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Abstract. The Korean Geostationary Ocean Color Imager (GOCI) satellite has monitored the East Asian region in high tem-

poral and spatial resolution every day, providing unprecedented information on air pollutants over the upstream region of the

Korean peninsula for the last decade. In this study, the GOCI Aerosol optical depth (AOD), retrieved at 550 nm wavelength,

is assimilated to ameliorate the analysis quality, thereby making systematic improvements on air quality forecasting in South

Korea. For successful data assimilation, GOCI retrievals are carefully investigated and processed based on data characteristics.5

The preprocessed data are then assimilated in the three-dimensional variational data assimilation (3DVAR) technique for the

Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). During the Korea-United States Air Quality

(KORUS-AQ) period (May 2016), the impact of GOCI AOD on the accuracy of air quality forecasting is examined by compar-

ing with other observations including Moderate Resolution Imaging Spectroradiometer (MODIS) sensors and fine particulate

matter (PM2.5) observations at the surface. Consistent with previous studies, the assimilation of surface PM2.5 concentrations10

alone systematically underestimates surface PM2.5 and its positive impact lasts mainly for about 6 h. When GOCI AOD re-

trievals are assimilated with surface PM2.5 observations, however, the negative bias is diminished and forecasts are improved

up to 24 h, with the most significant contributions to the prediction of heavy pollution events over South Korea.

1 Introduction

With the recent increase of chemical and aerosol observations in the troposphere, chemical data assimilation is expected to15

play an essential role in improving air quality forecasting, particularly in the real-time environment. Although various data

assimilation (or analysis) techniques have been developed for many decades, they were predominantly applied in the context of

numerical weather prediction (NWP) (Kalnay, 2003) and have not been extensively exploited for the prediction of air pollution.

Complications in aerosol chemistry, as well as its multiscale interactions with daily changing weather conditions, make it

challenging to predict air pollutants accurately (Grell and Baklanov, 2011; Baklanov et al., 2014; Kong and coauthors, 2015;20

Baklanov et al., 2017). Surface concentrations are directly affected by transport and dispersion of chemical species through

advection, convection, vertical diffusion and surface fluxes. In general, they are strongly driven by external forcing such as

anthropogenic and natural emissions. The latter heavily relies on temperature, humidity, and wind speed in the boundary layer

as well as solar radiation and soil moisture. Aerosols in turn affect local meteorology via aerosol-meteorology interaction
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(by directly scattering and absorbing solar radiation and also as sources of cloud condensation nuclei) at short time scales.

For the operational air quality forecasting in South Korea, the Korean National Institute of Environmental Research (NIER)

performs chemical simulations on 3-km resolution at present. For such a high-resolution application and for situations with

very high aerosol concentrations, these fast-varying complex mechanisms might be better represented through online coupling

between chemical and meteorological components. The online coupled forecasting system is particularly suitable for air quality5

forecasting associated with strong synoptic forcing or long-range transport of air pollutants. Also, finer scale features may

require more frequent coupling of the atmospheric system and only the online coupled system can provide the framework for

such applications.

With large uncertainties in chemical modeling and emission data, particularly associated with meteorological components,

one of the most effective ways of utilizing aerosol observations is to assimilate them into the forecast model and improve10

the initialization of aerosol simulations. However, due to the scarcity of three-dimensional chemical observations and the

complexity of how to project the observed information (usually in the optical properties) onto the parameterized schemes in

the chemical model, aerosol/chemical data assimilation in the coupled chemistry and meteorology models has been limited to

date (Bocquet et al., 2015). Improving the quality of chemical assimilation will not only improve the prediction of air pollution,

but also advance numerical weather prediction (NWP) for precipitation, visibility, and high impact weather.15

An international cooperative air quality field study conducted in Korea, named as the Korea-United States Air Quality

(KORUS-AQ), was a field campaign jointly developed by air quality researchers in the United States and South Korea to

improve our understanding of major contributors to poor air quality in Korea for May 1-June 12, 2016. During this early

summer time when it is mostly warm and humid, numerous measurements of pollutants were made at multiple platforms in an

effort to identify local and transboundary pollution sources contributing to the formation of ozone and PM2.5. Although local20

emissions played a nontrivial role throughout the period, the highest pollution event occurred by long-range transport from the

upwind area on May 25-27, 2016 (Miyazaki et al., 2019). As the transboundary transport cannot be fully measured by surface

stations over land, a proper use of satellite data that have a wide spatial coverage would have great potential to improve air

quality forecasting for such events.

The Korean Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorology Satellite25

(COMS) provides hourly AOD retrievals at multiple spectral bands monitoring the East Asian region centered on the Korean

peninsula during daytime (Kim et al., 2017). Since its launch in 2010, the GOCI satellite has been producing AOD retrievals

at high spatial and temporal resolution. It has long been demonstrated that the GOCI data were in high accuracy, comparable

to the low-orbiting Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite

(VIIRS) products (Lee et al. (2010); Wang et al. (2013); Xiao et al. (2016); Choi et al. (2018)).30

Liu et al. (2011) first implemented the capability of assimilating Aerosol Optical Depth (AOD) retrieved from MODIS

satellite sensors (Remer et al., 2005) into the National Centers for Environmental Prediction (NCEP) Gridpoint Statistical

Interpolation (GSI; Wu et al. (2002); Kleist et al. (2009)) system. Since they confirmed that the AOD assimilation improved

aerosol forecasts in a dust storm event that occurred in East Asia, the GSI three-dimensional variational data assimilation

(3DVAR) system has been widely used for air quality forecasting and extended for additional aerosol observations such as35
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surface particulate matter - all particles with aerodynamic diameter less than 2.5 µm (PM2.5) or up to 10 µm (PM10) (Schwartz

et al. (2012) and Jiang et al. (2013), respectively).

GOCI AOD retrievals have been assimilated in several studies to assess their impact on short-term air pollution forecasts

in the online coupled forecasting system. Saide et al. (2014) performed the Observing System Experiment (OSE) using the

eight bin Model for Simulating Aerosol Interactions and Chemistry aerosol model (MOSAIC) (Zaveri et al., 2008) in the5

WRF-Chem/GSI 3DVAR system. Pang et al. (2018) assimilated AOD retrievals from GOCI and Visible Infrared Imaging

Radiometer Suite (VIIRS; Jackson et al. (2013)) to predict surface PM2.5 concentrations over Eastern China and found that the

assimilation AOD retrievals improved the forecast accuracy but still underestimated heavy pollution events.

