
We thank the two reviewers for the detailed and helpful comments which have strengthened the 
paper. Individual responses to each of the points raised are provided below. 
 
Response to comments from Anonymous Referee #1 (RC1) 
1. I see two potential pathways to go ahead with the publication of this work: 1) Re-frame the 

writing/aim of the work and highlight more and focus more on what you did and what 
information you can get from the available data (with high certainty) and not what you 
weren’t able to do 2) Extend the work/analysis by including additional methods to evaluate 
and constrain regional CO2 emissions and additional inventories that potentially became 
available since the start of this research. 
- We agree that the focus should be more on spotlighting the key results (pathway 1) and 

our revisions have focused on this. Extension to additional emissions inventories 
(pathway 2) without additional observations is simply throwing more modeled quantities 
at sparse observations (this work is observation-limited, not inventory-limited). In this 
context, a selection of three inventories is sufficient to make our main points which are (i) 
the power of top-down constraints on emissions assessments in the region, motivating 
new ground-based observation sites; (ii) there are substantial differences in categories of 
inventories for China, and these broad categories (China-specific ones that are tuned to 
actual but difficult to obtain field data, or global subsets based on coarser but more 
readily available inputs) produce significantly different observational mismatch, 
highlighting the importance of China-specific field data; (iii) our work suggests that 
current emissions tracking at the international level based on archaic inventories such as 
CDIAC can be very different from emissions reality; more ground-based observations are 
needed (along with remotely sensed observations, which now have a robust timeseries) to 
test this hypothesis. When sufficiently dense observations are available, a truly 
comprehensive analysis of all available and relevant inventories can be conducted. Such 
an analysis is different from the main point of our study. 

 
2. Lots of focus on justifications/limitations early on in the Abstract. I suggest shortening the 

Abstract, more specifically the part where the authors discuss that they only have one site. 
Try to re-frame it so that you highlight and emphasize what you have and what you did, and 
not what you don’t have and can’t do. Moreover, the limitation of only 1 site is discussed too 
many times in the text, no need to repeat it over and over again. 
- Agreed. Combining this with (1) above, we have gone through the text and deleted 

redundant caveats and spotlighted areas of greater certainty so they are not lost in the 
“caveat weeds”. We also recognize there is a certain amount of subjectivity surrounding 
how much is too much for caveats, as one of the main concerns of previous reviewers 
was that there were not enough.  

 
3. I would also suggest to merge the caveats section with the conclusions. I understand that 

including the caveats of this study is quite important to justify the results/work/effort; 
however, currently the focus on the caveats puts the results in the second plan. 
- Agreed. The stand-alone caveats have now been ingested into the Conclusions. Along 

with (1) and (2) above, we have pared down the amount of in-line caveats as well. 
 



4. The whole text could be condensed. There are a number of places where the authors repeat 
the same thing. An example: Introduction lines ∼115 where describing the measurements is 
the same as the beginning of the CO2 observations section. No need to have all the details on 
both places. 
- Agreed. We have fixed this. 
 

5. The writing needs modification and improvement, hence the paper needs a careful 
reading/checking. There are a number of sentences (or parts of sentences) that are hard to 
follow and requires few re-reading in order for the reader to understand the message. I 
suggest the authors to re-write and clarify the sentences under the Specific Comments. 
- See responses to Specific Comments. 
 

6. Rephrasing/restructuring. Line 22: Comparison of CO2 observations to CO2 predicted from 
accounting for global background concentration and atmospheric mixing of emissions 
suggests potential biases in the inventories 
- Fixed. We have made significant changes to the abstract wording to both spotlight our 

key results and also improve the structure. 
 

7. Rephrasing/restructuring. Line 39: Additionally, we note that averaged over the study time 
period, the unscaled China-specific inventory has substantially larger annual emissions for 
China as a whole (20% higher) and the northern China evaluation region (30%) than the 
unscaled global inventories. 
- Fixed. We have made significant changes to the abstract wording to both spotlight our 

key results and also improve the structure. 
 
8. Rephrasing/restructuring. Line 42: lend support the rates 

- Fixed. We have made significant changes to the abstract wording to both spotlight our 
key results and also improve the structure. 

 
9. Rephrasing/restructuring. Line 180: Winter wheat emergence in the spring and corn 

emergence in later summer shift the seasonal patterns such that regional seasons are more 
appropriately represented when months of year are grouped as January, February, March 
(JFM/Winter); April, May, June (AMJ/Spring); July, August, September (JAS/Summer); and 
October, November, December (OND/Fall), respectively. 
- Fixed. 
 

10. Rephrasing/restructuring. Line 285: This is not intended as an exhaustive sampling of 
inventory approaches; however, it is sufficient to demonstrate the utility of continuous high-
accuracy observations as a top-down constraint for evaluating emissions estimates. 
- Fixed. 
 
  

11. Line 468: As noted in Sect. 3, the regional growing season does not have a typical pattern in 
that peak uptake occurs around July/August with the onset of the corn growing season. 
- Fixed.  
 



12. Rephrasing. Line 45: import  
- Fixed. 
 

13. Rephrasing. Line 80: exhaustive  
- We use the word exhaustive in response to previous reviewers who were concerned that 

we were claiming the three inventories were the only ones that existed for China. We 
wanted to assure readers that we recognize that these are the only inventories that exist 
for China. We feel this word should be left in for that reason. 

 
14. Rephrasing. Line 95: judge  

- We use this word in response to previous reviewers who felt we were actually judging the 
merits of the inventories individually. That has not been our intent. We feel this word 
should be left in for that reason. 

 
15. Rephrasing. Line 110: while the others do not 

- Fixed.  
 

16. More details needed. Abstract Line 21: “CO2 inventories” – list which ones. 
- We are leaving the named inventories out of the abstract in response to previous 

reviewers who felt that calling them out specifically at that stage implied criticizing the 
particular inventories rather than a generalized examination of the approaches they 
represented. We feel the wording should remain this way until the reader has the deeper 
context from the text.  

 
17. More details needed. Line 285: ”This is not intended” - this as what, the study? Clarify. 

- Fixed – “Our study is not”. 
 

18. More details needed. Line 320: “Applying the weekly and diurnal Nassar et al. (2013) scaling 
factors did not generate differences that were statistically significant, suggesting that a more 
rigorous set of temporal scaling factors need to be developed for China. “ Is this based on 
work from the authors or Nassar or? Clarify. 
- It was based on our work. We have clarified this. 
 

19. Line 145: "it is not possible to evaluate any error in spatial allocation of emissions. However, 
we note that the same transport model is applied to all the emission fields. Unresolved 
transport error undoubtedly contributes to scatter in the model-data comparison but is 
unlikely to generate consistent biases among the inventories." - could you please explain this 
better. 
- We have reworded and expanded this section. We have also restructured the paragraph to 

make the point clearer. 
 
20. Line 170: “Average annual data coverage” – was this calculated based on hourly, daily data? 

Just add some brief details how was it quantified. 
- Fixed. (Calculated based on hourly data). 

 



21. Line 189: “filtered to include only non-missing observations” – a little bit unclear, does this 
means that only days are used when we have measurement for each hour between 11 and 16? 
- We have clarified this. The subset is done for each individual hour, not the daily blocks. 

For example, if we were missing 1100h but had 1200-1600 for a particular day, 1200-
1600 would be used but 1100 would not (because we would not be able to compare our 
modeled quantities for that hour to any observation). But we would be able to compare 
modeled to obs for 1200-1600h on that same day. 

 
22. Line 190: “background criteria” – if possible, briefly mention what it is in the main text also 

or additionally refer to section 3.5. 
- Fixed. Referring to section 3.5, where we also included a very brief discussion of what 

that criteria is (previously mentioned only in the SI). 
 

23. Methods section – when describing why the 11-16 measurements are used, please add a 
discussion of why the authors didn’t use night time data and how much this affects the 
results. Although this is briefly mentioned at the end of section 3.3. it would be good to 
extended it in the Methods section also. 
- We do explain this in that paragraph (~L190) but we have improved the wording to make 

it more clear as to why we were not using nighttime data. 
 

24. Figure 2: It would be good to add another sentence on what the different percentile regions 
represent/describe. This could be added around Line 235. 
- We have considerably re-worded our presentation of percentile regions in response to 

concerns from the second reviewer.  
 

25. Line 259: “which has been noted previously as major uncertainty in Chinese emission 
inventories” – add reference. 
- Reference added. 
 

26. Feel free to remove the word respectively from everywhere in the text. It is already 
automatically assumed that the order is respectively. 
- The comment is appreciated, but I would feel more comfortable keeping “respectively” in 

formal writing as is customary when multiple variables are being described. Even if the 
order is understood by most people, it eliminates confusion more than it distracts. 

 
27. Line 160 rephrase ‘made’ –> “measured’ 

- Fixed. 
 

28. Table 1. – define what the abbreviations are (if used for the first time in the text). And just to 
clarify, these are the 2005-2009 averages? Add in the caption. 
- Fixed. 
 

29. Line 820: (in press), 2018 – still in press? 
- No longer in press. Fixed. 

 
Response to comments from Anonymous Referee #2 (RC2) 



1. The title implies that actual flux estimates for Northern China are the central point of this 
paper. However, this paper is very technical and focuses much more on the comparison of 
existing inventories with atmospheric observations and also the regional emission intensity. 
The title should be updated to better reflect this core content. 
- Agreed. We have changed the title accordingly. It is now “Evaluating China’s 

anthropogenic CO2 emissions inventories: a northern China case-study using continuous 
surface observations from 2005-2009.” 

 
2. The authors present the L_90 footprint, which usually reflects the theoretical sensitivity of 

the observations to a unit of flux. Two issues arise with this. First and foremost, the actual 
area influencing the receptor observations is not reflected by this, as CO2 sources span 
multiple orders of magnitude. Therefore, a major source e.g. coal-fired power plants just 
outside the L_90 footprint will have more influence on Miyun CO2 mole fractions than a 
deserted patch of land without CO2 flux inside the L_90 footprint (e.g. in inner Mongolia). 
The second problem is that the authors use a plethora of different terms and all seem to refer 
to nearly(?) the same thing: “L_90 footprint”, “influence region”, “L_90 region”, “L_90 
evaluation region”, “90th percentile of multiyear mean annual STILT footprint influences”, 
“surface influence maps”. 
- We recognize there has been a misunderstanding about the role of the L_0.90 region in 

our study. We apologize for the confusion caused by the way this concept was explained 
and introduced, especially with the effect of inconsistent references (we now consistently 
use L_0.90 region). We have explained the role of the L_0.90 region and the 
methodology for calculation more thoroughly in the text. In particular, we have clearly 
stated that at any given time the *entire* STILT footprint is convolved with the flux 
estimates; the L_0.90 region is simply the region we chose to ascribe the model-
observation mismatch. The area of the region informs the conversion of ppm mismatch to 
mass units and we compare this regionally scaled mass correction to the mass originally 
estimated by the fluxes in that L_0.90 bounding area. We could have just as easily made 
our bounding area for evaluation of mismatch be L_0.75 or L_0.99 but we explain in the 
text why the L_0.90 region is a good balance of capturing enough of the surface 
sensitivity with not having an unrealistically diffuse spatial area. With this clarification in 
mind, your concern about neglecting influential sources is alleviated: we *are* taking 
such sources into account in the main footprint*flux = ppm setup; we just ascribe that 
ppm to the L_0.90 region in the end to obtain a mass correction over a reasonably 
influential area. The data set does not really allow us to geographically allocate the 
mismatch beyond this relatively coarse method. 
 

3. A further limitation is that only one biosphere model is used. The authors seem to ignore this 
limitation, while nicely highlighting that having 3 anthropogenic prior is very helpful to 
better understand general results of modelled atmospheric CO2. The fact that biospheric 
fluxes might be even more uncertain than anthropogenic CO2 fluxes seems to unrecognized. 
A straightforward analysis to investigate the relevance of natural versus anthropogenic fluxes 
would be to investigate if the biggest model-observation mismatches systematically occurr 
during times of high contributions of anthropogenic or natural fluxes to the modeled CO2. 
 



- We have modified the text accordingly. We used only one biosphere model to simplify 
our assessment of the variations across different anthropogenic emissions inventories 
(and we have changed the paper title accordingly). Our companion paper (Dayalu et al., 
2018) highlights differences across vegetation models when controlling for 
anthropogenic emissions. We did not intend to imply that only the anthropogenic 
inventories are needed to understand China’s atmospheric CO2 and we have reworded 
the text to make this clearer. In addition, we make more references to the Dayalu et al. 
(2018) VPRM-CHINA paper (in agreement with the Turnbull et al. (2011) paper) that 
specifically highlights that in the heavily agricultural region of the North China Plain, the 
*peak* growing season sink actually is comparable in magnitude to the anthropogenic 
source. Outside of this observation, we do state that the Summer-time analysis of 
anthropogenic vs biogenic cannot really be undertaken absent additional and diverse data 
sets. Table 1 (Mean Bias and RMSE segment) does highlight the model-observation 
mismatch by season, as you had suggested. In the winter in northern China, the 
anthropogenic signal is the dominant signal, swamping the NEE terms. The systematic 
bias among the three simulations in this season (Table 1) is largely attributable to 
differences in the anthropogenic emissions alone (all other modeled components being 
identical among the three modeled CO2 quantities).  Based on the results presented in 
Table 1 (with the confounding exception of the Summer for reasons we just described) 
we see that during seasons where biological activity is lower or significantly lower than 
anthropogenic activity, there is a consistent discrepancy between the CO2 modeled by the 
three different anthropogenic inventories suggesting a systematic difference in the 
anthropogenic component. In the fall, all three modeled quantities are consistently lower 
than observations most likely resulting from the known underestimate of ecosystem 
respiration which is the dominant biological process at this season (Dayalu et al., 2018); 
but even so China’s significant anthropogenic component still dominates at this time. If 
we assume that the winter represents the “purely anthropogenic” baseline, and we assume 
a certain percentage impact of temporal activity factors (1.5-8ppm as suggested by 
Nassar et al. 2013)  we could make an estimate as to how much this baseline is expected 
to shift over the course of seasons – but that would be overextending our analysis as we 
know very little about temporal activity factors in China. 

 
4. Furthermore, multiple papers that address anthropogenic CO2 emissions in China and 

specifically the Beijing region are ignored, e.g. the PKU-CO2 inventory (see comment line 
35f) or the isotope studies by Niu et al. 2016 (see comment line 364f). A comparison to their 
results would be an important addition to this study. Lastly, one important result of this study 
is the trend in regional carbon intensity. Unfortunately, the calculation of GRP and its trend 
as well as their uncertainty is not clear enough. To really assess the importance of reducing 
the uncertainty in CO2 emission estimates by using atmospheric observations strongly 
depends on how well GRP and GRP trends can be calculated and also scaled to GDP and 
GDP trends. The explanation, data sources and methodologies for the GRP calculation 
should be expanded. 
- Re: inventories. See responses to 5 and 20 below. Re: GRP calculations: we have 

expanded the text and descriptions of the calculations. 
 



5. Line 35f: When did this research begin? The PKU-CO2 emissions inventory which is China-
specific was published in 2013, but is not considered or even mentioned in this manuscript 
(Wang et al. 2013; doi:10.5194/acp-13-5189-2013, available through e.g. 
http://inventory.pku.edu.cn/download/download.html) 
- We include this paper in the references now (and cite it as an additional justification for 

our not explicitly separating ODIAC and CDIAC for China – a major concern of previous 
reviewers). That aside, the PKU-CO2 emissions inventory referred to in the Wang et al., 
2013 paper was a *global* emissions inventory solely for the year 2007. We selected the 
Zhao inventory due to the fact that at the time the study was conducted, it was the only 
readily available China-specific inventory that spanned our observational data set (2005-
2009). Furthermore, the paper does specify use of the CARMA power plant inventory for 
emissions factors; for reasons described in the text, the global emissions factors provided 
by CARMA for China are known to be problematic. PKU and MEIC have since been 
leaders in developing China-specific inventories, but unfortunately the study concluded 
before those were readily available and ingestible into our analysis framework. We agree 
that future studies in China would benefit greatly from more China-specific inventories 
being evaluated, and look forward to results from such analysis when longer timeseries of 
observational data become available. 

