT2015 background concentrations during the regional growing season (MJJAS), averaged over 2005 to 
2009. Vertical lines represent 1-s of monthly averages (Green: Vegetation; Black: Anthropogenic). 
Negative values represent depletion from CT2015 background; positive values represent enhancement of 
CT2015 background. 

May Jun Jul Aug Sep 
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to the CO2 signal during the peak growing season is necessary to interpret satellite retrievals of CO2 
over the region (Dayalu et al., 2018). 
 

4.2.3 Annual  

Aggregation of uncertainty and anthropogenic inventory biases at shorter timescales becomes most 550 
apparent at the annual timescales. For annual budgeting we follow the assumptions of Piao et al. (2009) 
and Jiang et al. (2016) that agricultural systems are in annual carbon balance because crop biomass has 
a short residence time. In the absence of data on regional transfer of agricultural products and 
proportion of grains used in situ for livestock vs. human consumption in China this is the most 
conservative assumption to make. Given the dense population in most of Beijing province we expect 555 
there may be net import of agricultural products from outside the L_0.90 region, which would show up 
as additional respiration not captured by VPRM, but that term will be small relative to the 
anthropogenic CO2 (Figure 5) (Dayalu et al., 2018). Therefore, while the VPRM is implicitly included 
in the modeled annual CO2 and DCO2, vegetation carbon stocks (including harvested products and crop 
residues) portions of the L_0.90 region with widespread agriculture largely turn over such that only the 560 
anthropogenic inventories dominate the modeled CO2 signal. We evaluate annual CO2 including 

Figure 6. Mean annual CO2 and DCO2 over entire study time period. (a-c) CO2 annual concentration; 
(d-f) DCO2 (regional enhancement, after removal of advected CT2015 background) with bootstrapped 
95% confidence intervals. 

(a) (b) (c) 

(d) (e) (f) 
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CT2015 background (Figure 6a-c) and as regional enhancement relative to background (Figure 6d-f).  
We show that for all years, CO2,ZHAO+VPRM and DCO2,ZHAO+VPRM agree tightly within 95% uncertainty to 
observations (Figure 6a, Figure 6d). EDGAR+VPRM and CDIAC+VPRM are consistently biased 
significantly lower than observations. 565 

4.3 Evaluation of inventories at seasonal and annual timescales 

We quantify model-observation mismatch by estimating the additive flux corrections at seasonal 
timescales and multiplicative corrections at annual timescales. We emphasize that these “corrections”, 
or scalings, are not optimizations; rather, they simply reflect the extent to which the individual 
anthropogenic+VPRM flux models deviate from the observations. Complete seasonal and annual 570 
scaling results are provided in the SI Sect. S5, and Tables S2-S3.  
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Figure 7. Scaled Seasonal Fluxes in the L_0.90 region (kg CO2 m-2 month-1). Anthropogenic and 
vegetation inventories are scaled together ([ANTH+VPRM_COR]). Black and yellow dashed line is the 
seasonal flux estimated by the original ANTH+VPRM model. All models have the same vegetation 
component (VPRM) and differ only in the anthropogenic inventory source. Shaded green represents 
negative flux (uptake by biosphere). Scaling based on additive corrections; difference among scaled 
inventories is due to differing spatial allocations by anthropogenic inventories. Bootstrapped 95% 
confidence intervals are represented by the black vertical lines.  

[ZHAO+VPRM]_COR [EDGAR+VPRM]_COR [CDIAC+VPRM]_COR ORIGINAL 
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The observational record informing the scaling integrates the biological and anthropogenic signals. At 
the seasonal scale, where biological processes are significant contributors to the signal, we scale the 
sum of the anthropogenic and biological fluxes (Figure 7). Scaled non-growing season flux estimates 575 

are 

higher than unscaled values, partially accounting for the VPRM generally underestimating ecosystem 
respiration by an additive offset throughout the year (Dayalu et al., 2018). The multi-year seasonal 
results in Table 1 suggest that this offset can aggregate to a 1-2ppm difference; the result would be a 
shift in baseline rather than overall pattern for each of the three simulations.  As the vegetation and all 580 
other components are controlled across models, the inter-model variance reflects the relative 
performance of the anthropogenic estimates. We find that in the non-growing months the original 
ZHAO+VPRM inventory typically remains within the 95% confidence bounds of the scaled inventory. 
However, both EDGAR+VPRM and CDIAC+VPRM are consistently significantly lower than their 
scaled counterparts. At least in the winter, where biogenic processes are at a minimum, this suggests 585 
that both EDGAR and CDIAC underestimate anthropogenic emissions, and that ZHAO estimates are 
closer to actual emissions. Improved representation of temporal anthropogenic activity factors and 
biosphere processes are needed to extend the conclusions of anthropogenic inventory performance to all 