This work further extends the assimilation capabilities in the GSI 3DVAR system to best use GOCI AOD retrievals during

the KORUS-AQ period with careful investigation of data characteristics. Aiming at improving the operational air quality10

forecasting in Korea, which is currently lacking the state-of-the-art analysis system, we are discussing how to effectively

assimilate satellite-derived aerosol data and then examine its impact on surface PM2.5 predictions compared to that of other

observations. In the categorical forecasts for different air pollution events, we focus on severe pollution cases describing how

air pollutants evolve, coupled with the synoptic weather systems.

A brief overview of the analysis and forecasting systems used in this study is presented in Section 2, followed by cycling15

experiments with details on observation processing for GOCI retrievals described in Section 3. Results are summarized in

Section 4 discussing the observation impact during the cycles and extended forecasts separately. Forecast performances in

heavy pollution events are briefly described as well. Finally, conclusions are made in Section 5, along with a discussion on the

limitations of this study and suggestions for the future research.

2 The WRF-Chem forecast model and the GSI 3DVAR analysis system20

2.1 WRF-Chem forecast model

The model used in this study is an online-coupled meteorology and chemistry model, WRF-Chem version 3.9.1 (Grell et al.,

2005). The physics options used in WRF-Chem include the rapid and accurate radiative transfer model for GCM (RRTMG) for

long-wave radiation (Iacono et al., 2008), new Goddard shortwave radiation (Chou and Suarez, 1994), the Yonsei University

(YSU) planetary boundary layer (PBL) scheme (Hong et al., 2006), the Lin microphysics scheme (Lin et al., 1983), as well as25

a new Grell 3D cumulus parameterization scheme. These options are chosen based on the operational configuration currently

used in the Korean National Institute of Environmental Research (NIER) for their daily air quality forecasting in South Korea.

The Goddard Chemistry Aerosol Radiation and Transport (GOCART; Chin et al. (2002)), developed by the National Aeronau-

tics and Space Administration (NASA), is used as an aerosol scheme. Aerosol direct effects are allowed through the interaction

between GOCART and the Goddard shortwave radiation scheme (Fast et al. (2006); Barnard et al. (2010)).30

The Model for Ozone and Related Chemical Tracers (MOZART) gas phase chemistry (Emmons et al., 2010) is generated

with the kinetic preprocessor (KPP) (Damian et al. (2002); Sandu and Sander (2006)), and is used together with the simple

GOCART aerosol scheme, known as the MOZCART mechanism (Pfister et al., 2011). The MOZART chemistry in WRF-Chem
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is designed to run with the Madronich FTUV scheme for photolysis processes (Tie et al., 2003), reading in climatological O3

and O2 overhead columns. It also utilizes the standard WRF-Chem implementation of the Wesley dry deposition scheme

(based on Wesely (1989)) allowing for seasonal changes in the dry deposition. The resolved scale wet scavenging is inactivated

but convective wet scavenging is applied in the Grell cumulus parameterization. Also, GOCART sea salt emissions and dust

emissions with AFWA modifications are included in this study.5

Anthropogenic emissions are estimated offline based on the global EDGAR-Hemispheric Transport of Air Pollutants (HTAP)

emission inventory (http://edgar.jrc.ec.europa.eu/htap_v2/) that consisted of 0.1◦ x 0.1◦ gridmaps of CH4, CO, SO2, NOx,

NMVOC, NH3, PM10, PM2.5, BC and OC from the year of 2010. The emission data mapped to our model grids has a single

level with no vertical variations and is generated from the annual mean with no diurnal variations (e.g. time-invariant). In terms

of data range, the maximum (average) value of PM2.5 in the data, for example, is 3.56 (0.032) µg m−2 s−1 and 2.84 (0.026)10

µg m−2 s−1 in domain 1 and 2, respectively.

Biogenic emissions are built up using the Model of Emission of Gases and Aerosol from Nature (MEGAN; Version 2)

(Guenther et al., 2006), and for biomass burning emissions, daily fire estimates provided by Fire Inventory from NCAR (FINN;

Wiedinmyer et al. (2011)) are used with tracer transport allowed. All the wrf files including biomass and biomass burning

emissions are processed using the MODIS landuse datasets (Friedl et al., 2002).15

2.1.1 The GSI 3DVAR analysis system

To assimilate AOD retrievals and surface PM2.5 observations in the Weather Research and Forecasting-Chemistry (WRF-

Chem) model, the NCEP GSI 3DVAR Version 3.5 system is used. As Liu et al. (2011) and Schwartz et al. (2012) thoroughly

described the details of the system for aerosol data assimilation, only a brief explanation follows. Incorporating observations

into the three-dimensional model state space, a 3DVAR system produces the best estimate to the true state by minimizing the20

differences between observations and background forecasts (e.g. innovations; (o-b)’s), which is called the “analysis". Given

the model state vector (x), the penalty function (or cost function) J(x) is defined as

J(x) =
1
2

(x−xb)TB−1(x−xb) +
1
2

(H(x)−y)TR−1(H(x)−y), (1)

where xb stands for the background state vector (e.g. forecasts from the previous cycle), y an observation vector, and H is

an observation operator that projects the model states onto the observation space linearly or nonlinearly to compute the model25

correspondent to each observation. Background and observation error covariance matrices B and R, respectively, indicate how

reliable the background forecast (B in the first term) and the observed information (R in the second term) might be to determine

how to properly weight the two disparate resources. By minimizing the cost function (J(x)) with respect to the model state

vector x at the analysis time, the variational analysis algorithm produces the analysis that best fits to all the observations

assimilated within the assimilation time window.30

To characterize the forecast error magnitude and its spatial structure, background error covariance B is estimated for each

aerosol species using the National Meteorological Center (NMC) method (Parrish and Derber, 1992) based on the differences

between 48- and 24-h WRF-Chem forecasts valid at the same time for 30 samples ending at 0000 UTC in May 2016. The
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current GSI/3DVAR system does not allow cross-correlation between aerosol species or between aerosol and meteorological

variables. As this is a 3DVAR analysis with no time information, B only characterizes the spatial correlations in each analysis

variable, which determines how to propagate the observed information across the model grids.