 
6. Line 56f: The author’s should expand more on the nature of the differences of different 

inventories. Atmospheric measurements will only be able to consider scope 1 emissions and 
do always include all sources, while national inventory reporting and provincial reporting 
might use different methodologies and also different emission category definitions and 
reporting thresholds. Therefore, it is unclear if the mere fact that there is a discrepancy 
between provincial and national estimates really means that there is a difference that an 
atmospheric approach could detect, help to decrease. 
- Agreed -- the observations give an overall constraint on total fluxes and cannot resolve 

the particulars of estimate methodology. We are looking at whether totals are consistent 
with observations, but we can’t really diagnose the finer scale methodology (we can’t 
attribute the error to any particular source). That being said, if there is a significant 
difference between the totals reported by provincial vs national inventory estimates then 
the discrepancy can be suggestive of differences in methodology. With our approach we 
can assess whether total fluxes over a region are consistent with observations, but with 
only one species we can’t really diagnose which emission source types are too high or too 
low. One inventory is closest to matching the observations than the other, but we can’t 
say what feature makes this so. The most we can do is highlight the major differences 
among the inventory methodologies (as we have done in Section 3.3); we don’t know 
which of these changes accounts for the better model-observation match. We have made 
it clearer in the introduction to ensure we are not suggesting this. “The primary intent of 
the comparisons presented here is not to judge specific inventories, but to demonstrate 
that even a single site with a long record of high time resolution observations can identify 
the potential impact of major differences among inventories that manifest as biases in the 
model-data comparison.” 

 
7. Line 79: see comment line 35f 

 



- See response #5. 
 
8. Line 118: A key element that needs further explaination is the notion of “surface influence 

map”. This seems to be used to describe the footprint, i.e. the sensitivity of the observations 
to a unit of flux (emission) from a given area. However, in line 645 the “L_90 footprint” is 
apparently something separate from the “influence region”. See general comments. 
- Yes – we have fixed this in the text and included a new set of figures in the SI to further 

explain the footprint map/notion of surface influences.  
 

9. L130: Figure 10 from Dayalu et al. 2018 does indeed show that natural and anthropogenic 
fluxes are the same order of magnitude in the growing season. But given the very significant 
variability (1-sigma is near 100%) it seems unclear why the authors assume that this is only 
in the peak growing season and not also in other months e.g. May 2006 seems to have high 
uncertainties in relative importance of natural versus anthropogenic CO2 fluxes. 
- Uncertainty in the modeled biosphere is undoubtedly significant, but contributes equally 

to the variability across all the modeled-observation quantities. We have made this 
clearer in the uncertainty discussion as well. See response to #20. 
 

10. L146f: Please elaborate why transport errors (which can be systematic in nature) could not 
cause a bias when comparing inventories with distinctly different spatial distributions. 
- We have amended the line to include that it may be important in that it could attribute 

errors in transport to biases in inventories. Although the interaction of transport error with 
differences in spatial distribution could bias individual observations, averaging over 
longer timescales (seasons, years) minimizes the bias of individual points.  We have 
made this clearer in the text.  

 
11. L160f: Wang et al. 2010 provide information on instrumental precision and that a calibration 

strategy was in place to monitor long-term drifts. This seems like an important addition here. 
- Fixed. We also note the citation for Wang et al., 2010 at the end of the section directing 

the readers to that paper for details on the instrument precision, calibration strategy, etc. 
 

12. Line201f: Given that a short tower is used for observations it seems useful to know what the 
height of the lower/lowest WRF levels used are. 41 vertical levels are mentioned, but without 
additional information this seems difficult to interpret. 
- We use the default WRF eta levels generated with the 41-level specification and we 

would expect about 20 vertical levels in the first 1500m. Our first vertical level would be 
roughly around 8m (using Arasa et al., 2016 as a guide: 
https://www.scirp.org/pdf/ACS_2016042911473822.pdf). We also note this is the other 
reason for restricting our analysis to middle of day -- excluding times when the vertical 
gradients are sharp. 

 
13. Line 234f and Figure 2: It seems important to expand on how your “L_90 region” was 

calculated. It is referred “90% of the surface influencing measurements”. So this would mean 
that it is NOT the footprint or the 90th percentile of the surface sensitivity. The surface 
sensitivity/footprint reflects how a unit of flux will alter the observed mole fraction. 
However, even regions with very low sensitivity can still have a noticeable influence on the 



observed concentrations. Figure S8a clearly shows that some regions within the “90th 
percentile (Northern part of China) have emission rates that are at least 3 orders of magnitude 
lower than areas just South of the 90th percentile footprint (Nanjing-Shanghai region). It 
seems very likely that atmospheric CO2 mole fractions at Miyun would be more affected by 
these Southern Emissions than from some remote Northern regions that. A true 
influence/contribution map could be calculated very quickly with the existing data. 
- Agreed -- the concept was poorly explained which has led to the misunderstanding. We 

have now explained our methodology better and included footprint maps and percentile 
selection illustration in the SI. See detailed comments to your previous point (#2.) 

 
14. Line 238f: Are really 40% influence/contribution coming from outside of L_50 or rather 40% 

of footprint sensitivity lies outside L_50? 
- Agreed – again, poorly worded. This has been fixed. We also modified to state L_0.75, as 

this seemed more interesting a comparison. 
 

15. Line 256f: The justification of the interpolation seems to rely on the fact that only a few 
regions show large differences. However, a more straightforward method would be to 
convolute the 2005 footprints with 2005 emissions and then with 2009 emissions (using the 
same 2005 footprints). This way we can directly assess if the flux changes are theoretically 
noticeable in the atmospheric record used later or if this just adds "random noise" to the 
observations. 
- While the test proposed would be interesting, evaluating errors in spatial allocation is 

beyond the scope of this study and the available data set (L143). It would still be relying 
on a single site to optimize a spatial distribution of emissions and would not be a 
conclusive test; our approach was the simplest method using the information provided 
by the raw anthropogenic inventory alone.  

 
16. Line 274/275: citations needed  

- Fixed. 
 

17. Line 287f: see comment line 35f 
- See response 5. 

  
18. Line 332f: Given that only one simple biosphere model is used in this study a discussion of 

its performance and uncertainty would be very useful here. How well does VPRM-China 
compare to the local/regional flux towers sites within the L_90 footprint?  
- We direct readers to the companion paper by Dayalu et al (2018) which shows these 

figures (E.g., Figure 5). Eddy flux sites in the region are sparse, and most of the available 
data was enough to be used only as calibration. Only two sites had enough data to be used 
for validation. 

 
19. Line 351 – eq 1? The equation seems to imply that CT2015 was used for all years – maybe 

add clarification that CT fluxes for the appropriate years was used and not a climatology 
based on CT2015. CO2(t) = CO2,obs(t)-CO2,CT2015(t-7d) Also, the equation is not 
numbered/labelled.  
 



- The equation is now labeled. CT2015 is the CarbonTracker version number (not the year 
of the data). CT2015 was used for all years (ie. that version of CarbonTracker), and we 
used atmospheric mixing ratios not fluxes. Setting (t-7d) in the subscript implies that was 
always used – however, as we detail in the supplementary information (and now in the 
text) background concentrations were selected when the particle reached the domain 
edges which may or may not be as far back as 7days (7 days being the backward limit). 

 
20. Line 364f and S5: The authors suggest that the anthropogenic fluxes dominate the annual 

total in the main text and then go even further in the supplement and suggest that natural 
fluxes are negligible. Quote from S5: “. . . correction at annual scales is therefore applied 
only to the anthropogenic emissions inventories” This a very strong assumption and seems to 
require further explanation. During the growing season fluxes seem comparable and VPRM 
underestimates respiration fluxes in the non-growing season (see line 504). In the absence of 
other biosphere models in this study to cement this notion it seems necessary to refer to other 
studies in China to rationalize this. For example, Niu et al. 2016 
[https://pubs.acs.org/doi/abs/10.1021/acs.est.5b02591] found that even in Beijing (Haidan 
district) CO2 from fossil burning only contributes 75% to the annual average CO2 offset. So, 
it seems unlikely the natural contribution to the CO2 mole fractions at Miyun can be ignored, 
even at annual average scale.  

- The data from the two sites in Niu et al. study is only for one year (2014), and the 
contribution of fossil fuels to the Beijing site displays considerable variance (75% +/- 15%); 
nevertheless we have incorporated these important results in our paper to caveat our 
statements about annual emissions but we also note that the timing relative to our study 
(2014 vs 2005-2009) and the variance (60% - 90% contributed by fossil fuels) annually. In 
line 364 we don’t say the biospheric impact if zero; we say the anthropogenic signal 
dominates (which is true, also according to Niu et al’s results). More biospheric models are 
needed to quantify the regional biospheric impacts and we note this in the conclusions. This 
is an area of significant uncertainty, as evidenced in Piao et al. (2009) which we also cite at 
line 478 (“For annual budgeting we follow the assumptions of Piao et al. (2009) and Jiang et 
al. (2016) that agricultural systems are in annual carbon balance because crop biomass has a 
short residence time.”)   

The quantity relevant to this question is the annual *net* biospheric carbon flux: and 
annual net carbon balance in this region is highly uncertain with an uncertainty in both 
magnitude and sign (ie, spanning zero) both for process-based models and inversions (Piao et 
al. 2009). Piao et al examine this quantity by region of China, noting that the uncertainty is 
very large (his regional inversions are based on 9 sites across all of Asia). Process-based 
models and prior models corresponding to our northern China study region (Figure 2, Piao et 
al) assume either small net emissions or zero (ie. zero in the agriculturally dominated north 
china plain). To the extent that there is a net biosphere source/sink at the annual scale, it 
should be included but is currently highly uncertain. Our assumption of dominant 
anthropogenic influence in northern china is in keeping with the priors (e.g. from Piao et al.) 
that assume zero and are not significantly corrected by the poorly constrained inversions. We 
have summarized this discussion in the text. 

  
21. Line 373f: Why is VPRM now classified/labelled as an inventory and not as a biosphere 

model anymore?  



- We have changed the wording to make it clearer (the VPRM model output is biogenic 
fluxes of CO2). 

 
22. Line 402f: Please clarify the distinction you make between “footprint extent” and “influence 

region”  
- We have reworded substantially to have consistent phrasing, and have made the linkage 

clear where we interchange surface influence and footprint. Furthermore, we are now 
consistent with how we refer to the L_0.90 region without mistakenly overstating its role 
in our study. 

 
23. Line 415 - 417: Please clarify - on one hand, during winter the receptor is predominantly 

influenced from low emitting regions northwest (Inner Mongolia), but also subject to CO2 
from inefficient district heating? Is that district heating in Mongolia? Or do the more local 
CO2 sources (e.g. Beijing) dominate the atmospheric CO2 mole fractions at Miyun during 
this season?  
- Our wording was confusing. As in all seasons the closer the sources are, the more 

influence they have. We reword to remove dominant, and instead discuss their influence 
on the site relative to their influence at other times of the year. 
 

24. Line 457f: Suggests that section 4.2.1 implies that better performance of EDGAR and 
CDIAC is due to an artifact of their lower emissions. However, section 4.2.1 does not explain 
why EDGAR+VPRM and CDIAC+VPRM being too low has to be due to EDGAR and 
CDIAC and not a feature of VPRM. One could also easily argue that ZHAO+VPRM 
matching at hourly scale is an artifact due to too high anthropogenic fluxes. A more detailed 
discussion why matching hourly data is correct and matching the seasonal data is likely an 
artifact would be helpful here. One point raised later (line 504) is that VPRM underestimates 
non-growing season CO2 respiration. Wouldn’t this even further improve the fit of 
EDGAR/CDIAC+VPRM in Figure 4? And maybe partially explain the underestimation at 
hourly timescale?  
- If we (justifiably) view wintertime as the anthropogenic baseline where neither GPP nor 

R are contributing appreciably to the signal, we see there is a consistent offset in the bias 
relative to observations (mean bias: ZHAO=0.01, EDGAR=-2.2, CDIAC=-3.1). We have 
modified the text accordingly to better illustrate the discussion that anthropogenic 
discrepancies are contributing to the model-observation mismatch. In any case, with the 
limited data and the lack of temporal activity factors we agree with your point of the 
ZHAO+VPRM providing too high anthropogenic emissions. We have incorporated this 
into the text. 

We have also clarified the statement at L504: VPRM underestimates respiration 
across the board (barring winter) not just non-growing season respiration. It’s just that the 
effects of this underestimated respiration are more pronounced at the time of year where 
R is high, with lower GPP (e.g, Fall). 

We also wish to clarify that we are certainly not saying “hourly data is best”…we are 
just identifying the model the model that minimizes errors at all timescales (a multiple 
constraint).  

   
25. Line 505-510: see comment line 457f.  



- See response 24. We have also expanded this part accordingly.  
 

26. Line 550: More detailed needed on the calculation of GRP and a proper assessment of its 
uncertainty is crucial, see general comments. 
- The GRP for each province was retrieved from the IMF, World Bank, and China 

Statistical Yearbook. We added the GRP for each province contained in the L_0.90 
region. The GRP/GPP values are very uncertain quantities, but in the form they are 
broadly disseminated it is unfortunately a single value for each province per year. An 
economic analysis to estimate uncertainty of these values is beyond the scope of our 
expertise and the study itself. We have, however, made our methodology clearer. 

 
27. Line 551-556: A list of potential reasons for changes in GRP and CO2 emissions is given 

here, but it is unclear if this is linked to table 3 or just a list of events happening in the 
discussed time window. For example, the financial crisis of 2008 is mentioned, but no 
decrease in GRP is visible in Figure 9a.  
- We plot the percent contribution to total GDP for this reason (the raw numbers alone 

don’t necessarily provide the whole picture). In 2008 we do see a plateauing of the 
regional percent contribution to China’s total GDP.  We have made this section clearer in 
terms of strength of conclusions that can be drawn. We also moved the location of the 
sentence to make the transition from Table 3 and CO2 growth rate discussions to GRP 
clear. 

 
28. Line 556: Should maybe refer to Figure 9a not 6a?  

- Yes—should be 9a. Fixed. 
 

29. Line 573: Previous section was already 4.4  
- Fixed 
 

30. Line 590: Figure 8 seems not to support an evident increase in CO2 emissions strongly 
correlated with GRP. Maybe a scatter plot of GRP versus CO2 emissions would help to 
highlight a possible correlation.  
- We have included a scatterplot in Figure 9. 
 

31. Line 596: Please elaborate why doubling of GRP suggests enlarged production capacity as 
driver for emission reductions? Would a shift towards more service-oriented businesses or 
production of higher value goods have the same effect?  
- We have expanded this section and incorporated your point that the same effect would be 

had with service-oriented shifts. 
 

32. Line 597: The reported decrease of regional carbon intensity by 47% (28%, 65%) is based on 
which inventory?  
- In the text in the same sentence it states it is calculated by pooling the values across the 

scaled inventories: “From 2005 to 2009, carbon intensity for the L_0.90 region decreased 
by 47% (28%,65%), based on a one-sample t-test of pooled emissions intensity changes 
across scaled inventories.” 
 



33. Figure 9: This is a core result of the study and could be discussed in more detail. Are the 
regional carbon intensity trends of the 3 inventories significantly different after applying the 
correction when uncertainties in GRP are accounted for?  
- See response #26: accounting for uncertainties in GRP requires access to a level of 

economic data that is not readily available. We have highlighted the inherent uncertainty 
in our economic evaluation. We have also expanded the discussion and conclusions from 
Figure 9 to highlight the truly interesting and main point from this which is that carbon 
intensity reductions and absolute carbon emissions reductions particularly in emerging 
countries can be at odds with each other, and therefore distracting from climate goals. 

 
34. Line 608: A longer discussion of the limitations introduced by only using one biosphere 

model could be added.  
- We have incorporated more of a discussion in the uncertainty section of the conclusions. 
 