Figure 8. Annually scaled emissions in L_0.90 region. Scaling is based on multiplicative scaling 
factors. Difference among scaled inventory means is due to differing spatial allocations in original 
anthropogenic inventories. Bootstrapped 95% confidence intervals are represented by the black 
vertical lines. *Note the y-axis origin begins at 1000 Mton CO2 for visual clarity. 
 

ZHAO_COR EDGAR_COR CDIAC_COR ORIGINAL 
 Inventories in L_0.90 region 
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seasons. In the absence of such data, it is not possible to conclusively state whether model-data 
mismatch is rooted in anthropogenic emissions biases or biogenic biases.   During the growing seasons, 590 
however, the afternoon vegetation signal is significant, and the picture is more complex. In the spring, 
the CO2 signal at Miyun is significantly affected by the North China Plain winter wheat growing season. 
The effect of scaling in the spring from 2005 to 2007 is to increase CO2 emissions with a net positive 
seasonal flux; however, in 2008 and 2009 we find the net seasonal flux becomes negative such that 
uptake dominates emissions. The prior models in all cases predict positive flux. During the summer 595 
months, ZHAO+VPRM predicts more emissions and/or less uptake relative to EDGAR+VPRM and 
CDIAC+VPRM. Scaling of summertime fluxes serves to significantly increase ZHAO+VPRM uptake 
estimates; the EDGAR+VPRM and CDIAC+VPRM prior estimates are within the 95% confidence 
bounds of the scaling for reasons discussed previously. 

 
Table 2. Annual scaling factors (95% CI) and corresponding corrected emissions for L_0.90 inventory evaluation 
region. 

 Scaling Factor (95% CI) Corrected Emissions, MtCO2 
(95% CI) 

Original 
emissions, MtCO2 

20
05

 ZHAO 0.95 (0.84, 1.0) 2800 (2476, 3105) 3015 
EDGAR 1.4 (1.3, 1.6) 3306 (2886, 3683) 2322 
CDIAC 1.7 (1.5, 1.9) 3489 (3017, 3871) 1930 

20
06

 ZHAO 1.0 (0.91, 1.1) 3326 (2972, 3631) 3273 
EDGAR 1.5 (1.3, 1.6) 3751 (3325, 4150) 2586 
CDIAC 1.9 (1.6, 2.0) 3930 (3438, 4338) 2160 

20
07

 ZHAO 0.94 (0.85, 1.0) 3080 (2789, 3324) 3588 
EDGAR 1.4 (1.2, 1.5) 3454 (3096, 3785) 2799 
CDIAC 1.6 (1.5, 1.8) 3180 (2842, 3493) 2260 

20
08

 ZHAO 0.94 (0.82, 1.0) 3422 (3008, 3768) 3685 
EDGAR 1.2 (1.1, 1.4) 3790 (3332, 4207) 3095 
CDIAC 1.7 (1.5, 1.9) 3941 (3461, 4374) 2395 

20
09

 ZHAO 0.96 (0.86, 1.1) 3860 (3474, 4251) 3974 
EDGAR 1.1 (1.0, 1.3) 3518 (3133, 3874) 3298 
CDIAC 1.5 (1.3, 1.7) 3921 (3454, 4330) 2543 

 600 
 
We report annual scaled anthropogenic inventories in the L_0.90 region in Fig. 8 and Table 2 as 
MtCO2yr-1. As discussed previously, the annual scalings are applied only to the anthropogenic 
inventory, as the signal at the annual timescale is effectively dominated by anthropogenic emissions; net 
ecosystem fluxes are expected to be relatively minor in the L_0.90 region in comparison. For all years, 605 
the emissions estimated by the original ZHAO inventory lie within the 95% confidence bounds of the 
scaled ZHAO inventory. However, for EDGAR and CDIAC, the original inventories consistently 
underestimate observations. Averaged over the five-year study period, EDGAR and CDIAC lead to 
modeled estimates of CO2 mixing ratios that are typically lower than observations by 30% and 70% 
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respectively (Fig. 6). Averaged across the five years, this translates to EDGAR and CDIAC being scaled 610 
relative to their unscaled values in the L_0.90 region by 1.3 and 1.7, respectively (Fig. 8; Table 2). In 
the case of EDGAR, we note a general increase in observational agreement from 2005 to 2009.  
 
