In the following, editor comments (EC) are reproduced (black) along with our replies AC (blue) and changes made to the text (red) in the revised manuscript.

Editor comments:

However, the presentation of the work falls below normal publication standards. The overall quality and clarity of the presentation greatly hinders the communication of the scientific results.

On the basis of the reviewer comments and my review, I am requesting that the authors make major revisions to their manuscript to improve the communication, clarity, logic, (remove) unnecessary repetition ("As mentioned above" type text), (remove) meaningless general statements, English, and grammar. In addition, the presentation of the scientific results for the molecules under study could be made more concise and earlier to follow for the reader. The tables and figures seem fine.

AC: We thank the editor for the interest shown on our work and the comments and suggestions.

The manuscript has been revised and unnecessary repetitions have been removed. We expect that with the english revision the meaningless statements have been eliminated.

The authors have tried to make a presentation of the scientific results more concise but we consider that this is a work with many experiments and results, and it is difficult for us to reduce the work without loss of scientific rigor. We know that in the kinetic discussion section there are information relative to general topics of reactivity of alcohols that could be omitted (page 6 lines 28-38 and page 7, lines 1-3 of new manuscript.pdf) because this information is well established and known. The authors consider that given the scope and dissemination of the ACP, more details would help to anyone who was not an expert in the subject to understand better the work. Indeed, at the suggestions of both referees, more information and explications had to be included. However, if you consider that this information is not necessary to understand better the discussion of the kinetic results, we can eliminate it.

The authors would appreciate if you could tell us which parts should be reduced or otherwise should be discussed further. In our opinion we consider that this version is fine, although it is possible that there are still some grammatical errors, that would be eliminated in the final review before publication.

I highly recommend that the authors have a native English-speaking colleague critically (line-by-line) review the manuscript prior to re-submission. This is simply too large a task for a reviewer or editor.

AC: The text of manuscript has been sent to "Proof-Reading-Services.com" for american english revision in order to make a rigorous of /vocabulary/grammar/scientific expressions. In order to do not pay a lot of for the revision, abstract, references, tables, figures and Supplementary material have not been sent to english revision.

EC: A few general theme comments:

*Only one of the compounds included in this study (3,3DM2ButOH) is actually methyl saturated. Therefore, the title and text are in error. This correction would lead to the removal of the misleading MSA acronym.

AC: All studied alcohols are saturated compounds (they do not have double or triple bonds) and all of them have at least one methyl group, so we considered methyl saturated alcohols to be a good acronym for the studied compounds, that is usual for compounds without multiple bonds. To avoid confusion, the authors have decided to use saturated alcohols generically (SAs)

EC: * The abstract mentions "tentative estimation of molecular yields" and quotes very large ranges of yields, which are not meaningful. The authors need to be more specific regarding the actual yield values and for what initiation reaction they are obtained from. I believe this information is actually available within the manuscript tables, although hard to follow in the text. Or, is this a problem with not having good standards?

AC: The individual molar yield of reaction product obtained for each reaction had not been included in the abstract in order to avoid making it very extensive. The phrase "A tentative estimation of molecular yields has been done obtaining the following ranges (25-60) % for 4-methylcyclohexanone, (40-60) % for 3,3-dimethylbutanal and (40-80) % for 3,3-dimethyl-2-butanone." has been removed to avoid confusion, and some new sentences have been included.

"The main products detected in the reaction of SAs with Cl atoms (absence/presence of NOx), OH and NO_3 radicals were: E-4-methylcyclohexanone for the reactions of E-4-methylcyclohexanol, 3,3-dimethylbutanal for the reactions of 3,3-dimethyl-1-butanol and 3,3-dimethyl-2-butanone for the reactions of 3,3-dimethyl-2-butanol"

"In addition, the molar yields of the reaction products were estimated".

The molar yields of the products are shown in Tables 3-6. In some cases, as 2,2-dimethylpropanal the molar yields could have large uncertainty because the reference spectra used was an FTIR spectra of a similar compound (2-methylpropanal).

EC * There is a long discussion of reactivity observations that have been well-established through the development of structure activity relationships (SARs) by Atkinson and coworkers. The small data set from this work is probably not sufficient to revise our thinking of SARs. The present work needs to be placed in the proper perspective.

AC: In the analysis made of the kinetic results obtained in our work, it is observed that the OH group exerts an activating effect that makes the reactivity of the alcohols greater than that of its alkane homologue, but it is also observed that this activating effect is different according to the oxidant. Indeed, these observations are well established through the development of structure activity relationships (SARs) by Atkinson and co-workers.

The authors do not have the intention of reviewing or changing results of the SARs method. On the contrary, what we want to highlight is that our results are in good agreement with those established by the SARs method in the case of reactions of saturated alcohols with CI atoms and OH radical and in the case of NO₃ radical with secondary alcohols.

In order to avoid more confusion, the paragraph of page. 7, lines 31-37 (clean manuscript date 26/10/2019) has been replaced by.

"..These results show that the activating effect of the OH group of the SA is less important for the Cl than with the OH, behavior that agrees with that established by the Structure Activity Relationship (SARs) methods (Kwok and Atkinson 1995; Calvert et al. 2011).."

On the other hand, in the case of the nitrate radical our study shows that in addition to the activating effect of the OH group there is also an activating effect of the -CH₂OH group and that

it is necessary to perform more kinetic studies of reactions of primary alcohols with the nitrate radical, in order to establish this factor, since there are currently very few data available in bibliography. This last is indicated in the manuscript as a conclusion.

"..For primary alcohols, the abstraction of a hydrogen atom in β -position could also be important in the reaction with NO₃ radical. Therefore, more kinetic studies for NO₃ radical with primary alcohols are necessary to quantify the effect of the OH group in β -position, (-CH2OH) and to update the SAR method developed by Kerdouci et al."

EC:* The introduction contains a great deal of seemingly unnecessary material and background information. Even with that said, it is not made clear why these particular compounds were chosen for study (biofuels?).

AC: The introduction has been reorganized in order to show better the relevance of compounds studied.

So, in the first paragraph the necessity of using biodiesel as alternative to conventional diesel is remarked. In this same paragraph, it is also shown that alcohol-diesel blends are a good alternative. Initially the alcohols used were alcohols of short chain (methanol, ethanol) but some problems were found due to their low cetane number, high latent heat of vaporization and high resistance to auto-ignition. In order to avoid these problems, high alcohols as propanol, n-butanol, isobutanol, n-pentanol and therefore the alcohols studied in this work, could be a good alternative as additives in the diesel blends. A new reference has been included to support this last.

"Li, F., Yi, B., Song, L., Fu, W., Liu, T., Hu, H., & Lin, Q. Macroscopic spray characteristics of long-chain alcohol-biodiesel fuels in a constant volume chamber. Proceedings of the Institution of Mechanical Engineers, Part A: JPE, 232(2), 195–207. https://doi.org/10.1177/0957650917721336, 2017."

In the second paragraph of introduction, a revision of sources of alcohols and data about concentrations found in the atmosphere is shown. The use of alcohols of long chain as additives for biodiesel fuel could imply an important source of these alcohols in the atmosphere. So, it is necessary to evaluate their atmospheric reactivity and to establish the atmospheric impact of these compounds.

In the next paragraph, a revision of the atmospheric reactivity of short and long alcohols is made, it does remark the absence of kinetic data or about reaction products of the alcohols studied in this work. The last paragraph explains the study that has been carried out and why it has been done.

We expect that this reorganization and correction of the introduction section, allows a better compression and better justification of the developed research.

LIST OF THE MAIN CHANGES MADE IN THE MANUSCRIPT.

Apart of the modification due to the English revision, the next modifications have been made at suggestion of the editor in order to more clarity. Pages and lines indicated are related to the manuscript.pdf with date sent of 26_10_2019.

1-Page 1. Lines 1 and 2. The title has been modified. The acronym MSA has been removed, and "methyl saturated alcohols" has been replaced by "saturated alcohols" in all text of the manuscript, tables and figures.

2-Page 1. Line 12. The next sentence has been included:

"These SAs are alcohols that could be used as fuel additives"

3-Page 1. Lines 17-21. The paragraph has been replaced by the following:

"The main products detected in the reaction of SAs with Cl atoms (absence/presence NOx), OH and NO₃ radicals were: E-4-methylcyclohexanone for the reactions of E-4-methylcyclohexanol, 3,3-dimethylbutanal for the reactions of 3,3-dimethyl-1-butanol and 3,3-dimethyl-2-butanone for the reactions of 3,3-dimethyl-2-butanol"

4-Page 1. Line 21. The sentence has been modified including "..of Cl atoms and OH radicals with.."

5-Page 1. Line 23. The next sentence has been included "In addition, the molar yields of the reaction products were estimated".

6-Page 1. Line 23. The sentence has been modified as follows

"The products detected, indicate a hydrogen atom abstraction mechanism at different sites on the carbon chain of alcohol..."

7-Page 1. Line 31 "Therefore, the use of saturated alcohols as additives in diesel-blends should be considered with caution"

8-Pages 2 and 3. The introduction has been reorganized.

9-Page 2. Line 17. A new reference has been included.

10-Page 7. Lines 31-37. The text has been modified as follows:

"These results show that the activating effect of the OH group of the SA is less important for the reaction with Cl atoms than with the OH radical, behavior that agrees with that established by the Structure Activity Relationships (SARs) methods (Kwok and Atkinson 1995; Calvert et al. 2011)."

12-Page 9. Lines 21, 22. The sentence has been removed.

13-Page 9. Lines 28-31. The sentence has been rewritten to more clarity as follows:

"Some of these compounds are products from the reactions of the SAs with oxidants. They can also be formed by decomposition of the employed precursors (CI2, CH3ONO and N2O5) and in some cases, by heterogeneous reactions of these precursors with the Pyrex glass reactor walls."

14-Page 10. Lines 32. Part of the sentence has been modified as follows:

"Figure 5A shows the paths that explain the formation of organic compounds (carbonyl, hydroxycarbonyl, etc).."

15-Page 12. Lines 1 and 2 have been modified to more clarity, as follows:

"..presented in Fig. 6, showing that in the absence of NOx the profiles of acetone and formaldehyde have two trends. It indicates that these compounds are formed as primary and secondary products."

16-Page 12. Lines 13-18. The sentence has modified to more clarity, as follows:

"The higher yield of nitrated compounds in the reaction of 3,3DM1ButOH with nitrate radical could indicate an extra formation of nitrated compounds from secondary reactions..".

17-Page 12. Lines 25-27. The paragraph has rewritten to more clarity, as follows:

"As it can see in Table 4, the estimated molecular yields of 3,3-dimethylbutanal (formed by H atom abstraction at the α -position of 3,3DM1BuOH) are very similar to the one predicted by the SARs method for the Cl and OH reactions."

18-Page 13. Lines 15-17. The paragraph has rewritten to more clarity, as follows:

"Plots of concentration versus time for formaldehyde, acetone (Fig. S12A) and nitrated compounds in the reactions of Cl in the presence of NOx (Fig. S12B) show profiles with two trends. This type of profile indicates that formaldehyde and acetone could also be formed by degradation of 3,3-dimethyl-2-butanone (Fig. S13)."

19-Page 13. Lines 17-19. The sentence has been moved to Line 14.

20-Page 13. Line 33. The next sentence has been added to more clarity, as follows:

"It could justify the low estimated molecular yield for 3,3-dimethyl-2-butanone."

21-Page 14. Lines 3-4. The paragraph has been eliminated

22-Page 15. Lines 30-32 The sentence has been rewritten as follows:

"Therefore, more kinetic studies of the NO $_3$ radical reaction with primary alcohols are necessary to quantify the effect of the OH group at the β -position (-CH2OH) and to update the SARs method developed by Kerdouci et al."

23-Page 16. Lines 18-20. The sentence has been changed by:

"Therefore, the use of SAs as additives for diesel blends should be controlled, as poor handling could result in high concentrations of these alcohols in the atmosphere."

24-Page 19. Lines 36-38. A new reference has been included:

"Li, F., Yi, B., Song, L., Fu, W., Liu, T., Hu, H., & Lin, Q. Macroscopic spray characteristics of long-chain alcohol-biodiesel fuels in a constant volume chamber. Proceedings of the Institution of Mechanical Engineers, Part A: JPE, 232(2), 195–207. https://doi.org/10.1177/0957650917721336, 2017."

Atmospheric fate of a series of Methyl-Saturated Alcohols

(MSA): kinetic and mechanistic study

- Inmaculada Colmenar^{1,2}, Pilar Martin^{1,2}, Beatriz Cabañas^{1,2}, Sagrario Salgado^{1,2}, Araceli
- 4 Tapia^{1,2}, Inmaculada Aranda^{1,2}
- ¹Universidad de Castilla La Mancha, Departamento de Química Física, Facultad de Ciencias y Tecnologías
- 6 Químicas, Avda. Camilo José Cela S/N, 13071 Ciudad Real, Spain
- 7 ²Universidad de Castilla La Mancha, Instituto de Combustión y Contaminación Atmosférica (ICCA), Camino
- 8 Moledores S/N, 13071 Ciudad Real, Spain

1

- 9 *Correspondence to*: Pilar Martín (mariapilar.martin@uclm.es)
- 10 **Keywords.** Methyl-Ssaturated alcohols, additives, biofuel, atmosphere, rie reactivity.
- 11 **Abstract.** The atmospheric fate of a series of <u>Methyl S</u>aturated <u>a</u>Alcohols (MSAs) has been evaluated through
- the kinetic and reaction product studies with the main atmospheric oxidants. These SAs are alcohols that could be
- 13 <u>used as fuel additives.</u> Rate coefficients (in cm³ molecule⁻¹ s⁻¹ unit) measured at ~298K and atmospheric pressure
- 14 $(720 \pm 20 \text{ Torr})$ were as follows: k_1 (E-4-methyl-cyclohexanol + Cl) = $(3.70 \pm 0.16) \times 10^{-10}$, k_2 (E-4-methyl-cyclohexanol + Cl)
- cyclohexanol + OH) = $(1.87 \pm 0.14) \times 10^{-\frac{1}{2}+1}$, k_3 (E-4-methyl-cyclohexanol + NO₃) = $(2.69 \pm 0.37) \times 10^{-15}$, k_4
- 16 $(3,3-\text{dimethyl-1-butanol} + \text{Cl}) = (2.69 \pm 0.16) \times 10^{-10}, k_5 (3,3-\text{dimethyl-1-butanol} + \text{OH}) = (5.33 \pm 0.16) \times 10^{-10}$
- 17 12 , k_6 (3,3-dimethyl-2-butanol + Cl) = $(1.21 \pm 0.07) \times 10^{-10}$ and k_7 (3,3-dimethyl-2-butanol + OH) = (10.50 ± 1.00)
- 18 0.25) \times 10⁻¹². The main detected products detected in the reaction of SAs with Cl atoms (absence/presence of
- 19 NO_x), OH and NO₃ radicals were: E-4-methylcyclohexanone, for the reactions of E-4-methyl-cyclohexanol, 3,3-
- dimethylbutanal for the reactions of 3,3-dimethyl-1-butanol and 3,3-dimethyl-2-butanone for the reactions of E-
- 4 methyl cyclohexanol, 3,3 dimethyl 1 butanol and the reactions of 3,3-dimethyl-2-butanol. respectively with the
- 22 three oxidants. A tentative estimation of molecular yields has been done obtaining the following ranges (25-60) %
- 23 for 4 methylcyclohexanone, (40 60) % for 3,3 dimethylbutanal and (40 80) % for 3,3 dimethyl 2 butanone. Other
- products such as formaldehyde, 2,2-dimethylpropanal and acetone also been identified in the reactions
- of <u>Cl atoms and OH radicals with</u> 3,3-dimethyl-1-butanol and 3,3-dimethyl-2-butanol. <u>In addition, the The-molar</u>
- yields of these reaction products detected were estimated. The products detected, S indicate a hydrogen
- 27 <u>atomhydroge</u> n-abstraction mechanism at different sites-of on the carbon chain of alcoholthe alkyl chain in the case
- of Cl reactions and a predominant site in the case of OH and NO₃ reactions, confirming the predictions of Structure
- 29 Activity Relationships (SAR) methods.
- 30 Tropospheric lifetimes (τ) of these MSAs have been calculated using the experimental rate coefficients. Lifetimes
- are in the range of 0.6-2 days for OH reactions, 7-13 days for NO₃ radical reactions and 1-3 months for Cl atoms.
- 32 In coastal areas the lifetime due to the reaction with Cl decreases to hours. The <u>calculated</u> global tropospheric
- 33 lifetimes calculated, and the polyfunctional compounds detected as reaction products in this work, imply that the
- 34 Methyl SAssSaturated aAlcohols could contribute to the formation of ozone and nitrated compounds formation at

- 1 local, but also regional and even to global scale. Therefore, the use of large saturated alcohols as additives in
- 2 <u>diesel-blends biofuelsshould must</u> be <u>consideredtaken</u> with caution.

1. Introduction

1

2 A mMultitude of scientific studies abouton combustion emissions confirm that fossil fuels, especially diesel fuel, 3 are the <u>substances</u> mainly responsible for air pollution. The loss of air quality and its consequences <u>foren</u> health as well as for global warming are some of the most important problems caused by air pollution (www.iea.org). 4 5 These consequences have led governments to set restrictive limits onfor the presence of certain pollutants in the atmosphere, such asis the case of particulate matter (PM) (EURO 6) and to develop biofuels (Sikarwara et al., 6 7 2017) as alternatives to conventional ones. 8 Biodiesel isare obtained from thea transesterification process of oils animal or vegetable oils origin. Also, the 9 fermentation of vegetal biomass gives methanol and \leftarrow or ethanol (bioethanol). These lower alcohols have been 10 used as fuels and showing advantages such as the reduction inof the smoke, due to the presence of the OH group 11 that increases the oxygen content during the combustion process (Ren et al., 2008; Lapuerta et al., 2010; Sarathy 12 et al., 2014; Sikarwara et al., 2017). However, several studies have shown certain complications in the use of lower 13 alcohols due to their low cetane number, the high latent heat of vaporization and high resistance to auto-ignition 14 (Karabektas and Hosoz, 2009). In order to avoid or to minimize these limitations, alcohol-diesel blends and 15 alcohol-diesel emulsions have been used in diesel engines (Ozsezen et al., 2011). AnoOther alternative is the use 16 of longer-chain alcohols (propanol, n-butanol, isobutanol and n-pentanol) with superior fuel properties than lower 17 alcohols when mixed with diesel fuel (Cheung, et al., 2014; Kumar and Saravanan, 2016; Li et al., 2017). 18 The fact that the use of high alcohols is a good alternative to conventional fuels could suppose an important presence of these alcohols in the atmosphere. Therefore, previously to the massive use, it is necessary to study the 19 20 reactivity of the large alcohols in atmospheric conditions, in order to establish and to evaluate their atmospheric 21 impact. 22 Alcohols are present in the atmosphere from a wide variety of anthropogenic and biogenic sources (Calvert et al., 23 2011). Methanol, ethanol and isopropanol are some of the main alcohols detected in urban areas such as Osaka and Sao Paulo cities (Nguyen et al., 2001) with concentrations of between 5.8—8.2 ppbv and 34.1—176.3 ppbv 24 25 respectively. Other alcohols, such as E-4-methylcyclohexanol, have been identified in the exhaust gas emissions 26 resulting from f burning fuel blends containing 7-% v/v (B7) and 20-% v/v (B20) of soy bean/palm biodiesel (84 %-/-16-%) (Lopes et al., 2014). 3,3-dimethyl-1-butanol is a glass_-forming material, used as a chemical intermediate 27 28 in organic syntheses (www.capotchem.com). 3,3-dimethyl-2-butanol is a potential precursor for prohibited 29 chemical weapons such as soman, a nerve agent (Murty et al., 2010). It is also used in conversion of ribose-and 30 glucose- binding proteins into receptors for pinacolyl methyl phosphonic acid (Allert et al. 2004). The fact that the 31 use of long-chain high alcohols as biofuels is a good alternative to conventional fuels could be suppose 32 present an additional additional important source presence of these alcohols in the atmosphere. Therefore, 33 prioreviously to the useeir massive use as biofuels, it is necessary to study their reactivity of the large alcohols of 34 long-chain alcohols in atmospheric conditions, in order to establish and to evaluate their their atmospheric impact. 35 36 In the case of smaller alcohols, the knowledge of theirits reactivity is well established and indicatesing that the 37 main degradation process mechanism of saturated alcohols (SAs) in the atmosphere is the reaction with 38 hydroxylOH- radicals (OH) during the daytime is mainly initiated by the H abstraction from C H bond. The H-

1 abstraction from the OH group seems to be less favored (Grosjean et al., 1997; Atkinson and Arey, 2003; Atkinson 2 et al., 2006; Calvert et al., 2011; Caravan et al., 2015; Mellouki et al, 2015). According to literature (Atkinson and 3 Arey, 2003; Atkinson et al., 2006; Calvert et al., 2011; Caravan et al., 2015; Mellouki et al, 2015), the main 4 degradation route of saturated alcohols in the atmosphere is the reaction with OH radicals during daytime. Kinetics 5 with chlorine atoms (Cl) are expected to be high, therefore reactions with Cl could also be an important degradation 6 route, especially in coastal areas where concentration peaks of Clehlorine atoms can be found. Reactions with ozone molecular (O₃) ($k-\le 10^{-20}$ cm³ molecule⁻¹⁻⁴ s⁻¹⁻⁴) and nitrate radical (NO₃) ($\sim 10^{-15}$ cm³ molecule⁻¹ s⁻¹) 7 8 are too low to makehave a significant contribution to their degradation. However, the determination of the rate 9 coefficients and the reaction products of alcohols with the nitrate radical are also necessary to better understand better the general reactivity of alcohols in the atmosphere, since the reactions with this radical are a source of OH 10 11 during the night-time (Finlayson-Pitts and-Pitts, 2000). Although in the last years some studies into the about reactivity of higherlarge alcohols have been made 12 (Ballesteros et al., 2007; Hurley et al., 2009; Andersen et al., 2010; Calvert et al., 2011; Moreno et al., 2012, 2014, 13 14 Mellouki et al., 2015) the kinetic and mechanistic database is still scarce. In the case of the 3,3-dimethyl-1-butanol and 3,3-dimethyl-2-butanol (derivateses from of 1-butanol and, 2-butanol) there is a lack of information with 15 16 respect to the diurnal reactivity (Moreno et al., 2014; Mellouki et al., 2015). Regarding to-cyclic alcohols, only 17 data concerning the reactivity of chlorine atoms and OH radicals withfor cyclohexanol (Bradley et al., 2001; 18 Ceacero-Vega et al., 2012) and OH withfor cyclopentanol (Wallington et al., 1988) have been reported. 19 Therefore, in the present work, the studiesy into the kinetics and the products of gas_-phase reactions of some Methyl Saturated Alcohols (MSAs, such as): E-4-methylcyclohexanol (4MCHexOH), 3,3-dimethyl-1-butanol 20 21 (3,3DM1ButOH) and 3,3-dimethyl-2-butanol (3,3DM2ButOH) with Cl atoms and OH and NO₃ radicalsthe main 22 atmospheric oxidants haves been carried out n done These SAs haved been chosen for their potential use as 23 biofuels and because their reactivity has not yet been evaluated. So, our work will permit us to in order to complete 24 the kinetic and mechanism database, to improve our knowledge of the atmospheric chemistry of higherlong chain 25 SAs alcohols in special saturated alcohols, and and to assess their environmental chemical impact in the case of 26 their future use as biofuels.