35. Line 645f: see comment line 402f 
- Fixed. See response to #2. 
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Abstract. China has pledged reduction of carbon dioxide (CO2) emissions per unit GDP by 60-65% 
relative to 2005 levels, and to peak carbon emissions overall by 2030. However, the lack of 
observational data and disagreement among the many available inventories makes it difficult for China 
to track progress toward these goals and evaluate the efficacy of control measures. To demonstrate the 20 
value of atmospheric observations for constraining CO2 inventories we track the ability of CO2 
concentrations predicted from three different CO2 inventories to match a unique multi-year continuous 
record of atmospheric CO2. Our analysis time window includes the key commitment period for the Paris 
accords (2005) and the Beijing Olympics (2008). One inventory is China-specific and two are spatial 
subsets of global inventories. The inventories differ in spatial resolution, basis in national or subnational 25 
statistics, and reliance on global or China-specific emission factors. We use a unique set of historical 
atmospheric observations from 2005–2009 to evaluate the three CO2 emissions inventories within 
China's heavily industrialized and populated Northern region accounting for ~33–41 % of national 
emissions. Each anthropogenic inventory is combined with estimates of biogenic CO2 within a high-
resolution atmospheric transport framework to model the time series of CO2 observations. To convert 30 
the model-observation mismatch from mixing ratio to mass emission rates we distribute it over a region 
encompassing 90% of the total surface influence in seasonal (annual) averaged back-trajectory 
footprints (L_0.90 region). The  L_0.90 region roughly corresponds to northern China. Except for the 
peak growing season, where assessment of anthropogenic emissions is entangled with the strong 
vegetation signal, we find the China-specific inventory based on subnational data and domestic field-35 
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studies agrees significantly better with observations than the global inventories at all timescales. 
Averaged over the study time period, the unscaled China-specific inventory reports substantially larger 
annual emissions for northern China (30%) and China as a whole (20%) than the two unscaled global 
inventories. Our results, exploiting a robust timeseries of continuous observations, lend support to the 
rates and geographic distribution in the China-specific inventory Though even long-term observations at 55 
a single site reveal differences among inventories, exploring inventory discrepancy over all of China 
requires a denser observational network in future efforts to measure and verify CO2 emissions for China 
both regionally and nationally. We find that carbon intensity in the northern China region has decreased 
by 47% from 2005 to 2009, from approximately 4kgCO2/USDPPP in 2005 to about 2kgCO2/USDPPP in 
2009 (Figure 9c). However, the corresponding 18% increase in absolute emissions over the same time 60 
period affirms a critical point that carbon intensity targets in emerging economies can be at odds with 
making real climate progress. Our results provide an important quantification of model-observation 
mismatch, supporting the increased use and development of China-specific inventories in tracking 
China’s progress as a whole towards reducing emissions. We emphasize that this work presents a 
methodology for extending the analysis to other inventories and is intended to be a comparison of a 65 
subset of anthropogenic CO2 emissions rates from inventories that were readily available at the time this 
research began. For this study’s analysis time period, there was not enough spatially distinct 
observational data to conduct an optimization of the inventories. The primary intent of the comparisons 
presented here is not to judge specific inventories, but to demonstrate that even a single site with a long 
record of high time resolution observations can identify major differences among inventories that 70 
manifest as biases in the model-data comparison. This study provides a baseline analysis for evaluating 
emissions from a small but important region within China, as well a guide for determining optimal 
locations for future ground-based measurement sites. 
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1 Introduction 

China’s contribution to world CO2 emissions has been steadily growing, becoming the largest in the 105 
world in 2006. China has accounted for 60% of the overall growth in global CO2 emissions over the 
past 15 years (EIA, 2017). Under the United Nations Framework Convention on Climate Change 
(UNFCCC) 2015 Paris Climate Agreement, China has committed to reduce its carbon intensity (CO2 
emissions per unit GDP) by 60-65% relative to the baseline year of 2005, and to peak carbon emissions 
overall by or before 2030. Demonstration of progress on emissions reduction and evaluation of how 110 
well specific policies are working is hindered by large uncertainty in the existing Chinese emission 
inventories. In 2012 the discrepancy between data reported at national and provincial levels was 
approximately half of China’s 2020 emission reduction goals (EIA, 2017; NDRC, 2015; Guan et al., 
2012; Zhao et al., 2012). Moreover, China is under mounting pressure to address severe regional air 
pollution events that are often associated with CO2 emissions sources—vehicles, power plants and other 115 
fossil fuel-burning operations. China’s 11th Five Year Plan (11th FYP) of 2006-2010 included aggressive 
measures to retire inefficient coal-fired power plants and improve energy efficiency in other industries 
starting in 2007 (Zhao et al., 2013; Nielsen & Ho, 2013). A number of pollution control measures that 
were implemented specifically in preparation for the 2008 Beijing Summer Olympics were also largely 
in effect by the end of 2007 (Nielsen & Ho, 2013; Wang et al., 2010).  120 
 
A variety of top-down approaches including inverse analysis (Le Quere et al., 2016) and comparison 
between atmospheric observations and Eulerian forward model predictions (Wang, X. et al., 2013) have 
been used to evaluate and constrain emission estimates, albeit at coarse spatial resolution. As noted by 
Wang et al. (2011) grid-based atmospheric models have difficulty in simulating high-concentration 125 
pollution plumes at specific receptor sites that are too near the source region. The expanding network of 
high accuracy CO2 observations coupled with high spatial resolution transport models is emerging as a 
viable tool for evaluating high resolution emission inventories (e.g. Sargent et al., 2018). In this paper 
we adopt a Lagrangian transport model to simulate atmospheric mixing and transport. Continuous 
observations of CO2 for the period 2005-2009 at Miyun, an atmospheric observatory about 100km NE 130 
of Beijing provide a top-down constraint for evaluating persistent bias among emissions rates obtained 
from a suite of three independent anthropogenic emission inventories that were readily available as 
spatially gridded fluxes.  
 
The three inventories that are evaluated span a range of bottom-up inventory approaches. They are not 135 
intended to be an exhaustive set, but are examples to demonstrate the capability to identify significant 
differences in the ability of different inventories to match the long time series of observations. Emerging 
inventory approaches based on updated (yet non-China-specific) point-source data and satellite-
observations of night lights as a proxy for spatial allocation of energy production (Oda et al., 2018) 
were not readily available when this analysis began. Two of the inventories, the Emissions Database for 140 
Global Atmospheric Research (EDGAR; European Commission, 2013) and Carbon Dioxide 
Information Analysis Center (CDIAC), are spatial subsets from larger global models of CO2 emissions 
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(PBL, 2013; Andres et al., 2016). They rely on national-level energy statistics and global default values 
for sectoral emission factors, and they estimate activity levels using generalized proxies (e.g. 145 
population). The third inventory (ZHAO) is specific to China, with greater reliance on energy statistics 
at provincial and individual facility levels as well as emission factors from domestic field studies (Zhao 
et al., 2012). The ZHAO inventory was readily accessible at the time of this research and represents 
increased efforts in recent years to incorporate more China-specific data into emissions inventories. 
Other China-specific inventories that have been recently developed but were not readily available at the 150 
time of this research include the Multi-resolution Emissions Inventory (MEIC, 
http://www.meicmodel.org/) and an inventory by Shan et al., 2016. The primary intent of the 
comparisons presented here is not to judge specific inventories, but to demonstrate that even a single 
site with a long record of high time resolution observations can identify the potential impact of major 
differences among inventories that manifest as biases in the model-data comparison. 155 
 
A study by Turnbull et al. (2011) used weekly flask observations to evaluate a hybrid approach to 
inventory construction where CDIAC and EDGAR estimates were spatially allocated to a provincial 
emissions-based grid. However, to our knowledge, none of the truly China-specific CO2 inventories 
have been evaluated with independent high-temporal resolution atmospheric observations. The official 160 
national total for China’s 2005 CO2 emissions from energy related activities, used as the benchmark for 
the Paris commitment, is approximately 5.4Gton CO2 (NDRC, 2015). ZHAO, EDGAR, and the CDIAC 
national total (Boden et al., 2016) report total 2005 energy-related CO2 emissions that are higher by 
31% (7.1Gton), 9%(5.9Gton), and 7%(5.8Gton), respectively. As the official national total is not 
available in a spatially allocated format, it cannot be tested by observations and we refer to it only as a 165 
benchmark in our analysis. We will show that the China-specific inventory (ZHAO) provides excellent 
agreement with observations, and markedly more so than EDGAR and CDIAC. The result provides 
guidance for efforts to assess China’s emissions at larger scales as well as potential updates for the Paris 
agreement base year emissions. 
 170 
In order to independently evaluate and scale existing bottom-up estimates of China’s CO2 emissions, we 
employ a top-down approach using five years of continuous CO2 observations. Modeled concentrations 
of CO2 are obtained from convolving hourly CO2 surface flux estimates with surface influence 
estimates (“footprints”) derived from the Stochastic Time-Inverted Lagrangian Transport Model driven 
with meteorology from the Weather Research and Forecasting Model version 3.6.1 (WRF-STILT; Lin et 175 
al., 2003; Nehrkorn et al., 2010). NOAA CarbonTracker (CT2015) provides modeled estimates of 
advected upwind background concentrations of CO2 that are enhanced or depleted by processes in the 
study region. As atmospheric CO2 concentrations are significantly modulated by photosynthetic and 
respiratory fluxes, we additionally prescribe hourly biosphere fluxes of CO2 using data-driven outputs 
from the Vegetation, Photosynthesis, and Respiration Model (VPRM) adapted for China (Mahadevan et 180 
al., 2012; Dayalu et al., 2018). VPRM provides a functional representation of biosphere fluxes based on 
data from remote sensing platforms and eddy flux towers, with significantly better observationally-
validated performance relative to subsets of global vegetation models (Dayalu et al., 2018). The WRF-
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STILT-VPRM framework has been successfully adapted for similar emissions evaluation studies in 
North America in regions where biogenic fluxes dominate surface processes (e.g., Sargent et al., 2018; 
Karion et al. 2016; Matross et al., 2008). For the Northern China region, anthropogenic fluxes exceed 
biogenic fluxes for all but the peak of growing season, when they are roughly comparable (Dayalu et 
al., 2018), which reduces the magnitude of overall error from incorrect modeling of the biosphere. In 195 
contrast to extensive measurement networks that exist in North America, continuous high-temporal 
resolution measurements of CO2 necessary for inventory evaluation applications are sparse and very 
few datasets are available in China (Wang et al. 2010). Despite this limitation, our site provides valuable 
information and constraints on emissions inventories: the long time series and spatial sampling 
heterogeneities where the site receives both clean continental air as well as air from one of the heaviest 200 
emitting regions of China, present a powerful and unique dataset for the region.  Our inventory scaling 
is confined to the Northern China region, but this region accounts for 33-41% of China’s total annual 
CO2 emissions from fossil-fuel combustion. Model-observation mismatches can be converted from 
concentration units (ppm) to mass units (Mton CO2) across the most relevant area subset from modeled 
annual average surface sensitivity footprints (µmol-1 m2 s). Ultimately, we compare the inventories by 205 
quantifying model-observation mismatch for seasons (using additive mass units) and annually (using 
scaling factors). We note that identical transport fields and modeled biogenic fluxes are applied to all the 
anthropogenic emission fields. Unresolved transport error and error in biogenic fluxes undoubtedly 
contributes to scatter in the model-data comparison. While random transport errors are unlikely to 
generate consistent biases among the inventories, systematic transport errors can be attributed to biases 210 
among inventories with differing spatial allocations. Although the interaction of systematic transport 
errors with differences in spatial distribution could bias individual observations, averaging over longer 
timescales (seasons, years) minimizes the bias of individual points. With the available observational 
data it is not possible to evaluate the error in spatial allocation of individual emissions inventories. For 
example, future access to total column measurements and/or aircraft vertical profiles would provide 215 
additional constraints on spatial allocations of sources and sinks. 
  
Section 2 of this paper describes the observational CO2 record used in this analysis. Section 3 details the 
analysis methods, including WRF-STILT model configuration, a discussion of the main features of the 
inventories, error evaluation, and inventory scaling methods. We present the results in Sect. 4, beginning 220 
with an assessment of seasonality impacts. We then compare inventory performance against 
observations across multiple timescales from hourly to annual. We conclude Sect. 4 with scaling results, 
and a brief examination of regional carbon intensity over the study period. Concluding remarks are 
provided in Sect. 5. Additional methodological details are provided in the accompanying Supplementary 
Information (SI) and at https://doi.org/10.7910/DVN/OJESO0. 225 

Deleted: being restricted to a single measurement station

Deleted:  because 

Deleted: it 
Deleted: receives

Deleted:  at different times 230 
Deleted:  and clean air at other time

Deleted: s
Deleted: based on the 

Deleted: included in

Deleted: the 235 
Deleted: influence 

Deleted: consisten

Deleted: But 

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight
Deleted: The scaling factors are resolved at the policy-relevant 
seasonal and annual timescale. With a single receptor our scaling 240 
applies to a limited geographical extent (see below) and is limited to 
a linear scaling (or additive) factor. 

Deleted:  any

Deleted:  However, we note that the same transport model is 
applied to all the emission fields. Unresolved transport error 245 
undoubtedly contributes to scatter in the model-data comparison but 
is unlikely to generate consistent biases among the inventories.

Deleted: , and a final summary of the caveats and limitations of 
our study



 

 

2 CO2 observations 250 

This study uses five years (2005-2009) of continuous hourly averaged CO2 observations (LI-COR 
Biosciences Li-7000; 2-s analytical precision of 0.08ppm), measured at a site in Northern China 
(Miyun; 40°29'N, 116°46.45'E). The Miyun receptor is an atmospheric measurement station in a rural 
site 100 km northeast of the Beijing urban center (Fig. SI S2). It was established in 2004 by 
collaborating researchers at the Harvard China Project and operated by researchers at Tsinghua 255 
University. The site is strategically located to capture both clean continental background air from the 
west/northwest and polluted air from the Beijing region to the southwest. Miyun is located south of the 
foothills of the Yan mountains; the region consists of grasslands, small-scale agriculture intermingled 
with rural villages and manufacturing complexes, and mixed temperate forest. Land use grades from 
rural to suburban and dense urban to the south towards Beijing center and sparsely populated and 260 
wooded mountains to the north and west. Further descriptions of the site and details of the 
instrumentation including calibration strategy and assessment of long-term drifts  are in provided in 
Wang et al. (2010). Average annual data coverage (based on hourly data) over the study time period was 
83% (range: 78% to 92%). 

3 Methods 265 

We evaluate the performance of the ZHAO, EDGAR, and CDIAC inventories coupled with biogenic 
fluxes by modelling five years of hourly CO2 observations using the Stochastic Time-Inverted 
Lagrangian Transport Model (STILT; Lin et al., 2003) run in backward time mode driven by high 
resolution meteorology from the Weather Research and Forecasting Model version 3.6.1 (WRF). The 
WRF-STILT tool models the surfaces that influenced each measurement hour in the study domain 270 
(Figure 1). Hourly vegetation CO2 fluxes are prescribed by the VPRM adapted for China (Mahadevan et 
al., 2008, Dayalu et al., 2018). We categorize seasons by months based on regional growing season 
patterns, which are heavily dominated by winter wheat/corn dual-cropping regions in the North China 
Plain (Dayalu et al. 2018). Winter wheat emergence in the spring and corn emergence in later summer 
shift the seasonal patterns such that regional seasons are more appropriately represented as January, 275 
February, March (JFM/Winter); April, May, June (AMJ/Spring); July, August, September 
(JAS/Summer); and October, November, December (OND/Fall). 
 
Ultimately, modeled concentrations of CO2 are obtained from convolving hourly surface flux estimates 
with footprints derived from the WRF-STILT framework. NOAA CarbonTracker (CT2015) provides 280 
estimates of advected upwind background concentrations of CO2 that are enhanced or depleted by 
processes in the study region. Our final modeled-measurement data set is the subset consisting of local 
daytime values (hourly data from 1100h to 1600h). Of this subset, only individual hours for which 
observational data exists (i.e., non-missing data) is included. The final data set was further filtered to 
include only CT2015 background values satisfying true background criteria as described in Sect. 3.5 285 
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and in the SI, Sect. S4. As is typical for studies of this nature, our analysis focuses on observations 
during the 1100 to 1600 local time period. The stronger vertical mixing in the daytime atmosphere 
(notably absent at night) reduces the influence of extremely local emissions. We select the 1100-1600 295 
window to avoid the presence of shallow inversion layers that are poorly represented in STILT and use 
the period when vertical mixing through the entire boundary layer is at its maximum (McKain et al., 
2015; Sargent et al., 2018). We adjust fluxes based on model-measurement mismatch of this final data 
subset, focusing on the region that we model as most influential to the signal measured at the receptor.   
Method details and model components are described individually below.  300 

3.1 WRF-STILT Model Configuration 

The WRF-STILT particle transport framework and optimal configuration have been extensively tested 
in several studies using mid-latitude receptors (e.g., Sargent et al., 2018; McKain et al., 2014; Kort et 

Figure 1. Study domain configuration. Miyun receptor and Beijing center are 
located within the innermost domain at a resolution of 3x3km. NOAA 
ESRL/WMO (WMO) flask sampling sites used to evaluate bias in CT2015 
modeled backgrounds are the solid shapes; nearest CT2015 comparison pixel is the 
corresponding unfilled shape.  
 