 
4.4 Potential Contributions to Regional Carbon Emissions Patterns from 2005 to 2009 615 
 
We examine the statistical significance of the inter-annual observed concentration and enhancement 
differences using a two-sample t-test (Table 3). The observed concentrations including advected global 
background (Figure 6, top row) display an overall increasing trend of 1.87 (1.8, 1.9) ppm CO2 yr-1 

between 2005 and 2009, in agreement with flask samples obtained from nearby WMO sites between 620 
2007 and 2010 (Liu et al., 2014). The inter-annual increases are statistically significant (Table 3). 
However, when we remove the modeled background to more closely examine regional patterns that 
would otherwise be drowned out by the global signal, we find that the regional DCO2 trend (Figure 6, 
bottom row; Table 3) does not parallel the increasing global CO2 trend (Figure 6 top row; Table 3). 
Regionally, the observed enhancements increase from 2005 to 2006 and plateau in 2007 before 625 
decreasing in 2008. Regional DCO2 increases again in 2009. Earlier work by Wang et al. (2010) 
extended the Miyun observations of CO2 growth rate to all of China and estimates a lower CO2 growth 
rate than previously suggested. However, Figure S6 suggests local reductions in regions influencing 
Miyun, possibly in preparation for the Beijing Olympics, are partially offset by increases elsewhere. A 
larger network of sites would be needed to quantify this further in order to evaluate the CO2 growth rate 630 
for other regions in China and for China as a whole. 
 
In Figure 9a we estimate Gross Regional Product (GRP) for eight of China’s 34 provincial-level 
administrative units, specifically those encompassed significantly by the L_0.90 region: Beijing, 
Tianjin, Henan, Shanxi, Shandong, Hebei, Inner Mongolia, and Liaoning. Using data from the 635 
International Monetary Fund (IMF; https://www.imf.org/en/Data) and World Bank (World Bank, 2017, 
we retrieved the GDP for each of the above provinces and summed them to estimate the GRP. GDP 
calculations are inherently uncertain and were available as single values for each province per year. A 
more extensive economic analysis to estimate uncertainty of these values is beyond the scope of this 
study. Key economic events occurred during the study time period and are likely contributors to the 640 
observed interannual variation in regional CO2 emissions (Figure 6d-e) and a doubling of GRP from 
2005 to 2009 (Figure 9a). In particular, the time period from 2005-2009 saw industrial energy efficiency 
improvements beginning in 2007 under the 11th FYP; preparations for and staging of the 2008 Beijing 
Summer Olympics; the global financial crisis in late 2008; and a large Chinese fiscal stimulus in 2009. 
We further note that the global financial crisis of 2008 correlates with a plateauing of the percentage 645 
contribution of northern China GRP to national GDP (Figure 9a). 
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Table 3. Inter-annual observed CO2 and DCO2 differences. Differences are of observations between consecutive 
years. 95% confidence intervals are derived from a two-sample t-test. Italicized entries denote instances where 
the inter-annual difference is not statistically significant (confidence interval includes zero). 650 

 
Time Interval  
(y2-y1) 

CO2,OBS (ppm) 
Mean Difference  
(95% CI) 

DCO2,OBS (ppm) 
Mean Difference   
(95% CI) 

2006-2005 4.86 (4.5, 5.2) 2.08 (1.9, 2.3) 
2007-2006 1.08 (0.69, 1.5) 0.0693 (-0.15, 0.29) 
2008-2007 0.772 (0.37, 1.2) -1.43 (-1.6, -1.2) 
2009-2008 2.60 (2.2, 3.0) 1.12 (0.88, 1.4) 
2009-2005 9.31 (8.9, 9.7) 1.84 (1.6, 2.0) 

 
As policy targets are often measured as relative changes over multiple years, an important component of 
emissions inventories is their ability to accurately capture multi-year changes. Observations indicate 
enhancements above background CO2 increased by 28% (22%, 34%) between 2005 and 2009. 655 
ZHAO+VPRM estimates a 20% increase over the same time period while EDGAR+VPRM and 
CDIAC+VPRM estimate 61% and 56% increases respectively.  

