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Abstract. China’s fossil-fuel CO2 emissions (FFCO2) emissions accounted for about approximately 28% of the global total 

FFCO2 in 2016. An accurate estimate of China’s FFCO2 emissions is a prerequisite for global and regional carbon budget 

analyses and the monitoring of carbon emission reduction efforts. However, large significant uncertainties and discrepancies 

exist in estimations of China’s FFCO2 emissions estimations due to a lack of detailed traceable emission factors (EF) and 

multiple statistical data sources. Here, we evaluated China's FFCO2 emissions from nine9 published global and regional 35 

emission datasets. These datasets show that the total emissions increased from 3.4 (3.0-3.7) in 2000 to 9.8 (9.2-10.4) Gt CO2 

yr
-1

 in 2016. The variations in their these estimates were due largely due to the different EF (0.491-0.746 t C per t of coal) and 

activity data. The large-scale patterns of gridded emissions showed a reasonable agreement with high emissions being 
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concentrated in major city clusters, and the standard deviation mostly ranged from 10-40% at the provincial level. However, 

patterns beyond the provincial scale vary varied greatly significantly, with the top 5% of the grid-level accounting for 50-90% 40 

of total emissions for in these datasets. Our findings highlight the significance of using locally- measured EF for the Chinese 

coals. To reduce the uncertainty, we call on the enhancement of recommend using physical CO2 measurements and use them 

these values for datasets validation, key input data sharing (e.g., point sources) and finer resolution validations at various 

levels. 

Keywords: fossil-fuel CO2 emissions, spatial disaggregation, emission factor, activity data, comprehensive dataset 45 

1 Introduction 

Anthropogenic emissions of carbon dioxide (CO2) is one of the major contributions in acceleratingaccelerators of global 

warming (IPCC, 2007). The gGlobal CO2 emissions from fossil fuel combustion and industry processes increased to 36.23 

Gt CO2 yr
-1 

in 2016, with a mean growth rate of 0.62 Gt CO2 yr
-1

 per year over the last decade (Le Quéré et al., 2018). In 

2006, China became the world’s largest emitter of CO2 (Jones, 2007). The CO2 emissions from fossil fuel combustion and 50 

cement production of in China was were 9.9 Gt CO2 in 2016, accounting for about approximately 28% of all global 

fossil-fuel based CO2 emissions (Le Quéré et al., 2018;IPCC AR5, 2013). To avoid the potential adverse effects from climate 

change (Zeng et al., 2008;Qin et al., 2016), the Chinese government has pledged to peak its CO2 emissions by 2030 or earlier 

and to reduce the CO2 emissions per unit gross domestic product (GDP) by 60-65%, below less than the 2005 levels (SCIO, 

2015). Thus, an accurate quantification of China’s CO2 emissions is the first step in toward understanding its carbon budget 55 

and making carbon control policy. 

Chinese The total emission estimates for China are thought to be uncertain or biased due to the lack of reliable statistical data 

and/or the use of generic emission factors (EF) (e.g., (Guan et al., 2012); (Liu et al., 2015b)). National and provincial data- 

based inventories used activity data from different sources. The Carbon Dioxide Information Analysis Center (CDIAC) 

usesd national energy statistics from the United Nations (UN) (Andres et al., 2012), and both the Open-Data Inventory for 60 

Anthropogenic Carbon Ddioxide (ODIAC) and Global Carbon Project (GCP) mainly use CDIAC total estimates, and thus, 

they are identical in time series (Le Quéré et al., 2018;Oda et al., 2018). The Emissions Database for Global Atmospheric 

Research (EDGAR) and Peking University CO2 (PKU-CO2, hereafter named as PKU) derived emissions from the energy 

balance statistics of the International Energy Agency (IEA) (Janssens-Maenhout et al., 2019a;Wang et al., 2013). On the 

other handIn contrast, the provincial data- based inventories developed within China all used the provincial energy balance 65 

sheet in from the China Energy Statistics Yearbook (CESY), from National Bureau of Statistics of China (NBS) (Cai et al., 

2018;Liu et al., 2015a;Liu et al., 2013;Shan et al., 2018). As for EF, thThere are generally four sources of EF, i.e., 1) The 

Intergovernmental Panel on Climate Change (IPCC) default values, which that has have been adopted by ODIAC and 