Following Liu et al. (2011) and Schwartz et al. (2012), this study also takes the speciated approach where the analysis vectors

are comprised of 15 WRF-Chem/GOCART aerosol variables - sulfate, organic carbon (O) and black carbon (B), mineral dust5

(D) in five particle-size bins (with effective radii of 0.5, 1.4, 2.4, 4.5, and 8.0 µm), and sea salt (S) in four particle-size bins (with

effective radii of 0.3, 1.0, 3.25, and 7.5 µm for dry air), and P as unspeciated aerosol contributions to PM2.5 -, as opposed to

using total aerosol mass of PM2.5 as the analysis variable in Pagowski et al. (2010). For organic and black carbon, hydrophobic

and hydrophilic components are considered (e.g. O1, O2, B1, and B2).

The observation operator H(x) for surface PM2.5 requires 10 GOCART aerosol variables as10

H(x) = ρd[P +D1 + 0.286D2 + 1.8(O1 +O2) +B1 +B2 +S1 + 0.942S2 + 1.375U ], (2)

where P represents unspeciated aerosol contributions to PM2.5; U denotes sulfate; O1 and O2 (B1 and B2) are hydrophobic

and hydrophilic organic (black) carbon, respectively; andD1 andD2 (S1 and S2) are dust (sea salt) aerosols in the smallest and

2nd smallest size bins. This formula originated from the WRF-Chem diagnostics of PM2.5 for the GOCART aerosol scheme.

PM observations are mass concentrations in µg/m3 while the analysis variables are aerosol mixing ratios (µg/kg), dry density15

ρd is thus required for the unit conversion in equation 2.

In this study, we assimilate AOD retrievals at 550 nm from both MODIS and GOCI satellites using the same observation

operator based on the community radiative transfer model (CRTM; Han et al. (2006); Liu and Weng (2006)) as described in

Liu et al. (2011). Although the GOCART aerosol scheme is well known to underestimate surface PM concentrations due to the

lack of secondary organic aerosol (SOA) formation, nitrate, and ammonium (Liu et al. (2011); Volkamer et al. (2006); McKeen20

et al. (2009); Pang et al. (2018)), it is widely used in the analysis study because it is the only scheme available for assimilating

AOD retrievals from satellite data in the GSI system. Aerosol optical depth (AOD) measures the amount of light extinction by

aerosol scattering and absorption in the atmospheric column which depend on the refractive indices and the size distribution of

aerosol. In GSI, the CRTM computes the effective radii and the refractive indices of the 14 speciated WRF-Chem/GOCART

aerosol species, assuming spherical aerosol particles and lognormal size distributions. Applying single-scattering properties of25

spheres by Mie theory, the mass extinction coefficient is computed as a function of the effective radius for each aerosol species

at a certain wavelength (here, 550 nm) at each model level. The mass extinction coefficient (m2/g) for each aerosol species

multiplied by the aerosol layer mass (g/m2) produces dimensionless AOD for the species at that level. To represent the entire

atmospheric column, model-simulated AOD is then computed as the column integration of AOD for all aerosol species. Using

the CRTM as a forward operator, AOD retrievals are assimilated separately or simultaneously with PM2.5 observations from30

the surface network over East Asia, as described in the following section.
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3 Cycling Experiments

During the month of May 2016, observations are assimilated in the GSI 3DVAR system to produce the analysis that is used

as an initial condition for the following WRF-Chem simulations. WRF-Chem forecasts valid at the next analysis time are then

used as first-guess (or background) for the next GSI analysis. In this study, the whole process is repeated every 6 h (called

"cycled") for the month-long period. Here we describe the analysis and the forecast systems used in the cycling.5

3.1 Model configurations and cycling

All the analyses and the following forecasts are conducted over two one-way nested domains centered on the Korean peninsula,

as shown in Fig. 1. Domain 1 uses 175 x 127 horizontal grids at 27-km resolution and domain 2 has 97 x 136 grids at 9-km

resolution. Both domains have total of 31 vertical levels up to 50 hPa. The initial and boundary meteorological conditions for

domain 1 are provided by the U.K. Met Office Unified Model (UM-MET) global forecasts operated by the Korean Meteo-10

rological Administration (KMA) with a horizontal resolution of ∼25 km (0.3515◦x0.234375◦) at 26 isobaric levels every 6

h. The chemical initial and boundary conditions for domain 1 are taken from the output of the global Model for Ozone and

Related Chemical Tracers (MOZART-4) (Emmons et al., 2010) that are converted to WRF-Chem species by using the “mozbc"

utility (downloaded from https://www2.acom.ucar.edu/wrf-chem/wrf-chem-tools-community/). Meteorological and chemical

fields in domain 1 are reinitialized from global forecasts every cycle while initial and boundary conditions for domain 2 are15

nested down from domain 1 in a one-way nesting. Aerosol and chemical initial conditions are then overwritten by WRF-Chem

forecasts from the previous cycle in each domain. The GSI analysis is consecutively performed in the two domains using the

same observations within each domain. During the cycles, 24 h forecasts are initialized from the 00Z analysis every day.

3.2 Observations

3.2.1 Surface PM2.520

Hourly surface PM concentrations are provided by the NIER which collects real-time pollutant observations at 361 South Ko-

rean stations from AirKorea (http://www.airkorea.or.kr) and those at ∼900 Chinese sites from China National Environmental

Monitoring Centre (CNEMC; http://www.cnemc.cn). Figure 1 shows the entire surface observing network that was used to

assimilate surface PM2.5. Observation sites are concentrated in the urban area where many sites are close enough to be over-

lapped with each other. The Seoul Metropolitan Area (SMA; centered around 37.5◦N, 127◦E), for example, has hourly reports25

from total of 41 stations.

As part of data quality control (QC), surface PM2.5 concentrations higher than 100 µg/m3 are not assimilated and obser-

vations producing innovations ((o-b)’s) that exceed 100 µg/m3 were also discarded during the analysis step. To accommodate

most measurements in China during heavy pollution events, a much higher threshold of 500 µg/m3 was once applied as the

maximum observed value in our test experiment for the same month-long cycles, but it did not lead to any meaningful changes30

in the forecast performance over South Korea (not shown). Presumably this is because such high values were observed only
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over China where air pollutants were already overestimated by the emission data based on the 2010 inventory such that the

forecast skills over Korea became insensitive to the assimilation of those additional surface observations in China. Therefore,

we applied the original threshold of 100 µg/m3 to all our experiments presented here.