27 2. Experimental Section

2.1 Kinetic experiments

- 29 The reactions of a series of Methyl Saturated Alcohols (MSAs) with the main atmospheric oxidants have been
- 30 studied:

OH
$$\begin{cases} + & \text{Cl} \xrightarrow{k_1} & \text{Products} \\ + & \text{OH} \xrightarrow{k_2} & \text{Products} \\ + & \text{NO}_3 \xrightarrow{k_3} & \text{Products} \end{cases}$$
 (R1)

$$\begin{array}{c}
OH \\
+ Cl \xrightarrow{k_4} Products \\
+ OH \xrightarrow{k_5} Products
\end{array}$$
(R4)

3,3DM1ButOH

$$\begin{array}{c}
\text{OH} \\
+ \text{ Cl} & \xrightarrow{k_6} & \text{Products} \\
+ \text{ OH} & \xrightarrow{k_7} & \text{Products}
\end{array}$$
(R6)

3,3DM2ButOH

2
 3

Rate coefficients were determined using a relative rate method. This method relies on the assumption that the organic compound (MSA) and the reference compound (R), are removed solely by their reactions with the oxidants (Ox: OH and NO₃ radicals and Cl atoms):

6 Ox +
$$\frac{MSA}{}$$
 Products (k_{MSA}) (R8)

7 Ox + R
$$\rightarrow$$
 Products (k_R) (R9)

 $\underline{\mathbf{w}}$ here k_{MSA} and k_R are the rate coefficients of the MSA and the reference compound, respectively.

On the assumption that the MSA and the reference compound are only consumed by reaction with the oxidants, the kinetic treatment for the reactions expressed by R8 and R9 gives the following relationship;

$$ln\left(\frac{[MSA]_0}{[MSA]_t}\right) = \frac{k_{MSA}}{k_R}ln\left(\frac{[R]_0}{[R]_t}\right)$$
 (1)

where [MSA]₀, [R]₀, [MSA]_t, and [R]_t are the initial concentrations and those at time *t* for the <u>SAMethyl Saturated</u>

Alcohol and the <u>r</u>Reference compound, respectively. Two reference compounds <u>were used</u> with each oxidant were

used to <u>ensureassure</u> that the reference compound <u>does not have had noany</u> influence on overall rate coefficient.

According to Eq (1), a plot of $\ln([MSA]_0/[MSA]_t)$ versus $\ln([R]_0/[R]_t)$ should be a straight line that passes through the origin. The slope of this plot gives the ratio of rate coefficients k_{MSA}/k_R . Therefore, the value of k_{MSA} can be obtained if the rate coefficient k_R of the reference compound is known.

The experimental systems have been are described in previous works (Tapia et al., 2011; Martin et al., 2013) and only a brief description is given here. Kinetic measurements were performed at room temperature (~-298 K) and atmospheric pressure (720 ± 20 Torr) by employing two separated experimental set-ups: 1) — An FTIR system formed by 50_-L Pyrex® glass reactor was coupled to anthe Fourier Transform Infrared Radiation spectrometer as a detection technique ("on_-line" analysis). Inside of the Pyrex® glass reactor there is a multi-reflect in system with three mirrors that allows an infrared radiation path of 2.8—200_-meters. This reactor is known as white cell (Saturn Series Multi-Pass cell). The FTIR spectrometer (Thermo Nicolet 6700) was equipped with a KBr beam splitter and liquid nitrogen-cooled MCT. Typically, for each spectrum, 60 interferograms were co-added over 98_s and approximately 30—40 spectra were recorded per experiment with a spectral resolution of 1_-cm=1. 2) — A Teflon ® gas bag reactor of 500_L with solid pPhase mMicro eExtraction fiber (SPME) as a

- 1 <u>fiber pre-concentration sample method, was for sampling followed by analysis on and gGas cChromatography</u>
- 2 mMass sSpectrometry system with a tTime of tFlight mass spectrometer analyzer (SPME/GC-TOFMS) (AccuTOF
- 3 GCv, Jeol) ("off--line" analysis). Samples were collected by exposing a 50/30 -mm DVB/CAR/PDMS Solid Phase
- 4 Micro Extraction fiber (SPME (, SUPELCO) for 5 min during the reaction and then thermally desorbed for 15 min
- at 250 °C in the heated GC injection port. A capillary column (30_-m \times 0.3_-mm id \times 1.0_-mm film thickness, Tracsil
- 6 TRB-1701, Teknokroma) was used to separate the compounds. The chromatographic conditions used for the
- 7 analysis were as follows: injector, 250 °C; interface, 250 °C; oven-initial oven temperature, 40 °C for 4 min; ramp,
- 8 30 °C min⁻¹ to 120 °C, held for 6 min; second ramp, 30 °C min⁻¹ to 200 °C, held for 3 min.
- 9 In each independent experiment, the reactants were injected into the reactors from a vacuum line by dragging
- with a stream of carrier gas used in the reaction. Both reactors were are inside of a metallic housing in the walls of
- which walls there is a rack of actinic lamps (Philips, TL-40 W, Actinic BL, $\lambda_{max} = 360$ nm). A scheme of the
- 12 experimental systems is shown in Fig. S1, of Supplementary Mmaterial.
- The kinetic experiments, for the Cl and OH reactions, were performed in the 50 L Pyrex® glass reactor coupled
- 14 to an FTIR spectrometerthe FTIR system. A spectral subtraction procedure was used to derive the concentrations
- of reactant and reference compounds at time t = 0 and time t. The reaction of NO_3 with 4MCHexOH was studied
- using a 500 L Teflon-® reactor of 500 L in order to minimize the wall deposition and dilution effects of consecutive
- additions of N₂O₅. Chlorine atoms and OH radicals were obtained by photolysis of Cl₂ in N₂ and methyl nitrite.
- 18 <u>CH₃ONO</u>, in the presence of NO in air. Methyl nitrite, CH₃ONO, was synthesized in the laboratory as described
- 19 elsewhere (Taylor et al., 1980).
- Nitrate radicals were generated in situ in the dark by the thermal decomposition of N₂O₅ (Atkinson et al., 1984,
- 21 1988). N₂O₅ was obtained mixing O₃ with an excess of NO₂ (Scott and Davidson, 1958). Prioreviously to the
- 22 kinetic experiments a series of tests in the dark and photolyticsis conditions were carried out to evaluate secondary
- reactions, such as wall depositions and photodegradation—processes of <u>all</u> reactants.
- The rRange concentrations of reactants employed were as follows: 2—16_ppm of 4MCHexOH, 3—9_ppm of
- 3,3DM1ButOH and 3,3DM2ButOH, 9_-30_-ppm of Cl₂, 4_-13_-ppm of 1-butene and 2-methylpropene, 7_-
- 26 14_-ppm of propene and cyclohexene, 5_-7_-ppm of isopropanol, 3_-5_ppm of 2-methyl-2-butanol, 26_-55_-ppm
- of CH₃ONO, 20_-60_-ppm of NO, 3_-4_-ppm of 2-ethyl-1-hexanol, 4_-5_-ppm of 1-butanol. For reactions of
- 4MCHexOH with nitrate radicals 2—5 additions of N_2O_5 with concentrations between 8—36-ppm were made per
- 29 each experiment. N2 and synthetic air were used as bath gases for Cl, NO3 and OH reactions, respectively.

2.2 Product experiments

- 31 The product study was carried out at room temperature (~ 298 K) and at a pressure of (720 ± 20) Torr of synthetic
- 32 air employing the two experimental set-ups previously described mentioned above. In some experiments carried
- out in the 50-L Pyrex® reactor, a simultaneous identification of products was performed using both detection
- 34 techniques. For that, one sample of mixing reaction mixture was taken from thiseis reactor using the SPME and
- 35 subsequently analyzed with GC-TOFMS. In addition, independent experiments using SPME/GC-TOFMS
- 36 technique in a 150_-L Teflon® reactor were developed. Products analyses were carried out using the same
- 37 procedure as for the kinetic experiments, without the reference compound, and employing synthetic air as bath
- 38 gas. On this occasion the heating of the oven was changed slightly in order to get a better separation and to detect

- 1 the products generated. The temperature ramps of the oven employed in the chromatograph were: 40 °C for 4 min;
- 2 ramp, 25 °C min⁻¹ to 120 °C, held for 10 min; second ramp, 25 °C min⁻¹ to 200 °C, held for 4 min.
- 3 The qualitative analysis in the FTIR experiments was carried out using the FTIR library that provideds the FTIR
- 4 spectrophotometer (Aldrich vapor phase sample library,
- 5 <u>https://www.thermofisher.com/search/browse/results?customGroup=Spectral+Libraries</u>) and/or the FTIR
- database of Eurochamp (https://data.eurochamp.org/data-access/spectra/-).
- 7 For the SPME/GC-TOFMS experiments, the NIST webbook (https://webbook.nist.gov/chemistry/) and the m\(\frac{4}{4}\) ass
- 8 <u>s</u>Spectra database of the instrument were used to identify the products. Calibrated FTIR spectra and SPME/GC-
- 9 TOFMS chromatograms were used forte quantification in those cases where the product was commercially
- 10 available.
- 11 The molecular yields of the reaction products were estimated from the slopes of plots of the concentration of
- 12 formed product formed versus the amounts of MSA (Δ [MSA]) consumed. In the cases where it was observed an
- important loss of the reaction product by reaction of the oxidant and/or by photolytic process was observed, the
- concentration of the product was corrected using the formulism of Tuazon et al. (1986) (See S1, Sin supplementary
- 15 Mmaterial). Range of concentrations of reactants employed were as follows: 2_-14_ppm of MSA, 8_-31_ppm of
- 16 Cl₂, 12_-57_ppm of NO, 19_-66_ppm of CH₃ONO and 6_-36_ppm of N₂O₅.
- 17 Chemicals used were as follows: 4MCHexOH (97-%, Aldrich), 3,3DM1ButOH and 3,3DM2ButOH (98-%,
- Aldrich); 1-butene, propene, 2-methyl-2-butanol, isopropanol, 2-methylpropene, 4-methylcyclohexanone and
- 19 cyclohexene (≥–99–%, Aldrich), 2-ethyl-1-hexanol (≥ 99–%, Fluka), 1-butanol (99.8–%, Aldrich), 3,3-
- dimethylbutanal (95-%, Aldrich) and 3,3-dimethyl-2-butanone (98-%, Aldrich), NO (99-%, Praxair), Cl₂ (> 99.8
- 21 %, Praxair), synthetic <u>a</u>Air (Praxair Ultrahigh purity 99.999-%,) and -N₂ (99.999-%, Praxair). For N₂O₅ synthesis,
- 22 N₂O₄ wasere used (>99.5-%) from Fluka, P₂O₅ (98-%, such as desiccant) from Fluka and O₃ was synthesized by
- 23 a generator model TRCE-5000, 5 g_{O3} h⁻¹ OZOGAS.

24 3. Results and Deliscussion

3.1 Kinetic study

- 26 Preliminary test experiments indicated that dark heterogeneous reactions and photolytic losses of MSAs and
- 27 <u>reference compounds couldam</u> be considered negligible in our experimental conditions ($k \approx -10^{-6} \text{ s}^{-1}$). TAs
- 28 mentioned above, the kinetic study of Cl atoms and OH radical with the MSA was carried out at room temperature
- 29 (\sim -298 K) and at 720 \pm 20 Torr of N₂ gas for Cl atoms reactions and synthetic air for OH radical
- 30 <u>reactions</u>respectively. Nitrate radical experiments were performed using N₂ gas in a 500_L Teflon reactor and
- 31 employing the system-SPME/GC-TOFMS system. A number of injections of the unreacted mixture were carried
- 32 out in order to determine the associated precision of with the sampling method to be used in the error analysis
- 33 (Brauers and Finlayson-Pitts, 1997). The standard deviations (σ) were as follows: 3.7-% for 4MCHexOH, 1.7-%
- for 1-butanol and 3.5-% for 2-ethyl-1-hexanol.
- 35 -Figure 1 shows examples of the kinetic data plotted according to Eq (1) for the reactions of MSAs with different
- 36 atmospheric oxidants.

- 1 A good correlation was obtained with an intercept close to zero, which indicateds the absence of other secondary
- 2 reactions processes. From the slopes of the plots (k_{MSA}/k_R) and knowing the values of the rate coefficients for the
- 3 reference compounds employed $(k_R)_{\underline{i}}$ the value of the absolute rate coefficient for each-methyl saturated alcohol
- 4 (k_{MSA}) washas been determined.
- Rate coefficients of reactions of reference compounds, withfor Cl atoms reactions (in 10⁻¹⁰ cm³ molecule⁻¹ s⁻¹
- 6 units) were: 2-methylpropene (3.40 \pm 0.28), 1-butene (3.38 \pm 0.48), (Ezzel et al., 2002) and propene (2.23 \pm 0.31)
- 7 (Ceacero-Vega et al., 2009); withfor OH radicals reactions (in 10^{-11} cm³ molecule⁻¹ s⁻¹ units): propene (2.66 \pm
- 8 0.40)_-(Atkinson and Aschman, 1989), cyclohexene (6.77 \pm 1.69) (Atkinson and Arey, 2003), isopropanol (0.51
- 9 \pm 0.008) (IUPAC www.iupac-kinetic.ch.cam.ac.uk) and 2-methyl-2-butanol (0.36 \pm 0.06) (Jiménez et al., 2005)-
- aAnd withfor NO₃ radicals eactions (in 10^{-15} cm³ molecule⁻¹ s⁻¹ units): 1-butanol (3.14 ± 0.97) and 2-ethyl-1-
- hexanol (2.93 ± 0.92) (Gallego-Iniesta et al., 2010).
- 12 -The ratios of the rate coefficients, k_{MSA}/k_R , the absolute rate coefficients and the weighted averages are shown in
- Table 1. The error of k_{MSA}/k_R was are given by two 2 times the statistical deviation calculated from the least_squares
- 14 fit of the plot of Eq. (1). The uncertainties for rate coefficients of MSA (σ_{kMSA}) were calculated from the
- uncertainty of slope of plots (σ_{slope}) and the uncertainty of the reference (σ_{kR}) by using the propagation of
- uncertainties. The average value of the rate coefficients obtained with different reference compounds and theirits
- associated errors were obtained by weighted average (See footnote, Table 1). -The rate coefficients obtained in
- this work are the first kinetic data reported for these MSAs, therefore, the results obtained cannot be compared
- with literature values.

- 21 <u>LAs it has been mentioned in introduction section, it</u> is well established that the gas-phase reaction mechanism of
- 22 saturated organic compounds (alkanes, alcohols, ethers, etc.) with the atmospheric oxidants (Cl atoms, OH and
- NO₃ radicals) are initiated "via" hydrogen atom abstraction from the organic compound to form a stable molecule
- and an alkyl radical (Finlayson-Pitts and Pitts, 2000; Atkinson and Arey, 2003; Calvert et al., 2011; Ziemann and
- 25 Atkinson, 2012). The presence of the OHhydroxyl group in saturated alcohols implies two types of hydrogens that
- can be abstracted: hydrogen bonded to a carbon (C_-H) of the main chain or of an alkyl substituent and hydrogen
- bonded to oxygen of OHhydroxyl group (OH). Two literature reviews of theabout reactivity of saturated alcohols
- 28 (Calvert et al., 2011; Mellouki et al., 2015) conclude that:
- 29 1—The reactions of aliphatic alcohols with atmospheric oxidants proceed mainly by H atom abstraction from
- 30 various C-H groups in the alkyl chain, being the abstraction of H atom abstraction from the O-H group being
- 31 negligible:
- 32 $2 \rightarrow$ -Rate coefficients for the reactions of Cl, OH and NO₃ are higher for alcohols than those of the corresponding
- 33 alkanes due to the activating effect of the OH group. This effect is extended over about <u>four4</u> carbon atoms (Nelson
- et al., 1990); and. As will be discussed below, the activating effect of the OH group depends on the oxidant.
- 35 3—The attack percentage of a radical to the different sites of the alcohol (α, β, γ) and (α, β, γ) depends on the oxidant,
- the structure of saturated alcohol, the type and numbers of substituents, and temperature, (Moreno et al., 2012,
- 37 2014; McGillen et al., 2013, 2016).
- 38 In order to verifycheck these remarks, the reactivity of the Methyl SAsaturated Alcohols studied in this work
- 39 <u>werehas been</u> analyzed and discussed by comparing a) the rate coefficients of the MSAs obtained with for the

2 alkanes available in literature, bibliography and comparing e) the rate coefficients obtained in the reaction of the 3 same oxidant but with different alcohols. The data used in the to-comparisone are summarized in Table S1 in 4 Ssupplementary Mmaterial. 5 From the analysis of all data shown in Table S1, it can be observed that: a)—) —The trend in the reactivity of MSAs in relation to the different oxidants is the same that the observed for 6 other saturated alcohols: k_{Cl} (k $\stackrel{\sim}{-}$ -10⁻¹⁰) > k_{OH} (k $\stackrel{\simeq}{-}$ -10⁻¹¹) >> k_{NO3} (k $\stackrel{\simeq}{-}$ -10⁻¹⁵), (k in cm³ molecule⁻¹ s⁻¹ 7 units). This behavior could be explained by considering the geometry and the electronic density of each oxidant, 8 9 together with the kinetic ccollision theory. As the Cl atom has spherical electronic density distribution of its 10 density, any, for the collision any orientation is suitable adequate, in addition, the Cl atoms presents lowess steric 11 hindrance. So Then, comparatively the Cl reaction is comparatively less selective and faster, with values for the 12 rate coefficients, k, in the collision limit. However, the OH radical presents an asymmetric electron density located 13 mostly over its oxygen atom. Therefore, for the OH reaction the oxygen of the OH radical, must be specifically 14 oriented toward the hydrogen of the MSA that will be abstracted. The electronic density of nitrate radical is 15 distributed around the three oxygens, which implies several appropriate orientations. However, but sinceas the 16 nitrate radical has a non-linear structure, the steric hindrance is much greaterbigger than for the OH radical, 17 which and it reduces the reactivity of NO₃ in relation to that ose of OH-radical. 18 b)—) The rate coefficient for the reaction of 4MCHexOH with Cl atoms is similar to the rate coefficient of its homologous alkane (E-1,4-dimethylcyclohexane): $k_{4MCHexOH+Cl} = 37.0 \times 10^{-11} \approx 200 \times 10^{-11}$ 19 = 36.3 -× -10 = 11. In the case of the reaction with OH radical, the rate coefficient of 4MCHexOH is 1.5 times higher 20 than with E-1,4-dimethylcyclohexane: $k_{4MCHexOH+OH} = 18.7 \times 10^{-12} > k_{E-1,4-dimethylcyclohexane+OH} = 12.1 \times 10^{-12}$ 21 22 (Table S1). These results show that the activating effect of the hydroxyl group (-OH group) of the MSA is less 23 important for the reaction with Cl atoms than with the OH radical, behavior that agrees with that established by the Structure Activity Relationships (SARs) methods. The activating effect of hydroxyl group of the alcohols was 24 25 quantified by different authors (Kwok and Atkinson 1995; Kerdouei et al. 2010; Calvert et al. 2011), taking into account the available kinetic data reported in bibliography, obtaining the factor of reactivity for the hydroxyl group, 26 27 F(OH)). This factor of reactivity is different for each oxidant, 1.18 for Cl reaction, 2.35 for reaction with OH 28 (Calvert et al. 2011) and 18 for NO₃ reaction (Kerdouci et al., 2010). There are no data of rate coefficient datas 29 for the reactions with NO₃ radical of the alkanes homologous to alkanes of the MSAs studied in this work-with NO3 radical, and therefore it wasis not possible to check out the effect of OH hydroxyl group in the reactivity of 30 31 NO₃ reaction with NO₃. However, according to the SAR method developed by factor of reactivity obtained by 32 Kerdouci et al. (2010) for the reactions of alcohols with NO₃, this effect is greater higher than in the corresponding 33 to Cl and OH reactions. 34 c_) — The activating effect of the chain length-chain in the reactivity of alcohols is also more differentevident in 35 for the Cl and OH reactions than OH reactions (See Table S1). Furthermore, if the rate coefficients of 3-methyl-1-butanol (3M1ButOH) and 3,3DM1ButOH with Cl and OH-reactions are compared, it can be observed a slight 36 increase in the of rate coefficient for Cl reaction can be observed $(k_{3MIBuOH+Cl} = 25.0 \times 10^{-11}; k_{3,3DMIButOH+Cl} = 26.9$ 37 \times 10⁻¹¹) together with and an important decrease in of the rate coefficient for the OH reactions ($k_{3MIBuOH+OH} = 14$ 38 \times 10⁻¹²; $k_{3,3DM1ButOH+OH} = 5.33 \times 10^{-12}$). This behavior could be explained by the different order of reactivity 39

different oxidants; b) comparing the rate coefficients of the MSAs and the rate coefficients of their homologous

- 1 <u>ofbetween</u> the <u>two</u> oxidants. <u>So, For-Cl</u> atom, more reactive (k <u>in the</u> order of 10⁻¹⁰ cm³ molecule⁻¹ s⁻¹) but less
- 2 selective than OH, an increase in the chain of the length chain or in the number of methyl groups in the SAs implies
- 3 more hydrogens available to be abstracted and therefore an increase inof the rate coefficient. However, for OH
- 4 radicals, less reactive (k in the order of 10^{-11} 10^{-12} cm³ molecule⁻¹s⁻¹) and more selective than Cl, the attack for
- 5 H-abstraction will be carried out at in-a specific position in the SAplace, so an increase inef the chain length of the
- 6 alcohol doeshas not have a significantative effect onto the reactivity; even the presence of a second methyl group
- 7 even disfavors the reaction, probably due to the steric hindrance near to the attack position.
- 8 In addition, as can be seen in Table S1, the position of the OHhydroxyl group of SA has a different effect on the
- 9 <u>reactivity</u> depending on the oxidant. In the case of the Cl atom reactions, the rate coefficients for primary alcohols
- 10 (1-propanol, 1-butanol, 1-pentanol, 3-methyl-1-butanol and 3,3-dimethyl-1-butanol) are higher than the thoonese
- of the secondary alcohols (2-propanol, 2-butanol, 2-pentanol, 3-methyl-2-butanol and 3,3-dimethyl-2-butanol)
- contrary to the OH and NO₃ radical reactions. This fact indicates that in the reaction of Cl atoms the formation of
- the most stable radical seems to have less importance in the reactivity than the number of hydrogens in the α -
- position available to be abstracted.
- All these observations (a, b and c) could imply a different mechanism forim the hydrogen abstraction process for
- 16 Cl atoms versus the OH -and NO₃-radicals. Nelson et al. (1990) and Smith and Ravishankara (2002) indicate the
- 17 possible formation of an intermediate adduct between the OH radical and the oxygen of the OH oxygen oxygen of the OH oxygen o
- 18 via hydrogen bond that will imply a specific orientation. Theoretical studies found in the literature bibliography
- show this different hydrogen -abstraction process in the reaction of saturated alcohols with Cl atoms (Garzon et
- al., 2006) and OH radical (Moc and Simmie, 2010). There are not enough rate coefficient data for the reaction of
- 21 SAs with NO₃ radicals to establish conclusions about the mechanism.
- 22 Different mechanisms in the hydrogen <u>atom</u> abstraction process for each oxidant will imply different product
- distributions and molecular yields, as it-will be shown-below, in the section on product and mechanism and
- 24 mechanistic study.