4.5 Implications for Assessing National Carbon Emission Targets 

China has pledged a 60-65% reduction in carbon intensity by 2030 and has additionally set a benchmark 
of 40-45% reduction in carbon intensity by 2020, where both targets are relative to the baseline year 660 
2005 (NDRC, 2015; Guan et al., 2014). However, Guan et al. (2014) found that provincial trends in 
carbon intensity can vary significantly from national trends. Using the GRP values shown in Figure 9a, 
we calculate a Northern China regional carbon intensity incorporating the eight provinces encompassed 
significantly by the L_0.90 region (Figure 9c). We also estimate an L_0.90 regional carbon intensity 
based on the official national energy-related CO2 emissions in NDRC (2015); we scale the national total 665 
by 39% (35%,42%) which is the mean (range) contribution of the L_0.90 region to the national 
emissions in 2005, averaged across the three unscaled gridded emissions inventories. We emphasize that 
carbon intensity values are inherently uncertain due to complexities in GRP and Gross Domestic 
Product (GDP) calculations such as double-counting due to inter-provincial trade or spatial mismatch 
between emissions and economic data. Nevertheless, the analysis provides valuable insight into trends 670 
rather than precise values.  
 
Over the study time period, the GRP of the L_0.90 region more than doubled (Figure 9a), exhibiting a 
moderate, positive correlation with the increasing trend in emissions (Figure 9b).  Coinciding with the 
2008 Beijing Summer Olympics, the region’s contribution to China’s GDP grew from approximately 675 
13.5% in 2007 to nearly 16% in 2008, representing a 20% increase, before plateauing into 2009 (Figure 
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9a). As noted in Guan et al. (2014), reductions in carbon emissions intensity can come about via two 
main pathways: the first, within industries, through increased energy efficiency combined with 
expanded production capacity; the second, across the economy, through structural shifts from energy-
intensive industrial sectors to service sectors. The doubling of GRP with the apparent reduction in 680 
regional carbon intensity suggests a combination of enlarged production capacity (including production 
of higher valued goods) and a shift toward service-oriented economy. In the former instance, a larger 
production capacity tends to reduce the overall energy (and, therefore, carbon) consumption of a single 
production unit. In the latter instance, the energy consumption by the service sector is considerably 
lower than that required by industrial and manufacturing processes. In the northern China region, 685 
however, industry continues to dominate the economy suggesting that carbon intensity reductions are 
more due to enlarged production capacity. From 2005 to 2009, carbon intensity for the L_0.90 region 
decreased by 47% (28%,65%), based on a one-sample t-test of pooled emissions intensity changes 
across scaled inventories. Analysis presented by organizations such as the World Bank (World Bank, 
2017) suggests China’s carbon intensity at the national level decreased by 20% in 2009 relative to 2005. 690 
However, we note that the carbon emissions data source for the World Bank carbon intensity 
calculations is CDIAC. We have shown that at least for the L_0.90  region, CDIAC emissions lead to 
significant underestimates of observations. Our work here suggests that carbon accounting organizations 
such as the World Bank would benefit from basing their national estimates for China on a variety of 
inventories, incorporating increasingly available China-specific approaches (including but not limited to 695 
MEIC and PKU), EDGAR, and newer global inventories such as ODIAC. However, we emphasize a 
crucial point with respect to the value of carbon intensity targets, in agreement with Guan et al. (2014): 
carbon intensity targets are especially misleading in developing countries where absolute emissions 
continue to significantly grow in concert with economic development goals. We see that despite the 
decreasing carbon intensity of the region, pooled emissions estimates from the three scaled inventories 700 
suggest an 18% increase in absolute emissions from 2005-2009 (Table 2, Figure 9b). In terms of the 
climate impact, it is the absolute carbon emissions rather than the carbon intensity that ultimately 
matters. 
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(a) 

(b) 

(c) 
2005 

2006 

2007 2008 

2009 

Figure. 9. Estimates of Regional Carbon Intensity (kg CO2 USDPPP
-1). (a) PPP GRP by year and as a % of 