Observation error is composed of measurement error (εo) and the representative error (εr) caused by the discrete model grid

spacing (e.g. εpm2.5
=
√
εo2 + εr2). Following Elbern et al. (2007) and Schwartz et al. (2012), observation error for surface5

PM2.5 increases with the observed value (xo) as εo = 1.5+0.0075∗xo. The representative error is formulated as εr = γεo

√
∆x
L

where γ is 0.5, ∆x is grid spacing (here, 27 km for domain 1 and 9 km for domain 2) and the scaling factor L is defined as

3 km. Based on this formula, observation error (εpm2.5
) ranges from 2.0 to 3.2 µg/m3 in domain 2, assigining the error of

2.48 µg/m3 to the PM2.5 observation of 50 µg/m3, for example. In this 3DVAR analysis, observation errors are considered to

be uncorrelated so that the observation error covariance matrix R becomes diagonal. During the 6-h cycling, all the surface10

observations within ±1 h window at each analysis time were assimilated without further adjustment of observation error.

3.2.2 AOD retrievals and observation preprocessing

Total AOD retrievals at 550 nm from MODIS sensors onboard Terra and Aqua satellites have been widely used in aerosol stud-

ies (Zhang and Reid, 2006, 2010; Lee et al., 2011). But the polar-orbiting satellites produce a very limited dataset temporally

(mostly around 06 UTC only) and spatially (with a sparse coverage) over Korea during the KORUS-AQ period. The MODIS15

AOD level 2 products over both land and ocean "dark" area are available at 10 km x 10 km resolution and thinned over 60-km

resolution during the GSI analysis in this study. Following Remer et al. (2005), observation errors are specified as (0.03 + 0.05

* AOD) over ocean and (0.05 + 0.15 * AOD) over land, which are slightly smaller than those for GOCI AOD, as described

below.

The GOCI satellite monitors the East Asian region centered on the Korean peninsula (36◦N, 130◦E) covering about 250020

km× 2500 km. GOCI level II data has eight spectral bands from the visible to near-infrared range (412 to 865 nm) with hourly

measurements during daytime from 9:00 (00 UTC) to 17:00 local time (08 UTC) at 6 km resolution. As summarized in Choi

et al. (2018), a recently updated GOCI Yonsei aerosol retrieval (YAER) Version 2 algorithm targets cloud- and snow-free pixels

over land and cloud- and ice-free pixels over ocean in producing the level II data. By adopting the MODIS and VIIRS aerosol

retrieval and cloud-masking algorithms, cloud pixels are filtered to avoid cloud contamination, and high reflectance or highly25

heterogeneous reflectance pixels are also masked to further increase data accuracy and consistency during the retrieval process.

Unlike MODIS retrievals, GOCI AOD has not been extensively used in the data assimilation community. The GSI system

takes most observation types in prepbufr, which has already gone through some processing to be prepared for data assimilation,

but the preprocessing algorithms are not publicly available. This means that, when a new dataset is assimilated in GSI, users

need to investigate the characteristics of the data (such as temporal and spatial distribution), thereby make the data suitable for30

assimilation, which is of crucial importance for the analysis quality.

In terms of temporal distribution, most of GOCI level II data are retrieved on 30 min passed each hour in the hourly report.

For example, the actual time for most of the data reported at 00 UTC is centralized around 00:30:00 UTC (hh:mm:ss). In

the 3DVAR algorithm, there is no time dimension and all observations are considered to be available at the analysis time. To
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account for temporal distribution, different weights are often given to observations based on the relative distance between the

actual report time and the analysis time during the analysis step. However, taking possible latency in data transfer and retrieval

processing into consideration, it is not legitimate to assign weights to the retrievals based on their final report time, without

further information. Therefore, considering high temporal and spatial variability of aerosols, the assimilation window is set to

±1 h in order to avoid inconsistent observed information within the window in this study.5

Satellite data are known to have a large positive impact on the analysis quality thanks to the high data volume both in time and

space, but such high density violates the assumption of uncorrelated observation errors in the analysis algorithm and increases

the computation time for the analysis step excessively. Hence, a large volume of satellite retrievals are typically sampled on

a regularly spaced grid through the horizontal thinning procedure. In GSI, satellite radiance data can be thinned such that

retrievals are randomly sampled at a predefined spacing for each instrument type before getting ingested into the observation10

operator during the analysis (Rienecker and Coauthors, 2008). This thinning procedure, however, can pick up inconsistent data

(near the cloud boundaries, for instance) and is reported as suboptimal (Ochotta et al., 2005; Reale et al., 2018). Therefore, we

decided to preprocess GOCI AOD retrievals with superobing where all the data points are averaged within a certain radius. In

this study, we superobed GOCI retrievals over each grid box in domain 1 (at 27-km resolution). Figure 2 shows the sample

horizontal distribution of GOCI AOD retrievals valid at 06 UTC May 1 2016 before (a) and after (b) preprocessing them,15

comparing with those thinned over 60 km (c) and 27 km meshes (d) during the GSI analysis, respectively. Some high AOD

values in the original dataset (as shown in a), especially on cloud edges, cannot be fully resolved by our 27-km model grids.

By averaging all data points over each grid box at 27-km resolution, the superobed data in b) have a better quality control

throughout the domain reducing the data volume effectively. A total number of observations marked in the upper right corner

of each panel indicates that thinning over the 60 km mesh in c) reduces the number of assimilated observations to 2.5% of that20

in the original level II data while superobing and thinning over 27-km mesh utilize 8-10 % of the original data representing the

whole data coverage fairly well.

It might be noteworthy to make two more points related to data processing here. First, superobing was applied as part of

preprocessing before the GSI analysis gets started while the thinning was conducted during the analysis step such that the

preprocessing could speed up the GSI analysis up to 25 times (by injecting less than 10 % of the original data and turning25

off the thinning process). This can facilitate the use of satellite retrievals in the operational air quality forecasting. Next, the

thinning algorithm in GSI V3.5 resulted in erroneous values in some places, as indicated by the maximum values in c) and d).

When all the GOCI data thinned in the GSI system were checked for the entire month, there were such extreme values that did

not exist in the original dataset for multiple cases. This bug may need to be fixed in the GSI or avoided by bounding the values

exceeding the original data.30

To examine the effect of data processing on the performance of the analysis and the background during the cycles, we

compare two cycling experiments - one with the assimilation of the original level II data thinned over 27-km mesh (named

"GOCI_orig" in gray) and the other with the assimilation of GOCI retrievals preprocessed over 27-km grids in domain 1 (called

"GOCI" in black) - in Fig. 3. As GOCI data are reported from 00 to 08 UTC, only 00 and 06 UTC cycles are shown here in

consecutive cycle numbers. The time series of (o-a)’s and (o-b)’s in each experiment show that the preprocessed data slightly35
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better fit to the observations than the thinned data, assimilating more retrievals throughout the period. Because the differences

between the two experiments are not significant, for the computational efficiency, we decided to preprocess all the GOCI

retrievals and assimilate them turning off the thinning process in GSI for the rest of the experiments shown in this study.