EDGAR (Andres et al., 2012;Janssens-Maenhout et al., 2019b;Oda et al., 2018); 2) National Development and Reform 
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Commission (NDRC) (NDRC, 2012b); 3) China’s National Communication, which reportsed to the United Nations 70 

Framework Convention on Climate Change (UNFCCC) (NDRC, 2012a); and 4) The China Emission Accounts and Datasets 

(CEADs) EF, which that are locally optimized through large sample measurements (Liu et al., 2015b). The existing estimates 

of global total FFCO2 emissions are comparable in magnitude, with an uncertainty that is generally within ±10% (Le Quéré 

et al., 2018;Oda et al., 2018). However, there are great significant differences in these values at the national scale (Marland et 

al., 2010;Olivier et al., 2014), with the uncertainty ranging from a few percent to more than 50% in the estimated emissions 75 

for individual countries (Andres et al., 2012;Boden et al., 2016;Oda et al., 2018). 

Along with the total emissions estimates, the spatial distribution of emissionss are is also important for several reasons: 1) 

Spatial gridded products provide enhance our basic understandings on of CO2 emissions; 2) They Sspatial distributions are 

key inputs (as priors) for transport and data assimilation models, and which influenced the carbon budget (Bao et al., 2020); 

and 3) For high- emissions areas recognized by multiple inventories, they spatial distributions can be used for policy making 80 

in toward emissions reductions and can provide useful information for the deployment of instruments in emissions 

monitoring for high-emissions areas recognized by multiple inventories (Han et al., 2020). At the global level, gridded 

emissions datasets are often based on the disaggregation of country- scale emissions (Janssens-Maenhout et al., 2017;Wang 

et al., 2013). Thus, the gridded emissions data are subjected to errors and uncertainties from due to the total emissions 

calculations and emissions spatial disaggregation (Andres et al., 2016;Oda et al., 2018;Oda and Maksyutov, 2011). For 85 

example, the Carbon Dioxide Information Analysis Center (CDIAC) distributes national energy statistics at a resolution of 

1°×1° using the population density as a proxy (Andres et al., 2016;Andres et al., 2011). Further, to improve the spatial 

resolution of the emissions inventory, the Open-Data Inventory for Anthropogenic Carbon dioxide (ODIAC) distributes 

national emissions based on CDIAC and BP statistics with satellite nighttime lights and power plant emissions (Oda et al., 

2018;Oda and Maksyutov, 2011).  (EDGAR ) derivesd emissions from the energy balance statistics of the International 90 

Energy Agency (IEA), and obtains country- specific activity datasets from BP plc, United States Geological Survey (USGS), 

World Steel Association, Global Gas Flaring Reduction Partnership (GGFR)/U.S. National Oceanic and Atmospheric 

Administration (NOAA) and International Fertilizer Association (IFA). Gridded emissions maps at a resolution of 0.1°×x0.1° 

were are produced using spatial proxy data based on the population density, traffic networks, nighttime lights and point 

sources, as described in Janssens-Maenhout et al. (2017). Based on the sub-subnational fuel data, population and other 95 

geographically resolved data, a high-resolution inventory of global CO2 emissions was developed at Peking University  

(Wang et al., 2013). . 

In order toTo accurately calculate emissions, a series of efforts have been conducted to quantitatively evaluate China’s CO2 

emissions using national or provincial activity data, local EF, and detailed data sets of point sources (Cai et al., 2018;Li et al., 

2017;Wang et al., 2013). The China High Resolution Emission Database (CHRED) was developed by Cai et al. (2018) and 100 



4 
 

Wang et al. (2014) based on the provincial statistics, traffic network, point sources and industrial and fuel-specific EF. 

CHRED was featured by based on its exclusive point source data for from 1.58 million industrial enterprises from the First 

China Pollution Source Census. The MutliMulti-resolution Emission Inventory for China (MEIC) was developed by Zhang 

et al. (2007), Lei et al. (2011) and Liu et al. (2015a) at Tsinghua University through integrating the integration of provincial 

statistics, unit-based power plant emissions, population density, traffic networks, and emission factor (EF)EF (Li et al., 105 

2017;Zheng et al., 2018b;Zheng et al., 2018a). The MEIC uses thed China Power Emissions Database (CPED), and in which 

the unit-based approach is used to calculate emissions for each coal-fired power plant in China with detailed unit-level 

information (e.g., coal use, geographical coordinates). For theRegarding mobile emissions sources, a high-resolution 

mapping approach is adopted to constrain the vehicle emissions using a county-level activity database. CEADs was 

constructed by (Shan et al., 2018;Shan et al., 2016) and Guan et al. (2018) based on different levels of inventories to provide 110 

emissions at the national and provincial scales. CEADs usesd coal EF from the large-sample measurements (602 coal 

samples and samples from 4,243 coal mines). And this is , which are assumed to be more accurate than the IPCC default 

EFs. 

