

Interactive comment on “Effect of changing NO_x lifetime on the seasonality and long-term trends of satellite-observed tropospheric NO₂ columns over China” by Viral Shah et al.

Anonymous Referee #2

Received and published: 2 September 2019

General Comments: Shaw et al present a combined model, satellite, and ground-based approach to disentangle the effects of changing NO_x emissions and NO_x lifetime on observed column NO₂. The results of this study, and studies like this, are of great importance to the community seeking to utilize remote sensing approaches to infer trends in emissions. It has been well established that NO_x lifetime is dependent on NO_x concentration (due to the feedback on HO_x) especially in the extremes of high and low [NO_x] leading to strong spatial variability in NO_x lifetime. There has been less focus on variability in $\tau(\text{NO}_x)$ at a fixed location can impact calculated NO_x emissions and the impact of NO_x on $\tau(\text{NO}_x)$ beyond its control on HO_x.

C1

The manuscript is well written and within the scope of ACP. I recommend that it be published following the authors attention to the following comments.

Specific Comments:

1. Model resolution: To what extent does model spatial resolution impact the results? If I am not mistaken, the model resolution is approximately 50 x 50 km in the study region. I would expect that O₃ titration would display significant variability on this scale and that the mean modeled $P(\text{NO}_3) = k[\text{NO}_2][\text{O}_3]$, which is driving the nocturnal NO_x lifetime, may not correspond to that calculated at smaller spatial scales? It would be helpful for the authors to comment on the extent to which model resolution is important and what direction the effects of resolution may have on calculations in NO_x lifetime.
2. N₂O₅ to NO₃ ratio: The N₂O₅ / NO₃ ratio also scales with [NO_x]. With decreasing NO_x, this ratio decreases and L(NO₃) becomes more important than L(N₂O₅). To what extent is this important here, or is the nocturnal NO_x lifetimes essentially all limited by $P(\text{NO}_3)$ and $L(\text{N}_2\text{O}_5 + \text{NO}_3) \gg P(\text{NO}_3)$? While this may not impact the retrieval of NO_x emissions trends, it could have a sizeable effect on nitrate aerosol formation rates.
3. CINO₂ branching fraction: What is the mechanism for CINO₂ in the model? What is the distribution of CINO₂ branching fractions? Does this change in time? If 30-50% of NO_x is lost to N₂O₅, CINO₂ has the potential to return half of this. A short section on the parameterization used and the uncertainty in this (most measurements show that parameterizations of CINO₂ branching fractions are much larger than observations) should be included. I appreciate that NO_x lifetime may not be that dependent on aerosol surface area, but the net NO_x removal is certainly dependent on the CINO₂ branching fraction.

Interactive comment on Atmos. Chem. Phys. Discuss., <https://doi.org/10.5194/acp-2019-670>, 2019.

C2