3.1.1 Estimation of rate coefficients

- 26 In order to estimate the rate coefficients of the reactions of organic compounds with the atmospheric oxidants, a
- 27 multitude of methods have been proposed (Vereecken et al., 2018). The most popular and widely used is the SAR
- 28 method developed initially by Kwok and Atkinson (1995) to estimate the rate coefficients at room temperature for
- 29 gas_phase reactions with the OH radical. This method has been updated for OH reactions (Jenkin et al., 2018) and
- extended to reaction with NO₃ (Kerdouci et al., 2010, 2014) and Cl (Calvert et al., 2011; Poutsma 2013) reactions.
- The EPA (United States Environmental Protection Agency) has developed the EPI SuiteTM-Estimation Program
- 32 Interface that allows to estimatione of the rate coefficients for the reactions of the OH radical withand organic
- compounds using the AOPWIN v1.92 program.
- -In our work the rate coefficients of MSAs with the three oxidants have been estimated using the SARs method
- 35 (See S2, Supplementary Mmaterial). The results are shown in Table 2.
- The <u>estimated</u> values of <u>estimated</u> rate coefficients agree with experimental data, with <u>ratios</u> k_{exp}/k_{SAR} <u>bratios</u>
- between 0.9 and 1.28, except for the case of 3,3DM1ButOH and NO₃ radical, with which showed a k_{exp}/k_{SAR} ratio
- of 3.24. In general, the SARs method when applied to alcohols predicts better rate coefficients for the Cl atoms

- and the OH radical than for the NO₃ radical, especially for primary alcohols. It is important to note that the kinetic
- 2 database for the NO₃ reactions is more limited than for Cl and OH reactions, so the estimated rate coefficient for
- 3 NO₃ radical should be treated with caution (Kerdouci et al. 2010, 2014; Calver et al., 2011).
- 4 It is known that organic compounds that which reacts in the same way with different atmospheric oxidants, present
- a correlation between their rate coefficients. In this sense, overalong the years, different correlations have been
- 6 proposed to that allow to estimation of the unknown rate coefficient when the other one is known (Wayne, 1991,
- 7 2000; Atkinson, 1994; Calvert et al., 2011; Gallego-Iniesta et al., 2014). The Correlations logk_{Cl-}—logk_{OH} and
- 8 logk_{NO3}—logk_{OH} correlations have been built for a set of alcohols, ethers and saturated alcohols by Calvert et al.,
- 9 (2011) obtaining the following relationships:

$$log(k_{Cl}/cm^3_molecule^{-1}_s^{-1}) = 0.634_\times_log(k_{OH}/cm^3_molecule^{-1}_s^{-1})_-_2.71_-__-(r^2_=_0.72)$$

____(2)

log(
$$k_{NO3}/cm^3$$
_molecule= 1 _s= 1) = 1.11_×_log(k_{OH}/cm^3 molecule= 1 s= 1)__-_2.42 (r^2 =0.66) (3)

These equations have been used to estimate the rate coefficients of the reactions of MSAs with Cl and NO3nitrate radical using the experimental rate coefficients measured in this work for OH reactions. The estimated rate coefficients, k_{log} , according towith Eqs (2) and Eq (3), and the ratios (k_{exp}/k_{log}), are also shown in Table 2. This estimation method obtains slightly better rate coefficient for 3,3DM1ButOH + NO3 reaction (k_{exp}/k_{log} . = 1.53) than the SAR method (k_{exp}/k_{SAR} = 3.24). However, for Cl reactions the ratios k_{exp}/k_{log} ratios are in the range of 0.6—1.97, indicating that the Eq (2) predicts worse the rate coefficients worse than SAR method. Again, this fact could

- be due to the different <u>reaction</u> mechanism-reaction in the H-abstraction process for <u>the Cl</u> and OH reactions. <u>As</u>
- Such as it has been indicated above, to apply these relationships both oxidants must react according to the same
- 21 mechanism. It is important to indicate that in the case of Cl reactions, other effects, such as thermochemistry and
- 22 the polar effect, must be considered to estimate the rate coefficients for hydrogen abstraction reactions (Poutsma,
- 23 2013).

24

3.2 Product and mMechanistic sstudy

- A product study of the reaction of 4MCHexOH, 3,3DM1ButOH and 3,3DM2ButOH with chlorine atoms in the
- absence/presence of NO_x, hydroxyl and nitrate radicals has been performed, by employing the two experimental
- 27 set ups mentioned above (FTIR and SPME/GC TOFMS). IR absorption bands of HCl, CO₂, CO, HNO₃, N₂O₄
- NO₂, HCOOH, HCOH, CINO, CINO₂ and CH₃NO₃ were observed in the FTIR experiments. Some of tThese
- 29 compounds are products from the reactions of the SAs with oxidants. They can also be formed bands are due byto
- the decomposition of the employed precursors employed (Cl_2 , CH_3NONO_2 and N_2O_5) and in some cases, are due
- 31 <u>byto</u> heterogeneous reactions of these precursors with the walls of the Pyrex@ glass reactor walls. The formation
- of O_3 and N_2O_5 have also been observed after longt large reaction times for the reactions of the $MSA_{\underline{s}}$ with Cl
- 33 atoms in the presence of $+NO_x$, due to the high concentration of the NO_2 in the medium of reaction medium and
- 34 <u>thein</u> presence of radiation. Quantitative analysis was carried out by linear subtraction of a spectrum's absorption
- bands and the peak areas of GC chromatograms by with the use of calibrated spectra and reference chromatograms.
- 36 The experimental conditions and molecular yields of the main products formed in the reactions of $\underline{\mathsf{MSAs}}$ and
- analyzed by FTIR and SPME/GC-TOFMS techniques are given in Tables 3_-6. Molecular yields could be affected

- 1 byte large errors associated with the SPME sampling method and due to the presence of interfering IR absorption
- 2 bands, mainly associated with precursors of the OH and NO₃ radicals or by nitrated compounds formed.

3.2.1. —4MCHexOH

- 4 E-4-methylcyclohexanone was identified in the reactions with Cl₇ (absence/presence of NO_x)Cl + NO, OH + NO
- 5 and $NO_3 + NO_2$. An example of the product spectra obtained by in the FTIR-system is shown in Fig. 2. Formation
- 6 of the E-4-methylcyclohexanone was confirmed by introducing a sample of the commercial product (spectrum
- 7 (e)). A set of experiments using the SPME as sampling method and the AGC-TOFMS as detection technique system
- 8 were also carried out for the reactions of 4MCHexOH with Cl atoms and OH and NO3 radicals. An example of the
- 9 chromatogram obtained for the reaction of 4MCHexOH with chlorine atoms is shown in Fig. 3. In all the studied
- reactions, formation of a product peak at 10.35 min was observed. The peak (B) showned in Fig. 3 was assigned
- 11 to E-4-methylcyclohexanone and confirmed by comparing with the retention time and MS-spectrum of a
- 12 commercial sample. In the reactions with Clehlorine atoms (absence/presence of NO_x) and OH radical two
- additional peaks at 19.80 min (C) and 20.25 min (D) were observed.
- 14 The time—concentration profiles of 4MCHexOH and E-4-methylcyclohexanone obtained by FTIR analysis for
- the reaction with <u>Clehlorine</u> atoms in the presence of NO_x are shown ion Fig. S2. The concentrations of E-4-
- methylcyclohexanone, corrected according to Eqs (S1), (S2) and (S3), were plotted versus the amounts of
- 4MCHexOH consumed in order to obtain the yield of 4-methylcyclohexanone from the slope. An example of the
- 18 <u>plots</u> obtained <u>plots</u> is shown in Fig. 4. Molecular yields, Y (%), of E-4-methylcyclohexanone obtained in all
- 19 experiments are listed in Table 3. Based on the average molecular yield of E-4-methylcyclohexanone, the carbon
- balance wasis below to 50-% for reactions with Cl and OH radical and \sim -60-% for NO₃.
- 21 Residual spectra after subtraction of the E-4-methylcyclohexanone show IR absorption bands compatible with the
- presence of hydroxy-carbonyl compounds (~1750, 1720<u>and</u>, 1060 <u>cm</u>⁻¹) and nitrated organic compounds
- 23 (RONO₂ \sim 1660, 1264 and 862 $_{\rm cm}^{-1}$, and/or ROONO₂ \sim 1720, 1300 and 760 $_{\rm cm}^{-1}$) (See residual spectra, Fig.
- S3 in Supplementary Mmaterial). The amount of nitrated compounds was estimated using the average integrated
- absorption coefficient of 1.2×10^{-17} cm molecule⁻¹ of similar compounds corresponding to the IR range 1260—
- 26 1305 cm⁻¹ (Tuazon and Atkinson,1990). The calculated yields of RONO₂ were 20-% and 60-% for Cl (in the
- 27 presence of $+NO_{x}$) and NO_{3} reactions, respectively. A yield of 10-% of nitrated compounds was estimated for the
- reaction with OH radical. This lower yield could be due to fact that the NO_x, presents in the reaction medium,
- reacts faster with the CH₃O* reacts faster with the CH₃O*
- 30 alcoxy_radicals. Table 6 shows a summary of the average yields of reaction products quantified for 4MCHexOH
- 31 reactions.
- 32 Considering the products detected here and the those detected in the study of Bradley et al., (2001) relative to
- 33 cyclohexanol with OH radical reactions, a degradation mechanism for 4MCHexOH with the atmospheric oxidants
- has been proposed. Figure 5A shows the paths that explain the formation of organic compounds (carbonyl, or
- 35 hydroxy-carbonyl, etc)-compounds, and Figure 5B shows an example of a path to explain the formation of nitrated
- organic compounds (ROONO2 and RONO2). Similar nitrated compounds could be formed by routes II_-IV. The
- 37 abstraction of hydrogen atoms at their α position with respect to OHalcohols group (route I) followed by the

addition of oxygen, the formation of a peroxy radical and the fast decomposition of this radical explains the 1 2 formation of E-4-methylcyclohexanone. Based on the molecular yield obtained for E-4-methylcyclohexanone for 3 each oxidant (See Table 6), this route represents ~-25/___30-%, ~-40-% and ~-60-% of the-reaction mechanism of 4 4MCHexOH with Cl (absence/presence of NO_x), and Cl + NO_x OH and NO₃, respectively. Percentages are two-5 foldtimes higher than those predicted by the SARs method prediction in the case of the Cl atoms reactions and 1.3-6 and 1.5-fold-times lower for the OH and NO₃ reactions, respectively. These data should be taken with caution, 7 since they could includemply many sources of error. 8 Apart from E-4-methylcyclohexanone, other carbonyl and hydroxy-carbonyl compounds could be formed by 9 routes II, III and IV. The presence of these types is kind of compounds hasve been observed in the reactions with 10 Cl and OH. According to the Electron ilonization mMass Spectra (EI-MS) (Fig. S4, Supplementary Mmaterial) 11 an assignation of peaks (C) and (D) shown in Fig. 3, an assignation to 2-hydroxy-5-methyl-cyclohexanone, 5-12 hydroxy-2-methylc-eyclohexanone and/or 3-methyl-1,6-hexanedial has been proposed. However, according to the 13 atmospheric reactivity (Finlayson and Pitts, 2000; Calvert et al., 2011; Ziemann and Atkinson, 2012) and the study 14 of Bradley et al., (2001), the compound that would be expected is the 3-methyl-1,6-hexanedial, which comeanisess 15 from the decomposition of the alkoxy radical formed in route II. However, confirmation was not possible since 16 these compounds awere not commercially available. The detection about 9% of HCOH about 9 %- in the reaction 17 with Cl atoms indicates that the elimination of the methyl group in route IV is minority. 18 In the case of nitrate radical, the only carbonyl compound detected was E-4-methylcyclohexanone was detected 19 as carbonyl compound, suggesting that the route I may be the dominant pathway for this radical. The large difference between the yields of E-4-methylcyclohexanone obtained using the SPME/GC-TOFMS system (~-75 20 21 %) or the FTIR (35-%) could be due to the different methods of adding way to add the precursor to the twoin both reactors (small aliquots of N₂O₅ in the Teflon® reactor versus one large addition in the Pyrex® glass reactor). This 22 procedure causes a lower initial concentration of nitrated inorganic species (NO₃, NO₂, HNO₃) in reactor of 150 -L 23 24 than in of 50 L reactor of 50 L, favoring the formation of carbonyl compounds instead of nitrated organic compounds. Taking into account, the yields of E-4-methylcyclohexanone and the nitrated compounds for the NO₃ 25

27 3.2.2. -3,3DM1ButOH

26

28 For the reaction of 3,3DM1ButOH with the three atmospheric oxidants, Following the same procedure as above,

reaction using FTIR analysis, a total carbon balance of 100% is obtained (See Table 6).

- 29 3,3-dimethylbutanal was identified as the main reaction product. in the reaction of 3,3DM1ButOH with the three
- 30 atmospheric oxidants. Figure S5A shows the FTIR spectra obtained for the reactions of 3,3DM1ButOH with Cl
- 31 (absence/presence of NO_x), Cl + NO, OH and NO_3 -after subtraction.
- 32 Residual FTIR spectra after subtraction of 3,3-dimethylbutanal (Fig. S5B), the SPME/GC-TOFMS
- 33 chromatograms (Fig. S6) and the EI-MS spectra (Fig. S7), show that other reaction products such as carbonyl,
- 34 hydroxy-carbonyl and nitrated compounds are formed. These reaction products could be formaldehyde, 2,2-
- 35 dimethylpropanal, glycolaldehyde, acetone, <u>and</u> peroxy-3,3-dimethyl-butyryl nitrate (P33DMBN)
- 36 (CH₃)₃CCH₂C(O)OONO₂. These compounds can be formed as primary products (See Fig. 6) and/or secondary
- 37 products from the degradation of 3,3-dimethylbutanal (See Fig. S8). The SPME/GC-TOFMS chromatograms show

- 1 common peaks for the three oxidants, but the numbers of peaks and their distribution are very different, especially
- 2 for OH reactions. In the case of the SPME/GC-TOFMS system, a set of experiment using Field ill-onization was
- 3 carried out in order to help us to establish the identification of reaction products.
- 4 Time_-concentration profiles of 3,3DM1ButOH, 3,3-dimethylbutanal and those reaction products positively
- 5 identified by FTIR analysis were made in order to establish test whether if the profiles correspond to with a primary
- 6 or secondary reaction products. An example of the reactions with Clehlorine atoms in the absence and presence of
- 7 NO_x is <u>presentedshown</u> in Fig. 6, <u>showobserving</u> that in the absence of NO_x the profiles of acetone and
- 8 formaldehyde have show two trends. It profiles indicates a typical profile of secondary reactions. that these
- 9 compounds are formed as primary and secondary products. This profile is clearly observed for nitrated compounds
- in the reaction withof Cl atoms in-the presence of NO_x (Fig. 6B).
- 11 A cCommercial sample of 3,3-dimethylbutanal was used to estimate the molecular yields in both experimental
- systems. These e molecular yields are shown in the Table 4. The yields of acetone and formaldehyde were
- calculated using an FTIR reference spectrum of a commercial sample and FTIR reference spectra from Eurochamp
- database (https://data.eurochamp.org/data-access/spectra/), respectively. An FTIR reference spectrum of 2-
- 15 methylpropanal (from this same database) washas been used to estimate the molecular yield of 2,2-
- 16 dimethylpropanal.
- 17 The amounts of 3,3-dimethylbutanal formed were corrected by their reactions with Cl atoms, and with OH and
- 18 NO₃ radicals as is described previously, using the rate coefficients available in literature bibliography or for
- reactions of structurally similar compounds (see footnote, Table 4). Estimated yields of formaldehyde, acetone,
- 20 2,2-dimethylpropanal and nitrated compounds are summarized in Table 6 along with an average yield of 3,3-
- 21 dimethylbutanal. The higher yield of nitrated compounds in the reaction of 3,3DM1ButOH with nitrate radical
- 22 could indicate an extra formation of nitrated compounds from secondary-products reactions (See Fig. S8). TA total
- 23 of carbon yields (nitrated compounds werehave not been accounted for) of 60-%, 81-% and 36-% have been justified
- for Cl (in the absence and presence of NO), OH and NO₃ reactions respectively. It, but must it be noted that there
- are reaction products that could not be quantified as dihydroxyearbonyl or hydroxy-carbonyl compounds in the
- 26 reactions with Cl-atoms atoms reactions in the absence of NO_x and primary nitrated compounds in the reactions
- 27 <u>with Cl atoms in the presence of NO_x+ NO</u> and <u>with NO₃ radical_reactions.</u>
- 28 This work is the first study of the products of reaction products of 3,3DM1ButOH with the atmospheric oxidants,
- so there is no other any study with which to compare. Figure 7 shows the reaction mechanism proposed based on
- 30 the literature studies of about saturated alcohols reactions with Cl atoms and the OH radical (Cavalli et al., 2002;
- Hurley et al., 2009; McGillen et al., 2013; Welz et al., 2013) and considering the reaction products identified in
- 32 this our work. Table S2, in Supplementary Mmaterial, shows a summary of the reaction products, either proposed
- 33 in this mechanism observed or tentatively identified in proposed in this mechanism of the reactions of
- 34 3,3DM1ButOH with the atmospheric oxidants.
- 35 As it can see in Table 4, the eEstimated molecular yields of 3,3-dimethylbutanal (formed by H atom -aAbstraction
- 36 <u>at thein</u> α _position of 3,3DM1BuOH) <u>are very similar to the one predicted by the SARs method</u> for <u>the Cl</u> $\frac{(-40\%)}{(-40\%)}$
- 37 without NO and 43% with NO) and OH reactions. (~(40 43) %, ~60 %) are very similar to the one predicted by
- 38 the SAR method (40 % for Cl and 66 % for OHrespectively). In the case of NO₃ radical a large difference between
- 39 both-yields wasare observed (36-% estimated in this work, 86-% predicted by SAR-method). This discrepancy

1 could be explained by the fact that the SAR method <u>applied to the NO₃ radical reaction with primary alcohols</u>

(Kerdouci et al., 2010, 2014) underestimates the attack of NO₃ at thein β —position, since it does not consider the

possible activating effect of the -CH2OHhydroxyl group (See S2, Supplementary Material) jointed to CH2, (F(

CH₂OH)). This could also explain the large difference observed between the estimated and measured rate

coefficients of the reaction of 3,3DM1ButOH with NO3 as was shown in Table 2. On the other hand, as it has been

discussed above, the volume of the reactor could also have an influence on formation of 3,3-dimethylbutanal.