However, rRegardless of these efforts, however, the amount of China’s CO2 emissions remains uncertain due to the large 

discrepancy among current estimates, of which the difference ranges from 8-24% of the total estimates (Shan et al., 115 

2018;Shan et al., 2016). Several studies have made undertaken efforts of quantifyingto quantify the possible uncertainty in 

China’s FFCO2, such as differences from due to estimation approaches (Berezin et al., 2013), energy statistics (Hong et al., 

2017;Han et al., 2020), spatial scales (Wang and Cai, 2017), and point source data . Importantly, the authors would like to 

point outnote that the lack of a comprehensive understanding and comparison of the potential uncertainty in estimates of 

China’s FFCO2, including spatial, temporal, proxy, and magnitude components, makes causes Chinese emissions possible 120 

data to be more uncertain, and thus, it is important to present, analyze and explain such differences among inventories .  

Here, we evaluated the uncertainty in China’s FFCO2 estimates by synthesizing global gridded emissions datasets (ODIAC, 

EDGAR, and PKU) and China-specific emission maps (CHRED, MEIC, and the Nanjing University CO2 (NJU) emission 

inventory). Moreover, several other inventories were used in the evaluation analysis, such as the Global Carbon Budget from 

the Global Carbon Project,  and the National Communication on Climate Change of China (NCCC).  125 

The purposes aims of this study were to: 1) Qquantify the magnitude and the uncertainty in China’s FFCO2 estimates using 

the spread of values from the state-of-the-art inventories; 2) identify the spatiotemporal differences of China’s FFCO2 

emissions between among the existing emission inventories and explore the underlying reasons for such differences. To our 

knowledge, this is the first comprehensive evaluation of the most up-to-date and mostly predominantly publicly available 

carbon emission inventories for China. 130 
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2. Emissions data 

The An evaluation analysis was conducted from 9 inventories including six6 gridded datasets (listed in Table 1, ODIAC, 

EDGAR, PKU, CHRED, MEIC, and NJU) and three3 other datasets (GCP/CDIAC, CEADs, and NCCC) containing 

statistical data. We selected the year 2012 for spatial analysis since because this is the most recent year available for all the 

gridded data sets and also because this is2012 was a peak year of emissions due to the strong reductions from following the 135 

impacts of the 12th-Five-Year-Plan. Specifically, the global fossil fuel CO2 emissions datasets included the year 2017 version 

of ODIAC (ODIAC2017), the version v4.3.2 of EDGAR (EDGARv4.3.2) and, PKU-CO2, all of which all used the Carbon 

Monitoring for Action (CARMA) as the point source. The China-specific emissions data used were the dated from the 

yearfrom 2007 of from CHRED, the MEIC v1.3 and, NJU-CO2 v2017, all of which all used China Energy Statistical 

Yearbook (CESY) activity data. Moreover, three3 inventories were used as a references, i.e., GCP/CDIAC, CEADs and 140 

NCCC, since because GCP and ODIAC used CDIAC for most the majority of the years, except for the most-recent two years, 

that which were extrapolated by using BP data,. t These three inventories were treated as inventory one in a time series 

comparison. Data were collected from the official websites for of ODIAC, EDGAR, PKU, and 6 six tabular statistical data 

sets, and were also acquired from their the authors for ofwho developed CHRED, MEIC and NJU. See the supporting 

information for more details on of the data sources and the methodology of used for each dataset. 145 