Deleted:  the 

Deleted: 6305 
Deleted:  because 

Deleted: , shallow inversion layers that STILT represents poorly 
are absent, and vertical concentration gradients within the boundary 
layer are at a minimum

Deleted: scale 310 
Deleted: inventories 

Deleted: M
Deleted: ¶



 

 

al., 2013; McKain et al. 2012; Miller et al., 2012). WRF is configured with 41 vertical levels and two-
way nesting in three domains, with the outermost domain covering nearly seven administrative regions 315 
(Figure 1, Figure 2), defined according to convention in Piao et al. (2009). The domain resolutions from 
coarsest to finest are 27km (d01), 9km (d02), and 3km (d03). Initial and lateral WRF boundary 
conditions are provided by NCEP FNL Operational Model Global Tropospheric Analyses at 1°x1° 
spatial 6-hourly temporal resolution (NCEP, 1999). Nudging of fields is implemented in the outer 
domain only, and never within the Planetary Boundary Layer (PBL). WRF output is evaluated against 320 

publicly accessible 24-hourly averaged observational datasets from the Chinese Meteorological 
Administration (CMA); finer temporal resolution meteorological data is not publicly available. WRF 
run details are presented in Dayalu (2017) and at http://dx.doi.org/10.7910/DVN/OJESO0. A snapshot 

Figure 2. 2005-2009 mean seasonal (a-d) and Annual (e) footprint contours, as percentiles of influence 
highlighted by administrative region.  Red, blue, and black contour lines represent 50th, 75th, and 90th 
percentile regions, respectively. Stippling represents location of 0.25º x 0.25º footprint and inventory 
gridcell centers, colored by relevant administrative regions. Northern China (red stippling) is the 
administrative region with predominant influence on Miyun observations, followed by Inner Mongolia 
and Northeast China. Southeast and Central China have minimal representation, and only during the 
spring and summer seasons.  



 

 

of results from comparison with China Meteorological Administration ground-station measurements is 
presented in SI Sect. S1 and Figures S1-S4. 325 
 
The STILT model is configured in backward time mode. The particle release point is set as the Miyun 
measurement sample inlet (the receptor). The inlet height is 158m above sea level (masl), corresponding 
to 6m above ground level (magl). In our study, the hilltop site was located in an area where the 
surrounding land was not very productive or intensively cultivated (SI Fig. S2). There is a long history 330 
of using short towers in low productivity areas for regional studies (e.g. NOAA Earth Systems Research 
Laboratory—NOAA ESRL Barrow, Alaska observatory at 11 magl). In addition, the station is located 
on a small hilltop, so even though the actual inlet height above ground is low, it has a topographic 
advantage in that it effectively samples air from a greater height relative to the surroundings.  
Topographic advantage was exploited in a similar manner in Karion et al. (2016) in the context of an 335 
Alaskan CO2 study. However, Karion et al. (2016) were able to use a suite of additional data to confirm 
the validity of their assumption including comparisons to concurrent aircraft measurements and multiple 
inlets at 31.7magl, 17.1magl, and 4.9magl. In our study, independent verification from concurrent 
aircraft measurements (for example) or multi-level inlet locations were not available to quantify the 
impact of absolute and relative inlet location on transport uncertainty.  340 
 
Each hourly footprint (CO2 concentration attributed to each unit of flux as ppm µmol-1 m2 s) provides an 
estimate of surface influence on the measurement and is calculated from releasing 500 particles from 
the measurement site (receptor) until they reach the outer domain boundaries up to seven days back in 
time. The STILT 0.25º x 0.25º footprint map for each measurement hour up to 7 days back in time 345 
enables assessment of regions in the study domain to which the receptor is most sensitive. These entire 
gridded footprints are convolved with anthropogenic and biogenic CO2 flux estimates to provide a final 
modeled concentration (ppm) of CO2 at the receptor. For clarity, we display the regions of importance to 
the receptor based on contours calculated from the overall STILT footprints at the 50th (L_0.50 region), 
75th (L_0.75 region), and 90th (L_0.90 region) percentile levels (Figure 2). The percentile contours are 350 
calculated as follows: the average (seasonal, annual) footprints from 2005 to 2009 are ordered from 
high to low. We multiply each fraction (0.5,0.75,0.9) with the summed footprints and use cumulative 
sums of the ordered footprints as a guide to select all points with influence magnitude equal to or 
greater than this cutoff value. SI Figure 11 illustrates a single footprint map along with the average 
influence and a plot of cumulative influence to demonstrate the percentile level selection process. We 355 
emphasize that we use the entire STILT footprint convolved with fluxes to estimate the receptor CO2 
concentration. We only use the L_0.90 region to provide a reasonable area across which to ascribe the 
effective inventory adjustment (converted from ppm model-observation mismatch to mass units). As SI 
Figure 11c shows, the L_0.90 region strikes a balance between capturing sufficient influence while 
avoiding an unrealistically large adjustment region for a single observation site. Conversely, corrections 360 
based on the smaller L_0.75 region would include larger uncertainties from the diffuse influence of 
emissions outside the L_0.75 region (not accounting for 25% of average surface sensitivity), yet the 
model-observation mismatch would be ascribed to a region approximately half the area of the L_0.90 
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region.  Deriving correction factors based on integration over the entire L_0.90 region is a more 
conservative approach where the model-observation mismatch in mass units is distributed over a larger 
area.  385 
 
Further model details are available in SI Sect. S2. Complete WRF-STILT settings and STILT footprint 
files are available from http://dx.doi.org/10.7910/DVN/OJESO0. 
 

3.3 Anthropogenic CO2 Emissions Inventories 390 

ZHAO, EDGAR, and CDIAC report estimates of total annual emissions of CO2 at 0.25º x 0.25º, 0.1º x 
0.1º, and 1º x 1º original grid resolutions, respectively. We regridded the EDGAR and CDIAC 
inventories to the 0.25º x 0.25º resolution, using NCAR Command Language version 6.2.1 Earth 
System Modeling Framework conserve regridding algorithm to preserve the integral of emissions 
(Brown et al., 2012). Differences between annual total emissions for EDGAR and CDIAC inventories 395 
introduced by regridding are smaller than the interannual trends or differences between the inventories 
(SI Sect. S3 and Figure S5). We present the main components and defining features of the three 
anthropogenic CO2 inventories below.  
 
The ZHAO inventory provides estimates of total annual emissions for 2005 through 2009. In addition, 400 
spatial location of emissions is given for years 2005 and 2009 on a 0.25º x 0.25º grid. Using 2005 and 
2009 gridded values, we calculate an average percent contribution of each grid cell to the total 
emissions. The average contributions are used as weights to spatially allocate 2006, 2007, and 2008 
total annual emissions. We evaluate and justify this assumption in detail in SI Sect. S3 and Figure S6. 
The ZHAO inventory represents one of the first statistically rigorous bottom-up CO2 inventories for 405 
China. It relies on provincial- and facility-level data rather than national level data, which has been 
noted previously as major uncertainty in Chinese emission inventories; total CO2 emissions estimates 
based on provincial data are typically higher than those using national statistics (Zhao et al., 2013). 
Satellite observations of criteria air pollutants (e.g., nitrogen dioxide, which serves as a proxy for fossil 
fuel combustion) show greater agreement with provincial statistics (Zhao et al., 2012). The increased 410 
use of China-specific emission factors and activity levels based on domestic field studies is a shift from 
other inventories that rely heavily on global averages to estimate processes occurring in China.  Despite 
the increased incorporation of China-specific field data, the largest sources of uncertainty to the ZHAO 
inventory are industrial emission factors, and activity levels across all sectors. Total uncertainty in the 
inventory is estimated as -9% to +11%. (Zhao et al., 2012). 415 
 
The EDGAR emissions database continues to be a major prior in atmospheric studies, and the CO2 
inventory is used to inform key global scientific results considered by the UNFCCC Conference of 
Parties. The EDGAR global inventory (atemporal EDGAR v4.2 FT2010 gridded emissions) takes total 
annual estimates of national emissions and downscales emissions to a 0.1º x 0.1º as a function of 420 
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road/shipping networks, population density, energy/manufacturing point sources, and agricultural land. 
Estimates for China are available for all five years as gridded inventories. Reported uncertainties for 
global emissions are ±10% 
(http://themasites.pbl.nl/tridion/en/themasites/edgar/documentation/uncertainties/index-2.html).  430 
However, this applies to global averaged uncertainty; we expect uncertainty for China to be much 
higher. 
  
We include the CDIAC inventory here due to its historical prevalence as a benchmark inventory for 
global indicators, including evaluations of carbon intensity provided by the World Bank (World Bank, 435 
2017). The CDIAC inventory (v2016; https://dx.doi.org/10.3334/CDIAC/ffe.ndp058.2016) allocates 
estimates of national emissions to a 1º x 1º grid, primarily distributed according to human population 
density. A thorough assessment of 2s uncertainties in the CDIAC spatial allocation of emissions shows 
considerable spread in regional uncertainties (Andres et al., 2016).  
 440 
Our study is not intended to be an exhaustive sampling of inventory approaches but serves to 
demonstrate the utility of continuous high-accuracy observations as a top-down constraint on emissions 
evaluations. Our inventory list notably does not include emerging spatially resolved global inventories 
(e.g. Open Data Inventory for Anthropogenic Carbon Dioxide, ODIAC) (Oda et al., 2018) that were not 
readily available at the time this work was conducted. At 1km x 1km, ODIAC does have a high spatial 445 
resolution of nightlight proxy-based emissions; while this is a valuable method for regions in Europe 
and North America for example, it is less valuable for China where it is analogous to the CDIAC 
population-based proxy. In China, power plant emissions are typically located far from end-use regions 
and the night-light proxy can often break down (Wang, R. et al., 2013). Furthermore, ODIAC power 
plant emissions use the 2012 Carbon Monitoring for Action (CARMA) database, which notably does 450 
not incorporate China-specific power plant data; in these instances, CARMA categorizes China’s power 
plants as “non-disclosed plants” and reports using estimates derived from statistical models using 
averaged emissions factors – comparable to methods in global inventories subset over China (Ummel, 
2012). One of our main goals is to quantify model-observation mismatch associated with use of China-
specific power plant data, and ODIAC does not address that issue particularly differently from other 455 
global emissions inventories subset over China. For completeness, however, evaluation of global 
inventories like ODIAC and a suite of increasingly available China-specific inventories (e.g., MEIC) 
would provide value as part of future model-observation comparison efforts. 
 
Based on multi-year means (2005 to 2009) and 95% confidence intervals derived from two-sample t-460 
tests, we find that within the L_0.90 evaluation region EDGAR and CDIAC report emissions that are 
significantly lower than ZHAO by typically 20% (-24%, -16%) and 36% (-37%, -34%), respectively. 
Across China’s administrative regions, the highest discrepancy between the global and regional 
inventories is in Northern China (ZHAO is approximately 30% higher than both EDGAR and CDIAC). 
In addition, Northern China represents one of the administrative regions with the highest CO2 emissions 465 
density (2300 to 3300 Megagrams of CO2 per square kilometer, compared to the average of 700 MgCO2 
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km-2 averaged across China) and is therefore a particularly rich spatial subset for emissions inventory 
evaluation. A detailed breakdown of emissions by region of China is provided in the SI Table S1. 
Spatial differences are displayed in SI Figure S7. 
 485 
Previous work has found that temporal variations in CO2 sources can be significant and surface CO2 can 
be perturbed from 1.5-8 ppm within source regions based on time of day and/or day of week, resulting 
from a combination of changes in activity patterns as well as synoptic scale transport effects (Nassar et 
al., 2013). However, appropriate data for establishing reasonable temporal scaling factors for data-
sparse regions such as China are difficult to obtain, and as in the case of Nassar et al. (2013) China’s 490 
activity factors are based on United States activity factors weighted according to China’s EDGARv4.2 
emissions patterns. We applied the weekly and diurnal Nassar et al. (2013) scaling factors to our 
emissions, but these did not generate statistically significant differences from the unscaled versions. 
These statistically insignificant results suggest that a more rigorous set of temporal scaling factors need 
to be developed for China. CDIAC does provide monthly gridded inventories with seasonality 495 
embedded. However, predictions based on that seasonality deviated even further from the observations 
than predictions based on constant annual emissions. In the CDIAC global dataset, the seasonality in 
emissions are based upon generalized global activity factors that are not necessarily appropriate for 
estimating seasonality of human activity in China. Therefore, in this study we do not explicitly consider 
diel and seasonal variation in anthropogenic CO2 fluxes.  500 

3.4 Vegetation Flux Inventory 

We prescribe biotic contributions to the CO2 signal by adapting the VPRM model output for the study 
domain to generate 0.25º x 0.25º gridded estimates of hourly CO2 net ecosystem exchange (NEE) from 
2005 to 2009. Details of the VPRM model and output for China are presented in Dayalu et al., 2018. 
The VPRM is driven by 8-day 500m MODIS surface reflectance values and 10-minute averages of 505 
WRF downward shortwave radiation and surface temperature fields. The VPRM parameters are 
calibrated using eddy flux measurements in the study domain representing each ecosystem type 
classified according to the International Geosphere-Biosphere Programme (IGBP) scheme. Calibration 
and evaluation eddy-flux data are obtained from FluxNet and ChinaFlux collaborators. The L_0.90 
region is dominated by croplands (Figure S8), in particular the winter wheat and corn dual cropping that 510 
characterizes the North China Plain (Dayalu et al., 2018). We use one biosphere model in this study to 
simplify our assessment of variations across the different emissions inventories. Our selection of the 
VPRM in particular is based on results from Dayalu et al. (2018), where the VPRM was shown to have 
significantly lower regional bias than an ensemble of global 3-hourly flux products subset over China.  

3.5 Background Concentrations 515 

Appropriate quantification of background CO2 concentrations (i.e., the CO2 concentration at the lateral 
edges of the model domain and/or prior to interaction with domain surface processes) enables realistic 
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assessment of the study domain’s contribution to atmospheric CO2 at varying timescales. CT2015 
estimates of CO2 concentrations are provided on a 3º x 2º grid at upwind background locations. 
Background values are selected and corrected for large-scale biases using methodology similar to 530 
Karion et al. (2016) where a particle must originate from the outermost domain edge and/or 3000 masl; 
further details are provided in the SI Sect. S4. The predicted background CO2 is shown together with 
observed CO2 at Miyun for the 1100h-1600h period over the 5-year observational record Figure 3a. For 
most of the year the measured CO2 shows large enhancements above background and only in mid-
summer is there a small depletion relative to background values. 535 

3.6 Quantifying Regional Changes to Background CO2 Concentrations: DCO2  

We define hourly DCO2 as a regional change (enhancement or depletion) imparted to concentrations of 
CO2 advected from the boundary (CO2,CT2015) such that for each observation hour !"#$,&'(:  
 

!"#$,&'( = 	"#$,&'( − 	"#$,,-$./0 (1) 
 540 
 
For each modeled hour !"#$,1&2, i and j represent the surface gridcell locations and h represents the 
hour of the 7-day back trajectory:  
 

 545 

!"#$,1&2 = 	 3 3455678 	× (;<=>78 + @ABC78
78

D/EFG

.G

) (2) 

 
 
Note that for the modeled enhancement or depletion, only the VPRM fluxes change hourly; as stated 
previously, the annual anthropogenic fluxes are atemporal. 
  550 
Without a sufficiently dense network of high temporal resolution observations, full-scale inverse 
modeling approach to inventory scaling is inappropriate. At annual timescales, where anthropogenic 
sources dominate the CO2 signal, we compare annual observed and modeled DCO2 to define a mean 
bias and derive a scale factor to quantify the model-observation mismatch based on the slope of the 
comparison. Isotopic analysis of atmospheric CO2 from a site in Beijing in 2014 suggests that annually 555 
the fossil fuel burning does dominate the region, contributing 75±15% to the annual signal (Niu et al., 
2016). Annually, the biospheric impact in the region is not zero; rather, the anthropogenic signal 
dominates. The biospheric quantity of relevance annually is the net carbon flux as a balance of GPP and 
respiration, and is highly uncertain in both sign and magnitude in this region (Piao et al., 2009). In the 
Piao et al. (2009) study, regional inversions are based on the very limited dataset of nine sites across all 560 
of Asia. Our assumption of dominant anthropogenic influence in northern china is in keeping with the 
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priors and process-based models from the relevant regions in Piao et al. (2009) that assume zero and are 
not significantly corrected by relatively poorly constrained inversions. At seasonal timescales, we use 570 
the difference between observed and modeled DCO2 normalized by L_0.90 area to obtain a mass flux 
offset that combines vegetation and anthropogenic inventories. With the available data it is not possible 
to independently evaluate both the anthropogenic and biogenic CO2 fluxes. For further details of the 
scaling technique, please refer to SI Sect. S5. 

