Supporting Information to "Mechanistic Study of Formation of Ringretaining and Ring-opening Products from Oxidation of Aromatic Compounds under Urban Atmospheric Conditions"

Alexander Zaytsev¹, Abigail R. Koss², Martin Breitenlechner¹, Jordan E. Krechmer³, Kevin J. Nihill²,
Christopher Y. Lim², James C. Rowe², Joshua L. Cox⁴, Joshua Moss², Joseph R. Roscioli³, Manjula R. Canagaratna³, Douglas R. Worsnop³, Jesse H. Kroll², and Frank N. Keutsch^{1,4,5}

¹John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA, ²Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, ³Aerodyne Research Inc., Billerica, MA 01821, USA,

⁴Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA, ⁵Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA

Correspondence to: Alexander Zaytsev (zaytsev@g.harvard.edu) and Frank N. Keutsch (keutsch@seas.harvard.edu)

1 Additional Tables and Figures

Table S1: Description of experiments.

VOC	Initial VOC	Initial HONO	Additional HONO	Particle loading	Temp.,	RH, %
	concentration,	injection, ppbv	injections ^a , ppbv	after seed	Κ	
	ppbv			injection, cm ⁻³		
toluene	89	28	16 (124); 28 (220)	$2.6 \cdot 10^4$	292	2%
toluene	89	30	17 (140); 6 (180); 12 (290)	$4.2 \cdot 10^4$	292	2%
toluene	89	31	21 (125); 18 (290)	$3.2 \cdot 10^4$	292	2%
toluene	89	28	23 (180)	100 ^b	292	3%
124-TMB	69	30	5 (155); 10 (300)	3.6·10 ⁴	292	2%
124-TMB	69	31	13 (145); 10 (245); 5 (345)	$3.8 \cdot 10^4$	292	2%
124-TMB	69	34	18 (150); 6 (265); 13 (390)	$5.7 \cdot 10^4$	292	2%
124-TMB	69	60	-	100 ^b	292	2%

^a The following format is used: HONO injection in ppbv (time since the beginning of the experiment in min).

^b No seed was injected in the two experiments.

5

Table S2: Estimated NH₄⁺ CIMS sensitivity factors for species detected in toluene experiments.

Compound	m/z	KE _{cm 50} , eV	Sensitivity factor
C ₇ H ₇ NO ₃	171.077	0.166	0.69
$C_7H_8O_4$	174.077	0.185	0.89
$C_7H_5NO_4$	185.056	0.166	0.69
$C_7H_7NO_4$	187.072	0.293	1
$C_7H_6O_5$	188.056	0.192	0.97
$C_7H_8O_5$	190.072	0.208	1
$C_{7}H_{10}O_{5}$	192.087	0.192	0.97
$C_7H_5NO_5$	201.051	0.175	0.79
$C_7H_6O_6$	204.051	0.198	1
$C_7H_9NO_5$	205.083	0.183	0.87
$C_7H_8O_6$	206.067	0.197	1
$C_7 H_{10} O_6$	208.082	0.193	0.98
$C_7H_7NO_6$	219.062	0.188	0.93
$C_7H_9NO_6$	221.077	0.187	0.92
$C_7H_7NO_7$	235.057	0.185	0.89

237.072 0.195 1	C7H9NO7	237.072	0.195	1
-----------------	---------	---------	-------	---

Compound	m/z	KE _{cm 50} , eV	Sensitivity factor
$C_9H_{10}O_4$	200.092	0.236	1
$C_9H_{12}O_4$	202.108	0.204	1
$C_9H_{14}O_4$	204.124	0.184	0.89
$C_9H_{11}NO_4$	215.103	0.217	1
$C_9H_{10}O_5$	216.087	0.222	1
$C_9H_{12}O_5$	218.103	0.225	1
$C_9H_{14}O_5$	220.119	0.195	1
C ₉ H ₉ NO ₅	229.083	0.134	0.36
$C_9H_{11}NO_5$	231.098	0.199	1
$C_{9}H_{12}O_{6}$	234.098	0.207	1
$C_{9}H_{14}O_{6}$	236.114	0.225	1
$C_9H_{13}NO_6$	249.109	0.153	0.56
$C_9H_{11}NO_7$	263.088	0.207	1
$C_9H_{13}NO_8$	281.099	0.207	1

Table S3: Estimated NH₄⁺ CIMS sensitivity factors for species detected in 1,2,4-trimethylbenzene experiments.

Figure S1: (a) OH exposure and (b) concentrations of O₃, NO₂, HONO+NO_x for a typical photooxidation experiment.

Figure S2: Species measured by NH4⁺ CIMS in 124-TMB photooxidation experiment (red) and kinetic best fit (black).

Figure S3: (a) Loss of bicyclic peroxy radicals calculated from the modelled concentrations of NO, HO₂, and RO₂; (b) and (c) modelled concentrations of NO and HO₂ during photooxidation of toluene.

5 Figure S4: (a) Loss of bicyclic peroxy radicals calculated from the modelled concentrations of NO, HO₂, and RO₂; (b) and (c) modelled concentrations of HO₂ and NO during photooxidation of 124-TMB.

Figure S5: C₆ gas-phase products (a) detected by PTR-MS and NH₄⁺ CIMS and (b) predicted by MCM v3.3.1 during oxidation of toluene.