China’s national GDP. No PPP GRP values were available for 2006 and 2007; PPP GRP for these years was 
derived from linearly interpolated ratio of Nominal GRP/PPP GRP for 2005, 2008, and 2009. (b) Correlating 
corrected regional emissions from Table 2 with PPP GRP; values are pooled annual means among ZHAO, 
EDGAR, and CDIAC with 1-s error bars. (c) Regional Carbon Intensity using scaled (solid) and unscaled (grey) 
CO2 estimates. Error bars are bootstrapped 95% confidence intervals. GRP, GDP data from IMF and World Bank. 
Provinces used in GRP calculation are those significantly encompassed by L_0.90 region Beijing, Henan, Shanxi, 
Tianjin, Shandong, Hebei, Inner Mongolia, and Liaoning. *Estimated by scaling the official national emissions 
total by the average contribution (39%) of L_0.90 region to total emissions in 2005. Uncertainty bars represent 
the % contribution range estimated by ZHAO, EDGAR, and CDIAC in 2005 (35%, 42%). 
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5 Conclusions 

Continuous hourly CO2 observations, significantly influenced by the heavily CO2-emitting Northern 
China region, are used in a top-down evaluation and scaling of three bottom-up CO2 flux inventories. 
We focus on the policy-relevant time interval from 2005 to 2009, noting that 2005 is China’s baseline 
year for carbon commitments. The three inventories are distinct in their anthropogenic component, with 710 
a common biogenic flux component provided by the VPRM, a simple satellite data-driven biosphere 
model calibrated with ground-level ecosystem observations. The ZHAO anthropogenic emissions 
inventory incorporates a regional approach to China’s CO2 emissions estimation, using activity data at 
the provincial and facility-levels as well as domestic emission factors. The EDGAR and CDIAC 
emissions inventories incorporate a greater reliance on global averages and China’s national statistics 715 
and international default emission factors, and depend more heavily on proxies (e.g., population) to 
allocate the emissions geographically. The three anthropogenic inventories represent a range of methods 
used to estimate emissions for China. 
 
The Northern China administrative region, excluding Inner Mongolia, dominates the L_0.90 region 720 
which is the region over which we distribute the model-observation mismatch (Figure 2). We find 
strong seasonality in the L_0.90 region, ; the northwest features more strongly in the non-growing 
season and there is a more symmetric influence in the growing season. Within the L_0.90 region, 
EDGAR and CDIAC are—on average across the five study years—lower than ZHAO by 20% and 36%, 
respectively. Across administrative regions, the highest discrepancy between the global and regional 725 
inventories is in Northern China, where the ZHAO inventory estimates emissions that are on average 
30% higher than both EDGAR and CDIAC (SI, Table S1).   
 
We find the ZHAO+VPRM inventory generally agrees very closely with observations, often 
significantly better than the nationally referenced inventories at all timescales (hourly through 730 
annually), with the exception of the peak growing season. During the peak growing season, the regional 
enhancement to background CO2 concentrations is modeled as approximately zero, due to an 
agriculturally dominated vegetation signal that is equal in magnitude and opposite in sign to the 
anthropogenic signal (Dayalu et al., 2018). While this agrees with previous work by Turnbull et al. 
(2011), in both that study and the present study the sparse data prevents a more conclusive statement 735 
about anthropogenic inventory performance during the regional growing season. At annual timescales, 
the anthropogenic signal dominates, and we find that emission rates from EDGAR and CDIAC lead to 
underestimated emissions in the Northern China region by an average of 30% and 70%, respectively, 
averaged across all study years. We note that the discrepancy between the EDGAR-based timeseries and 
the observations generally decreases over the five-year study period. In contrast, emission rates from the 740 
ZHAO inventory gives a priori results very close to observations throughout and is not significantly 
affected by the scaling: the error bars for the scaled estimates consistently include the original estimate. 
Note that the EDGAR and CDIAC inventories can differ from -10% to -20% relative to ZHAO in their 
national emissions totals (Table S1). The inventories evaluated here exhibit distinct differences in their 
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ability to match observations. However, observational data from a network of sites strategically located 745 
in and around the eastern half of China would be required to (1) examine whether differences in spatial 
allocation approaches contribute to differences among the inventories and (2) conduct actual 
optimizations of the inventories.  
 