Choi et al. (2018) described their improved retrieval algorithm (GOCI YAER V2) with updated cloud-masking and surface

reflectance calculations, making a long-term validation against other ground- and satellite-based measurements. In their study,5

depending on the verifying objects - either ground-based Aerosol Robotic Network (AERONET) or satellite-based retrievals

-, they specified uncertainties of GOCI AOD retrievals over land and ocean using two different linear regression formulae as

below.

ε1
land = 0.061 + 0.184τA (3)

ε1
ocean = 0.030 + 0.206τA (4)10

ε2
land = 0.073 + 0.137τA (5)

ε2
ocean = 0.037 + 0.185τA (6)

where τA stands for GOCI AOD values. In an effort to account for representativeness error, we also tried with ε2 increased

by 20% everywhere as the third error formula (e.g. ε3 = 1.2× ε2) and compared all three types of errors in Fig. 4. When15

these different observation errors were applied to GOCI retrievals in the assimilation, the smallest error (ε2) produced slightly

better fits to observations specially for the high values (AOD > 2) during the cycles, as expected, but not in a statistically

meaningful way (not shown). In fact, it is not straightforward to estimate the representativeness error which is subject to the

model resolution (both in horizontal and vertical) and data processing in use. Therefore, in many cases, observation error is

specified based on the resulting forecast performance (Ha and Snyder, 2014). But because our forecast skills were not very20

sensitive to three different error formulae tried here, for the rest of the experiments, ε2 is used as observation error for GOCI

retrievals.

The goal of this study is to examine the relative impact of the GOCI assimilation on the prediction of surface PM2.5, and

ultimately to improve the forecasts, particularly for polluted events. Although it is rather easy to render the analysis close to

GOCI observations by reducing the observation error, it is not guaranteed that such an analysis better fit to AOD retrievals25

would actually lead to better forecasts in surface PM2.5. This is partly because AOD is not directly associated with surface

PM2.5 and partly because large uncertainties in the forecast model and the emission forcing can dominate over the analysis

error during the model integration. Even though it would be hard to quantify the model error and the emission uncertainty (and

their impact on the forecast quality), it might be worth checking the correlation between GOCI AOD retrievals and surface

PM2.5 observations before evaluating the impact of GOCI AOD on surface PM2.5 forecasts. Figure 5 depicts a scatter diagram30

of GOCI AOD retrievals at 550 nm and surface PM2.5 observations that are co-located in each grid box in domain 1 for the

month of May 2016. As shown with the linear regression coefficient of 0.33, two observation types have low correlations

during this period, which is consistent with previous studies (Saide et al., 2014; Pang et al., 2018).
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4 Results

With a careful design of model configuration and observation processing, the overall impact of assimilating all the available

observations ("DA") is illustrated, compared to the baseline experiment without data assimilation ("NODA") in Figure 6. Here,

0-23h hourly forecasts from all the 00Z analyses in domain 2 are concatenated for the entire month. Surface PM2.5 observations

marked as black dots show that the air quality gets distinctively aggravated for the last 7 days, related to long-range transport5

of air pollutants. With data assimilation ("DA"), the analyses at 00Z and the following forecasts (red) make a better agreement

with corresponding observations than those without assimilation (gray), especially from day 15 (e.g. after a full spin-up for

two weeks). In particular, on May 25-27, forecast error grows quickly even from the good analysis at 00Z, possibly associated

with large uncertainties in lateral boundary conditions and the forecast model in use. However, averaged over the entire period,

the mean absolute error (mae) indicates that the performance of 0-23-h forecasts at 9-km resolution gets improved by ∼30%10

through data assimilation.

4.1 Observation impact during the cycles

Given that the aerosol assimilation has a positive impact on air quality forecasting, it might be worth isolating the contribution

of each observation type to the improvement of the analysis and the following forecasts. We first assimilate the individual

observation type separately, naming the experiment following each observation type, then we assimilate them all together15

(called "ALL"). Figure 7 illustrates the vertical profile of 10 three-dimensional GOCART aerosol variables that are used in

diagnosing PM2.5 in the GOCART scheme, in the analysis (solid) and background (e.g. 6-h forecast; dashed) averaged over

domain 2. Assuming that the cycles may need to spin up meteorology and chemistry at least for three days in the regional

simulations, all the statistics are computed from day 4 in the rest of the figures. Although the analysis variables only at the

lowest model level are used in the observation operator for surface PM2.5, the observation impact is detected throughout the20

atmosphere due to the spatial correlations specified in the background error covariance. Contributions of different observations

to each analysis variable vary, with the largest variability in the analysis increments (analysis-minus-background) displayed in

sulfate. Interestingly, a large impact of AOD retrievals is noticed in hydrophilic organic carbon (O2) aloft (e.g. between 12 and

25 levels) and unspeciated aerosol (P) in the boundary layer. The assimilation of all the observations ("ALL") tends to reduce

O2, dust in both size bins (D1 and D2) and unspeciated aerosol (P) in the lower atmosphere.25

Figure 8 summarizes the effect of different observations on PM2.5 in both domains. The assimilation of surface PM2.5

observations (green) results in the smallest PM2.5 while the GOCI assimilation (blue) produces PM2.5 most throughout the

atmosphere in both domains. When the analysis (solid line) is compared to background (dashed), it is revealed that PM2.5 is

predominantly increased over domain 1 with the assimilation of GOCI retrievals. Overall, the aerosol assimilation affects the

entire profile of PM2.5 with the largest impact at the surface.30

To understand the observation impact in the horizontal distribution, Fig. 9 shows the analysis increments (analysis-minus-

background) averaged over the period of May 4-31, 2016. Generally, the assimilation of surface PM2.5 observations ("PM")

reduces surface PM2.5 over most regions in China while the GOCI assimilation largely increases surface PM2.5 almost every-
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where, consistent with Fig. 8. As MODIS retrievals have a relatively low coverage of the East Asian region for the entire period,

they have the smallest impact among all the observation types. When all the observations are assimilated together (in "ALL"),

it combines the effect of surface PM2.5 and GOCI retrievals, as expected. While the observing network of surface PM2.5 is

widely distributed over China, the impact of GOCI data is more centralized over Korea, making unequivocal contributions to

air quality forecasting in the Korean peninsula.5

Note that we employ the 2010 inventory for our emission data, which does not reflect the emission control started from 2013

in China (Zheng et al., 2018). Given that air pollutants in the emission data constitute the majority of the precursors of PM2.5

pollution, surface PM2.5 could strongly depend on emissions which might have led to the overestimation in the background

(e.g. first-guess). Therefore, the assimilation of surface PM2.5 tends to counteract the overestimation driven by the emission

data over China. On the other hand, over South Korea, the emission data does not seem to be overestimated and the assimilation10

of surface PM2.5 leads to increasing surface PM2.5 most effectively during the cycles.