7 According to the molecular yields of the products quantified and/or observed in the SPME/GC-TOFMS

chromatograms, it can be concluded that for the OH radical reaction, the route I (attack at thein α —position)

seems to be the main reaction route. For Cl atoms the three routes can occur to a significant extent with a high

percentage. The major molecular yields of formaldehyde and acetone (route III) in the reactions withof Cl atoms

in the presence of NO_x versus those of Cl atoms reactions in the absence of NO_x could indicate that in the absence

12 of NO_x the self reactions of peroxy radicals (RO₂·) reaction "via the "-molecular pathwayehannel is more favored

than "via" the radical pathwayehannel. For the NO₃ radical, routes I and II (attack at thein β—position) with the

formation of nitrated compounds seem to be the majorunique routes.

3.2.3. -3,3DM2ButOH

2

3

4

5

6

8

9

10

11

13

15

16 AThe analysis of the FTIR spectra obtained for the reactions of 3,3DM2ButOH with Cl atoms, in the presence and 17 absence of NOx, OH radical and NO3 radical shows the formation of 3,3-dimethyl-2-butanone as a main product 18 (see Fig. S9). Other compounds, such as formaldehyde, acetone, 2,2-dimethylpropanal and peroxya-Acetyl nNitrate (PAN), were have also been observed. The residual FTIR spectra after substraction of all known IR bands. 19 again shows the presence of carbonyl compounds (IR-bands absorption in the range of 1820-1700 cm⁻¹); 20 hydroxy compounds (1060–1040 cm⁻¹) in the reaction without Cl atoms in the absence of NO_x, and also nitrated 21 22 compounds (RONO₂; 1650, 1305_1260, 890 cm⁻¹) in the reaction withof Cl in the presence of NO_x + NO and 23 NO₃ radical (Fig. S9C). The presence in the residual an FTIR spectra of an IR absorption band around 1800 cm ¹ for the reaction withof Cl atoms at longarge reaction times could be due to the formation of chlorine compounds 24 25 by reaction of 3,3-dimethyl-2-butanone with Cl₂ (Ren et al., 2018) or the formation of cyclic compounds such as 26 hydrofurans. The SPME/GC-TOFMS chromatograms and MS spectra (Fig. S10 and S11) confirm the presence of other reaction products apart from 3,3-dimethyl-2-butanone in the case of Cl (absence/presence of NO_x), Cl + NO 27 28 and NO₃ reactions. Only one significant peak is observed in chromatograms of obtained for the OH reactions. The estimated molecular yields of 3,3-dimethyl-2-butanone for all individual experiments are given in Table 5, 29 where the measured concentrations have been corrected for secondary reactions. Acetone, formaldehyde, 2,2-30 31 dimethylpropanal, nitrated compounds and acetaldehyde have were also been quantified. Plots of concentration versus time for formaldehyde, acetone (Fig. S12A) and nitrated compounds in the reactions of Cl in the presence 32 of NO_x (Fig. S12B) show typical profiles with two trends. This type of profile indicates that of secondary reactions 33 34 for formaldehyde, acetone (Fig. S12A) and nitrated compounds in the reactions of Cl with NO (Fig. S12B). 35 formaldehyde and acetone These compounds could also be formed by degradation of 3,3-dimethyl-2-butanone 36 (Fig. S13). The estimated molecular yields of 3,3 dimethyl 2 butanone for all individual experiments are given in Table 5, where the measured concentrations have again been corrected again for secondary reactions. Table 6 37 summarizes the molecular yields of all quantified products. 38

- 1 AtTotal carbon yields of ~60-%/- 100-%, 90-% and 60-% have been accounted for Cl (in the absence and presence
- of NO_x), OH and NO₃ reactions, respectively (See Table 6). It is important to note that in the case of the reaction
- of Cl atoms in the absence of without NO_x, where the total carbon yield wasis lower than 100-%, there were are
- 4 many reaction products that could not be quantified, such as dihydroxyearbonyl and/or hydroxy-carbonyl
- 5 compounds. In the reaction with of NO3 radical, due to our experimental conditions, significant number an
- 6 important amount of primary nitrated compounds wasis expected to be formed (Fig. S9C).
- 7 A mechanism of hydrogen <u>atom</u> abstraction <u>atim</u> different positions o<u>n</u> the carbon chain has been proposed for the
- 8 reaction of 3,3DM2ButOH with Cl, OH and NO₃-reactions. The mechanism is shown in Figure 8. Table S3, in
- 9 Supplementary Mmaterial, shows a summary of the reaction products either observed or tentatively identified
- proposed by this mechanism observed or tentatively identified inof the reactions of 3,3DM2ButOH with the
- 11 atmospheric oxidants.
- 12 Molecular yields of 3,3-dimethyl-2-butanone obtained in this work imply appropriates of attack of the oxidant iat
- 13 the n-α—position (route II) of: 43-%/and 44-%; in the case of Clehlorine atom (absence/presence of NO_xwithout
- 14 and with NO respectively); 81-% for the OH radical and 58-% for the NO₃ radical. Percentages are very similar to
- thoseat predicted by SARs-method except for the NO₃ radical (See Table 5). High NO₂ concentration present in
- the reactions with NO₃ radical would greatly highly favor the formation of nitrated compounds overversus 3,3-
- dimethyl-2-butanone. It could justify the low estimated molecular yield for 3,3- dimethyl-2-butanone.
- The main reaction products observed in the reaction withof Cl atoms in the presence of NO_x (3,3-dimethyl-2-
- butanone, formaldehyde, 2,2-dimethylpropanal, acetone and, acetaldehyde) confirm that the attack of Cl atoms
- 20 <u>could attack in at other sites (apart from theof α —position) with an important percentage</u>. Based on the estimated
- 21 molecular yield of acetone, the attack at the in δ —position with abstraction of hydrogen atom from ef methyl groups
- 22 (route III) could be ~58-%, and based on the estimated molecular yield offer 2,2-dimethylpropanal, the attack in
- 23 <u>at the β —position</u> (route I) could account with a for 10-%. These data agree with the SAR predictions for Cl atom
- 24 reactions. On the other hand, the major molecular yields of acetone, formaldehyde and acetaldehyde (route III) in
- 25 the reaction withof Cl atoms in the presence of NO_x rather than in its absence of NO could indicate that in the
- presence of NO_x the <u>self-reactions of peroxy radicals self-reactions (RO₂) "via" the</u> molecular <u>pathwaychannel</u> is
- 27 negligible. The lower yield (17 %) estimated (17 %) by of acetaldehyde versus 58% of its coproduct (acetone) is
- due to its fast degradation by Cl atoms reaction with Cl atoms with the formation of Peroxy acetyl nitrates PAN
- 29 as-it has been observed in the FTIR experiments (See Fig. S9B). Moreover, the molecular yield of acetone could
- 30 be overestimated due to secondary reactions as can be seen in Figs. S12 and FigS13.

4. Atmospheric Implications

- 32 The pPollutants in the atmosphere, canould create serious environmental problems, such a photochemical smog,
- acid rain and degradation of the ozone layer (Finlayson-Pitts and Pitts, 2000). So, it is important to evaluate the
- parameters that help us to <u>understandknow</u> the impact of the presence of these compounds in the atmosphere.
- These parameters are; the time that such compounds remains in the atmosphere, their gGlobal wWarming
- 36 pPotential (GWP) and their mechanisms of degradation, mechanisms in order to estimate the atmospheric effect
- 37 of products formed.

The first important parameter of the environmental impact of an Ooxygenated vVolatile oOrganic cCompounds in the atmosphere, is the global lifetime, τ_{global}, which considers all the degradation processes that which could affectsuffer these compounds in the tTroposphere. This parameter can be obtained from the sum of the individual sink processes such as reactions initiated by OH and NO₃ radicals, Cl atoms, and O₃ molecules; photolysis and dry and wet deposition, Eq (4):

$$\tau_{global} = \left[\frac{1}{\tau_{OH}} + \frac{1}{\tau_{Cl}} + \frac{1}{\tau_{NO_3}} + \frac{1}{\tau_{O_3}} + \frac{1}{\tau_{photolysis}} + \frac{1}{\tau_{other \, processes}} \right]^{-1}$$
(4)

7 The Ttropospheric lifetime (τ) of 4MCHexOH, 3,3DM1ButOH and 3,3DM2ButOH for each process have been estimated by considering Eqs (4) and (5):-

$$\tau = \frac{1}{k_{Ox}[Ox]} \tag{5}$$

where k_{OX} and [Ox] are the rate coefficients obtained in this work for each oxidant and the typical atmospheric concentrations of the oxidants Cl, OH and NO₃, respectively. Concentrations employed were as follows: for 24 hours average: 1×10^3 atoms cm⁼³ (Platt and Janssen, 1995) for Clehlorine atoms, 12_hours average day-time concentration of 1×10^6 radicals cm⁼³ for OH (Prinn et al., 2001) and 1×10^8 radicals cm⁼³ for NO₃ radicals (Atkinson, 2000), and a peak concentration of Clehlorine atoms of 1×10^5 atoms cm⁼³ in the coastal marine boundary layer at dawn (Spicer et al., 1998). Reactions with O₃ and photolysis are negligible loss processes for this typekind of compounds (Mellouki et al., 2015). Other processes are referred to as dry and wet deposition. For To estimateing the lifetime associated with wet deposition, Eq (6) proposed by (Chen et al. 2003) washas been used:

$$\tau_{wet} = \frac{H_{atm}}{v_{pm}RTk_H}$$
 (6)

wWhere k_H is the Henry's law constant, H_{atm} is the height of in-the troposphere, taking a value of 630_-m, v_{pm} is the average precipitation rate for Ciudad Real (Spain) (402_-mm/_yr_lear) (www.aemet.es), R is the gases constant and T is the temperature, considered as-to be constant and equal to 298 K. In the literature bibliography there are only data of the constant of Henry's constant for 3,3DM2ButOH (5.6 × 10⁻¹ mol m⁻³ Pa⁻¹) (Sander, 2015). Comparing the available data for similar compounds it has been used an approximated values of K_H of 3_-mol m⁻³ Pa⁻¹ and 0.4_-mol m⁻³ Pa⁻¹ for 4MCHexOH and 3,3DM1ButOH, respectively have been used.

The calculated IL-ifetimes ealculated of the three studied alcohols studied in this work are shown in the Table 7. It

The calculated <u>IL</u>ifetimes <u>ealculated</u> of the three <u>studied</u> alcohols <u>studied</u> in this work are shown in the Table 7. It can be seen that the dominant tropospheric loss process for the three alcohols is clearly their reaction with OH radicals followed by their reaction with NO₃ radicals at night. However, in places where there is a peak concentration of chlorine atoms (coastal areas) the reaction of these alcohols with chlorine atoms may compete with <u>that with OH radicals asbecoming</u> their main degradation process.

The global lifetime of the three alcohols is of the order of ~ 1 —2 days, indicating that these compounds will probably be degraded near their sources. These global lifetimes also indicate that MSAs do not makehave a significant contribution to the radiative forcing of climate change (Mellouki et al., 2015), which is supported through the estimation of their GWP values. For a time-horizon of 20 years, the values estimated values are have been: 8.33×10^{-4} , 1.78×10^{-2} and 5.80×10^{-3} for 4MCHexOH, 3,3DM1ButOH and 3,3DM2ButOH respectively,

- which are very low. So, these compounds will only have an important impact in the troposphere at <u>a local</u> or
- 2 regional level.
- 3 Their degradation products (mostly carbonyl-containing compounds and nitro-compounds in polluted areas) must
- 4 be considered. Thus, the nitrated compounds generated can act as NOx reservoir species especially during the
- 5 night (Altshuller, 1993) and could have an influence at the global scale. Moreover, since 4MCHexOH,
- 6 3,3DM1ButOH and 3,3DM2ButOH react quickly with Clehlorine atoms and OH radicals, their contribution to the
- 7 formation of photochemical smog might be important. For that reason, the contribution of these three alcohols to
- 8 the formation of smog was estimated by obtaining the average ozone production during 99-% of their reactions
- 9 with OH radical, using the equation indicated by Dash and Rajakumar (2013). The values obtained were 3.24, 0.90
- and 1.69_ppm for 4MCHexOH, 3,3DM1ButOH and 3,3DM2ButOH, respectively. These values suggest that these
- 11 compounds may be a-potential generators of tropospheric ozone and could contribute significantly to the formation
- of photochemical smog (depending on their -concentrations in the atmosphere).

5. Conclusions

- 14 The main conclusions that have been obtained with from the present study, are the following:
- 15 __-The kinetic and product study support that: 1 __-The atmospheric degradation mechanism for MSAs, and
- possibly for other the rest of unstudied saturated alcohols, proceeds by abstraction of the a hydrogen atom bonded
- to a carbon <u>rather than a instead of hydrogen atoms</u> bonded to the oxygen atom of the alcohol group, and 2 The
- 18 reaction mechanism in the Hatom-abstraction process depends on the oxidant. Clalorine atoms abstract any type
- 19 of alkyl hydrogen (α, β, δ) from SAssaturated alcohols with a high percentage, compared to the OHhydroxyl
- 20 radical and the $\frac{NO_3}{n}$ nitrate radicals. The OH and NO_3 radicals abstract mainly the hydrogen atom atim the α -
- 21 position, if the saturated alcohols are secondary. For primary alcohols, the abstraction of a hydrogen atom at their
- 22 β—position could—be also be important in the reaction with NO₃ radical. Therefore, more kinetic studies of the for
- 23 NO₃ radical reaction with primary alcohols are necessary to quantify the effect of the OH group at the β-position
- 24 (<u>-CH₂OH</u>) and to update the SAR method developed by Kerdouci et al., and to quantify the effect of the OH group
- 25 <u>at thein β position, (_ CH</u>₂OH).
- 26 __-Theoretical ab-initio studies of the reactions of MSAs with atmospheric oxidants should be performed in
- 27 order to obtain more information about their reaction mechanisms in the H atom -abstraction process.
- 28 __-The atmospheric conditions determine the reaction mechanism and therefore the reaction products obtained in
- 29 the degradation of methyl saturated alcoholSAs. So, in polluted environments with high concentrations of NOx,
- 30 the peroxy radicals (RO₂-) reacts mainly with NO to form the alkoxy radical instead of molecular compounds. In
- 31 these conditions, nitrated organic compounds (RONO₂) are formed as well asapart from polyfunctional organic
- 32 compounds. Also, when the concentration of NO₂ is higher than that of NO-concentration, ozone is formed. In a
- clean atmosphere, as in the case of the experiments with of Cl atoms in the absence of NO_x, the reaction products
- are different because of peroxy radicals (RO₂-) could react mainly "via" a self-reaction molecular pathwayehannel
- 35 instead of to "via" a self-reaction radical pathway with formation of dihydroxy and hydroxycarbonyl
- 36 <u>compoundschannel</u>.

- 1 __-The unquantified counted polyfunctional organic compounds could explain the low carbon balance obtained in
- 2 the Cl or NO₃ reactions. The carbon balance must be taken with caution since the calculated molecular yields have
- 3 a high degree of uncertainty.
- 4 __-Calculated lifetimes for-methyl saturated alcohols (in the order of ~1 day) imply that these compounds are
- 5 pollutants at a local—regional scale, but it is also important to indicate that MSAs are sources of stable nitrated
- 6 compounds (ROONO₂), depending on environmental conditions, that can travel-to large distances from their
- 7 sources and contributeing to form ozone in clean areas, for example in forest or rural areas.
- 8 __-The main products of coming from the degradation of the MSAs, aldehydes and ketones, develop a very
- 9 important secondary chemistry with the formation of products of special relevance, such as the PAN observed in
- the degradation of 3,3-dimethyl-2-butanol. More experiments should be carried outdone using other detection
- techniques, in order to evaluate the formation of <u>secondary Sorganic Oaerosol (SOA)</u>A because it is well known
- that polyfunctional organic compounds are important SOA precursors.
- 13 __-From the environmental point of view, this work shows that the degradation of MSAs is an important source of
- 14 pollutants in the atmosphere of with greater or lesser impact depending on the environmental conditions and the
- quantities of these alcohols present in the atmosphere. Therefore, the use of MSAs as additives in the production
- of biofuels as biofuels should be controlled, avoiding that a bad as poor handling could result involves in high
- concentrations of these alcohols in the atmosphere.
- 18 <u>— The r</u>ate coefficients and reaction products <u>measured</u> in this work are the first available data, so this
- work contributes to a better understanding of the atmospheric chemistry of oxygenated compounds, expandsing
- 20 the kinetic and mechanistic database, and additionally it contributes to develop-ing or to improvinge predictiveen
- 21 models that which help us to avoid or mitigate the effects of climate change or air quality. However, kinetic
- 22 experiments in the tropospheric temperature range are necessary to obtain more information about the reaction
- 23 mechanism and to extrapolate the data of rate coefficients data to other typical atmospheric conditions and thus be
- able to better establish the atmospheric impact of these alcohols.

25 **6. Supplementary material.**

Attached in a separated file.

7. Author contribution

27

33

35

- 28 Salgado S. and Martín P. designed the experiments. Cabañas B. is the leader of the group and the responsible to
- 29 control the research and got the financial support for the project leading to this publication. Colmenar I. carried
- 30 out the experiments of 4MCHexOH. Tapia A. carried out the kinetic experiments of 3,3DM1ButOH and
- 3,3DM2ButOH and Aranda I. carried out the product experiments of 3,3DM1ButOH and 3,3DM2ButOH. Martín
- 32 P. supervised all analysis of data and prepared the manuscript with contributions from all co-authors.

8. Competing interests

34 The authors declare that they have no conflict of interest.

9. Acknowledgment

- 1 The authors would like to thank the financial support provided by Junta de Comunidades de Castilla-La Mancha
- 2 (Projects SBPLY/17/180501/000522).

3 10. References

- 4 -Allert, M., Rizk, S. S., Looger, L. L., Hellinga, H. W., and Wells, J.. A Computational Design of Receptors for
- 5 an Organophosphate Surrogate of the Nerve Agent Soman. Proc. Natl. Acad. Sci. 101, 21. 7907-7912,
- 6 <u>https://doi.org/10.1073/pnas.0401309101, 2004.</u>
- 7 -Altshuller A. P. PANs in the Atmosphere, Air & Waste, 43:9, 1221-1230,
- 8 https://doi.org/10.1080/1073161X.1993.10467199, 1993.
- 9 -Andersen, V. F., Wallington, T. J., Nielsen, O. J. Atmospheric Chemistry of i-Butanol. J. Phys. Chem. A., 114,
- 10 12462–12469, https://doi.org/10.1021/jp107950d, 2010.
- -AOPWIN, v1.92. ©2000 U.S. Environmental Protection Agency.
- 12 -Aschmann, S. M. Arey, J. and Atkinson R. Kinetics and Products of the Reactions of OH Radicals with 4,4-
- 13 Dimethyl-1-pentene and 3,3-Dimethylbutanal at 296 ±2 K. J. Phys. Chem. A, 114, 5810–5816,
- 14 <u>https://doi.org/10.1021/jp101893g</u>, 2010.
- -Atkinson, R. Gas-phase tropospheric chemistry of organic compounds. J. Phys. Chem. Ref. Data. Monograph, 1-
- 16 216, 1994.
- -Atkinson, R. Atmospheric chemistry of VOCs and NO(x). Atmos. Environ. 34(12-14), 2063-2101,
- 18 https://doi.org./10.1016/S1352-2310(99)00460-4, 2000.
- 19 -Atkinson, R. Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes. Atmos. Chem.
- 20 *Phys.* 3, 2233-2307, https://doi.org/10.5194/acp-3-2233-2003, 2003.
- -Atkinson, R. and Arey J. Atmospheric degradation of volatile organic compounds. *Chem Rev* 103:4605–4638,
- 22 https://doi.org/10.1021/cr0206420, 2003.
- -Atkinson, R., Aschmann, S.M., Pitts Jr., J.N. Rate constants for the gas-phase reactions of the NO₃ radical with a
- series of organic compounds at 296 ± 2 K. J. Phys. Chem. 92, 3454-3457, https://doi.org/10.1021/j100323a028,
- 25 1988.
- 26 -Atkinson, R., Aschmann, S.M., Pitts Jr. J.N. Rate Constants for the Gas-Phase Reactions of the OH Radical with
- 27 a Series of Aromatic Hydrocarbons at 296 ± 2 K. Int. J.Chem. Kinet. 21, 355-365,
- 28 https://doi.org/10.1002/kin.550210506, 1989.
- -Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M.
- 30 J., Troe, J., and IUPAC Subcommittee. Evaluated kinetic and photochemical data for atmospheric chemistry:
- 31 Volume II gas phase reactions of organic species, *Atmos. Chem. Phys*, 6, 3625-4055, <a href="https://doi.org/10.5194/acp-10.5194/acp
- 32 6-3625-2006, 2006.
- -Atkinson, R., Plum, C.N., Carter, W.P.L., Winer, A.M., Pitts Jr. J.N. Rate constants for the gas-phase reactions
- 34 of nitrate radicals with a series of organics in air at 298 \pm 1 K. J. Phys. Chem. 88, 1210-1215,
- 35 https://doi.org/10.1021/j150650a039, 1984.
- 36 -Ballesteros, B., Garzón, A., Jiménez, E., Notario, A., Albaladejo, J. Relative and absolute kinetic studies of 2-
- butanol and related alcohols with tropospheric Cl atoms J. Phys. Chem. Chem. Phys. 9 (10), 1210-1218,
- 38 https://doi.org/10.1039/B614531K, 2007.