3. Methodology for the evaluation of multiple datasets  

We evaluated these the abovementioned datasets from three aspects: data sources, boundary (emission sectors) and 

methodology (Figure 1, Table 1 and S1, S2). For In regard to the data source, there are two levels: national data, such as UN 

or IEA statistics, and provincial- level data, such as CESY. The emission sectors mainly include fossil fuel production, 

industry production and processes, households, transportation, aviation/shipping, agriculture, natural biomass burning from 150 

wild fires and the waste for from these datasets, and where; Table S1 lists theed sectors included in each inventory. And In 

addition, for methodology, the analysis of the inventories includes the total estimates (activity data and EF) aspect and the 

spatial disaggregation of point, line and area sources. As Fig. 1 depictsshows depicted the conceptual procedure followed in 

for the total emissions estimates and how the gridded maps are were produced for all the inventories, and thus, it is important 

to know the differences in the activity data, EF and spatial proxy data and spatial disaggregation methods they used by 155 

previous scholars, to understand the differences among the inventories in regard to total emissions estimates and spatial 

characteristics. 
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Figure 1 Conceptual diagram for data evaluation based on data sources, emission sectors and methodologies.  

Preprocessing The preprocessing of six gridded CO2 emission datasets included several steps, which that are described as 160 

follows. First, tThe global maps of CO2 emissions (i.e., ODIAC, EDGAR and PKU) were re-projected to using the Albers 

Conical Equal Area projection (that of CHRED). And Next, the nearest neighbor algorithm was used to resample different 

spatial resolutions into a pixel size of 10 km× by 10 km, and this method takes the value from the cell closest to the 

transformed cell as the new value. Second, the national total emissions were derived using the ArcGIS zonal statistics tool 

for from CHRED, while the other others emissions were from tabular data provided by the data owners. Finally, the grids for 165 

each inventory were sorted in ascending order and then plotted on a logarithmic scale to represent the distribution of 

emissions. To identify the contribution of high emission grids, emissions at the grid level that exceeded 50 kt CO2 yr
-1

 km
-2

 

and the top 5% emitting grids were selected for analysis. 
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Table 1 General information for of the emissions data sets* 169 

Data 
ODIAC2

017 
EDGARv432 PKU CHRED MEIC NJU CEADs GCP/CDIAC NCCC 

Domain Global Global Global China China China China Global China 

Temporal 

coverage 

2000-201

6 
1970-2012 1960-2014 2007, 2012 2000-2016 

2000-2

015 

1997-20

15 
1959-2018 2005, 2012, 2014 

Temporal 

resolution 
Monthly Annual Monthly 

Biennially 

or 

triennially 

Monthly Annual Annual Annual Annual 

Spatial 

resolution 
1 km 0.1 degree 0.1 degree 10 km 0.25 degree 

0.25 

degree 
N/A N/A N/A 

Emission 

estimates 

Global & 

National 
Global & National 

Global & 

National 

National & 

Provincial 

National & 

Provincial 

Nationa

l & 

Provinc

ial 

National 

& 

Provinci

al 

Global & National National 

Emission 

factor for 

raw coal 

(tC per t of 

coal) 

0.746 0.713 0.518 0.518 0.491 0.518 0.499 0.746 0.491 

Uncertaint

y 

17.5% 

(95% CI) 
±15% ±19% (95% CI) ±8% ±15% 

7-10% 

(90% 

CI) 

-15% - 

25% 

(95% 

CI) 

17.5% (95% CI) 5.40% 

Point CARMA CARMA3.0 CARMA2.0 FCPSC CPED CEC;A N/A N/A N/A 
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source 2.0  CC;CC

TEN 

Line 

source 
N/A 

the OpenStreetMap 

and 

OpenRailwayMap, 

Int. aviation and 

bunker 

N/A 

The 

national 

road, 

railway, 

navigation 

network,, 

and traffic 

flows 

Transport 

networks 
N/A N/A N/A N/A 

Area 

source 

Nighttim

e light 

Population density, 

nighttime light 

Vegetation and 

population 

density, 

nighttime light 

Population 

density, 

land use, , 

human 

activity 

Population 

density, land 

use 

Populat

ion 

density, 

GDP 

N/A N/A N/A 

Version 

name 

ODIAC2

017 

EDGARv4.3.2_FT2

016，EDGARv4.3.2 
PKU-CO2-v2 CHRED MEIC v.1.3 

NJU-C

O2v201

7 

CEADs N/A N/A 

Year 

published/

updated 

2018 2017 2016 2017 2018 2017 2017 2019 2018 
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Data 

sources 

http://db.

cger.nies.

go.jp/dat

aset/ODI

AC/ 

http://edgar.jrc.ec.e

uropa.eu/overview.

php?v=432_GHG&

SECURE=123 

http://inventory.

pku.edu.cn/dow

nload/download.

html 

Data 

developer 
Data developer 

Data 

develop

er 

http://w

ww.cead

s.net/ 

(registrat

ion 

required

) 

https://www.globalcarbon

project.org/carbonbudget/

19/data.htm 

https://unfccc.int/sit

es/default/files/resou

rce/China 

2BUR_English.pdf 

Reference

s 

Oda 

(2018) 

Janssens-Maenhout 

(2017) 

Wang et al., 

2013 

Cai et al. 