Different from surface particulate matter, AOD in the background is contingent upon the optical properties described in

the observation operator (e.g. CRTM) and the vertical structure of aerosols simulated in the column. The influence of GOCI

assimilation may indicate the model deficiencies in the two aspects because the model states are pulled toward the observed

information during the analysis step, as depicted in the analysis increment.15

4.2 Observation impact on 24-h forecasts

Since the real effect of data assimilation is manifested in the subsequent forecasts, we now examine forecast improvements

when initialized by our own analyses. A good analysis is expected to slow down the forecast error growth, leading to better

forecasts. In this subsection, forecast errors at the lowest model level are compared between experiments for 24 h, with respect

to surface PM2.5 observations from 361 stations in South Korea. As we focus on 9-km simulations in South Korea, it is20

hard to anticipate the direct effect of assimilation beyond 24 h, specially in such a small domain where the weather systems

dramatically change on a daily basis. As shown in Fig. 10, the forecast error is the largest in the baseline experiment ("NODA"),

followed by the assimilation of MODIS retrievals alone ("MODIS") in terms of mean absolute error (mae). Note that the

analysis in the "PM" experiment is verified against the same surface PM2.5 observations used in the assimilation. Therefore,

the analysis error is smaller than other experiments, but the forecast error grows quickly over the next 24 h. The assimilation25

of surface PM2.5 alone generally underestimates the prediction of surface PM2.5 with the fastest growth of forecast error. On

the other hand, the assimilation of AOD retrievals (either GOCI or MODIS) alone does not improve the surface analysis and

mostly overestimates surface PM2.5 for 24 h. When assimilated with surface PM2.5 observations (in "ALL"), however, AOD

retrievals effectively reduce the forecast error and suppress the error growth throughout 24 h forecasts.

Recently, heavy pollution events have often taken place over Korea and considerable attention was drawn to the accuracy of30

the operational air quality forecasting in the country, particularly in surface PM2.5. As it has a great social impact to accurately

predict exceedance and non-exceedance events in categorical predictions, it is necessary to evaluate the forecast performance

for different categorical events. While Miyazaki et al. (2019) classified the entire KORUS-AQ campaign period into four

different phases based on dominant atmospheric circulation patterns, we categorize events for the month of May 2016 based on
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hourly surface PM2.5 concentrations, as summarized in Table 2 and 3. Figure 11 summarizes the evaluation of 24 h forecasts

based on the formulae described below.

Overall_Accuracy(%) =
a1 + b2 + c3 + d4

N
× 100 (7)

High_Pollution_Accuracy(%) =
c3 + d4
III + IV

× 100 (8)5

Overestimation(%) =
b1 + c1 + c2 + d1 + d2 + d3

N
× 100 (9)

Underestimation(%) =
a2 + a3 + a4 + b3 + b4 + c4

N
× 100 (10)

10

False_Alarm(%) =
II

II + IV
× 100 (11)

Detection_Rate(%) =
IV

III + IV
× 100 (12)

where I = a1 + a2 + b1 + b2 (colored in light blue in Table 3) , II = c1 + c2 + d1 + d2 (in orange), III = a3 + a4 + b3 + b4

(in pink), and IV = c3 + c4 + d3 + d4 (in light green). The air quality forecasting operated by the Korean NIER is currently15

evaluated in the same way on a daily basis, except for daily mean values.

In all events, the overall accuracy of 0-24-h forecasts is the highest in "ALL" (∼70 %) and the lowest in "NODA" (∼60 %),

making about 10 % improvement by assimilation during this KORUS-AQ period. It is noted that the forecast error illustrated

in Fig. 10 is dominated by non-polluted events (about two thirds of the month-long period, as shown in Fig. 6) while the

forecast accuracy summarized in Fig. 11 is determined by equally weighting different categorical forecasts with different20

sample sizes. This implies that the categorical forecast evaluation tends to emphasize the forecast accuracy for polluted events

(which has a smaller sample size). As such, Fig. 11a highlights the effect of data assimilation on improving air pollution

forecasts. Differences between experiments are much larger in high pollution events (Fig. 11b) and the detection rate (Fig.

11f) where AOD retrievals (both GOCI and MODIS) make the biggest positive contributions. While "NODA" produces poor

forecasts consistently in most metrics shown in Fig. 11, the forecast accuracy in "PM" (green) drops very quickly for the first25

12 h for all events (a) and polluted events (b), indicating that the assimilation of surface PM2.5 alone may not be enough

to maintain the forecast skills beyond the cycling frequency (e.g. 6 h). It also increasingly underestimates surface PM2.5 with
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time, especially after 20 h, and produces more false alarms although its overestimation rate is the lowest among all experiments.

Overall, the AOD assimilation tends to overestimate the prediction of surface PM2.5 with a relatively large false alarm, but

clearly helps improving the forecast accuracy up to 24 h when assimilated with surface PM2.5 observations. Even with low

correlations with surface PM2.5 (as illustrated in Fig. 5), AOD retrievals keep the surface air pollution forecasts from drifting

away from the true state, compensating for model deficiencies. This demonstrates that it could be substantially beneficial to5

monitor a wide range of the surrounding area using the geostationary satellite in the enhancement of air quality forecasts.

4.3 A heavy pollution case

The effect of assimilating different observations is most distinguishable in high pollution events, as demonstrated in Fig. 11.