We find that carbon intensity in the region has decreased by 47%(28%, 65%) from 2005 to 2009, from 750 
approximately 4kgCO2/USDPPP in 2005 to about 2kgCO2/USDPPP in 2009 (Figure 9c). However, we see 
that despite the decreasing carbon intensity of the region, there is an 18% increase in absolute emissions 
over time, affirming the point made by Guan et al. (2014) that meeting carbon intensity targets in 
emerging economies can be at odds with making real climate progress (Table 2, Figure 9b). 
 755 
Despite the limitations of having data from a single site, this analysis demonstrates how a long time 
series of continuous observations can identify apparent overall biases in some inventories. Our results, 
while specific to northern China regional emissions in particular, also provide some insight into current 
methods of carbon emissions accounting for China as a whole. We emphasize that this work is intended 
to be a comparison of emission rates from a subset of anthropogenic CO2 inventories over northern 760 
China that were readily available at the time this research began and is not intended to be an advocate or 
criticism of any single published inventory. Rather, we use a long 60-month continuous observational 
record to examine model-data mismatch in an important carbon emitting region where local data is 
difficult to access and global datasets are forced to rely on the best available public data, which are not 
necessarily accurate assumptions of China-specific activity. Second, while we recognize the height 765 
limitations –and therefore the footprint—of the Miyun receptor its topographic advantage along with the 
low-productivity vicinity, make it similar to other short-tower sites suitable for regional analysis. In 
addition, a detailed assessment of uncertainty stemming from errors in transport, biogenic inventories, 
and inventory spatial allocation remains a challenge. Independent verification from concurrent aircraft 
measurements (for example) or multi-level inlet locations were not available to quantify the impact of 770 
absolute and relative inlet location on transport uncertainty. Finally, we emphasize our implied seasonal 
and annual “corrections”, or scalings, of modeled CO2 relative to observations are not optimizations; 
rather, they simply reflect the extent to which the individual anthropogenic+VPRM CO2 flux models 
deviate from the observations. At least in the winter, where biogenic processes are at a minimum, the 
low bias of ZHAO-modeled CO2 concentrations suggests the ZHAO inventory is closer to actual 775 
emissions. However, improved representation of temporal anthropogenic activity factors and biosphere 
processes are needed to extend the conclusions of anthropogenic inventory performance to all seasons. 
Effectively evaluating and constraining inventory emissions rates at relevant spatial scales requires 
multiple stations of high-temporal resolution observations, as well as improvements and greater 
diversity in observationally-constrained biogenic flux models. In its current configuration, the single 780 
biogenic flux model precludes a comprehensive multi-seasonal and annual disentangling of 
contributions to CO2; particularly in our annual scale analysis, we are ascribing more uncertainty to the 
anthropogenic inventories over the biogenic contributions. Absent data from a dense network of 
ecosystem flux and atmospheric measurements, there will constantly be a tradeoff between drawing 
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conclusions using low-temporal resolution flask measurements from a few sites and continuous data 785 
from a single location.  
 
In situ CO2 observations interpreted within a high-resolution model framework such as described in this 
study provide a powerful constraint to test and correct spatially explicit inventories. The observation 
station available for the 2005-2009 period was strategically located to provide information on one of the 790 
highest CO2 emitting regions of China. Within the limitations described above, the observations provide 
strong evidence supporting the use of China-specific methods, such as those employed in ZHAO, for 
China’s CO2 emissions inventory derivation. In future, access to a spatially dense network of 
measurements will allow for a sophisticated error analysis that can more readily assess uncertainty in 
key model components such as transport, flux fields, and background concentrations. Along with the 795 
results presented here, previous studies (e.g., Turnbull et al., 2011) provide key information that is 
necessary to guide and motivate more extensive future measurement and emissions evaluation efforts. 
Such future efforts will benefit substantially from incorporating newly available information from 
column-average CO2 concentrations acquired by orbiting instruments or ground-based spectrometers to 
increase observational coverage. A number of existing (OCO-2, OCO-3) and planned satellite missions 800 
will significantly reduce the observational gap in China, though surface observations provide additional 
constraints and a link to absolute calibration scales. A denser network of CO2 measurement stations in 
China is required as a component for effective monitoring, reporting, and verification of regional and 
national inventories. The results of this research present a necessary baseline for a key CO2-emitting 
region of China. Our results have broad implications toward designing future analyses as more 805 
observations of China’s CO2 continue to become available, particularly in the era of increased CO2 
satellite coverage. However, as the quality of satellite retrievals can be compromised by factors such as 
aerosol loading, surface observations continue to be crucial for the region both in their own right and as 
a key component of cross-platform evaluations. 
 810 
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Code and Data Availability  
 
Code and data are available through the Harvard Dataverse at https://doi.org/10.7910/DVN/OJESO0. 
The code and data supplement includes observational and modeled CO2 time series, WRF and STILT 
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