3.6.1 Uncertainty Analysis 575 

The sources of uncertainty in calculations of DCO2 include uncertainty in CT2015 background 
concentrations, CO2 observations, STILT footprints, anthropogenic inventories, and the biogenic CO2 

fluxes from the VPRM. We obtain 95% confidence bounds for DCO2 by following a procedure similar 
to McKain et al. (2015) and Sargent et al. (2018) that involves bootstrapping daily averages of hourly 
afternoon values. For monthly and seasonal timescales, we obtain 95% confidence intervals for DCO2,obs 580 
by performing a bootstrap on probability distributions of errors in both the CT2015 and observations 
1000 times. (See SI Sect. S4 and Figure S9 for details on parameterizing CT2015 uncertainty.) The 
relevant quantiles are obtained from the resulting distribution, and are reported relative to the mean 
DCO2,obs of the original data subset. We follow a slightly modified approach for DCO2,mod in that we 
construct monthly and seasonal residual pools from daily averages of hourly afternoon CO2,mod-CO2,obs. 585 
The residuals—the deviation of the model from the true observed values—represent the total 
uncertainty in the model and therefore aggregates the effects of uncertainty in the footprints, 
background, and inventories. Monthly and seasonal 95% confidence intervals of CO2,mod-CO2,obs are 
then obtained from the distribution of bootstrapping the residual pools 1000 times. We then obtain the 
mean and 95% confidence interval of DCO2,mod by applying the relevant quantiles of the residuals to the 590 
mean DCO2,obs of the original data subset. Similar to Sargent et al. (2018) and McKain et al. (2015), 
distributions of seasonal averages obtained from the above method are used to estimate annual averages 
and 95% confidence intervals. 
 
Sargent et al. (2018) note that applying the same meteorological model over a long time period (15 595 
months) allows for detection of trends in transport uncertainty. In this study, the drawback of a single 
location is offset somewhat by a much longer time series (60 months). Absent a dense network of 
observations, a more sophisticated and extensive error analysis cannot be conducted with meaningful 
results. Turnbull et al. (2011) faced a similar issue, where weekly flask data collected between 2004 and 
2010 from two sites in the NOAA ESRL/WMO sampling network were used to evaluate a bottom-up 600 
fossil inventory based on CDIAC and EDGAR estimates. Turnbull et al. (2011) noted the difficulty in 
assessing the transport error given the paucity of regional observations but also demonstrate the power 
of top-down assessments given improvements in regional transport modeling and density of 
observations.  
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4 Results & Discussion 

4.1 Impact of Seasonality on Evaluation Region 

As shown in Figure 2, we find strong seasonality in the footprint percentile contours, in agreement with 
previous analysis of Miyun observations by Wang et al. (2010). At annual timescales, the L_0.90 region 610 
is comparable to the WRF d02 extent. Northern China, including Inner Mongolia, dominate the L_0.90 
region both seasonally and annually. Due to the heavy biosphere influence in the regional growing 
season, previous work by Wang et al. (2010) used Miyun non-growing season measurements of CO2 
and carbon monoxide (CO) as an anthropogenic tracer to estimate combustion efficiency for China. 
When compared to bottom-up estimates of national combustion efficiency, observations suggested 25% 615 
higher combustion efficiency than bottom-up estimates of national combustion efficiency; however, 
Wang et al. (2010) note that the regional (Northern China) and seasonal (winter) subsets could 
contribute to such a discrepancy. The seasonality exhibited in Figure 2 indeed suggests that combustion 
efficiency estimates derived from non-growing season measurements alone do not represent 
anthropogenic processes in provinces south of Miyun that are visible in the observations primarily 620 
during the growing season. Low emitting regions northwest of Miyun such as Inner Mongolia influence 
the site more in the fall and winter relative to other seasons. In the spring and summer, higher emitting 
regions in provinces south of Miyun are more influential. However, non-growing season CO2 is 
influenced by often inefficient district heating in the northwest. And, while growing season CO2 is 
influenced by intense urban activities from Beijing and other cities to the south, vegetation draws down 625 
both background and locally-observed CO2 significantly (Figure 3a).   

4.2 Unscaled Models: Performance at multiple timescales 

Table 1. Quantification of model-observation mismatch at hourly timescales averaged over 2005-2009 and 
pooled by season (W=Winter; Sp=Spring; Su = Summer; F = Fall). We provide Standard Major Axis (SMA) 
slopes and 95% confidence intervals; R2 quantities (those  > 0.2 are in bold); and mean bias and root mean square 630 
error (RMSE) in ppm. 

  SMA Slope (95%CI) 

  All W (JFM) Sp (AMJ) Su (JAS) F (OND) 
DCO2,ZHAO+VPRM 0.89 (0.88,0.91) 1.0 (1.0,1.1) 0.74 (0.72,0.77) 0.88 (0.84,0.92) 0.92 (0.90,0.95) 
DCO2,EDGAR+VPRM 0.77 (0.76, 0.78) 0.83 (0.81, 0.86) 0.62 (0.60, 0.65) 0.83 (0.80, 0.87) 0.77 (0.74, 0.79) 
DCO2,CDIAC+VPRM 0.63 (0.62, 0.64) 0.63 (0.62, 0.65) 0.48 (0.46, 0.50) 0.79 (0.75, 0.82) 0.56 (0.54, 0.58) 
  R2 
  All W (JFM) Sp (AMJ) Su (JAS) F (OND) 
DCO2,ZHAO+VPRM 0.49 0.56 0.26 0.22 0.56 
DCO2,EDGAR+VPRM 0.47 0.55 0.21 0.18 0.55 
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DCO2,CDIAC+VPRM 0.43 0.55 0.17 0.13 0.54 
  Mean Bias (RMSE), ppm 
  All W (JFM) Sp (AMJ) Su (JAS) F (OND) 
DCO2,ZHAO+VPRM 0.32 (9.2) 0.014 (7.9) -0.033 (8.3) 3.1 (11) -1.1 (9.7) 
DCO2,EDGAR+VPRM -2.0 (9.3) -2.2 (7.7) -1.9 (8.7) 0.25 (10.8) -3.4 (10.1) 
DCO2,CDIAC+VPRM -3.3 (9.9) -3.1 (8.1) -3.3 (9.2) -1.1 (11.3) -5.0 (11.1) 

 
We evaluate unscaled model performance relative to observations at hourly, seasonal, and annual 
timescales. While inventory scaling is performed at the policy relevant scales of seasons and years, 645 
examination of the models at shorter timescales provides insight into model bias and error aggregation 
at longer timescales. Table 1 summarizes hourly model bias across all years and pooled by season. 
  
All modeled hourly quantities include the same biological component from VPRM, background 
concentrations, and transport model such that the only source of variation among models is the 650 
anthropogenic inventory. With a few exceptions that are discussed in the following sections, 
CO2,EDGAR+VPRM, CO2,CDIAC+VPRM, DCO2,EDGAR+VPRM, and DCO2,CDIAC+VPRM systematically underestimate 
observations as indicated by larger deviation below the 1:1 line in the comparison of modeled to 
measured DCO2 (Table 1, Figure 3b-d.) 
 655 

4.2.1 Hourly 

 
We examine the distribution of modeled-measured residuals at hourly timescales for each anthropogenic 
inventory. While standard deviations are consistent across all models of CO2 flux (1s=9ppm; Figure 
3.e-g) DCO2,ZHAO+VPRM exhibits the least bias relative to observations with a mean residual of 660 
0.32(0.12,0.53) ppm. In contrast, DCO2,EDGAR+VPRM and DCO2,CDIAC+VPRM display significantly greater 
bias by typically underestimating observations by large amounts: -2.0(-1.8,-2.2) ppm and -3.3(-3.1,-3.5) 
ppm, respectively. Here, the 95% confidence intervals are derived from a two-sample t-test. The 
EDGAR and CDIAC underestimation of DCO2 at the hourly scale is consistent across longer timescales 
of seasons and years as discussed in the following sections, but we note where there are likely aliased 665 
effects of the uncertainty in the VPRM biogenic component. 

4.2.2 Seasonal 

The seasonally averaged modeled and measured DCO2 values shown in Figure 4 illustrate the overall 
biases for the four inventories. Outside of June, July, August, and September, the anthropogenic signal 
dominates in northern China (Wang et al., 2010). We see from Table 1 that during seasons where 670 
biological activity is lower or significantly lower than anthropogenic activity, there is a consistent 
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discrepancy among the CO2 modeled by the three different anthropogenic inventories suggesting  675 
systematic differences largely attributable to the anthropogenic component (as we do not vary any other 
component) . In the fall, where respiration is the dominant biological process, all three modeled 

quantities are consistently lower than observations—a likely a consequence of the known underestimate 
of ecosystem respiration by the VPRM (Dayalu et al., 2018). Even so, China’s significant anthropogenic 

Figure 3. Hourly (1100 to 1600 Local Time) Modeled and Measured CO2 and DCO2. Measured 
CO2 and modeled CT2015 background concentrations are displayed in (a). Modeled versus 
measured DCO2 for each anthropogenic inventory is shown in (b)-(d), colored by season. 
Histograms of modeled-measured residuals are shown in (e)-(g). The VPRM vegetation 
component is included in all modeled DCO2 values. 
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component still dominates during these months. During the winter season, where all biospheric activity 680 
is at a minimum, the model-observation mismatch is most reflective of biases among anthropogenic 
inventories rather than aliased impacts from the VPRM. As shown in the winter data in Table 1, ZHAO 
displays the least bias relative to observations (0.01ppm) followed by EDGAR(-2.2ppm) and CDIAC (-
3.1ppm). 

With the exception of the peak JAS growing season, DCO2,EDGAR+VPRM and DCO2,CDIAC+VPRM typically 685 
underestimate DCO2,OBS, even within the 95% uncertainty bounds. The VPRM has a limited calibration 
network that contributes to an underestimate of regional CO2 drawdown during the growing season 
(Dayalu et al., 2018). Therefore, while DCO2,ZHAO+VPRM agrees within 95% confidence bounds with 
DCO2,OBS during the non-growing seasons, DCO2,ZHAO+VPRM generally overestimates CO2 concentrations 
in the growing season (Figure 4a). DCO2,EDGAR+VPRM (Figure 4b) and DCO2,CDIAC+VPRM (Figure 4c) 690 
display lower CO2 concentrations and generally result in better agreement with observations during the 
peak growing season than at other times of the year; however, our wintertime and overall analysis at 
hourly timescales (Figure 4, Table 1) suggests this is an artifact of lower anthropogenic emissions 

Figure 4. Modeled and Measured Seasonal DCO2. CT2015 background is subtracted from observations to 
provide observed DCO2 (black line). 95% confidence bounds are derived from bootstrapping hourly 
afternoon concentrations for each season. 
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estimates relative to ZHAO that counteracts the VPRM underestimating drawdown. Even during the 
growing season, DCO2,CDIAC+VPRM agrees with observations typically at its upper confidence limits. 700 
However, during times of the year where the impacts of underestimated respiration become more 
significant (e.g., Fall) it is possible that the seemingly better agreement of ZHAO+VPRM is linked to a 
counteracting effect of overestimated anthropogenic emissions.  

 
As ZHAO+VPRM demonstrates the least bias relative to observations at hourly and seasonal scales, we 705 
model the relative contributions to the monthly signal during the May through September peak regional 
growing season as defined by Wang et al. (2010). Figure 5 displays the results from partitioning the 
mean monthly DCO2,ZHAO+VPRM signal as a multi-year average into anthropogenic and vegetation 
contributions. While the WRF-STILT-VPRM framework has been successfully adapted for similar CO2 
inventory evaluation studies in North American regions where biogenic fluxes dominate surface 710 
processes (Karion et al., 2016; Matross et al., 2006), Figure 5 shows the relative magnitude of biogenic 
fluxes and anthropogenic emissions in the Northern China region is comparable during peak summer, 
making it difficult to independently constrain them with observational data. As noted in Sect. 3, the 
regional peak uptake during the growing season occurs with the onset of the corn growing season 
around July and August. The atypical lower uptake during June represents the winter wheat/corn 715 
transition period. These results are consistent with the biological component estimated by Turnbull et al. 
(2011). Furthermore, knowledge of the relative contribution of vegetation and anthropogenic processes 

Figure 5. Modeled mean monthly contribution (ppm) to Miyun CO2 concentrations from vegetation 
(VPRM) and anthropogenic (ZHAO) sources. Enhancement and depletion are relative to advected 
CT2015 background concentrations during the regional growing season (MJJAS), averaged over 2005 to 
2009. Vertical lines represent 1-s of monthly averages (Green: Vegetation; Black: Anthropogenic). 
Negative values represent depletion from CT2015 background; positive values represent enhancement of 
CT2015 background. 
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to the CO2 signal during the peak growing season is necessary to interpret satellite retrievals of CO2 
over the region (Dayalu et al., 2018). 
 725 

4.2.3 Annual  

Aggregation of uncertainty and anthropogenic inventory biases at shorter timescales becomes most 
apparent at the annual timescales. For annual budgeting we follow the assumptions of Piao et al. (2009) 
and Jiang et al. (2016) that agricultural systems are in annual carbon balance because crop biomass has 
a short residence time. In the absence of data on regional transfer of agricultural products and 730 
proportion of grains used in situ for livestock vs. human consumption in China this is the most 
conservative assumption to make. Given the dense population in most of Beijing province we expect 
there may be net import of agricultural products from outside the L_0.90 region, which would show up 
as additional respiration not captured by VPRM, but that term will be small relative to the 
anthropogenic CO2 (Figure 5) (Dayalu et al., 2018). Therefore, while the VPRM is implicitly included 735 
in the modeled annual CO2 and DCO2, vegetation carbon stocks (including harvested products and crop 
residues) portions of the L_0.90 region with widespread agriculture largely turn over such that only the 
anthropogenic inventories dominate the modeled CO2 signal. We evaluate annual CO2 including 

Figure 6. Mean annual CO2 and DCO2 over entire study time period. (a-c) CO2 annual concentration; 
(d-f) DCO2 (regional enhancement, after removal of advected CT2015 background) with bootstrapped 
95% confidence intervals. 
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CT2015 background (Figure 6a-c) and as regional enhancement relative to background (Figure 6d-f).  
We show that for all years, CO2,ZHAO+VPRM and DCO2,ZHAO+VPRM agree tightly within 95% uncertainty to 745 
observations (Figure 6a, Figure 6d). EDGAR+VPRM and CDIAC+VPRM are consistently biased 
significantly lower than observations. 

4.3 Evaluation of inventories at seasonal and annual timescales 

We quantify model-observation mismatch by estimating the additive flux corrections at seasonal 
timescales and multiplicative corrections at annual timescales. We emphasize that these “corrections”, 750 
or scalings, are not optimizations; rather, they simply reflect the extent to which the individual 
anthropogenic+VPRM flux models deviate from the observations. Complete seasonal and annual 
scaling results are provided in the SI Sect. S5, and Tables S2-S3.  