- 1 -Bradley, W.R., Wyatt, S.E., Wells, J.R., Henley, M.V., Graziano, G.M.The Hydroxyl Radical Reaction Rate
- 2 Constant and Products of Cyclohexanol. Int. J. Chem. Kinet., 33, 108-117, https://doi.org/10.1002/1097-
- 3 4601(200102)33:2<108::AID-KIN1002>3.0.CO;2-%23, 2001.
- 4 -Brauers, T., Finlayson-Pitts, B.J. Analysis of relative rate measurements. Int. J. Chem. Kinet. 29 (9), 665-672,
- 5 https://doi.org/10.1002/(SICI)1097-4601(1997)29:9<665::AID-KIN3>3.0.CO;2-S, 1997.
- 6 -Calvert, J.G., Mellouki, A., Orlando, J.J., Pilling, M.J., Wallington, T.J. The mechanisms of atmospheric
- 7 oxidation of the oxygenates. Oxford University Press, New York, 2011.
- 8 -Caravan, R. L., Shannon, R. J., Lewis, T., Blitz, M. A., and Heard, D. E. Measurements of Rate Coefficients for
- 9 Reactions of OH with Ethanol and Propan-2-ol at Very Low Temperatures. J. Phys. Chem. A, 119, 7130–7137,
- 10 <u>https://doi.org/10.1021/jp505790m</u>, 2015.
- -Cavalli, F., Geiger, H., Barnes, I., Becker, K. H. FTIR Kinetic, Product, and Modeling Study of the OH-Initiated
- 12 Oxidation of 1-Butanol in Air. *Environ. Sci. Technol.*, 36, 1263–1270, https://doi.org/10.1021/es010220s, 2002.
- 13 -Ceacero-Vega, A. Ballesteros, B., Albaladejo, J., Bejan, I., and Barnes, I. Temperature dependence of the gas-
- phase reactions of Cl atoms with propene and 1-butene between 285 < T < 313 K. Chem. Phys.Lett. 484(1-3):10–
- 15 13, https://doi.org/10.1016/j.cplett.2009.10.080, 2009.
- 16 -Ceacero-Vega, A.A., Ballesteros, B., Bejan, I., Barnes, I., Jiménez, E., Albaladejo, J. Kinetics and Mechanisms
- 17 of the Tropospheric Reactions of Menthol, Borneol, Fenchol, Camphor, and Fenchone with Hydroxyl Radicals
- 18 (OH) and Chlorine Atoms (Cl). J. Phys. Chem, A., 116, 4097-4107, https://doi.org/10.1021/jp212076g, 2012.
- 19 -Chen, L., Takenaka N., Bandow, H. Maeda, Y. Henry's law constants for C2-C3 fluorinated alcohols and their
- 20 wet deposition in the atmosphere. Atmos. Environ. 37, 34,4817-4822,
- 21 https://doi.org/10.1016/j.atmosenv.2003.08.002, 2003.
- -Cheung C.S., Huang Z. Effect of n-pentanol addition on the combustion, performance and emission characteristics
- of a direct-injection diesel engine. *Energy*; 70:172–80, https://doi.org/10.1016/j.energy.2014.03.106, 2014.
- 24 -D'Anna, B., Andresen, W., Gefen, Z., Nielsen, C.J. 2001. Kinetic study of OH and NO₃ radical reactions with 14
- 25 aliphatic aldehydes. Phys. Chem. Chem. Phys. 3, 15, 3057-3063, https://doi.org/10.1039/B103623H, 2001.
- 26 -Dash, M.R. and Rajakumar, B. Experimental and theoretical rate coefficients for the gas phase reaction of β-
- 27 Pinene with OH radical. *Atmos. Environ*, 79, 161-171, https://doi.org/10.1016/j.atmosenv.2013.05.039, 2013.
- 28 -Ezzel, M.J., Wang, W., Ezell, A.A., Soskin, G., Finlayson-Pitts, B.J. 2002. Kinetics of reactions of chlorine atoms
- with a series of alkenes at 1 atm and 298 K: structure and reactivity. Phys. Chem. Chem. Phys., 1, 5813-5820,
- 30 <u>https://doi.org/10.1039/B207529F</u>, 2002.
- 31 -Farrugia, L.N., Bejan, I., Smith, S.C., Medeiros, D.J., Seakins, P.W. Revised structure activity parameters derived
- 32 from new rate coefficient determinations for the reactions of chlorine atoms with a series of seven ketones at 290
- 33 K and 1 atm. Chem. Phys. Lett. 640 87–93, https://doi.org/10.1016/j.cplett.2015.09.055, 2015.
- -Finlayson-Pitts, B. J. and Pitts, J.N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and
- 35 Applications" Academic Press, San Diego, 2000.
- -Gallego-Iniesta, M.P., Moreno, A., Martín, P., Tapia, A., Cabañas, B., Salgado. M.S. Reactivity of 2-ethyl-1-
- 37 hexanol in the atmosphere. *Phys. Chem. Chem. Phys.* 12, 3294-3300, https://doi.org/10.1039/B923899A, 2010.
- -Gallego-Iniesta, M.P., Cabañas, B., Salgado. M.S. Martinez, E., Martin, P. Estimation of gas-phase rate
- 39 coefficients for the reactions of a series of α,β -unsaturated esters with OH, NO₃, O₃ and Cl. Atmos. Environ. 90,
- 40 133-145, https://doi.org/10.1016/j.atmosenv.2014.03.036, 2014.

- 1 -Garzón, A., Cuevas, C.A., Ceacero, A.A., Notario, A., Albaladejo, J. and Fernández-Gómez, M. Atmospheric
- 2 reactions Cl +CH3 –(CH₂)_n–OH (n=0-4): A kinetic and theoretical study. J. Chem. Phys. 125., 104305-104315,
- 3 https://doi.org/10.1063/1.2244556, 2006.
- 4 -Grosjean, D. Atmospheric chemistry of alcohols. J. Braz. Chem. Soc. 8, 433-442,
- 5 http://dx.doi.org/10.1590/S0103-50531997000500002, 1997.
- 6 -Herath, N.T., Orozco, I., Clinch, E.C., Marshall, P. Relative Rate Studies of the Reactions of Atomic Chlorine
- 7 with Acetone and Cyclic Ketones. *Int. J. Chem. Kinet.* 50, 41-46, https://doi.org/10.1002/kin.21138, 2018.
- 8 -Hurley, M. D., Wallington, T. J., Laursen, L., Javadi, M. S., Nielsen, O. J., Yamanaka, T., Kawasaki, M.
- 9 Atmospheric Chemistry of n-Butanol: Kinetics, Mechanisms, and Products of Cl Atom and OH Radical Initiated
- 10 Oxidation in the Presence and Absence of NOx. J. Phys. Chem. A, 113, 7011-7020,
- 11 https://doi.org/10.1021/jp810585c, 2009.
- 12 -Jenkin, M.E., Valorso, R., Aumont, B., Rickard, A.R., Wallington, T.J. Estimation of rate coefficients and
- branching ratios for gas-phase reactions of OH with aliphatic organic compounds for use in automated mechanism
- 14 construction. J. Atmos. Chem. Phys. 18, 9297-9328, https://doi.org/10.5194/acp-18-9297-2018, 2018.
- 15 -Jiménez. E., Lanza, B., Garzón, A., Ballesteros, B., Albaladejo, J. Atmospheric Degradation of 2-Butanol, 2-
- 16 Methyl-2-butanol, and 2,3-Dimethyl-2-butanol: OH Kinetics and UV Absorption Cross Sections. J. Phys. Chem.
- 17 A.109, 10903-10909, https://doi.org/10.1021/jp054094g, 2005.
- 18 -Karabektas, M. and Hosoz, M. Performance and emission characteristics of a diesel engine using isobutanol-
- diesel fuel blends, *Renew Energy*, 34 (6), 1554-1559, https://doi.org/10.1016/j.renene.2008.11.003, 2009.
- 20 -Kerdouci, J., Picquet-Varrault, B., Doussin, J.F. Prediction of Rate Constants for Gas-Phase Reactions of Nitrate
- 21 Radical with Organic Compounds: A New Structure–Activity Relationship. Chem. Phys. Chem., 11, 3909-3920,
- 22 <u>https://doi.org/10.1002/cphc.201000673</u>, 2010.
- -Kerdouci, J., Picquet-Varrault, B., Doussin, J.F. Structure-activity relationship for the gas-phase reactions of NO₃
- 24 radical with organic compounds: Update and extension to aldehydes. Atmos. Environ. 84, 363-372,
- 25 https://doi.org/10.1016/j.atmosenv.2013.11.024, 2014.
- -Kumar., B.R. and Saravanan, S. Use of higher alcohol biofuels in diesel engines: A review. Renew. Sust. Energ.
- 27 Rev. 60, 84–115, https://doi.org/10.1016/j.rser.2016.01.085, 2016.
- 28 -Kwok, E.S.C. and Atkinson R. Estimation of Hydroxyl Radical Reaction Rate Constants For Gas-Phase Organic
- 29 Compounds Using A Structure-Reactivity Relationship: An Update. Atmos. Environ., 29, 1685-1695,
- 30 <u>https://doi.org/10.1016/1352-2310(95)00069-B</u>, 1995.
- 31 -Lapuerta, M., García-Contreras, R., Campos-Fernández, J., and Dorado P. Stability, lubricity, viscosity, and cold-
- flow properties of alcohol–diesel blends, Energy Fuels, 24, 4497-4502, https://doi.org/10.1021/ef100498u, 2010.
- 33 -Li, F., Yi, B., Song, L., Fu, W., Liu, T., Hu, H., & Lin, Q. Macroscopic spray characteristics of long-chain alcohol-
- 34 <u>biodiesel fuels in a constant volume chamber. Proceedings of the Institution of Mechanical Engineers, Part A:</u>
- 35 *JPE*, 232(2), 195–207. https://doi.org/10.1177/0957650917721336, 2017.
- 36 -Lopes, M., Serrano, L., Ribeiro, I., Cascao, P., Pires, N. Emissions characterization from EURO 5 diesel/biodiesel
- 37 passenger car operating under the new European driving cycle. Atmos. Environ. 84, 339-348,
- 38 <u>https://doi.org/10.1016/j.atmosenv.2013.11.071</u>, 2014.

- 1 Martin, P., Cabañas, B., Colmenar, I., Salgado, M.S., Villanueva, F., Tapia, A. Reactivity of E-butenedial with
- the major atmospheric oxidants. Atmos. Environ. 70, 351-360, https://doi.org/10.1016/j.atmosenv.2013.01.041,
- 3 2013
- 4 McGillen, M. R., Baasandorj, M., Burkholder, J. B. Gas-Phase Rate Coefficients for the OH + n-, i-, s-, and t-
- 5 Butanol Reactions Measured Between 220 and 380 K: Non-Arrhenius Behavior and Site-Specific Reactivity. J.
- 6 *Phys. Chem. A*, 117, 4636–4656, https://doi.org/10.1021/jp402702u, 2013.
- 7 -McGillen, M.R., Tyndall, G.S., Orlando, J.J, Pimentel, A.S., Medeiros, D.J., and Burkholder J.B. Experimentally
- 8 Determined Site-Specific Reactivity of the Gas-Phase OH and Cl + i-Butanol Reactions Between 251 and 340 K.
- 9 *J. Phys. Chem. A*, 120, 9968–9981, https://doi.org/10.1021/acs.jpca.6b09266, 2016.
- 10 -Mellouki, A., Wallington, T. J., Chen, J. Atmospheric chemistry of oxygenated volatile organic compounds:
- impacts on air quality and climate. *Chem Rev.*, 115:3984–4014, https://doi.org/10.1021/cr500549n, 2015.
- -Moc, J and Simmie, J.M. Hydrogen Abstraction from n-Butanol by the Hydroxyl Radical: High Level Ab Initio
- 13 Study of the Relative Significance of Various Abstraction Channels and the Role of Weakly Bound Intermediates.
- 14 J. Phys. Chem. A, 114, 5558–5564, https://doi.org/10.1021/jp1009065, 2010.
- 15 -Moreno, A., Salgado, S., Martin, P., Martinez, E., and Cabañas, B. Kinetic Study of the Gas Phase Reactions of
- 16 a Series of Alcohols with the NO₃ Radical. J. Phys. Chem. A, 116, 42, 10383-10389,
- 17 <u>https://doi.org/10.1021/jp305682h</u>, 2012.
- -Moreno, A., Salgado, S., Taccone, R., Martín, P., Cabañas, B. Atmospheric degradation of saturated alcohols:
- 19 room temperature rate coefficients for NO₃ radical reactions. Atmos. Environ., 96, 229-235,
- 20 https://doi.org/10.1016/j.atmosenv.2014.07.037, 2014.
- 21 -Murty, M. R. V. S, Prasada, R. N., Prabhakar, S., and Vairamani, M. Chemical ionization mass spectral analysis
- of pinacolyl alcohol and development of derivatization method using p-tolyl isocyanate. Anal Methods 2:1599–
- 23 1605, https://doi.org/10.1039/C0AY00346H, 2010.
- -Nelson, L., Rattigan, O., Neavyn, R., Sidebottom, H., Treacy, J., Nielsen, O. J. Absolute and Relative Rate
- 25 Constants for the Reactions of Hydroxyl Radicals and Chlorine Atoms with a Series of Aliphatic Alcohols and
- 26 Ethers at 298 K. Int. J. Chem. Kinet., 22, 1111–1126. https://doi.org/10.1002/kin.550221102, 1990.
- 27 -Nguyen, H.T., Takenaka, N., Bandow, H., Maeda, Y., Oliva, S.T., Botelho, M.M. and Tavares T.M. Atmospheric
- 28 alcohols and aldehydes concentrations measured in Osaka, Japan and in Sao Paulo, Brazil. Atmos. Environ, 35,
- 29 3075-3083. https://doi.org/10.1016/S1352-2310(01)00136-4, 2001.
- 30 -Ozsezen, N. A., Turkcan, A., Sayin, C. and Canakci, M. Comparison of performance and combustion parameters
- in a heavy-duty diesel engine fueled with iso-butanol/diesel fuel blends. Energy. Explor. Exploit, 29, 525-541,
- 32 https://doi.org/10.1260/0144-5987.29.5.525, 2011.
- 33 -Poutsma, M. L. Evolution of Structure-Reactivity Correlations for the Hydrogen Abstraction Reaction by
- 34 Chlorine Atom *J. Phys. Chem. A*, 117(4), 687–703. https://doi.org/10.1021/jp310970t, 2013.
- 35 -Platt U. and Janssen C. 1995. Observation and role of the free radicals NO₃, ClO, BrO and IO in the troposphere.
- 36 Faraday Discussions. https://doi.org/100:175-198,10.1039/FD9950000175, 1995.
- -Prinn, R.G., Huang, J., Weiss, R.F., Cunnold, D.M., Fraser, P.J., Simmonds, P.G., McCulloch, A., Harth, C.,
- 38 Salameh, P., O'Doherty, S., Wang, R.H.J., Porter, L., Miller, R.B. Evidence for Substantial Variations of
- 39 Atmospheric Hydroxyl Radicals in the Past Two Decades Science 292, 1882-1888,
- 40 https://doi.org/10.1126/science.1058673, 2001.

- 1 -Ren, Y., Huang, Z., Miao, H., Di, Y., Jiang, D., Zeng, K., Liu, B., Wang, X. Combustion and emissions of a DI
- 2 diesel engine fuelled with diesel-oxygenate blends, Fuel, 87, 2691-2697,
- 3 https://doi.org/10.1016/j.fuel.2008.02.017, 2008.
- 4 -Ren Y. Wang J. Grosselin B. Daele V. and Mellouki A. Kinetic and product studies of Cl atoms reactions with a
- 5 series of branched ketones. *J. Environ. Science.* 71, 271-282, https://doi.org/10.1016/j.jes.2018.03.036, 2018.
- 6 -Sander, R. Compilation of Henry's law constants (version 4.0) for water as solvent Atmos. Chem. Phys, 15, 8,
- 7 4399-4981, https://doi.org/10.5194/acp-15-4399-2015, 2015.
- 8 -Sarathy, M., Oßwald P., Hansen, N., and Kohse-Höinghaus, K. Alcohol combustion chemistry. *Prog. Energy*
- 9 *Combust. Sci.* 44. 40-102, https://doi.org/10.1016/j.pecs.2014.04.003, 2014.
- 10 -Schott, G., and Davidson, N. Shock Waves in Chemical Kinetics: The Decomposition of N₂O₅ at High
- 11 Temperatures, J. Am. Chem. Soc., 80, 1841-1853, https://doi.org/10.1021/ja01541a019, 1958.
- -Sikarwara, V.S, Zhao M., Fennell, P.S., Shah, N., Anthony, E.J. Progress in biofuel production from gasification.
- 13 *Prog. Energ. Combust.* 61, 189-248, https://doi.org/10.1016/j.pecs.2017.04.001, 2017.
- -Smith, I. W. M., Ravishankara, A. R. J. Role of Hydrogen-Bonded Intermediates in the Bimolecular Reactions
- of the Hydroxyl Radical. *Phys. Chem. A*, 106, 4798-4807, https://doi.org/10.1021/jp014234w, 2002.
- -Spicer, C., Chapman, E.G., Finalysson-Pitts, B.J., Plastridege, R.A., Hybbe, J.M., Fast, J.D., Berkowitz, C.M.
- 17 Unexpectedly high concentrations of molecular chlorine in coastal air Nature, 394, 353-356,
- 18 https://doi.org/10.1038/28584, 1998.
- -Tapia, A., Villanueva, F., Salgado, S., Cabañas, B., Martinez, E. and Martin, P. Atmospheric degradation of 3-
- methylfuran: kinetic and products study. Atmos. Chem. Phys., 2011, 11, 3227–3241. https://doi.org/10.5194/acp-
- 21 11-3227-2011.
- 22 -Taylor, W.D., Alston, T.D., Moscato, M.J., Fazekas, G.B., Kozlowski, R., Takacs, G.A Atmospheric
- photodissociation lifetimes for nitromethane, methyl nitrite, and methyl nitrate. Int. J. Chem. Kinet. 12, 231-240,
- 24 https://doi.org/10.1002/kin.550120404, 1980.
- 25 -Thevenet, R., Mellouki, A., Bras, G. L. Kinetics of OH and Cl Reactions with a Series of Aldehydes. Int. J. Chem.
- 26 Kinet., 32, 676–685, https://doi.org/10.1002/1097-4601(2000)32:11<676::AID-KIN3>3.0.CO;2-V, 2000.
- 27 -Tuazon E. C. and Atkinson, R. A Product Study of the Gas-Phase Reaction of Isoprene with the OH Radical in
- 28 the Presence of NOx. Int. J. Chem. Kinet. 22, 1221-1236, https://doi.org/10.1002/kin.550221202, 1990.
- -Tuazon E. C., Leod, H.M, Atkinson, R. and Carter W.P.L. α-Dicarbonyl Yields from the NO_x Air Photooxidations
- 30 of a Series of Aromatic Hydrocarbons in Air. Environ. Sci. Technol., 20, 4, 383-387,
- 31 https://doi.org/10.1021/es00146a010, 1986.
- -Vereecken, L., Aumont, B., Barnes, I., Bozzelli, J.W., Goldman, M.J., Green, W.H., Madronich, S., Mcgillen,
- 33 M.R., Mellouki, A., Orlando, J. J., Picquet-Varrault, B., Rickard, R., Stockwell, W. R., Wallington, T.J., Carter,
- 34 W.P.L. Perspective on Mechanism Development and Structure-Activity Relationships for Gas-Phase Atmospheric
- 35 Chemistry. Int. J. Chem. Kinet. 50, 435-469, http://dx.doi.org/10.1002/kin.21172, 2018.
- 36 -Wallington, T.J. and Kurylo, M.J. Flash Photolysis Resonance Fluorescence Investigation of the Gas-Phase
- Reactions of OH Radicals with a Series of Aliphatic Ketones over the Temperature Range 240-440 K. J. Phys.
- 38 *Chem.*, 91, 19, 5050-5054, https://doi.org/10.1021/j100303a033, 1987.

- -Wallington, T.J., Skwes, L.M., Siegl, W.O, Wu. C., Japar, S.M. Gas phase reaction of Cl atoms with a series of
- 2 oxygenated organic species at 295 K, Int. J. Chem. Kinet., 20, 867-875, https://doi.org/10.1002/kin.550201105,
- 3 1988.
- 4 -Wayne R.P., Barnes I., Biggs P., Burrows J.P., Canosa-Mas C.E., Hjorth J., LeBras G., Moortgat G.K., Perner
- 5 D., Poulet G., Restelli G., Sidebottom H. The nitrate radical: Physics, chemistry, and the atmosphere. Atmos.
- 6 Environ., 25A, 1-203, https://doi.org/10.1016/0960-1686(91)90192-A, 1991.
- 7 -Wayne, R.P. Chemistry of Atmospheres. Oxford University Press, New York, 2000.
- 8 -Welz,O., Klippenstein, S., O., J., Harding, L. B., Taatjes, C. A., Zádor, J. Unconventional Peroxy Chemistry in
- 9 Alcohol Oxidation: The Water Elimination Pathway. J. Phys. Chem. Lett., 43, 350-354,
- 10 https://doi.org/10.1021/jz302004w, 2013.
- -Ziemann P., and Atkinson R. Kinetics, products, and mechanisms of secondary organic aerosol formation. *Chem*
- 12 *Soc Rev.* 41(19), 6582-6605, https://doi.org/10.1039/C2CS35122F, 2012.
- 13 -<u>www.aemet.es</u>
- 14 -www.capotchem.com
- 15 -www.iea.org. Energy and Air Pollution. World Energy Outlook 2016 Special Report Workshop International
- 16 Energy Agency.

- 17 -www.iupac-kinetic.ch.cam.ac.uk IUPAC Subcommittee on Gas Kinetic Data Evaluation.
- 18 -www.thermofisher.com/search/browse/results?customGroup=Spectral+Libraries)
- 19 -webbook.nist.gov/chemistry/
- 20 -https://data.eurochamp.org/data-access/spectra/

Table 1. Rate coefficient ratios, absolute rate coefficients and average rate coefficients for the reactions of a series
 of MSAs with Cl atoms and OH and NO3 radicals at 298 K and 720 ± 20 Torr of pressure. Rate coefficients, k, in cm³- molecule=¹ s=¹.

