Understanding Variability

 CESM-RESFire and Implications for Decadal ClimateYufei Zou ${ }^{1 \dagger}$, Yuhang Wang ${ }^{1}$, Yun Qian ${ }^{2}$, Hanqin Tian ${ }^{3}$, Jia Yang ${ }^{4}$, Ernesto Alvarado ${ }^{5}$
${ }^{1}$ School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
${ }^{2}$ Pacific Northwest National Laboratory, Richland, WA 99354, USA.
${ }^{3}$ International Centre for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, AL 36849, USA.
${ }^{4}$ College of Forest Resources/Forest and Wildlife Research Center, Mississippi State University, MS 39762, USA.
${ }^{5}$ School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA.
\dagger Now at the School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA.
Correspondence to: Yuhang Wang (yuhang.wang@eas.gatech.edu) and Yufei Zou (yzou2017@uw.edu)

Supplement

The AERONET network did not provide AOT measurements at 550 nm wavelength. For direct comparison with the model results, we estimated AERONET AOT at 550 nm by interpolating the measurements at two closest wavelengths at 500 nm and 675 nm . Specifically, the optical thickness of aerosols and the wavelength of light satisfies the power law (Ångström, 1929) in Eq. (S1):
$\frac{\tau_{\lambda}}{\tau_{\lambda_{0}}}=\left(\frac{\lambda}{\lambda_{0}}\right)^{-\alpha}$,
where τ_{λ} is the optical thickness at wavelength $\lambda, \tau_{\lambda_{0}}$ is the optical thickness at the reference wavelength λ_{0}, and α is the Ångström exponent.
We first calculated the Ångström exponent based on the optical thickness measured at 500 nm and 675 nm , then estimated the optical thickness at 550 nm using Eq. (S1) and AOT at 500 nm as the reference. The estimation equation is shown in Eq. (S2):
$\tau_{550}=\tau_{500}\left(\frac{550}{500}\right)^{-\alpha}$, where $\alpha=-\frac{\log \frac{\tau_{675}}{\tau_{500}}}{\log \frac{675}{500}}$,

Reference

Ångström, A.: On the Atmospheric Transmission of Sun Radiation and on Dust in the Air, Geografiska Annaler, 11, 2, 156-166. doi:10.1080/20014422.1929.11880498, 1929.