During the KORUS-AQ period, there were about 5 heavy pollution cases (when surface PM2.5 > 50 µg/m3, as defined in Table

2) over South Korea. The longest and the most severe pollution events have occurred on May 25-26, 2016. Fig. 12 illustrates10

how air pollutants have been transported from China, associated with the strong synoptic weather systems in the region for

a few days. As our best experiment "ALL" analyzed, the Korean peninsula was positioned in the downstream region of the

upper-level trough at 500 hPa (in the left panel). In the low troposphere, the center of the North Pacific High was situated

in the east of Japan bringing lots of moisture to Korea at 00 UTC 24 May 2016 and blocking the eastward movement of the

surface low pressure system located north of Korea (centered around 46◦N, 125◦E), as shown in Fig. 12d. With the slowly15

approaching upper-level westerlies, these warm and moist conditions in the low troposphere provided a favorable environment

for increasing air pollution in the Korean peninsula for the next few days. At 00 UTC 25 May, the Shangdong area in China

(shown as the largest polluted area to the west of Korea) exceeded 150 µg/m3 in surface PM2.5 (Fig. 12b). This area is in

high topography with elevations higher than 3.5 km (in height above ground level; AGL) while most regions in South Korea,

especially the Seoul Metropolitan Area (SMA), are elevated near the sea level. Therefore, when slow and deep baroclinic20

systems are approaching the Korean peninsula like these events, a deep pool of highly polluted air can be advected from China

as a whole to substantially degrade the air quality in South Korea at least for a day or two. This long-range transport case

produced an hourly maximum surface PM2.5 observation of 117 µg/m3 over the SMA in Korea at 00 UTC May 26, 2016, as

shown in Fig. 13a.

One notable difference between observations (a) and all the model simulations (b-f) in Fig. 13 is that 9-km forecasts driven25

by 0.1◦ x 0.1◦ anthropogenic emissions cannot simulate such a high spatial variability across stations. During this heavy

pollution event, there were dozens of missing observations due to the power instability to have a less number of stations in

a) than all the experiments (b-f). With only 145 stations reporting high concentrations (e.g. surface PM2.5 > 50 µg/m3), the

observed distribution still shows a sharp gradient between the stations, specially in SMA. Consistent with all the previous

figures, the assimilation of surface PM2.5 alone (in "PM") underpredicts surface PM2.5 (even more than "NODA") while GOCI30

overpredicts surface PM2.5 most among all observation types almost everywhere except for SMA. MODIS retrievals slightly

increase the concentrations from NODA (by ∼10 µg/m3), with the spatial distribution almost the same as that of NODA. In

the concurrent assimilation of all the observations (in "ALL"), a moderate overestimation is presented everywhere, but the high

pollution in SMA is not simulated either. To resolve such a large variability between urban and rural area and to increase the
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sharpness of the forecast accuracy, the use of higher grid resolutions (such as 3 km) and more accurate emission data might be

indispensable.

5 Conclusions and discussion

GOCI AOD retrievals provide reliable and consistent aerosol information, monitoring air pollutants flowing over to the Korean

peninsula at high resolution every day. The best use of such invaluable observations is to inject them into the forecast system5

through data assimilation and better initialize numerical forecasts. For the successful assimilation of real observations, specially

retrievals from satellites, extra attention should be paid to processing the data properly, based on the characteristics. The

spatial and temporal representativeness of GOCI retrievals was carefully examined and the corresponding data processing was

conducted before assimilation in this study.

Using the GSI 3DVAR system coupled with the WRF-Chem forecast model, we assimilated the satellite AOD retrievals10

as well as surface PM2.5 observations for the month of May 2016 during the KORUS-AQ period. Compared to the baseline

experiment (“NODA"), the simultaneous assimilation of various observations consistently improved the prediction of ground

PM2.5 for 24-h forecasts, reducing systematic error and false alarms. The assimilation of ground PM2.5 alone improved the

analysis during the cycles, reducing the analysis error to almost half the size compared to the experiment without assimilation.

However, the forecast error grew very quickly over the next 12 hours, underestimating PM2.5 at the surface, especially in the15

heavy pollution events where the forecast accuracy dropped from over 70% to∼30% only in four hours. Meanwhile, the GOCI

AOD retrievals alone tended to overestimate surface PM2.5 but significantly contributed to improving air quality forecasts

up to 24 h when assimilated with surface PM2.5 observations. The effect of data assimilation is most distinguishable and

remarkable for high pollution events. During the month of May 2016, most heavy pollution events were associated with long-

range transport from China. In such cases, it was particularly beneficial to monitor the wide upstream region using geostationary20

instruments such as the GOCI satellite.

Even with the successful data assimilation, there are several limitations in this study. First, the simple GOCART aerosol

scheme is well known for the underestimation of air pollutants due to the lack of the aerosol size distribution and the secondary

organic aerosol (SOA) formation. We had to use the scheme for the assimilation of AOD retrievals since the observation

operator for AOD was only built for the GOCART scheme in the GSI system. Next, as there is no cross-covariance between25

aerosol and meteorological variables considered in the background error covariance estimates, the influence of aerosols on

meteorological variables was not fully simulated in this study. Without the assimilation of meteorological observations, it was

not possible to make an optimal estimate that is fully coupled between chemistry and meteorology although the meteorological

information was provided through the first guess and lateral boundary conditions. Finally, the emission inventory used in this

study was based on the annual mean of 2010, which did not reflect the actual emissions for the year of 2016, especially over30

China. The large bias and uncertainties in the emission data was particularly detrimental to the assimilation of surface PM2.5

alone.
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To overcome the systematic underestimation of the GOCART aerosol scheme in the assimilation context, there is an ongoing

effort for a new development of an interface for more sophisticated aerosol schemes such as MOSAIC and/or the Modal for

Aerosol Dynamics in Europe and the Volatility Basis Set (MADE/VBS; Ackermann et al. (1998), Ahmadov et al. (2012)) in

the WRFDA system (Barker et al., 2012). This would be advantageous for more realistic forecast behavior in high resolution

applications.5

Although the KORUS-AQ campaign produced numerous measurements at multiple platforms such as aircrafts and lidar, this

study could not benefit from the abundant dataset in the evaluation. Given that our goal is to assess the relative importance of

GOCI retrievals on surface PM2.5 forecasts, there was no other instrument that reported surface PM2.5 concentrations or all

the precursors of PM2.5 concentrations to validate surface PM2.5 forecasts. Due to the low correlations between ground-level

PM2.5 and AOD, it was not appropriate to measure the forecast performance in surface PM2.5 with respect to surface AOD10

observations, either.