Reaction	Reference	$(k_{MSA}/k_R)\pm2\sigma$	$(k_{MSA}\pm2\sigma)^a/10^{-10}$	$(\overline{k}_{\mathrm{MSA}}\pm2\sigma_{-})^{\mathrm{b}}/10^{-10}$
		0.85 ± 0.03	2.89 ± 0.42	
	1-butene	0.79 ± 0.02	2.68 ± 0.38	
3,3DM1ButOH		0.76 ± 0.02	2.58 ± 0.37	
+ Cl		1.18 ± 0.02	2.63 ± 0.37	2.69 ± 0.16
	Dropono	1.21 ± 0.03	2.70 ± 0.38	
	Propene	1.22 ± 0.03	2.71 ± 0.38	
	1 hystoma	0.42 ± 0.01	1.42 ± 0.21	
3,3DM2ButOH	1-butene	0.35 ± 0.01	1.17 ± 0.17	
+ Cl		0.41 ± 0.01	1.38 ± 0.20	1.21 ± 0.07
+ CI		0.48 ± 0.01	1.08 ± 0.15	
	Propene	0.50 ± 0.02	1.12 ± 0.16	
		0.56 ± 0.03	1.26 ± 0.19	
		1.08 ± 0.03	3.69 ± 0.32	
4MCHexOH	2-methylpropene	1.16 ± 0.02	3.95 ± 0.33	
+ Cl		0.98 ± 0.05	3.35 ± 0.32	
		1.14 ± 0.03	3.86 ± 0.56	3.70 ± 0.16
	1-butene	1.12 ± 0.03	3.78 ± 0.55	
		1.15 ± 0.04	3.90 ± 0.57	
Reaction	Reference	$(k_{MSA}/k_R)\pm2\sigma$	$(k_{MSA}\pm 2\sigma)/10^{-12}$	$\overline{k}_{\text{MSA}\pm2\sigma}/10^{-12}$
		1.00 ± 0.04	5.09 ± 0.20	
	Isopropanol	1.13 ± 0.09	5.78 ± 0.47	
3,3DM1BuOH		1.12 ± 0.08	5.72 ± 0.40	
+ OH	2-methyl-2-	1.60 ± 0.09	5.78 ± 1.01	5.33 ± 0.16
	butanol	1.57 ± 0.08	5.65 ± 1.00	
		1.61 ± 0.09	5.79 ± 1.02	
		2.33 ± 0.09	11.90 ± 0.48	
	Isopropanol	2.05 ± 0.08	10.50 ± 0.45	
		1.95 ± 0.08	9.95 ± 0.43	10.50 ± 0.25
3,3DM2BuOH	2-methyl-2-	2.39 ± 0.09	8.61 ± 1.50	
+ OH	butanol	2.92 ± 0.09	10.50 ± 1.78	
		2.25 ± 0.09	8.12 ± 1.34	
		0.64 ± 0.01	17.10 ± 2.59	
	Propene	0.76 ± 0.03	20.30 ± 3.19	
4MCHexOH		0.76 ± 0.02	20.40 ± 3.10	
+ OH		0.27 ± 0.01	18.20 ± 4.55	18.70 ± 1.42
	Cyclohexene	0.27 ± 0.01	18.40 ± 4.62	
	•	0.27 ± 0.01	18.00 ± 4.46	
Reaction	Reference	$(k_{MSA}/k_R)\pm2\sigma$	$(k_{SANO3}\pm 2\sigma)/10^{-15}$	$\overline{k}_{\underline{\text{SANO3}}} \pm 2\sigma/10^{\pm .15}$
		1.08 ± 0.12	3.39 ± 1.11	
	1-butanol	1.81 ± 0.15	5.70 ± 1.82	
			0.71 . 0.00	
0.4611 017		0.79 ± 0.07	2.51 ± 0.80	
4MCHexOH				2.69 ± 0.37
4MCHexOH + NO ₃	2-ethyl-1-hexanol	0.79 ± 0.07 0.71 ± 0.10 1.00 ± 0.10	2.31 ± 0.80 2.08 ± 0.72 2.93 ± 0.96	2.69 ± 0.37

⁴ aThe uncertainties for rate coefficients of $MSA_{\underline{s}}$ (σ_{KMSA}) were calculated from the uncertainty of slope of plots

⁵ (σ_{slope}) and the uncertainty of the reference (σ_{kkR}) by using the propagation of uncertainties. Weighted average

according to the equation $(w_1k_1 + w_2k_2 + ...)/(w_1 + w_2 ...)$; $(w_i = 1/\sigma_i^2)$. The uncertainty of weighted average (σ) was

⁷ given by $(1/w_1+1/w_2+...)^{-0.5}$

Table 2. Estimated and experimental rate coefficients $(k_{SAR}, k_{log} \text{ and } k_{exp})$ for the reaction of $\frac{\text{MSAs}}{\text{S}}$ with atmospheric

oxidants and ratio of rate coefficients (k_{exp}/k_{SAR}) and k_{exp}/k_{log} . $k_{Cl}/10^{-11}$, $k_{OH}/10^{-12}$ and $k_{NO3}/10^{-15}$ in cm³ molecule⁻¹

3 s^{-1} units

л	
4	
•	

10

	4	MCHexO	Н	3,	,3DM1But	ЮН	3,3DM2ButOH		
	k_{Cl}	k_{OH}	k_{NO3}	k_{Cl}	k_{OH}	k_{NO3}	k_{Cl}	k _{OH}	k_{NO3}
k_{exp}	37.0 ^a	18.7ª	2.69 ^a	26.9ª	5.33ª	1.78 ^b	12.1ª	10.5 ^a	3.4 ^b
k_{SAR}	34.2°	19.2°	2.27°	21.0°	6.08 ^c	0.55°	15.2°	9.16 ^c	3.86 ^c
k_{exp}/k_{SAR}	1.08	0.97	1.18	1.28	0.88	3.24	0.80	1.15	0.88
k_{log}	30.7 ^d	-	4.69 ^d	13.9 ^d	-	1.16 ^d	21.4 ^d	-	3.19 ^d
k_{exp}/k_{log}	1.21	-	0.57	1.94	-	1.53	0.57	-	1.07

⁵ aData obtained in this work

^bData obtained by Moreno et al., 2014

^cSee S2 <u>S</u>supplementary <u>M</u>material

^dEstimated using the correlations log_{Cl}-log_{OH} (Eq. (2)) and log_{NO3}-log_{OH} (Eq. (3)) described by Calvert et al, 2011.

Table 3. Experimental conditions and molecular yields of E-4-methylcyclohexanone for the reaction of 4MCHexOH with atmospheric oxidants.

MSA	Oxidant	Exp	[MSA] (ppm)	[Precursor] (ppm)	[NO] (ppm)	Carbonyl compound ^d Yield (%)	Technique	Average ^f (%)	SAR Yield (%)
	Cla	1	3	21	-	24.8±0.9	FTIR	25.2±1.9	
		2	8	22	-	23.8±0.6	FTIR		
		3	13	16	-	27.5±0.2	SPME/GC- TOFMS ^e		14
	$Cl^a + NO$	1	11	23	30	30.4 ± 0.9	FTIR	29.5 ± 0.7	
		2	5	25	19	30.0±0.6	FTIR		
		3	7	13	12	31.6±1.3	SPME/GC- TOFMS ^e		
4MCHexOH	OH_p	1	7	36	23	35.1±1.3	FTIR		
		2	13	31	29	38.2±1.5	FTIR	40.01.5.4	52
		3	11	28	28.5	47.8±0.4	FTIR	40.2±5.4	53
		4	6	19	12	39.8±0.9	SPME/GC- TOFMS ^e		
	NO_3^c	1	3	6	-	56.8±11.4	SPME/GC- TOFMS ^e		
		2	6	34	-	88.3±7.0	SPME/GC- TOFMS ^e	58.0±23.5	86
		3	4	30	-	77.1±4.6	SPME/GC- TOFMS ^e		
		4	4	21	-	34.6±0.5	FTIR		
		5	7	10	-	33.4 ± 0.6	FTIR		

^a Rate coefficient k (in cm³ molecule⁼¹ s⁼¹ unit) used to correct the concentration of E-4-methylcyclohexanone by

4

15

1

loss with the reaction of Cl atoms = 11.2×10^{-11} (data of 2-methylcyclohexanone and Cl atoms (Herath et al.,

^{5 2018)).} Photolysis rate coefficient estimated for E-4-methylcyclohexanone under our experimental conditions, k_p

 $^{6 = 5 \}times 10^{-5} \text{ s}^{-1}$

⁷ bRate coefficient k (in cm³ molecule=1 s=1 unit) used to correct the concentration of E-4-methylcyclohexanone by

⁸ loss with the reaction of OH radical = 13.7×10^{-12} (estimated using AOPWIN, v1.92). Photolysis rate coefficient

⁹ estimated for E-4-methylcyclohexanone under our experimental conditions, $k_p = 5 \times 10^{-5} \text{ s}^{-1}$

^c Rate coefficient k (in cm³ molecule⁻¹ s⁻¹ unit) used to correct the concentration of E-4-methylcyclohexanone by

loss with the reaction of NO_3 radical = 2.28×10^{-16} (estimated using SAR method, Kerdouci et al., 2014)

¹² d Indicated errors are the associated error to the slope of plots obtained in the least squares analysis

e Experiment using a Teflon gas bag of 150L

^f Standard deviations 1σ

Table 4. Experimental conditions and molecular yields of 3,3-dimethylbutanal for the reaction of

3,3DM1ButOH with atmospheric oxidar	ıts.
-------------------------------------	------

1

2

3

7

M SA	Oxidant	Exp	[MSA] (ppm)	[Precursor] (ppm)	[NO] (ppm)	Carbonyl compound fYield (%)	Technique	Average ^g (%)	SAR Yield (%)
	Cla	1	11	24	-	40.3±0.2	FTIR		
						41.8±4.6	SPME/GC- TOFMS ^d	20 4115 0	
		2	2.6	8	-	19.6±0.5	SPME/GC- TOFMS ^e	39.4±15.0	
		3	6	25	-	55.9±1.7	FTIR		
	$Cl^a + NO$	1	10	21	21	61.6±3.4	FTIR		40
						34.7±4.4	SPME/GC- TOFMS ^d	43.3±17.7	
3,3DM1ButOH		2	4	9	8	23.0±4.2	SPME/GC- TOFMS ^e		
		3	10	25	25	48.8 ± 0.6	FTIR		
	OH_p	1	10	60	36	82.1 ± 4.2	FTIR		
						40.8±2.7	SPME/GC- TOFMS ^d	62.2±15.0	66
		2	7	35	57	67.4±1.4	FTIR		
		3	11	28	55	61.9±0.9	FTIR		
		4	11	29	30	59.1±3.8	FTIR		
	NO_3^c	1	11	36	-	29.2±0.5	FTIR		
						53.9 h	SPME/GC- TOFMS ^d	36.2±14.6	86
		2	11	32	-	26.5±1.6	FTIR		

^a Rate coefficient k (in cm³ molecule⁻¹ s⁻¹ unit) used to correct the concentration of 3,3-dimethylbutanal by loss with the reaction of Cl atoms = 1.7×10^{-10} (data of iso-Butyraldehyde and Cl atoms (Thevenet et al., 2000)).

with the reaction of Cl atoms = 1.7×10^{-10} (data of iso-Butyraldehyde and Cl atoms (Thevenet et al., 2000)). Photolysis rate coefficient estimated for 3,3-dimethylbutanal under our experimental conditions, $k_p = 1 \times 10^{-4}$ s⁻¹

^b Rate coefficient k (in cm³ molecule⁻¹ s⁻¹ unit) used to correct the concentration of 3,3-dimethylbutanal by loss

⁸ with the reaction of OH radical = 2.73×10^{-11} (Aschmann et al., 2010). Photolysis rate coefficient estimated for

^{9 3,3-}dimethylbutanal under our experimental conditions, $k_p = 1 \times 10^{-4} \text{ s}^{-1}$

^c Rate coefficient k (in cm³ molecule⁻¹ s⁻¹ unit) used to correct the concentration of 3,3-dimethylbutanal by loss

with the reaction of NO₃ radical = 1.27×10^{-14} (D'Anna, 2001).

¹² d Experiment using a FTIR gGas cCell of 50 L

e Experiment using a Teflon gas bag of 150 L

¹⁴ f Indicated errors are the associated error to the slope of plots obtained in the least squares analysis

¹⁵ g Standard deviations 1σ

¹⁶ h Yield estimated using only one data

Table 5. Experimental conditions and molecular yields of 3,3-dimethyl-2-butanone for the reaction

2	of 3,3DM2ButOH with atmospheric oxidants
_	of 5,5B1:12But off with atmospheric omaunts

1

MSA	Oxidant	Exp	[MSA] (ppm)	[Precursor] (ppm)	[NO] (ppm)	Carbonyl compound ^f Yield (%)	Technique	Average ^g (%)	SAR Yield (%)
	Cla	1	14	31	-	42.8±0.7 45.2±1.1	FTIR SPME/GC-		
		2	2.3	8	-	41.7±3.2	TOFMS ^d SPME/GC- TOFMS ^e	43.2±1.8	
	$Cl^a + NO$	1	14	28	20	36.7±5.0 49.6±4.5	FTIR SPME/GC- TOFMS ^d	44.2±7.4	40
3,3DM2ButOH		2	3	7	6	39.0±6.1	SPME/GC- TOFMS ^e	44.217.4	
		3	8	28	27	51.5±3.9	FTIR		
	OH_p	1	8	55	42	82.8±3.1	FTIR		
						71.2±2.6	SPME/GC- TOFMS ^d	80.7±6.5	91
		2	5	66	36	85.4 ± 5.8	FTIR		
		3	11	28	29	83.6±3.0	FTIR		
	NO_3^c	1	12	30	-	66.7±2.05 45.9±1.6	FTIR SPME/GC- TOFMS ^d	58.0±10.9	99
		2	9	30	-	61.5±1.4	FTIR		

^a Rate coefficient k (in cm³ molecule⁻¹ s⁻¹ unit) used to correct the concentration of 3,3-dimethyl-2-butanone by 3

14

loss with the reaction of Cl atoms = 4.8×10^{-11} (Farrugia et al., 2015)). Photolysis rate coefficient estimated for 4

^{3,3-}dimethyl-2-butanone under our experimental conditions, $k_p = 7 \times 10^{-5} \ s^{-1}$ 5

^b Rate coefficient k (in cm³ molecule⁼¹ s⁼¹ unit) used to correct the concentration of 3,3-dimethyl-2-butanone by 6

loss with the reaction of OH radical = 1.21×10^{-12} (Wallington and Kurylo., 1987). Photolysis rate coefficient 7

⁸ estimated for 3,3-dimethyl-2-butanone under our experimental conditions, $k_p = 7 \times 10^{-5} \text{ s}^{-1}$

⁹ ^c No corrected

¹⁰ ^dExperiment using a FTIR gGas cCell of 50 L

¹¹ ^e Experiment using a Teflon gas bag of 150 L

¹² fundicated errors are the associated error to the slope of plots obtained in the least squares analysis

^g Standard deviations 1σ 13

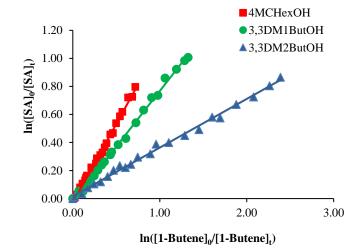
Product		A	4SA							
		4M(СНехОН							
	Cl	Cl + NO	ОН	NO_3						
E-4-methylcyclohexanone ¹	25.2 ± 1.9	29.5 ± 0.7	40.2 ± 5.4	58.0 ± 23.5						
HCOH ²	9	-	-	-						
Nitrated compounds	-	20	10	60						
Total Carbon ³	26	50	50	~100						
	3,3DM1ButOH									
	Cl	Cl + NO	ОН	NO_3						
3,3-dimethylbutanal ¹	39.4 ± 15.0	43.3 ± 17.7	62.2 ± 15.0	36.2 ± 14.6						
HCOH ²	10	22	-	-						
2,2-dimethylpropanal ²	22	8	23	-						
Acetone ²	5	17	-	-						
Nitrated compounds	-	40^{5}	35^{6}	200^{7}						
Total Carbon ^{3,4}	61	62	81	36						
	3,3DM2ButOH									
	Cl	Cl + NO	ОН	NO ₃						
3,3-dimethyl-2-butanone ¹	43.2 ± 1.8	44.2 ± 7.4	80.7 ± 6.5	58.0 ± 10.9						
$HCOH^2$	10	64	-	-						
2,2-dimthylpropanal ²	14	10	14	-						
Acetone ²	3	58	-	-						
Acetaldehyde ²	-	17	-	-						
Nitrated compounds	-	30	20	120						
Total Carbon ^{3,4}	~60	98	93	58						

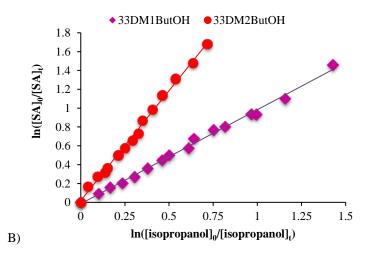
³ Average Tables 3-5; Molecular yield obtained in earlier step of the reaction;

 $^{3}Total\ Carbon\ (\%) = \sum_{1}^{i} \left(\frac{n^{2}\ of\ carbon\ of\ product_{i}}{n^{2}\ of\ carbon\ of\ MSA} \times molar\ yield_{i}(\%) \right)$

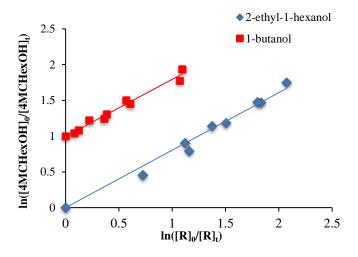
⁴Nitrate compounds were not accounted for Without accounting nitrated compounds; ⁵From analysis of the experiment number 3 for the reaction of $Cl+\underline{in}$ the presence of NO_x ; ⁶From average of experiments number 2, 3 and 4 for the reaction with OH; ⁷From analysis of the experiments number 1 and 2 for reaction with NO_3 .

Table 7. Lifetimes of 4MCHexOH, 3,3DM1ButOH and 3,3DM2ButOH.


	тон (days)	τ _{Cl} ^a (days)	τ _{Cl} ^b (days)	τ _{NO3} (days)	τ _{wet} (years)	$\tau_{global}{}^a(days)$
4MCHexOH	0.62	31.28	0.24	8.61	~2.1	0.58
3,3DM1ButOH	2.17	43.03	0.33	13°	~15.8	1.78
3,3DM2ButOH	1.10	95.65	0.74	6.73^{c}	11.3	0.94


^aDetermined with the 24 hours average of chlorine atoms.

^bDetermined with the peak concentration of chlorine atoms.


^cDetermined using the rate coefficient obtained by Moreno-A. et al., 2014.

A)

C)

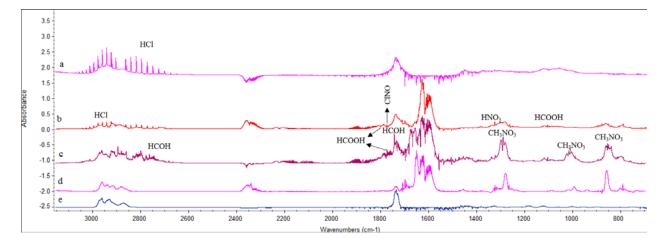


Fig. 2: Product spectra for reaction of 4MCHexOH with: (a) chlorine atoms at 10 min (x 2 to clarity), (b) Cl atoms in presence of and NOx at 7 min. (c) OH radical at 40 min and (d) NO₃ radical at 32 min. (e) Spectrum of 4-methylcyclohexanone commercial sample.

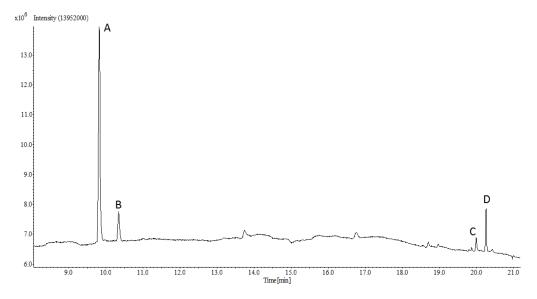


Fig. 3: SPME/GC-TOFMS chromatogram for the reaction of 4MCHexOH with Cl atoms after 15 minutes of reaction. Peak (A) 4MCHexOH. Peak (B) E-4-methylcyclohexanone. Peaks (C) and (D) reaction products.

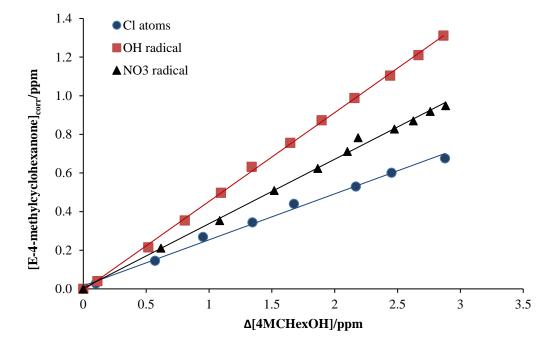
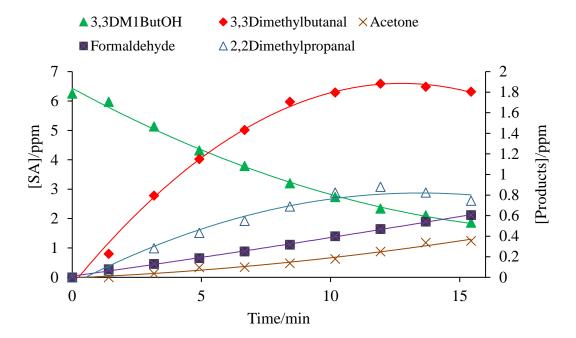


Fig. 4: Plots of corrected concentration of E-4-methylcyclohexanone ([E-4-methylcyclohexanone] $_{corr}$) against 4MCHexOH consumed (Δ [4MCHexOH]) for Cl atoms (in the absence of NOx) and OH and NO₃ radical reactions.