 

 
 

Figure 7. Scaled Seasonal Fluxes in the L_0.90 region (kg CO2 m-2 month-1). Anthropogenic and 
vegetation inventories are scaled together ([ANTH+VPRM_COR]). Black and yellow dashed line is the 
seasonal flux estimated by the original ANTH+VPRM model. All models have the same vegetation 
component (VPRM) and differ only in the anthropogenic inventory source. Shaded green represents 
negative flux (uptake by biosphere). Scaling based on additive corrections; difference among scaled 
inventories is due to differing spatial allocations by anthropogenic inventories. Bootstrapped 95% 
confidence intervals are represented by the black vertical lines.  
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The observational record informing the scaling integrates the biological and anthropogenic signals. At 755 
the seasonal scale, where biological processes are significant contributors to the signal, we scale the 
sum of the anthropogenic and biological fluxes (Figure 7). Scaled non-growing season flux estimates 

are 

higher than unscaled values, partially accounting for the VPRM generally underestimating ecosystem 
respiration by an additive offset throughout the year (Dayalu et al., 2018). The multi-year seasonal 760 
results in Table 1 suggest that this offset can aggregate to a 1-2ppm difference; the result would be a 
shift in baseline rather than overall pattern for each of the three simulations.  As the vegetation and all 
other components are controlled across models, the inter-model variance reflects the relative 
performance of the anthropogenic estimates. We find that in the non-growing months the original 
ZHAO+VPRM inventory typically remains within the 95% confidence bounds of the scaled inventory. 765 
However, both EDGAR+VPRM and CDIAC+VPRM are consistently significantly lower than their 
scaled counterparts. At least in the winter, where biogenic processes are at a minimum, this suggests 
that both EDGAR and CDIAC underestimate anthropogenic emissions, and that ZHAO estimates are 
closer to actual emissions. Improved representation of temporal anthropogenic activity factors and 
biosphere processes are needed to extend the conclusions of anthropogenic inventory performance to all 770 

Figure 8. Annually scaled emissions in L_0.90 region. Scaling is based on multiplicative scaling 
factors. Difference among scaled inventory means is due to differing spatial allocations in original 
anthropogenic inventories. Bootstrapped 95% confidence intervals are represented by the black 
vertical lines. *Note the y-axis origin begins at 1000 Mton CO2 for visual clarity. 
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seasons. In the absence of such data, it is not possible to conclusively state whether model-data 
mismatch is rooted in anthropogenic emissions biases or biogenic biases.   During the growing seasons, 775 
however, the afternoon vegetation signal is significant, and the picture is more complex. In the spring, 
the CO2 signal at Miyun is significantly affected by the North China Plain winter wheat growing season. 
The effect of scaling in the spring from 2005 to 2007 is to increase CO2 emissions with a net positive 
seasonal flux; however, in 2008 and 2009 we find the net seasonal flux becomes negative such that 
uptake dominates emissions. The prior models in all cases predict positive flux. During the summer 780 
months, ZHAO+VPRM predicts more emissions and/or less uptake relative to EDGAR+VPRM and 
CDIAC+VPRM. Scaling of summertime fluxes serves to significantly increase ZHAO+VPRM uptake 
estimates; the EDGAR+VPRM and CDIAC+VPRM prior estimates are within the 95% confidence 
bounds of the scaling for reasons discussed previously. 
 
Table 2. Annual scaling factors (95% CI) and corresponding corrected emissions for L_0.90 inventory evaluation 
region. 

 Scaling Factor (95% CI) Corrected Emissions, MtCO2 
(95% CI) 

Original 
emissions, MtCO2 

20
05

 ZHAO 0.95 (0.84, 1.0) 2800 (2476, 3105) 3015 
EDGAR 1.4 (1.3, 1.6) 3306 (2886, 3683) 2322 
CDIAC 1.7 (1.5, 1.9) 3489 (3017, 3871) 1930 

20
06

 ZHAO 1.0 (0.91, 1.1) 3326 (2972, 3631) 3273 
EDGAR 1.5 (1.3, 1.6) 3751 (3325, 4150) 2586 
CDIAC 1.9 (1.6, 2.0) 3930 (3438, 4338) 2160 

20
07

 ZHAO 0.94 (0.85, 1.0) 3080 (2789, 3324) 3588 
EDGAR 1.4 (1.2, 1.5) 3454 (3096, 3785) 2799 
CDIAC 1.6 (1.5, 1.8) 3180 (2842, 3493) 2260 

20
08

 ZHAO 0.94 (0.82, 1.0) 3422 (3008, 3768) 3685 
EDGAR 1.2 (1.1, 1.4) 3790 (3332, 4207) 3095 
CDIAC 1.7 (1.5, 1.9) 3941 (3461, 4374) 2395 

20
09

 ZHAO 0.96 (0.86, 1.1) 3860 (3474, 4251) 3974 
EDGAR 1.1 (1.0, 1.3) 3518 (3133, 3874) 3298 
CDIAC 1.5 (1.3, 1.7) 3921 (3454, 4330) 2543 

 785 
 
We report annual scaled anthropogenic inventories in the L_0.90 region in Fig. 8 and Table 2 as 
MtCO2yr-1. As discussed previously, the annual scalings are applied only to the anthropogenic 
inventory, as the signal at the annual timescale is effectively dominated by anthropogenic emissions; net 
ecosystem fluxes are expected to be relatively minor in the L_0.90 region in comparison. For all years, 790 
the emissions estimated by the original ZHAO inventory lie within the 95% confidence bounds of the 
scaled ZHAO inventory. However, for EDGAR and CDIAC, the original inventories consistently 
underestimate observations. Averaged over the five-year study period, EDGAR and CDIAC lead to 
modeled estimates of CO2 mixing ratios that are typically lower than observations by 30% and 70% 
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respectively (Fig. 6). Averaged across the five years, this translates to EDGAR and CDIAC being scaled 800 
relative to their unscaled values in the L_0.90 region by 1.3 and 1.7, respectively (Fig. 8; Table 2). In 
the case of EDGAR, we note a general increase in observational agreement from 2005 to 2009.  
 
 
4.4 Potential Contributions to Regional Carbon Emissions Patterns from 2005 to 2009 805 
 
We examine the statistical significance of the inter-annual observed concentration and enhancement 
differences using a two-sample t-test (Table 3). The observed concentrations including advected global 
background (Figure 6, top row) display an overall increasing trend of 1.87 (1.8, 1.9) ppm CO2 yr-1 

between 2005 and 2009, in agreement with flask samples obtained from nearby WMO sites between 810 
2007 and 2010 (Liu et al., 2014). The inter-annual increases are statistically significant (Table 3). 
However, when we remove the modeled background to more closely examine regional patterns that 
would otherwise be drowned out by the global signal, we find that the regional DCO2 trend (Figure 6, 
bottom row; Table 3) does not parallel the increasing global CO2 trend (Figure 6 top row; Table 3). 
Regionally, the observed enhancements increase from 2005 to 2006 and plateau in 2007 before 815 
decreasing in 2008. Regional DCO2 increases again in 2009. Earlier work by Wang et al. (2010) 
extended the Miyun observations of CO2 growth rate to all of China and estimates a lower CO2 growth 
rate than previously suggested. However, Figure S6 suggests local reductions in regions influencing 
Miyun, possibly in preparation for the Beijing Olympics, are partially offset by increases elsewhere. A 
larger network of sites would be needed to quantify this further in order to evaluate the CO2 growth rate 820 
for other regions in China and for China as a whole. 
 
In Figure 9a we estimate Gross Regional Product (GRP) for eight of China’s 34 provincial-level 
administrative units, specifically those encompassed significantly by the L_0.90 region: Beijing, 
Tianjin, Henan, Shanxi, Shandong, Hebei, Inner Mongolia, and Liaoning. Using data from the 825 
International Monetary Fund (IMF; https://www.imf.org/en/Data) and World Bank (World Bank, 2017, 
we retrieved the GDP for each of the above provinces and summed them to estimate the GRP. GDP 
calculations are inherently uncertain and were available as single values for each province per year. A 
more extensive economic analysis to estimate uncertainty of these values is beyond the scope of this 
study. Key economic events occurred during the study time period and are likely contributors to the 830 
observed interannual variation in regional CO2 emissions (Figure 6d-e) and a doubling of GRP from 
2005 to 2009 (Figure 9a). In particular, the time period from 2005-2009 saw industrial energy efficiency 
improvements beginning in 2007 under the 11th FYP; preparations for and staging of the 2008 Beijing 
Summer Olympics; the global financial crisis in late 2008; and a large Chinese fiscal stimulus in 2009. 
We further note that the global financial crisis of 2008 correlates with a plateauing of the percentage 835 
contribution of northern China GRP to national GDP (Figure 9a). 
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In Figure 9a we estimate Gross Regional Product (GRP) for eight of 
China’s 34 provincial-level administrative units, specifically those 
encompassed significantly by the L_0.90 influence contour: Beijing, 
Tianjin, Henan, Shanxi, Shandong, Hebei, Inner Mongolia, and 850 
Liaoning. We suggest that industrial energy efficiency improvements 
beginning in 2007 under the 11th FYP, preparations and staging of 
the 2008 Beijing Summer Olympics, and the global financial crisis 
in late 2008 followed by a large Chinese fiscal stimulus in 2009 are 
likely contributors to the observed interannual variation in regional 855 
CO2 emissions (Figure 6d-e) while also compatible with a doubling 
of GRP from 2005 to 2009 (Figure 6a). In addition, e
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Table 3. Inter-annual observed CO2 and DCO2 differences. Differences are of observations between consecutive 860 
years. 95% confidence intervals are derived from a two-sample t-test. Italicized entries denote instances where 
the inter-annual difference is not statistically significant (confidence interval includes zero). 

 
Time Interval  
(y2-y1) 

CO2,OBS (ppm) 
Mean Difference  
(95% CI) 

DCO2,OBS (ppm) 
Mean Difference   
(95% CI) 

2006-2005 4.86 (4.5, 5.2) 2.08 (1.9, 2.3) 
2007-2006 1.08 (0.69, 1.5) 0.0693 (-0.15, 0.29) 
2008-2007 0.772 (0.37, 1.2) -1.43 (-1.6, -1.2) 
2009-2008 2.60 (2.2, 3.0) 1.12 (0.88, 1.4) 
2009-2005 9.31 (8.9, 9.7) 1.84 (1.6, 2.0) 

 
As policy targets are often measured as relative changes over multiple years, an important component of 865 
emissions inventories is their ability to accurately capture multi-year changes. Observations indicate 
enhancements above background CO2 increased by 28% (22%, 34%) between 2005 and 2009. 
ZHAO+VPRM estimates a 20% increase over the same time period while EDGAR+VPRM and 
CDIAC+VPRM estimate 61% and 56% increases respectively.  

4.5 Implications for Assessing National Carbon Emission Targets 870 

China has pledged a 60-65% reduction in carbon intensity by 2030 and has additionally set a benchmark 
of 40-45% reduction in carbon intensity by 2020, where both targets are relative to the baseline year 
2005 (NDRC, 2015; Guan et al., 2014). However, Guan et al. (2014) found that provincial trends in 
carbon intensity can vary significantly from national trends. Using the GRP values shown in Figure 9a, 
we calculate a Northern China regional carbon intensity incorporating the eight provinces encompassed 875 
significantly by the L_0.90 region (Figure 9c). We also estimate an L_0.90 regional carbon intensity 
based on the official national energy-related CO2 emissions in NDRC (2015); we scale the national total 
by 39% (35%,42%) which is the mean (range) contribution of the L_0.90 region to the national 
emissions in 2005, averaged across the three unscaled gridded emissions inventories. We emphasize that 
carbon intensity values are inherently uncertain due to complexities in GRP and Gross Domestic 880 
Product (GDP) calculations such as double-counting due to inter-provincial trade or spatial mismatch 
between emissions and economic data. Nevertheless, the analysis provides valuable insight into trends 
rather than precise values.  
 
Over the study time period, the GRP of the L_0.90 region more than doubled (Figure 9a), exhibiting a 885 
moderate, positive correlation with the increasing trend in emissions (Figure 9b).  Coinciding with the 
2008 Beijing Summer Olympics, the region’s contribution to China’s GDP grew from approximately 
13.5% in 2007 to nearly 16% in 2008, representing a 20% increase, before plateauing into 2009 (Figure 
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9a). As noted in Guan et al. (2014), reductions in carbon emissions intensity can come about via two 
main pathways: the first, within industries, through increased energy efficiency combined with 
expanded production capacity; the second, across the economy, through structural shifts from energy-
intensive industrial sectors to service sectors. The doubling of GRP with the apparent reduction in 900 
regional carbon intensity suggests a combination of enlarged production capacity (including production 
of higher valued goods) and a shift toward service-oriented economy. In the former instance, a larger 
production capacity tends to reduce the overall energy (and, therefore, carbon) consumption of a single 
production unit. In the latter instance, the energy consumption by the service sector is considerably 
lower than that required by industrial and manufacturing processes. In the northern China region, 905 
however, industry continues to dominate the economy suggesting that carbon intensity reductions are 
more due to enlarged production capacity. From 2005 to 2009, carbon intensity for the L_0.90 region 
decreased by 47% (28%,65%), based on a one-sample t-test of pooled emissions intensity changes 
across scaled inventories. Analysis presented by organizations such as the World Bank (World Bank, 
2017) suggests China’s carbon intensity at the national level decreased by 20% in 2009 relative to 2005. 910 
However, we note that the carbon emissions data source for the World Bank carbon intensity 
calculations is CDIAC. We have shown that at least for the L_0.90  region, CDIAC emissions lead to 
significant underestimates of observations. Our work here suggests that carbon accounting organizations 
such as the World Bank would benefit from basing their national estimates for China on a variety of 
inventories, incorporating increasingly available China-specific approaches (including but not limited to 915 
MEIC and PKU), EDGAR, and newer global inventories such as ODIAC. However, we emphasize a 
crucial point with respect to the value of carbon intensity targets, in agreement with Guan et al. (2014): 
carbon intensity targets are especially misleading in developing countries where absolute emissions 
continue to significantly grow in concert with economic development goals. We see that despite the 
decreasing carbon intensity of the region, pooled emissions estimates from the three scaled inventories 920 
suggest an 18% increase in absolute emissions from 2005-2009 (Table 2, Figure 9b). In terms of the 
climate impact, it is the absolute carbon emissions rather than the carbon intensity that ultimately 
matters. 
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(a) 
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2005 
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Figure. 9. Estimates of Regional Carbon Intensity (kg CO2 USDPPP
-1). (a) PPP GRP by year and as a % of 

China’s national GDP. No PPP GRP values were available for 2006 and 2007; PPP GRP for these years was 
derived from linearly interpolated ratio of Nominal GRP/PPP GRP for 2005, 2008, and 2009. (b) Correlating 
corrected regional emissions from Table 2 with PPP GRP; values are pooled annual means among ZHAO, 
EDGAR, and CDIAC with 1-s error bars. (c) Regional Carbon Intensity using scaled (solid) and unscaled (grey) 
CO2 estimates. Error bars are bootstrapped 95% confidence intervals. GRP, GDP data from IMF and World Bank. 
Provinces used in GRP calculation are those significantly encompassed by L_0.90 region Beijing, Henan, Shanxi, 
Tianjin, Shandong, Hebei, Inner Mongolia, and Liaoning. *Estimated by scaling the official national emissions 

total by the average contribution (39%) of L_0.90 region to total emissions in 2005. Uncertainty bars represent 

the % contribution range estimated by ZHAO, EDGAR, and CDIAC in 2005 (35%, 42%). 
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5 Conclusions 

Continuous hourly CO2 observations, significantly influenced by the heavily CO2-emitting Northern 
China region, are used in a top-down evaluation and scaling of three bottom-up CO2 flux inventories. 
We focus on the policy-relevant time interval from 2005 to 2009, noting that 2005 is China’s baseline 
year for carbon commitments. The three inventories are distinct in their anthropogenic component, with 935 
a common biogenic flux component provided by the VPRM, a simple satellite data-driven biosphere 
model calibrated with ground-level ecosystem observations. The ZHAO anthropogenic emissions 
inventory incorporates a regional approach to China’s CO2 emissions estimation, using activity data at 
the provincial and facility-levels as well as domestic emission factors. The EDGAR and CDIAC 
emissions inventories incorporate a greater reliance on global averages and China’s national statistics 940 
and international default emission factors, and depend more heavily on proxies (e.g., population) to 
allocate the emissions geographically. The three anthropogenic inventories represent a range of methods 
used to estimate emissions for China. 
 