The positive impact of data assimilation is generally limited to 24-h forecast because of three major reasons: First, most air

pollutants have a short lifetime due to dry and wet deposition and transformations through interactions with solar radiation and

clouds. Secondly, pollutant transport and transformations in chemical transport models are strongly driven by external forcing,

such as emissions, boundary conditions, and meteorological fields. Lastly, there are large uncertainties in aerosol and gas-phase15

chemistry parameterized in chemical transport models. Therefore, to extend the period of forecast improvements, emission

data needs to be improved and large uncertainties in chemical and meteorological boundary conditions should be minimized.

It has been shown that the estimation of emission inventories as part of the DA procedure can help extend the impact of

data assimilation in longer forecasts (Elbern et al., 2007; Kumar et al., 2019). Also, more sophisticated aerosol and chemical

mechanisms might be able to improve air quality forecasting by reducing model deficiencies (Chen et al., 2019). A simultaneous20

assimilation of meteorological observations and measurements of individual chemical species as well as particulate matter

would be certainly beneficial in both NWP and air quality forecasting. To better account for high nonlinearities and uncertainties

of aerosol forecasting on small scales, more advanced analysis techniques such as ensemble or hybrid data assimilation would

be more desirable.
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Figure 1. Two model domains - domain 1 at 27-km resolution nested down to the inner box for domain 2 over Korea at 9-km resolution

- used in this study. Dots indicate the surface network with 960 Chinese stations and 361 Korean stations reporting hourly surface PM2.5

observations valid at 00 UTC 26 May 2016.
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Figure 2. Horizontal distribution of GOCI AOD at 550 nm retrieved at 2016-05-01_06:00:00 UTC in a) the original Level II data at 6 km

resolution b) the preprocessed at 27 km resolution before GSI, and the data thinned over c) 60 km and d) 27 km resolution during the GSI

analysis, respectively. A total number of observations available for the GSI analysis is shown in the upper right corner of each panel and the

maximum value in the upper left corner of each map.
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Figure 3. Time series of observation-minus-analysis (o-a; solid lines) and observation-minus-background (o-b; dotted) with respect to GOCI

AOD retrievals at 550 nm for two cycling experiments over domain 1. The "GOCI_orig" experiment assimilates the original data thinned over

27-km mesh (in gray) while the "GOCI" experiment assimilates GOCI retrievals averaged over 27-km grids in domain 1 (black). Cycle-mean

values are displayed next to each component. Total number of observations assimilated at each cycle is also plotted as “+” sign along with

the right y-axis in the corresponding color for each experiment.
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Figure 4. Three different types of observation errors (ε) applied to GOCI AOD retrievals over land (solid line) and ocean (dashed line),

respectively.
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Figure 5. Scatter plots of GOCI AOD retrievals versus ground PM2.5 observations collocated in domain 1 for the month of May 2016. The

value of R2 is the correlation coefficient between the two observation types based on the linear regression shown as the red line.
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Figure 6. Time series of surface PM2.5 simulated with (DA; red) and without assimilation (NODA; gray) in domain 2, representing hourly

0-23-h forecasts from 00Z every day, as averages over 361 stations over South Korea. Corresponding observations are marked as black dots.

The mean absolute error (mae; |o− f |) averaged over the entire period is shown for each experiment.

27

https://doi.org/10.5194/acp-2019-648
Preprint. Discussion started: 28 August 2019
c© Author(s) 2019. CC BY 4.0 License.



Figure 7. Vertical profile of 10 GOCART aerosol variables in each experiment, as averaged over domain 2 for the period of May 4 - 31, 2016.

Variable names are consistent with those in equation 2. Analysis is depicted as solid line while background (e.g. 6-h forecast) as dashed line.
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Figure 8. Same as Figure 7, but for PM2.5 in both domains.
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Figure 9. Horizontal distribution of analysis increments (analysis-minus-background) in PM2.5 at the lowest level in domain 1, averaged

over the period of May 4 - 31, 2016. Maximum and mean values of the domain in each experiment are shown in the upper right corner of

each panel.

30

https://doi.org/10.5194/acp-2019-648
Preprint. Discussion started: 28 August 2019
c© Author(s) 2019. CC BY 4.0 License.



Figure 10. Root-mean-square-error (rmse) and bias error of 9-km simulations in different experiments as a function of forecast hour, verified

against surface PM2.5 observations from 361 stations in South Korea for May 4 - 31, 2016. An average of 0-24 h forecasts is shown next to

each experiment name.
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Figure 11. Same as Fig. 10, except 24-h forecast accuracy (%) for categorical forecasts, as defined in Table 2 and 3.

32

https://doi.org/10.5194/acp-2019-648
Preprint. Discussion started: 28 August 2019
c© Author(s) 2019. CC BY 4.0 License.



Figure 12. The GSI 3DVAR analyses at 27-km resolution in domain 1 in the "ALL" experiment for three days from 24 to 26 May 2016 at

00 UTC (top to bottom). In the left panel, the horizontal distribution of surface PM2.5 ([µg/m3], filled), geopotential height (contours every

40 m) and horizontal winds ([m/s] in gray vectors) at 500 hPa illustrates that the long-range transport of air pollution from China causes the

heavy pollution over South Korea. In the right panel, mean sea level pressure (contours every 4 hPa), 2-m temperature ([K], filled), relative

humidity (> 90% in pink dots) and horizontal winds ([m/s] in gray vectors) at 850 hPa represent the weather system in the low troposphere

at the same time.
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Figure 13. Horizontal distribution of 24-h forecast in 9-km simulations in PM2.5 at the lowest level in each experiment compared to a)

observations from 361 stations in South Korea valid at 00 UTC 26 May 2016.
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Table 1. Physical and chemical parameterizations used in the experiments.

Physical processes Parameterization schemes

Aerosol chemistry GOCART

Gas-phase chemistry MOZART-4

Photolysis Fast-TUV

Cloud microphysics Lin

Cumulus Grell 3D ensemble

Longwave radiation RRTMG

Shortwave radiation Goddard

PBL YSU

Surface layer Monin-Obukhov

Land surface Noah
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Table 2. Air quality index values

Concentration (µg/m3, hourly) Good Moderate Unhealthy Very Unhealthy

PM2.5 0-15 16-50 51-100 > 100
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Table 3. Categorical forecasts for different air pollution events

Category
Forecast

Good Moderate Unhealthy Very Unhealthy

Observation

Good a1 b1 c1 d1

Moderate a2 b2 c2 d2

Unhealthy a3 b3 c3 d3

Very Unhealthy a4 b4 c4 d4

I

II

III

IV
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