B

OH $+ x^*$ $+ O_2$ $+ NO_2$ $+ NO_2$ $+ NO_2$ $+ NO_2$ $+ NO_2$ $+ NO_2$ Nitroperoxy-cyclomethylhexanol

Nitrate-cyclomethylhexanol

Fig. 5: Reaction mechanism for the degradation of 4MCHexOH with X (Cl atom, OH and NO₃ radicals). (A) Mechanism for the formation of carbonyl compounds, (B) Mechanism for the formation of nitrated compounds. Compounds marked with solid line are positively identified. Compounds marked with dottedshaded lines are not positively identified.

1 A)

3 B)

2

4

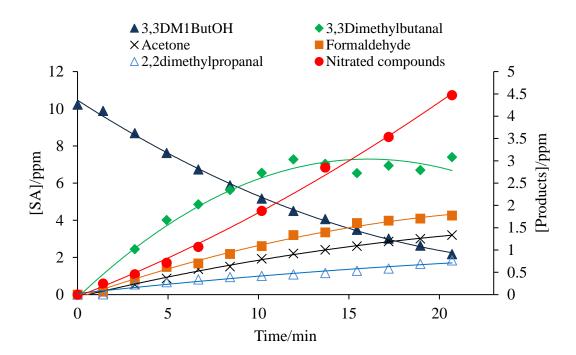


Fig. 6: Concentration-time profiles of MSA (3,3DM1ButOH) and reaction products formed in the reaction of 3,3DM1ButOH with Cl atoms in the absence (A) and in the presence of NO_x (B).

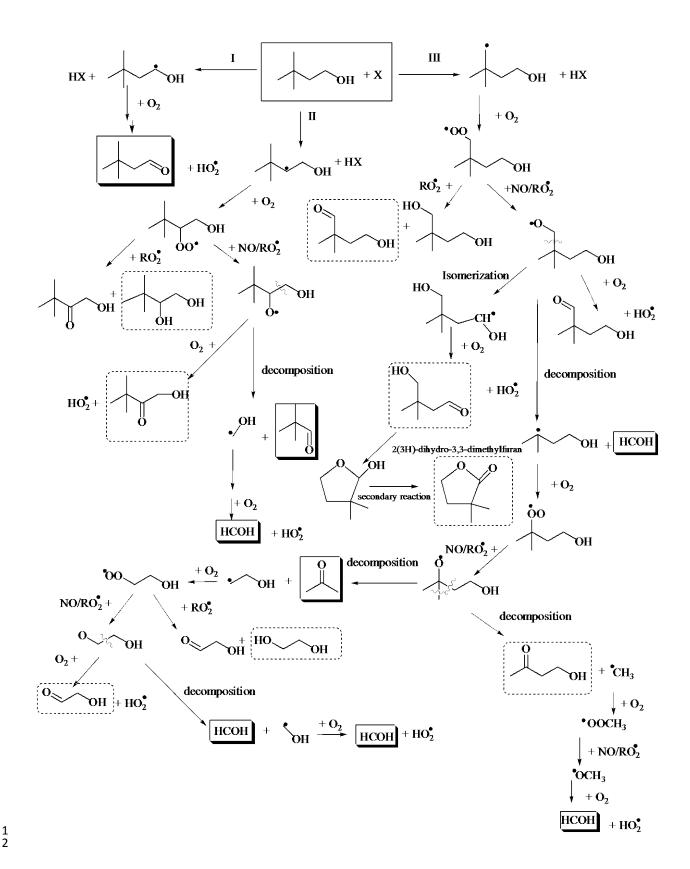


Fig. 7: Reaction mechanism for the degradation of 3,3DM1ButOH with X (Cl atom, OH and NO_3 radical). Mechanism for the formation of carbonyl compounds. Compounds marked with solid line are positively identified. Compounds marked with shaded dotted lines are not positively identified.

Fig. 8: Reaction mechanism for the degradation of 3,3DM2ButOH with X (Cl atom, OH and NO₃ radical). Mechanism to form carbonyl compounds. Compounds marked with solid line are positively identified. Compounds marked with <u>dottedshaded</u> lines are not positively identified.

Supplementary material

S1. Tuazon formalism

Formulism of Tuazon et al. (1986). This procedure is described in A1 supplementary information.

$$MSA + Ox \rightarrow \Sigma Y \text{ product}1$$

 (k_S) (RS1)

$$Product1 + Ox \rightarrow Product2$$

 (k_p) (RS2)

$$Product1 + hv \rightarrow Product3$$

 (k_1) (RS3)

Where Y is the yield of the primary product (product1) from the oxidation of the methyl-saturated alcohols.

If we assume that the concentration of oxidant was constant during the irradiation period, then:

$$[MSA]_{t_2} = [MSA]_{t_1} \cdot e^{-(k_S \cdot [OX])(t_2 - t_1)}$$
 (S1)

From Eq (S1) it is possible to calculate the concentration of oxidant in the system.

Using the relationship obtained by Tuazon et al. (1986) the corrected concentration of the reaction products can be calculated as follows:

$$[\operatorname{product1}]_{t_2} = [\operatorname{product1}]_{t_1} \cdot e^{-(k_p \cdot [\operatorname{Ox}] + k_1)(t_2 - t_1)} + \frac{Y_{t_1 - t_2} \cdot [\operatorname{\textbf{\textit{MSA}}}]_{t_1} \cdot k_S[ox]}{\{(k_p - k_S) \cdot [ox] + k_1\}} \cdot [e^{-(k_S \cdot [ox]) \cdot (t_2 - t_1)} - e^{-(k_p \cdot [ox] + k_1) \cdot (t_2 - t_1)}] \tag{S2}$$

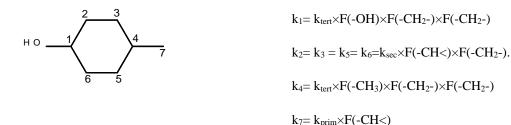
Where [MSA]_{t1}, [product1]_{t1} and [MSA]_{t2}, [product1]_{t2} are the observed concentrations of the methyl saturated alcohol and the products at times t_1 and t_2 respectively, and Y_{t1-t2} is the yield of formation of the individual products on the period of time $(t_1 - t_2)$.

By means of equations (S1) and (S2), Y_{t1-t2} can be calculated. The concentration of the reaction products, corrected for the reaction with radical and other processes of loss is given by:

$$[product1]_{t_2}^{corr} = [product1]_{t_1}^{corr} + Y_{t_1 - t_2} \cdot ([\textcolor{red}{MSA}]_{t_1} - [\textcolor{red}{MSA}]_{t_2}) \quad (S3)_{t_1}^{t_2} = [product1]_{t_2}^{t_2} \cdot ([\textcolor{red}{MSA}]_{t_1} - [\textcolor{red}{MSA}]_{t_2}) \quad (S3)_{t_2}^{t_2} = [product1]_{t_2}^{t_2} \cdot ([\textcolor{red}{MSA}]_{t_2} - [\textcolor{red}{MSA}]_{t_2})$$

Where [product1]^{corr} t_1 and [product1]^{corr} t_2 are the concentrations of the product1 corrected at times t_1 and t_2 respectively:

The value of k_S has been obtained in this work. The value of k_P is taken from the bibliography or estimates with SAR method and k_1 is obtained from experiments carried out in the laboratory, taken from bibliography or estimated with the best fit of experimental data.


S2. Structure-Activity Relationship (SAR) method

SAR method allows to estimate a rate coefficient of an organic compound from its structure. The only possibility of the reaction of the studied compounds in this work with the atmospheric oxidants is the abstraction of an hydrogen atom. Consequently, the estimated rate coefficients of MSAs are obtained from the sum of the rate coefficients for the H-atom abstraction from the primary (k_{prim} (CH_{3-})), secondary (k_{sec} , (- CH_{2-})) and tertiary (k_{tert} (-CH<)) groups and from the alcohol (k_{OH} (-OH)) group, taking into account the influence of the substituents attached to these groups, through substituent factors F(X), F(Y) and F(Z) (Equation S4).

$$k_{abs} = \sum k_{prim}F(X) + \sum k_{sec}F(X)F(Y) + \sum k_{tert}F(X)F(Y)F(Z) + \sum k_{OH}$$
 (S4)

At 298K rate coefficients for H-atom abstraction (in units of cm³molecule⁻¹s⁻¹) and the reactivity factor for the reaction with OH are $k_{prim} = 1.36 \times 10^{-13}$; $k_{sec} = 9.34 \times 10^{-13}$; $k_{tert} = 1.94 \times 10^{-12}$ and $k_{OH} = 1.4 \times 10^{-13}$; $F(CH_3) = 1$; $F(-CH_2-) = F(-CH<) = F(>C<) = 1.23$ and F(-OH) = 3.5 from AOPWIN. The parameters for the reaction with Cl atoms are $k_{prim} = 2.84 \times 10^{-11}$; $k_{sec} = 8.95 \times 10^{-11}$; $k_{tert} = 6.48 \times 10^{-11}$ (in units of cm³molecule⁻¹s⁻¹); $F(CH_3) = 1$; $F(-CH_2-) = F(-CH<) = 0.8$ and F(-OH) = 1.18 from Calvert et al. 2011. By last, the parameters used for the reaction with NO₃ radicals are $k_{prim} = 1 \times 10^{-18}$; $k_{sec} = 2.56 \times 10^{-17}$; $k_{tert} = 1.05 \times 10^{-16}$ and $k_{OH} = 2 \times 10^{-17}$ (in units of cm³molecule⁻¹s⁻¹); $F(CH_3) = 1$; $F(-CH_2-) = 1.02$; F(-CH<) = 1.61; F(>C<) = 2.03 and F(-OH) = 18 from Kerdouci et al. 2010, 2014.

The calculations for 4-methyl-cyclohexanol are the following:

 $k_{4MCHexOH+Cl} = 3.42 \times 10^{-10} \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1}$

 $k_{4MCHexOH+OH} = 1.92 \times 10^{-11} \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1}$

 $k_{4MCHexOH+NO3} = 2.27 \times 10^{-15} \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1}$

The calculations for 3,3-dimethyl-1-butanol are the following:

 $k_{3.3DM1ButOH+Cl} = 2.10 \times 10^{-10} \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1}$

 $k_{3.3DM1ButOH\ OH} = 6.08 \times 10^{-12}\ cm^3 molecule^{-1} s^{-1}$

 $k_{3.3DM1ButOH + NO3} = 0.55 \times 10^{-15} \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1}$

$$k_1 = k_{sec} \times F(-OH) \times F(-CH_2-)$$

$$k_2=k_{sec}\times F(>C<)\times F(-CH_2-)$$

$$k_3 = k_4 = k_5 = k_{prim} \times F(>C<)$$

The calculations for 3,3-dimethyl-2-butanol are the following:

 $k_1 = k_{prim} \times F(-CH <)$

 $k_2\!\!=\!\!k_{\text{tert}}\!\!\times\!\!F(>\!\!C<\!\!)\!\!\times\!\!F(\text{-}CH_3)\times\!\!F(\text{-}OH)$

 $k_3 = k_4 = k_5 = k_{prim} \times F(>C<)$

 $k_{3,3DM2ButOH+Cl}{=}1.52{\times}10^{\text{-}10}~cm^{3}molecule^{\text{-}1}s^{\text{-}1}$

 $k_{3,3DM2ButOH\ OH} \! = \! 9.16 \!\!\times \!\! 10^{\text{-}12}\ cm^{3} molecule^{\text{-}1} s^{\text{-}1}$

 $k_{3,3DM2ButOH \, +NO3}{=}3.86{\times}10^{\text{-}15} \; cm^{3} molecule^{\text{-}1} s^{\text{-}1}$

Tables

Table S1: Rate coefficients at 298 K for Cl, OH and NO_3 reactions with alkanes, saturated alcohols and saturated compounds with a similar structure of MSA_s studied in-this work. k in cm³ molecule⁻¹ s⁻¹ unit.

Compound	k _{Cl} ×10 ¹¹	kон×10 ¹²	k _{NO3} ×10 ¹⁵	
	Alkanes			
Methane	0.01	0.0064	$< 0.001^{\rm f}$	
Ethane	$5.70^{\rm a}$	$0.24^{\rm f}$	$< 0.01^{\rm f}$	
Propane	12.7ª	1.09 ^f	$< 0.07^{\rm f}$	
Butane	19.4 ^a	2.36^{f}	$0.046^{\rm f}$	
Pentane	25.0 ^a	3.80^{f}	$0.087^{\rm f}$	
Hexane	30.5ª	5.20^{f}	$0.110^{\rm f}$	
Heptane	36.5 ^a	6.76 ^f	$0.150^{\rm f}$	
Octane	40.9 ^a	8.11^{kf}	$0.190^{\rm f}$	
Nonane	46 ^b		0.220^{b}	
Decane	52.7 ^b		0.260^{b}	
2-Methylpropane	13.0 ^a	2.12 ^f	$0.106^{\rm f}$	
2-Methylbutane	19.6 ^a	3.60^{f}	$0.162^{\rm f}$	
2-Methylpentane	25.8 ^a	5.2 ^f	$0.180^{\rm f}$	
3-Methylpentane	26.9 ^b	5.2^{f}	0.220^{f}	
2-Methylhexane	31.2a	6.72 ^e	-	
2,3-Dimethylbutane	20^{a}	$5.78^{\rm f}$	$0.44^{\rm f}$	
2,2-Dimethylbutane	-	$22.3^{\rm f}$	-	
2,2,4-trimethylpentane	22.5 ^a	$3.34^{\rm f}$	$0.09^{\rm f}$	
Cyclopentane	32.6°	4.97^{f}	-	
Cyclohexane	33^{d}	6.97^{f}	$0.14^{\rm f}$	
Methylcyclohexane	35.1e	9.5 ^e	-	
Trans-1,4-dimethylcyclohexane	36.3 ^e	12.1 ^e	-	
Ethylcyclohexane	38.8e	11.8 ^e	-	
	Saturated Alo	ohols		
Methanol	5.5	0.9	0.13	
Ethanol	10	3.2	<2	
1-propanol	16	5.8	<2.1	
2-propanol	8.7	5.1	1.4	
1-butanol	22	8.5	$1.87^{\rm g}$	
2-butanol	12 ^h	8.7	2.51^{q}	
1-pentanol	24^{i}	11^{i}	-	
2-pentanol	22^{i}	11.8 ⁱ	-	
3-pentanol	20^{i}	13 ⁱ	-	
1-hexanol	31^{i}	13 ⁱ	-	
2-hexanol	-	12^{i}	-	

4-heptanol	-	-	< 6.2
1-octanol	42 ⁱ	13 ⁱ	-
2-methyl-1-propanol	20.6 ^j	11.4 ^j	-
2-methyl-2-propanol	3.26^{k}	1.07^{k}	-
2-ethyl-1-hexanol	18.8^{1}	11.3 ¹	<u>2.93¹</u>
2-methyl-1-butanol	-	-	$2.32^{\rm g}$
2-methyl-2-butanol	$7^{\rm h}$	3.64 ⁿ	$1.57^{ m q}$
3-methyl-1-butanol	25 ⁱ	14 ⁱ	2.09^{g}
3-methyl-2-butanol	11.7 ^h	12.5°	3.06^{q}
2-methyl-2-pentanol	-	7.1^{i}	-
4-methyl-2-pentanol	-	17 ⁱ	-
2,2-dimethyl-1-propanol	-	5.5 ⁱ	-
3,3-dimethyl-1-butanol	26.9	5.33	1.78^{g}
3,3-dimethyl-2-butanol	12.1	10.50	3.44^{g}
2,3-dimethyl-2-butanol	10.3 ^h	9.1 ⁿ	3.64^{q}
2,4-dimethyl-2-pentanol	-	11 ⁱ	-
3,5-dimethyl-3-hexanol	-	13 ⁱ	-
cyclopentanol	-	10.7 ^k	-
cyclohexanol	32.1 ^m	19.0 ^p	-
4MCHexOH	37.0	18.7	2.69

Data obtained from IUPAC Subcommittee on Gas Kinetics Data Evaluation and the following references:
^aHooshiyar and Niki, 1995; ^bCalvert et al., 2015; ^cWallington et al., 1989; ^dCalvert et al., 2008; ^eBegan et al., 2018;
^fAtkinson, 2003; ^gMoreno et al., 2014; ^hBallesteros et al., 2007; ⁱCalvert et al., 2011; ^jAndersen et al., 2010;
^kWallington et al., 1988; ^lGallego-Iniesta et al., 2010; ^mCeacero-Vega et al., 2012; ⁿJiménez et al., 2005; ^oMellouki et al., 2004; ^pBradley et al., 2001; ^qMoreno 2012.

Table S2. A summary of the reaction products observed or tentative identified in the reactions of 3,3DM1ButOH with the atmospheric oxidants.

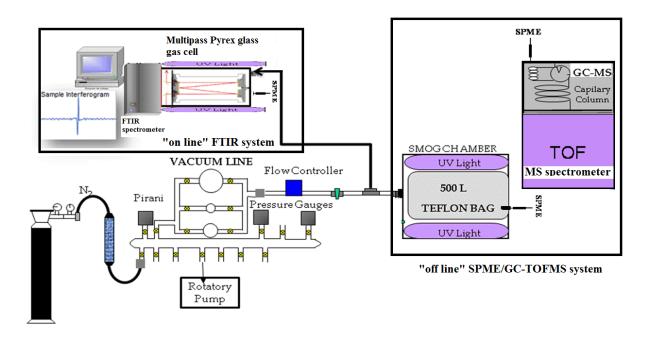
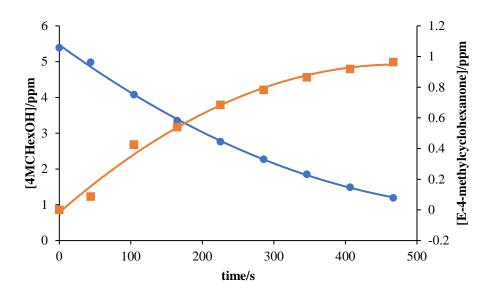
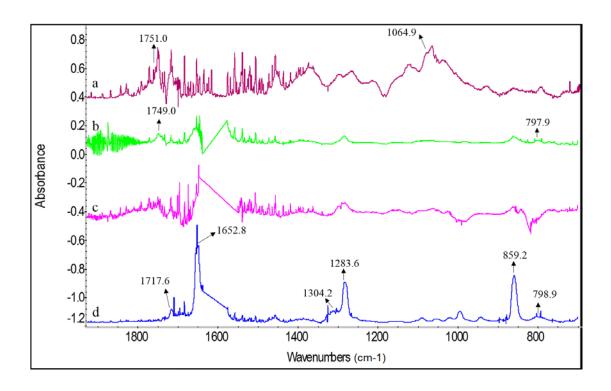
Reaction pProduct of	FTIR					GC-MS				
reaction mechanism	Cl	Cl + NO	ОН	NO 3	Cl	Cl + NO	ОН	NO 3	t _R /min	
			Rout	te I						
3,3-dimethylbutanal	X	X	X	X	X	X	X	X	6.00	
	Route II									
1-hidroxy-3,3-dimethyl-2- butanone	-	-	-	-	-	-	-	-	-	
3,3-dimetil-1,2-butanodiol	-	-	-	-	-	-	-	-	-	
2,2-dimethylpropanal	X	X	X	-	/	-	-	-	8.61?	
Formaldehyde	X	X	X*	-		-	-	-	-	
			Route	e III						
4-hidroxy-2,2- dimethylbutanal	-	-	-	-	-	-	-	-	-	
2,2-dimethyl-1,4- butanodiol	-	-	-	-	-	-	-	-	-	
4-hidroxy-3,3- dimethylbutanal	-	-	-	-	-	-	-	-	-	
Cyclic alcohols	-	-	-	-	-	-	-	-	-	
Cyclic carbonyls (2(3H)dihydro,3,3-dimethylfuran)	-	-	-	-	/	/	/	/	13.17	
4-hidroxy-2-butanone	-	-	-	-	-	-	-	-	-	
Acetone	X	X	-	-	-	/	-	-	2.14	
Glycolaldehyde	-	/	-	_	-	/	/	/	5.05	
1,2-etanodiol	-	-	-	-	-	-	-	-	-	
Formaldehyde	X	X	X*		-	-	-	-		

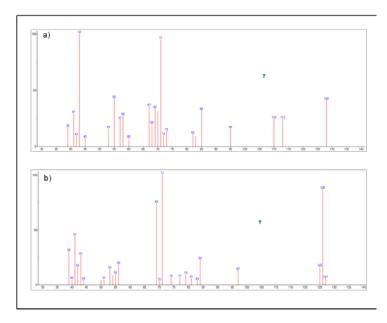
The compounds with X have been positively identified with reference FTIR or MS spectrum. Those that have / have been probably identified through the analysis of the IR bands of the residual spectra and Mass Spectra using as a source of ionization Electron Ionization (EI) and Field Ionization (FI) source that allows us to know the molecular ion. X^* Formaldehyde in the reaction of OH, is formed by decomposition of the precursor, so it is observed in the reaction, but it cannot know how much come from the reaction of 3,3DM1ButOH and OH

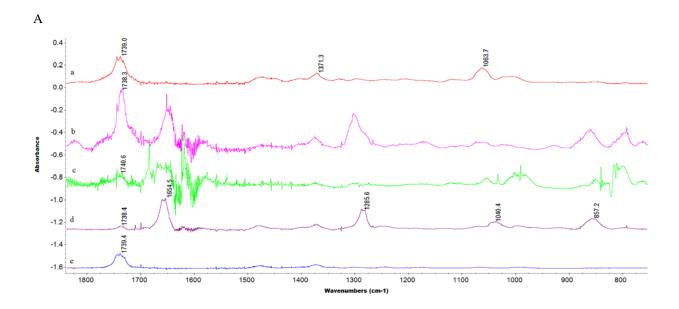
Table S3. A summary of the reaction products observed or tentative identified in the reactions of 3,3DM2ButOH with the atmospheric oxidants.