The Northern China administrative region, excluding Inner Mongolia, dominates the L_0.90 region 945 
which is the region over which we distribute the model-observation mismatch (Figure 2). We find 
strong seasonality in the L_0.90 region, ; the northwest features more strongly in the non-growing 
season and there is a more symmetric influence in the growing season. Within the L_0.90 region, 
EDGAR and CDIAC are—on average across the five study years—lower than ZHAO by 20% and 36%, 
respectively. Across administrative regions, the highest discrepancy between the global and regional 950 
inventories is in Northern China, where the ZHAO inventory estimates emissions that are on average 
30% higher than both EDGAR and CDIAC (SI, Table S1).   
 
We find the ZHAO+VPRM inventory generally agrees very closely with observations, often 
significantly better than the nationally referenced inventories at all timescales (hourly through 955 
annually), with the exception of the peak growing season. During the peak growing season, the regional 
enhancement to background CO2 concentrations is modeled as approximately zero, due to an 
agriculturally dominated vegetation signal that is equal in magnitude and opposite in sign to the 
anthropogenic signal (Dayalu et al., 2018). While this agrees with previous work by Turnbull et al. 
(2011), in both that study and the present study the sparse data prevents a more conclusive statement 960 
about anthropogenic inventory performance during the regional growing season. At annual timescales, 
the anthropogenic signal dominates, and we find that emission rates from EDGAR and CDIAC lead to 
underestimated emissions in the Northern China region by an average of 30% and 70%, respectively, 
averaged across all study years. We note that the discrepancy between the EDGAR-based timeseries and 
the observations generally decreases over the five-year study period. In contrast, emission rates from the 965 
ZHAO inventory gives a priori results very close to observations throughout and is not significantly 
affected by the scaling: the error bars for the scaled estimates consistently include the original estimate. 
Note that the EDGAR and CDIAC inventories can differ from -10% to -20% relative to ZHAO in their 
national emissions totals (Table S1). The inventories evaluated here exhibit distinct differences in their 
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ability to match observations. However, observational data from a network of sites strategically located 1020 
in and around the eastern half of China would be required to (1) examine whether differences in spatial 
allocation approaches contribute to differences among the inventories and (2) conduct actual 
optimizations of the inventories.  
 
We find that carbon intensity in the region has decreased by 47%(28%, 65%) from 2005 to 2009, from 1025 
approximately 4kgCO2/USDPPP in 2005 to about 2kgCO2/USDPPP in 2009 (Figure 9c). However, we see 
that despite the decreasing carbon intensity of the region, there is an 18% increase in absolute emissions 
over time, affirming the point made by Guan et al. (2014) that meeting carbon intensity targets in 
emerging economies can be at odds with making real climate progress (Table 2, Figure 9b). 
 1030 
Despite the limitations of having data from a single site, this analysis demonstrates how a long time 
series of continuous observations can identify apparent overall biases in some inventories. Our results, 
while specific to northern China regional emissions in particular, also provide some insight into current 
methods of carbon emissions accounting for China as a whole. We emphasize that this work is intended 
to be a comparison of emission rates from a subset of anthropogenic CO2 inventories over northern 1035 
China that were readily available at the time this research began and is not intended to be an advocate or 
criticism of any single published inventory. Rather, we use a long 60-month continuous observational 
record to examine model-data mismatch in an important carbon emitting region where local data is 
difficult to access and global datasets are forced to rely on the best available public data, which are not 
necessarily accurate assumptions of China-specific activity. Second, while we recognize the height 1040 
limitations –and therefore the footprint—of the Miyun receptor its topographic advantage along with the 
low-productivity vicinity, make it similar to other short-tower sites suitable for regional analysis. In 
addition, a detailed assessment of uncertainty stemming from errors in transport, biogenic inventories, 
and inventory spatial allocation remains a challenge. Independent verification from concurrent aircraft 
measurements (for example) or multi-level inlet locations were not available to quantify the impact of 1045 
absolute and relative inlet location on transport uncertainty. Finally, we emphasize our implied seasonal 
and annual “corrections”, or scalings, of modeled CO2 relative to observations are not optimizations; 
rather, they simply reflect the extent to which the individual anthropogenic+VPRM CO2 flux models 
deviate from the observations. At least in the winter, where biogenic processes are at a minimum, the 
low bias of ZHAO-modeled CO2 concentrations suggests the ZHAO inventory is closer to actual 1050 
emissions. However, improved representation of temporal anthropogenic activity factors and biosphere 
processes are needed to extend the conclusions of anthropogenic inventory performance to all seasons. 
Effectively evaluating and constraining inventory emissions rates at relevant spatial scales requires 
multiple stations of high-temporal resolution observations, as well as improvements and greater 
diversity in observationally-constrained biogenic flux models. In its current configuration, the single 1055 
biogenic flux model precludes a comprehensive multi-seasonal and annual disentangling of 
contributions to CO2; particularly in our annual scale analysis, we are ascribing more uncertainty to the 
anthropogenic inventories over the biogenic contributions. Absent data from a dense network of 
ecosystem flux and atmospheric measurements, there will constantly be a tradeoff between drawing 
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conclusions using low-temporal resolution flask measurements from a few sites and continuous data 1075 
from a single location.  
 
In situ CO2 observations interpreted within a high-resolution model framework such as described in this 
study provide a powerful constraint to test and correct spatially explicit inventories. The observation 
station available for the 2005-2009 period was strategically located to provide information on one of the 1080 
highest CO2 emitting regions of China. Within the limitations described above, the observations provide 
strong evidence supporting the use of China-specific methods, such as those employed in ZHAO, for 
China’s CO2 emissions inventory derivation. In future, access to a spatially dense network of 
measurements will allow for a sophisticated error analysis that can more readily assess uncertainty in 
key model components such as transport, flux fields, and background concentrations. Along with the 1085 
results presented here, previous studies (e.g., Turnbull et al., 2011) provide key information that is 
necessary to guide and motivate more extensive future measurement and emissions evaluation efforts. 
Such future efforts will benefit substantially from incorporating newly available information from 
column-average CO2 concentrations acquired by orbiting instruments or ground-based spectrometers to 
increase observational coverage. A number of existing (OCO-2, OCO-3) and planned satellite missions 1090 
will significantly reduce the observational gap in China, though surface observations provide additional 
constraints and a link to absolute calibration scales. A denser network of CO2 measurement stations in 
China is required as a component for effective monitoring, reporting, and verification of regional and 
national inventories. The results of this research present a necessary baseline for a key CO2-emitting 
region of China. Our results have broad implications toward designing future analyses as more 1095 
observations of China’s CO2 continue to become available, particularly in the era of increased CO2 
satellite coverage. However, as the quality of satellite retrievals can be compromised by factors such as 
aerosol loading, surface observations continue to be crucial for the region both in their own right and as 
a key component of cross-platform evaluations. 
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Code and Data Availability  1115 
 
Code and data are available through the Harvard Dataverse at https://doi.org/10.7910/DVN/OJESO0. 
The code and data supplement includes observational and modeled CO2 time series, WRF and STILT 
parameter files, and STILT footprint files. 
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** Note: Complete details of model set-up are available as part of our Replication Data Set at  
https://dx.doi.org/10.7910/DVN/OJESO0 ** 

S1 WRF Model: Post-processing and Evaluation 

We evaluate WRF output against publicly available, 24h-averaged Chinese Meteorological 

Administration (CMA) observational data. CMA observational data is not used in the NCEP FNL 

reanalysis WRF initialization fields. CMA provides daily averages of surface pressure, wind speed, 

temperature, and relative humidity. Access to higher temporal resolution observational data is 

limited. We convert hourly (d01) and half-hourly (d02, d03) WRF output to daily averages before 

evaluation. We use a combination of NCAR Command Language v6.1.2 (NCL; 

http://dx.doi.org/10.5065/D6WD3XH5) and R v2.9.0 (https://www.r-project.org/) to process the 

observed and simulated output. The standard post-processing toolbox, consisting of the WRF 

Unified Post Processor  and METv4.1 Point-Stat Tool (http://www.dtcenter.org/code/) is not used 

here because of the low temporal resolution of observational data and file format mismatches. 

However, we base our evaluation method and procedures on the METv4.1 Point-Stat Tool. Both 

the METv4.1 and our version of the Point-Stat tool match WRF forecast fields to observation point 

locations for comparison. For surface observations, no interpolation is performed. Forecasts are 

instead matched to nearest CMA surface station observation point. Fig. S1 displays a map of the 

CMA surface network in 2006 and 2008, with approximate WRF domains overlaid with CMA 

station 54511 (C54511; 39.8N, 116.47E) highlighted in d03. We display sample evaluation results 

from C54511 in Fig. S3 through Fig. S5, using observed and simulated fields from 2006. In the 

evaluation, WRF forecast fields are matched to the nearest observation point.  

 

Comparing against publicly available 2006 CMA data from 35 stations across the d02 and d03 

domains (Fig S1), the median modeled wind speed was 15% higher than observations, with a 

median absolute deviation of 16%. We emphasize that a more robust evaluation of WRF 

windspeed (or other meteorological) biases relative to observations would require access to higher 

temporal resolution meteorological observations. Currently, we are restricted by data availability 

to 24-hour averages which blur smaller timescale processes and therefore likely underestimates 

the WRF surface wind speed bias relative to observations. We do not include d01 comparisons in 

this analysis, as the distance between nearest station and WRF gridcell center can be on the order 

of tens of kilometers, decreasing the information and value of the comparison. The graphics 

associated with the d02 and d03 comparisons are available from 

https://dx.doi.org/10.7910/DVN/OJESO0 as “006_WRFvCMAplots_2006_d0X.pdf”. 
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S2 STILT Model Set-up and Run Details 

The version of WRF-STILT1  used in this study corresponds to STILT release r701 of the AER-

NOAA branch at the STILT svn repository2, and Release-3-5 of the WRF-STILT interface3. Spin-

up periods are removed from the WRF meteorological data and the WRF netcdf output files are 

converted to .arl format (Air Research Laboratory; 

https://ready.arl.noaa.gov/HYSPLIT_data2arl.php#INFO) prior to being ingested into STILT. 

 

In this study, we transport an ensemble of 500 particles 7-days back in time to model footprints 

for each measurement hour at the receptor. The receptor (Miyun; 40°29′N, 116°46.45′E, 152 m 

above sea level (asl)) has the measurement inlet (STILT particle “release” point) located 6m above 

ground level (agl) (Fig. S2). We employ dynamic regridding, which accounts for resolution 

changes among the nested WRF domains. Mixing height is derived from WRF PBL heights; we 

set the surface layer as 50% of the mixed layer height. Footprints are integrated hourly. We set up 

the STILT runs as “pleasantly parallel” by running each month of a year simultaneously; hours 

within a month are run serially.  

 

When the receptor release occurs outside of peak daylight hours, stratification of the PBL becomes 

significant. Therefore, as is common practice in virtually all emissions optimization/assessment 

studies, we model the 1100 to 1600 (local time) subset. These daylight hours represent a typical 

window for which STILT reliably models transport (e.g., 4). We examine the unadjusted model 

performance at all times, averaged seasonally and diurnally, in Sec S7.   

 

S3 Anthropogenic CO2 inventories 
 

In order to facilitate comparison among the three anthropogenic inventories used in this study, we 

interpolate the two global inventories (EDGAR, 0.1ºx0.1º; CDIAC, 1ºx1º) to the same 0.25ºx0.25º 

grid as the regional inventory (ZHAO). We use the NCL Earth System Modeling Framework 

(ESMF) Conserve regridding method which minimizes deviation of the variable’s integral between 

source and destination grids. We evaluate the impact of regridding in Fig. S6 by comparing annual 

totals (MtCO2) before and after regridding. The ZHAO inventory remains on its native grid. We 

show that regridding does not appreciably affect the total emissions reported for mainland China 

by EDGAR and CDIAC, providing confidence in our representation of the two original 

inventories.  

 

The ZHAO inventory provides estimates of total annual emissions for 2005 through 2009. In 

addition, the 2005 and 2009 ZHAO emissions are spatially allocated to a 0.25º x0.25º grid. We 

average the 2005 and 2009 percent contributions of each grid cell to the total emissions to provide 

weights for spatially allocating 2006 through 2008 total annual emissions. Fig. S7 evaluates the 

validity of this assumption by identifying regions where the 2009 gridcell contribution to the total 

emissions is outside +/- 2% of its 2005 contribution (Fig. S7a) and +/-50% of its 2005 contribution 

 
1 https://www.bgc-jena.mpg.de/bgc-systems/projects/stilt/pmwiki/pmwiki.php?n=WRFSTILT.WRF-STILT 
2 https://projects.bgc-jena.mpg.de/STILT/svn/branches 
3 available from http://files.aer.com/external/CarbonSoftware 
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(Fig. S7b). We find the assumption to be valid; the mean change per gridcell from 2009 relative to 

2005 is -0.011% with a 2-s of 15%.  

 

Total uncorrected emissions for each anthropogenic inventory are calculated on the 0.25ºx0.25º 

grids and provided in Table S1. We provide emissions summed for each administrative region in 

the study domain, each STILT influence contour, and all China. Differences among the inventories 

zoomed to the L_0.90 region, are displayed in Fig. S8. Miyun and Beijing are encompassed by the 

L_0.25 contour. We display the average gridcell emissions of ZHAO (Fig. S8a) and the differences 

of EDGAR and CDIAC relative to ZHAO (Fig. S8b and Fig. S8c, respectively). In heavily emitting 

regions, ZHAO is typically higher than EDGAR and CDIAC. In regions where ZHAO is 

consistently lower than CDIAC, the differences are lower than the instances where ZHAO is 

higher. Note that, in the case of CDIAC, the uniformity of the differences includes artefacts from 

downscaling the gridded CDIAC inventory from 1°x1° to 0.25°x0.25°. 

 

S4 CT2015: Background Concentration Selection and Evaluation of Model Bias 
 

We derive estimates of background CO2 concentrations from NOAA CarbonTracker (CT2015; 

https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2015/). CT2015 enables us to estimate 

concentrations of CO2 prior to interaction with the surfaces in the study domain. Background value 

selection is summarized as follows. For each hour, the end x-y-z-time coordinates for each of 500 

particles is found and linked to its corresponding CT2015 CO2 concentrations using a 

spatiotemporal nearest neighbor approach. Only instances where a particle originated at the edge 

of the outermost domain and/or an altitude greater than or equal to 3000masl is included in the 

average background concentration calculation for that hour. If less than 75% of particles for an 

hour have valid background concentrations, that hour is not used in subsequent analyses. This 

selection criteria for background CO2 mole fractions enables realistic modeling of true background 

conditions that have not interacted with the domain within each hourly measurement’s maximum 

seven-day regional influence period. For the five-year study period, this method of boundary 

selection retains approximately 85% of hourly modelled values per year and across years.  

 

The CT2015 model for the study domain is heavily trained by observations made approximately 

weekly via flask sampling at four World Meteorological Organization (WMO) sites in the region 

(https://www.esrl.noaa.gov/gmd/dv/site/). Mt. Waliguan to the west of the receptor (WLG) 

represents free tropospheric background air; Ulaan Uul (UUM) in Mongolia represents clean 

continental air; Tae-ahn Peninsula (TAP) in South Korea represents urban-influenced air from the 

east; Lulin (LLN) in Taiwan represents urban-influenced air from the southeast. TAP and LLN 

become more prominent in their representation upwind/background air sites during the spring and 

summer months when the East Asian Monsoon begins to influence regional air trajectory patterns. 

WLG and UUM are prominent in their representation of upwind/background air at all times of the 

year but particularly weight background air during the winter and fall seasons. 

 

We quantify bias in the background model by evaluating observations against the nearest CT2015 

model pixel and level. Observations are filtered using highest quality flask sample points only. 

Fig. S10(top panel) displays the time series of 3-hourly modeled CT2015 values and observed 

WMO measurements. Deviation of residuals from a normal distribution are displayed in Fig. S10 
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(bottom panel). The typical 1-s model bias is 2ppm, but not all of the distributions are normal. For 

UUM, and therefore, CT2015 parameterization of clean continental background, the model-

measurement residuals largely follow a normal distribution centered around 0. The clean 

continental background generally exhibits well-mixed behavior and is not defined by large 

excursions in the CO2 signal. At the high-altitude WLG site representative of the free troposphere, 

the residuals follow a normal distribution centered around 0 but deviate from normal during 

instances where significant excursions in the CO2 signal are present. This is also the case at LLN 

(distribution centered near 2.5ppm). TAP residuals deviate significantly from normal. In general 

CT2015 does not capture CO2 events that are significantly different from global means; CT2015 

underestimates uptake processes and overestimates lower or higher than global mean.  

 

As not all deviations from observations can be represented as normal distributions, we place the 

model-measurement residuals at the four WMO sites in an error pool and select as part of the 

overall bootstrapping procedure for the modeling framework. 

 

As shown in Fig. S10, LLN shows CO2 depletion relative to CT2015 suggesting that for this 

analysis it is not representative as a background site. (CT is not responsive to all sites). The LLN 

observed CO2 drawdown compared to modeled CT2015 suggests that LLN sees a lot of surface 

influence on account of its location in the middle of an island in vegetated surroundings. Moreover, 

LLN is not an important sector for the influence region of this study; we include it primarily for 

reference for future studies considering regions of China that would be more sensitive to the sector 

associated with LLN. 

 

S5 Scaling Results and Methodology 

We translate the resulting mole fraction (ppm) mismatch between observed and modeled DCO2 to 

inventory corrections at annual and seasonal timescales. We scale in the L_0.90 region (Fig. S9) 

which represents regions that substantially influence the receptor without disproportionally 

weighting pixels that contribute very little to the observed signal (Fig. S11). As discussed in the 

main text, we are still using surface influences from the entire STILT footprint to derive the CO2 

concentration at the receptor, but we ascribe the resulting model-observation mismatch as 

dominated by the L_0.90 region. Table S2 provides seasonal fluxes for each year before and after 

scaling. Annual scaling results are in Table 2 of the main text. 

 

At annual scales, the dominant contributor to the CO2 signal are anthropogenic emissions; 

correction at annual scales is therefore applied only to the anthropogenic emissions inventories. 

The other significant contributors include longer term biological and ocean carbon sinks and 

interannual variability within these components, but for this study region, these components are 

embedded in the background concentrations. In particular, 13% of the northern China ecosystems 

and 20% of northeastern China’s ecosystems are mixed forests. However, the ecosystems with 

greatest influence on this single site are croplands with high intra-annual carbon turnover rates. 

The heavily cropped L_0.90 region implies rapid turnaround of vegetation carbon stocks at the 

annual scale, justifying this assumption. At these timescales, we derive the DCO2,obs/DCO2,mod ratio 

which represents the factor by which the annual anthropogenic inventory must be scaled in order 

to match observations. We use a model of the mean method to derive the annual scaling factors, 
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where hh represents each local afternoon hour (1100 to 1600) in the year. SF>1 implies the model 

underestimates CO2 concentrations while SF<1 implies the model overestimates CO2 

concentrations. We obtain 95% confidence bounds by bootstrapping uncertainties in the numerator 

and denominator separately, and obtaining the 0.025 and 0.975 quantiles from the ratio of the 

means of the two distributions. The annual influence contours are overlayed on the IGBP land use 

map in Fig. S9, and shows the dominant grassland/cropland influence on the modeled Miyun signal 

at annual scales. As stated previously, The Miyun CO2 signal is certainly affected by other 

biological/oceanic/interannual variability; but these are not demonstrated to be significant parts of 

the regional (DCO2) signal. These are longer term features embedded in the background 

concentrations. 

 

At the seasonal timescales, however, evaluation of CO2 processes is complicated by the biogenic 

flux contribution during the growing season and, to a lesser extent, the effects of ecosystem 

respiration in the dormant season. At these timescales, we derive additive corrections from 

converting observation-model mole fraction mismatch to the total CO2 to be added or subtracted 

from the inventories. We correct the anthropogenic and vegetation inventories together as it is not 

possible to distinguish the contributions from our existing observational data set. For each modeled 

hour we derive a residual-based flux correction, DFhh, in µmolCO2m
-2s-1: 

 

$122 =
$%&',+,-.. − $%&',/+0..

∑ 56672289:;2
<

	
                            

where hh represents each local afternoon hour (1100 to 1600) in the season and h represents the 

STILT footprint back-trajectory hour up to 7 days back in time. Given that anthropogenic 

emissions are positive terms and the biogenic component is a net balance of two opposing terms 

(uptake and release) of CO2 during the growing seasons, use of inventory scaling factors for 

growing season scaling is inappropriate. That is, even a small mole fraction difference between 

modeled and observed in the growing season can result in meaningless scaling factors when there 

is a difference in sign involved. While scaling factors are appropriate during dormant seasons, for 

consistency we apply the same method of additive corrections across all seasons and report the 

adjusted inventory as fluxes (kg CO2 m-2 season-1). The methods are comparable; inventory 

corrections obtained by both methods during the winter and fall exhibit converging 95% 

confidence intervals. 
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C54511 

Fig. S1. CMA Station Map (2006, 2008) with WRF domain boundaries. 

Sample WRF evaluation results are provided for Station 54511 (indicated by 

arrow on map), near Miyun receptor. 

(a) (b) 

Fig. S2. Miyun Receptor and surroundings, April 2007. (a) Miyun inlet at 

6magl/158masl, looking ENE,  shows a small rural village in the valley below site, a small 

patch of short pines, that are generally in downwind direction. Even in spring there is still 

considerable bare ground. (b) view from Miyun sampling site, looking SW. Foreground 

shows a farmhouse and various outbuildings that were no longer in active use. Small-scale 

agricultural fields that were being converted to fruit-tree orchards. Unmanaged lands 

were grassy/shrub vegetation on hillsides. 
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(a) 

(b) 

(c) 

(d) 

Fig. S3. Evaluation of WRF output against observational data. 2006 Meteorology 

timeseries for sample WRF gridcell (39.825N, 116.51E) evaluated against nearest CMA 

Station C54511 (39.800N 116.47E). WRF Meteorology averaged from half-hourly to daily 

for (a) Specific Humidity; (b) Surface Temperature; (c) Surface Pressure; (d) Surface Wind 

Speed. Original half-hourly output displayed in grey. Shaded yellow region represents 

observed daily range; daily minimum for windspeed is not available, but assumed to be 

0m/s. 
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Fig. S5. Q-Q plots of Observed and WRF Modeled (Forecast) meteorology for sample WRF 
gridcell. Gridcell (39.825N, 116.51E) evaluated against nearest CMA Station C54511 (39.800N 

116.47E). Time-base of fields is daily average. 

Fig. S4. Observed vs WRF Modeled (Forecast) meteorology for sample WRF gridcell. 
Gridcell (39.825N, 116.51E) evaluated against nearest CMA Station C54511 (39.800N 

116.47E). Time-base of fields is daily average. 
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Fig. S6. ZHAO, EDGAR, and CDIAC estimates of total annual CO2 emissions for 
Mainland China, 2005 to 2009. EDGAR and CDIAC are regridded to 0.25ºx0.25º 

grid using the NCL Earth System Modeling Framework Conserve regridding function. 
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(a) (b) 

2009-2005 Threshold: 2% Difference 2009-2005 Threshold: 50% Difference 
Fig. S7 Spatial Allocation of ZHAO inventories (2006-2008). Mean percent difference of gridcell 

contribution to total emissions is -0.011% ±15% (2-s). We highlight instances where 2009 gridcell 

contribution to total annual emissions differs from its 2005 value by (a) more than 2% and (b) more 

than 50%. Blue represents a relative DECREASE in 2009 relative to 2005; red represents a relative 

INCREASE; grey represents values WITHIN the specified threshold.   

(a) (b) (c) 

Fig. S8 Mean annual anthropogenic emissions (Mt CO2 yr-1, 2005-2009) zoomed to approximate 
d02 extent. Black contour lines represent the 25th, 50th, and 75th, and 90th percentiles of multi-year mean 

annual STILT footprint influences. (3a) displays emissions estimated by ZHAO; black and green circle 

represents Miyun receptor. (3b) displays EDGAR inventory difference relative to ZHAO; (3c) displays 

CDIAC inventory difference relative to ZHAO. ZHAO is consistently higher than EDGAR and CDIAC 

in the Beijing area. Both EDGAR and CDIAC are regridded from their original grids to the ZHAO grid 

via ESMF Conserve regridding technique. 
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Fig. S10. Evaluation of CT2015 model bias. ~Weekly flask samples from WMO sites (LLN, 

TAP, UUM, WLG) used to train CT2015 compared with nearest CT2015 pixel. Top row: 

timeseries. Bottom row: QQ plots of model-measurement residuals. 

Fig. S9. IGBP land use categories in domain overlaid with STILT influence contours.  

Note western edge of domain is slightly truncated. 

L_0.90 Region 
L_0.75 Region 
L_0.50 Region 
Miyun Receptor 
Beijing 
 * 

Deleted: Influence 

Deleted: Influence 

Deleted: Influence 



 13 

 

  

Fig. S11. Example surface influence maps and basis for percentile contours. (a) Sample 

hourly STILT footprint. Measurement hour on January 23, 2005 at 0700UTC (1500 Local). 

Surface influences are provided in ppm µmol-1m-2s-1. Receptor release point is indicated by the 

green cross. (b) Example of annual average footprint for 2005 as log10(ppm µmol-1m-2s-1).  

Influence of gridcells on receptor drops by 5 orders of magnitude from L_0.90 contour to d01 

edges. Note scale differences in sensitivity axes for (a) and (b). Black rectangles are d02 and 

d03 domain boundaries. (c) Cumulative sum of sorted (high to low) mean annual footprint 

from 2005-2009. Percentiles selected as points at or below fractional cutoff (0.5, 0.75, 0.9, 

0.95, 0.99) of summed ordered footprint. Effect of excluding points outside each contour 

region is evident by steepness of curve beyond the respective vertical cutoff. 
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Table S1. Comparison of unadjusted annual anthropogenic CO2 emissions (TgCO2) by region. EDGAR and 
CDIAC are reported as percent differences relative to ZHAO. *: Based on sums AFTER spatial allocation of ZHAO 
inventories but are <0.1% different from original inventory totals. 

 
 STILT 

L_0.25 
STILT 
L_0.50 

STILT 
L_0.75 

STILT 
L_0.90 

IM NE N C SE S SW All 
China 

20
05

 ZHAO 135.1 697.0 1796 3015 252.1 682.8 2244 502.4 1486 519.6 759.5 7126 
EDGAR -31% -35% -28% -23% +1.9% +1.2% -32% +1.2% -12% -19% -25% -17% 
CDIAC -49% -44% -42% -36% -48% -32% -32% +13% -23% -1.7% +17% -19% 

20
06

 ZHAO 124.8 734.4 1922 3273 311.7 690.6 2440 558.9 1590 567.6 822.9 7726* 
EDGAR -17% -32% -26% -21% -8.2% +13% -31% +2.1% -7.9% -19% -23% -15% 
CDIAC -39% -41% -40% -34% -54% -26% -31% +13% -21% -0.74% +20% -17% 

20
07

 ZHAO 136.8 805.0 2107 3588 341.6 757.0 2675 612.6 1743 622.1 902.0 8469* 
EDGAR -18% -33% -27% -22% -9.8% +12% -32% +0.76% -9.3% -21% -25% -16% 
CDIAC -41% -43% -42% -37% -55% -29% -33% +9.2% -23% -4.2% +15% -20% 

20
08

 ZHAO 140.5 826.8 2164 3685 350.9 777.5 2747 629.2 1790 639.0 926.4 8699* 
EDGAR -12% -27% -21% -16% -3.8% +18% -26% +7.5% -1.9% -14% -20% -9.7% 
CDIAC -39% -41% -40% -35% -54% -27% -31% +12% -21% -1.4% +19% -18% 

20
09

 ZHAO 125.1 864.7 2301 3974 424.6 777.2 2967 694.8 1903 693.4 997.2 9370 
EDGAR +5.4% -26% -20% -17% -16% +25% -27% +3.5% -1.8% -15% -21% -11% 
CDIAC -26% -40% -40% -36% -60% -22% -32% +8.0% -21% -3.5% +17% -19% 
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Table S2. Seasonal Flux Corrections and 95% CI (kg CO2 m-2 month-1) for L_0.90 region. Original fluxes are in regular font; 
corrected fluxes and 95% CI are in bold 

 JFM/Winter AMJ/Spring JAS/Summer OND/Fall 

20
05

 

ZHAO 0.133 
0.129 (0.103, 0.105) 

0.0492 
0.0735 (0.0195, 0.135) 

-0.0540 
-0.170 (-0.237,-0.106) 

0.132 
0.164 (0.137, 0.193) 

EDGAR 0.108 
0.151 (0.124, 0.174) 

0.0256 
0.116 (0.0597, 0.176) 

-0.076 
-0.120 (-0.186, -0.0478) 

0.110 
0.181 (0.154, 0.204) 

CDIAC 0.0937 
0.144 (0.117, 0.170) 

0.0117 
0.132 (0.0734, 0.185) 

-0.0972 
-0.121 (-0.183, -0.0445) 

0.0951 
0.177 (0.147, 0.206) 

20
06

 

ZHAO 0.131 
0.146 (0.122, 0.167) 

0.0601 
0.156 (0.0990,0.217) 

-0.0568 
-0.135 (-0.197,-0.0708) 

0.140 
0.174 (0.124, 0.217) 

EDGAR 0.106 
0.169 (0.145, 0.190) 

0.0421 
0.185 (0.126, 0.246) 

-0.0771 
-0.0951 (-0.157, -0.0310) 

0.114 
0.204 (0.152, 0.251) 

CDIAC 0.0929 
0.165 (0.139, 0.189) 

0.0260 
0.194 (0.134, 0.254) 

-0.102 
-0.0912 (-0.157, -0.0171)  

0.0965 
0.223 (0.168, 0.270) 

20
07

 

ZHAO 0.139 
0.154 (0.118, 0.189) 

0.0831 
0.109 (-0.00290, 0.217) 

-0.0735 
-0.151 (-0.205, -0.0958) 

-0.171 
0.174 (0.129, 0.214) 

EDGAR 0.109 
0.171 (0.133,0.205) 

0.0569 
0.141 (0.0282, 0.264) 

-0.103 
-0.110 (-0.170, -0.0528) 

0.138 
0.192 (0.151, 0.231) 

CDIAC 0.0917 
0.157 (0.119, 0.191) 

0.0323 
0.149 (0.0381, 0.271) 

-0.123 
-0.113 (-0.173, -0.490) 

0.119 
0.184 (0.138, 0.222) 

20
08

 

ZHAO 0.120 
0.134 (0.109, 0.160) 

0.0577 
0.0157 (-0.0470,0.0794)  

-0.0290 
-0.170 (-0.247, -0.0940)  

0.143 
0.201 (0.159, 0.243) 

EDGAR 0.0973 
0.145 (0.120, 0.171) 

0.0459 
0.0492 (-0.0140,0.111) 

-0.419 
-0.127 (-0.207,-0.0447) 

0.118 
0.219 (0.174, 0.259) 

CDIAC 0.0785 
0.139 (0.109, 0.166) 

0.0135 
0.0559 (-0.0114, 0.122) 

-0.0800 
-0.134 (-0.217, -0.0494) 

0.0960 
0.224 (0.179, 0.264) 

20
09

 

ZHAO 0.144 
0.231 (0.130, 0.300) 

0.0809 
-0.0655 (-0.127, -0.00290) 

0.0277 
-0.125 (-0.193, -0.0449) 

0.134 
0.215 (0.158, 0.265) 

EDGAR 0.130 
0.249 (0.156, 0.313) 

0.0563 
-0.0653 (-0.124, 0.00) 

-0.00797 
-0.122 (-0.197, -0.0399) 

0.112 
0.217 (0.165, 0.266) 

CDIAC 0.0970 
0.238 (0.147, 0.306) 

0.0355 
-0.0404 (-0.105, 0.0239) 

-0.0312 
-0.110 (-0.192, -0.0267) 

0.0874 
0.215 (0.162, 0.270) 