Product propose	FTIR					GC-MS				
in the mechanism	Cl	Cl + NO	O H	NO ₃	Cl	Cl + NO	ОН	NO ₃	Retention time (min)	
Route I										
3,3-dimethyl-1,2- butanediol	-	-	-	-	-	-	-	-	-	
3,3-dimethyl-2- hydroxybutanal	-	-	-	-	-	-	-	-	-	
Formaldehyde	X	X	X*		-	-	-	-	-	
2,2- dimethylpropanal	X	X	X	-	-	-	/	/	5.39	
				Route	II					
3,3-dimethyl-2- butanone	X	X	X	X	X	X	X	X	6.04	
				Route	Ш					
2,2-dimethyl-1,3- butanediol	-	-	-	-	/	-	-	-	13.46	
2,2-dimethyl-3-hydroxybutanal	-	-	-	-	-	-	-	-	-	
Formaldehyde	X	X	X*	-	-	-		-	-	
3-hydroxybutanone (Acetoin)	-	-	-	-	-	-	-	-	-	
Acetone	X	X	-	-	/	/	-	-	2.16	
Acetaldehyde	-	X	-	-	-	-	-	-	-	

The compounds with X have been positively identified in denoted equipment. Those that have / have been probably identified through the analysis of the IR bands of the residual spectra and the analysis of the mass spectra using as a source of ionization by electron ionization and field ionization source that allows us to know the molecular ion. X* Formaldehyde is a product, but it is also formed by decomposition of the precursor in the reaction with OH radical, and it is not possible to differentiate which comes from the reaction or from the decomposition process.


Fig.S1 Schematic diagram of experimental system: FTIR and SPME/GC-TOFMS.


Fig. S2. Time-concentration profiles of 4MCHexOH ● and 4-methylcyclohexanone ■, for the reaction of 4MCHexOH with chlorine atoms in the presence of NOx obtained by FTIR.

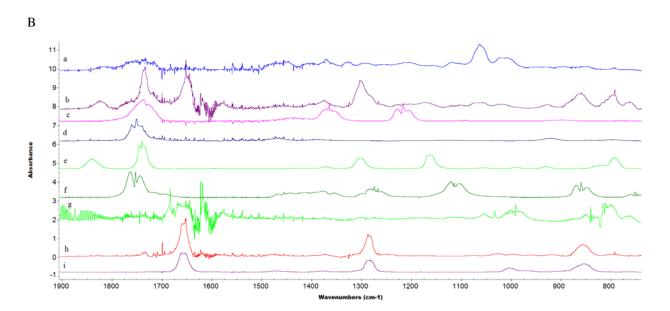


Fig. S3. Residual FTIR spectra obtained in the reaction of 4MCHexOH with (a) Cl atoms (a), (b) Cl + NO (c), HOH radicals, (c) (b) Cl atoms in the presence of NO, and (d) NO₃ radicals (d). The gap in the range of 1650-1590 cm⁻¹ corresponds to NO₂ absorption.

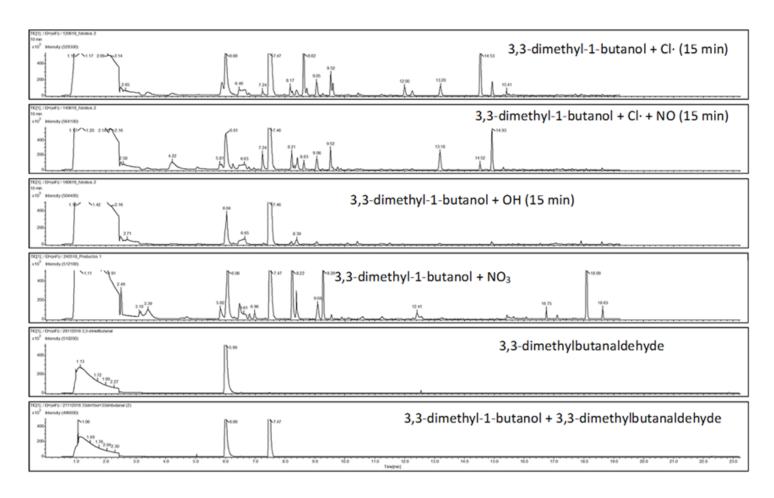


Fig. S4. EI MS spectra of peak C (a) and D (b) observed at 20 and 23 min of retention time in the reaction of 4MCHexOH with Cl atoms. Tentatively assigned to 2-hydroxy-5-methyl cyclohexanone, 5-hydroxy-2-methyl-cyclohexanone and or 3-methyl-1,6-hexanedial.

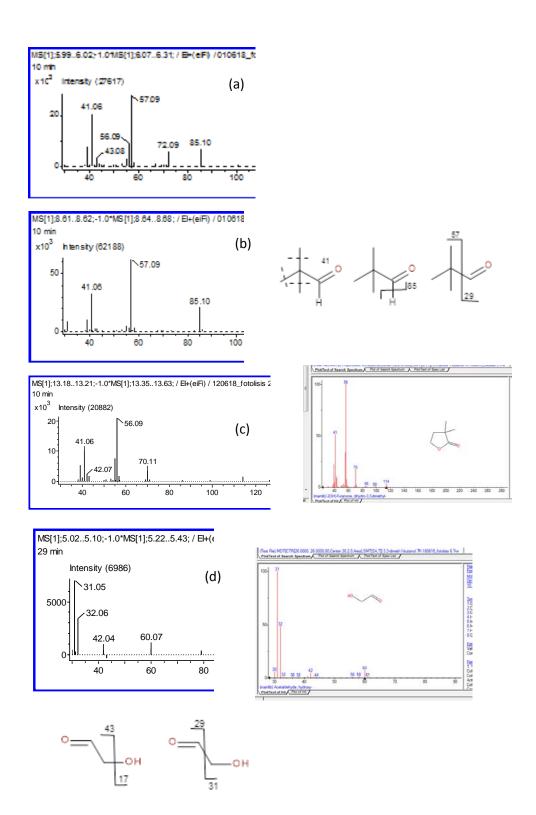


Fig. S5. A) Residual FTIR spectra obtained in the reaction of 3,3DM1ButOH with (a) Cl_atoms (a), (b) Cl atoms in the presence of +NO_(b), (c) OH_radicals and (d)_(e)_NO_3_radicals_(d). The IR absorption bands subtracted were:3,3DM1ButOH, HCl, ClNO_2, ClNO, HCOH, HCOOH, HONO, NO_2, NO, N_2O and peroxy nitric acid (for Cl in the absence and presence of NOand Cl + NO reactions); N_2O_5, HNO_3, NO_2 (for NO_3 reactions) and HCOH, HCOOH, HNO, NO_2, CH_3ONO and CH_3ONO_2 (for OH reactions). (e) FTIR reference spectrum of 3,3-dimethylbutanal. **B)** Residual FTIR spectra: (a) Cl_atoms (a), (b) Cl_atoms in the presence of +NO_2 (g) b), HOH radicals (g) and (h) NO_3 radicals(h) without 3,3-dimethylbutanal. Reference spectra (c) of acetone_(e)_from a commercial sample; (d) 2-methylpropanal (d); (e) PAN_(e); (f) gGlycolaldehyde_(f); and (i) isobutylnitrate (i)_from Eurochamp 2020 database.

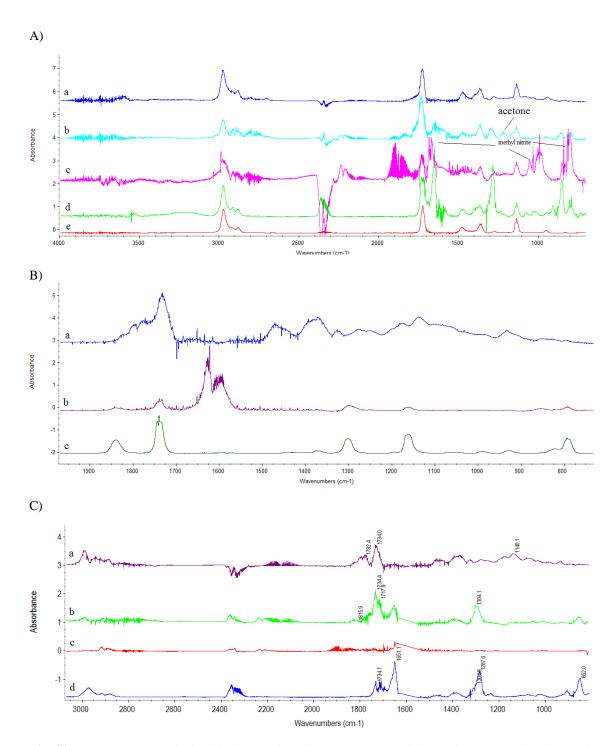
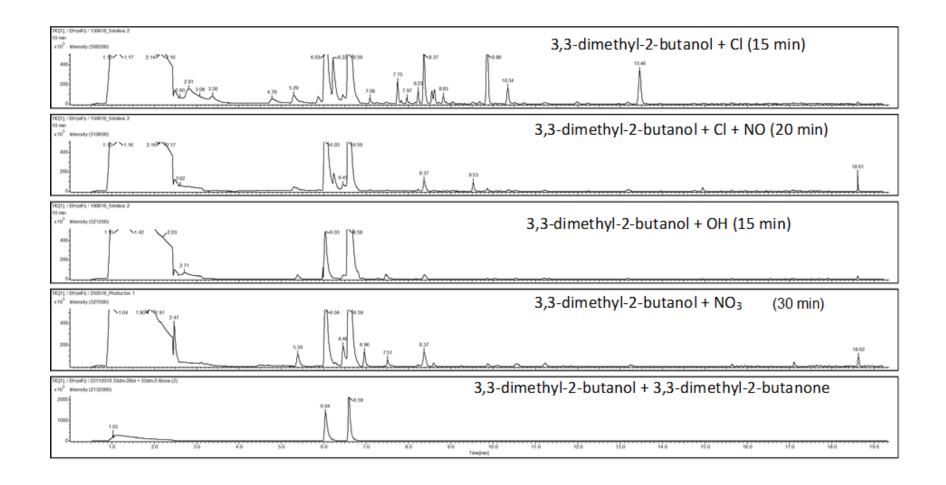
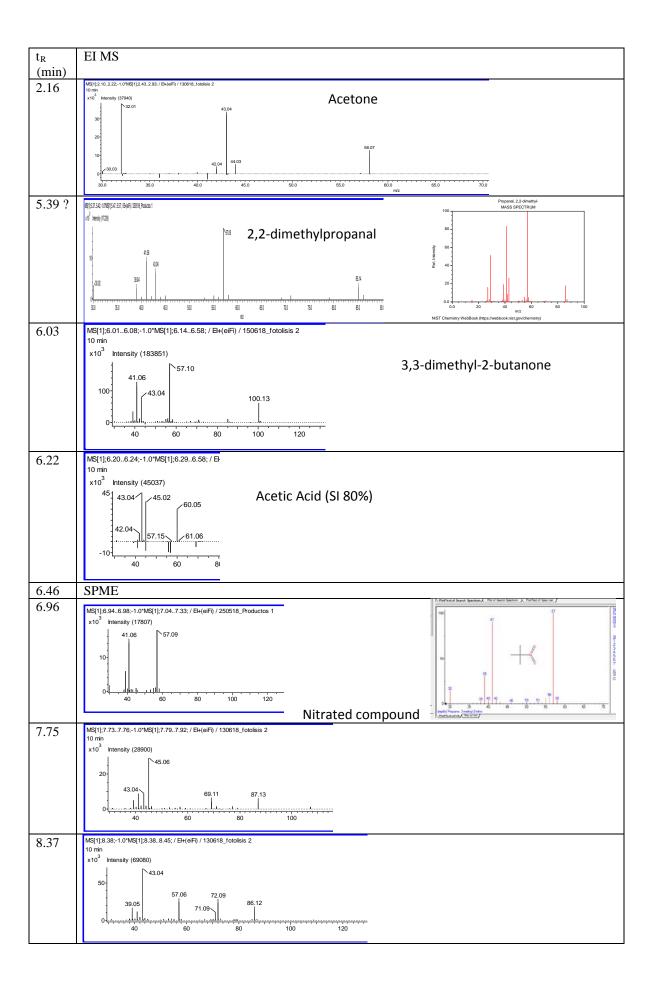
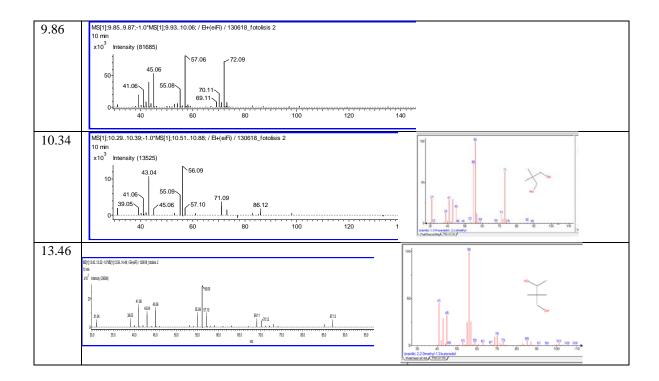


Fig. S6. SPME/GC-TOFMS chromatograms obtained for the reaction of of 3,3DM1ButOH with Cl<u>atoms</u>, Cl <u>atoms in the presence of</u>+ NO, <u>OH radicalsHO</u> and NO₃ <u>radicals</u> (30 min) and reference chromatograms of 3,3DM1ButOH and 3,3-dimethylbutanaldehyde.

Fig. S7. EI-MS spectra of the peaks of chromatograms shown in Fig. S6 obtained for the reaction of of 3,3DM1ButOH with Cl_atoms, Cl atoms in the presence of NO+NO, HOH radicals and NO₃ radicals. (a) $t_R = 6.00 \text{ min}$; (b) $t_R = 8.61 \text{ min}$; (c) $t_R = 13.17 \text{ min}$; (d) $t_R = 5.05 \text{ min}$).

Fig. S8. Reaction mechanism for degradation of 3,3-dimethylbutanal with the atmospheric oxidants in presence of NOx. H-Atom abstraction from the -COH group in 3,3-dimethylbutanal. Aschamnn et al., 2010.

Fig. S9. A) FTIR spectra obtained in the reaction of 3,3DM2ButOH with (a) Cl atoms(a), (b) Cl atoms in the presence of +NO₂-(b), (c) OH radials and (d) (e) NO₃ radicals(d) at 5 minutes of reaction. (e) FTIR reference spectrum of 3,3-dimethyl-2-butanone. B) FTIR spectra obtained in the reaction of 3,3-dimethyl-2-butanol with (a) Cl atoms(a), (b) Cl atoms in the presence of NO + NO (b), 25 minutes and 35 minutes of reactions respectively. (c) IR PAN spectrum. C) Residual FTIR spectra after subtraction of all known bands. (a) Cl atoms (a), (b) Cl atoms in the presence of +NO (b), (c) HOH (radicals e) and (d) NO₃ radicals(d).

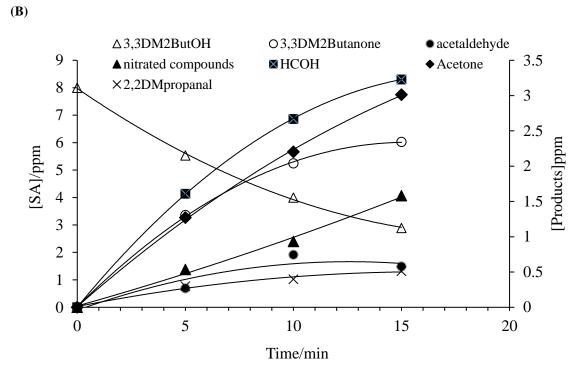

Fig. S10. SPME/GC-TOFMS chromatograms obtained for the reaction of of 3,3DM2ButOH with Cl_atoms, Cl_atoms in the presence of + NO, +OH and NO₃ radicals and reference chromatograms of 3,3DM2ButOH and 3,3-dimethyl-2-butanone.

Fig. S11. EI-MS spectra of the peaks of chromatograms shown in Fig. S10 obtained for the reaction of 3,3DM2ButOH with Clatoms - Clatoms in the presence of +NO, HOH and NO₃ radicals,-

Fig. S12. Concentration-time profiles of 3,3DM2ButOH and reaction products formed for the reaction of 3,3DM2ButOH with Cl atoms in <u>the</u> absence (A) and <u>the</u> presence of NO (B).

Fig. S13. Reaction mechanism for degradation of 3,3-dimethyl-2-butanone with the atmospheric oxidants in presence of NOx.

References

- -Andersen, V. F., Wallington, T. J., Nielsen, O. J. Atmospheric Chemistry of i-Butanol. *J. Phys. Chem. A.*, 114, 12462–12469, https://doi.org/10.1021/jp107950d, 2010.
- -Aschmann, S. M. Arey, J. and Atkinson R. Kinetics and Products of the Reactions of OH Radicals with 4,4-Dimethyl-1-pentene and 3,3-Dimethylbutanal at 296 ±2 K. *J. Phys. Chem. A*, 114, 5810–5816, https://doi.org/10.1021/jp101893g, 2010.
- -Atkinson, R. Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes. *Atmos. Chem. Phys.* 3, 2233-2307, https://doi.org/10.5194/acp-3-2233-2003, 2003.
- -Bejan, I.G., Winiberg, F.A.F., Mortimer, N., Medeiros, D.J., Brumby, C.A., Orr, S.C., Kelly, J., Seakins, P.W. Gas-phase rate coefficients for a series of alkyl cyclohexanes with OH radicals and Cl atoms. *Int. J. Chem. Kinet.* 50(8),544-555, https://doi.org/10.1002/kin.21179, 2018.
- -Bradley, W.R., Wyatt, S.E., Wells, J.R., Henley, M.V., Graziano, G.M. The Hydroxyl Radical Reaction Rate Constant and Products of Cyclohexanol. *Int. J. Chem. Kinet.*, 33, 108-117, <a href="https://doi.org/10.1002/1097-4601(200102)33:2<108::AID-KIN1002>3.0.CO;2-%23, 2001">https://doi.org/10.1002/1097-4601(200102)33:2<108::AID-KIN1002>3.0.CO;2-%23, 2001.
- -Calvert, J.G., Derwent, R.G. Orlando, J.J., Tyndall, G.S., Wallington, T.J. Mechanisms of atmospheric oxidation of the alkanes. Oxford University Press, New York, 2008.
- -Calvert, J.G., Mellouki, A., Orlando, J.J., Pilling, M.J., Wallington, T.J. The mechanisms of atmospheric oxidation of the oxygenates. Oxford University Press, New York, 2011.
- -Calvert, G., Orlando, J.J., Stockwell, W.R., Wallington, T.J. The Mechanisms of Reactions Influencing Atmospheric Ozone. Oxford University Press, New York, 2015.
- -Ceacero-Vega, A.A., Ballesteros, B., Bejan, I., Barnes, I., Jiménez, E., Albaladejo, J. Kinetics and Mechanisms of the Tropospheric Reactions of Menthol, Borneol, Fenchol, Camphor, and Fenchone with Hydroxyl Radicals (OH) and Chlorine Atoms (Cl). *J. Phys. Chem.*, A, 116, 4097-4107, https://doi.org/10.1021/jp212076g, 2012.
- -Gallego-Iniesta, M.P., Moreno, A., Martín, P., Tapia, A., Cabañas, B., Salgado. M.S. Reactivity of 2-ethyl-1-hexanol in the atmosphere. *Phys. Chem. Chem. Phys.* 12, 3294-3300, https://doi.org/10.1039/B923899A, 2010.
- -Hooshiyar and Niki. Rate constants for the gas-phase reactions of Cl atoms with C2–C8 alkanes at T = 296 K. *Int. J. Chem. Kinet.*, 27, 1197-1206, https://doi.org/10.1002/kin.550271206, 1995.
- -Jiménez. E., Lanza, B., Garzón, A., Ballesteros, B., Albaladejo, J. Atmospheric Degradation of 2-Butanol, 2-Methyl-2-butanol, and 2,3-Dimethyl-2-butanol: OH Kinetics and UV Absorption Cross Sections. *J. Phys. Chem.* A.109, 10903-10909, https://doi.org/10.1021/jp054094g, 2005.
- -Mellouki, A., Oussar, F., Lun, X., Chakir, A. Kinetics of the reactions of the OH radical with 2-methyl-1-propanol, 3-methyl-1-butanol and 3-methyl-2-butanol between 241 and 373 K. *Phys Chem. Chem. Phys.* 6, 2951-2955, https://doi.org/10.1039/B316514K, 2004.
- -Moreno, A., Salgado, S., Martin, P., Martinez, E., and Cabañas, B. Kinetic Study of the Gas Phase Reactions of a Series of Alcohols with the NO₃ Radical. *J. Phys. Chem. A*, 116, 42, 10383-10389, https://doi.org/10.1021/jp305682h, 2012.

- -Moreno, A., Salgado, S., Taccone, R., Martín, P., Cabañas, B. Atmospheric degradation of saturated alcohols: room temperature rate coefficients for NO₃ radical reactions. *Atmos. Environ.*, 96, 229-235, https://doi.org/10.1016/j.atmosenv.2014.07.037, 2014.
- -Wallington, T.J., Skewes, L.M., Siegl, W.O.; Wu. C., Japar, S.M. Gas phase reaction of Cl atoms with a series of oxygenated organic species at 295 K, *Int. J. Chem. Kinet.*, 20, 867-875, https://doi.org/10.1002/kin.550201105, 1988.
- -Wallington, T.J., Skewes, L.M., Siegl, W.O., A relative rate study of the reaction of chlorine atoms with a series of chloroalkanes at 295 K. *J. Phys. Chem.*, 93,9, 3649-3651. https://doi.org/10.1021/j100346a054, 1989.