(2018); 

Wang et al. 

(2014) 

Zheng (2018); 

Liu et al. (2015) 

Liu 

(2013) 

Shan et 

al. 

(2018) 

Friedlingstein et al. 

(2019) 
NCCC (2018) 

* CI: Confidence interval; FCPSC: the First China Pollution Source Census; CPED: China Power Emissions Database; CEC: Commission for Environmental Cooperation; 170 

ACC: China Cement Almanac; CCTEN: China Cement Industry Enterprise Indirectory; GDP: Gross domestic product; N/A: Not available.171 

file:///D:/paper/China_C_emissions/data/Table1,2%20and%20S1_hpf20190130_TO.xlsx%23RANGE!_ENREF_37
file:///D:/paper/China_C_emissions/data/Table1,2%20and%20S1_hpf20190130_TO.xlsx%23RANGE!_ENREF_37
file:///D:/paper/China_C_emissions/data/Table1,2%20and%20S1_hpf20190130_TO.xlsx%23RANGE!_ENREF_24
file:///D:/paper/China_C_emissions/data/Table1,2%20and%20S1_hpf20190130_TO.xlsx%23RANGE!_ENREF_24
file:///D:/paper/China_C_emissions/data/Table1,2%20and%20S1_hpf20190130_TO.xlsx%23RANGE!_ENREF_31
file:///D:/paper/China_C_emissions/data/Table1,2%20and%20S1_hpf20190130_TO.xlsx%23RANGE!_ENREF_31
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4. Results 

4.1 Total emissions and recent trends 

The interannual variations of China’s CO2 emissions from 2000 to 2016 were evaluated from six6 gridded emission maps 

and three3 national total inventories (Figure 2). All the datasets show a significant increasing trend in the period of 2000 to 175 

2013 from 3.4 to 9.9 Gt CO2. The range of the nine9 estimates increased simultaneously from 0.7 to 2.1 Gt CO2 (both are 21% 

of the corresponding years’ total emissions). In the second period (from 2013 to 2016), the temporal variations mostly 

levelled off or even decreased. Specifically, the emissions estimated from PKU and CEADs showed a slight downward trend, 

even though although they used independent activity data of from IEA (2014) and National Bureau of Statistics (2016), and 

this downward trend is was attributed to changes in the industrial structure, improved combustion efficiency, emissions 180 

control and slowing economic growth (Guan et al., 2018;Zheng et al., 2018a). 

There is a large discrepancy among the current estimates, ranging from 8.0 to 10.7 Gt CO2 in 2012. NJU has had the highest 

emissions during the periods of 2005-—2015, followed by EDGAR, MEIC and CDIAC/GCP/ODIAC, while CEADs 

(National) and PKU were much significantly lower (Figure 2). This These discrepancies are is mainly because of three 

reasons: 1) the EF for raw coal was higher greater for EDGAR and ODIAC than the other databasess. The EFs were different 185 

for different fossil fuel types and cement production (Table S2). Since Because coal consumption consisted constituted 70-80% 

of total emissions, the coal EF is was more significant than the others. The EFs were different for the three major fossil fuel 

types (raw coal, oil and natural gas) and cement production (Table 1 and S2). And In addition, they the EFs are were 

obtained from either the IPCC default values or local optimized values from different sources. They The EFs do not change 

over time in these inventories, although they should, due to the unavailability of EFs over time; 2) differences in activity data, 190 

i.e., NJU, MEIC and CEADs (Provincial) used provincial data from CESY (2016), while CEADs (National) and, PKU used 

national data from CESY (2016) and IEA (2014), respectively (Table 1 and S1), and such that the sum of provincial 

emissions would beis higher than the national total; and 3) differences in emission definitions (Table 1 and S1, emissions 

sectors). Although we tried to make ensure that these datasets would be as comparable as possible, there are stillnonetheless 

minor differences in emissions sources (sectors) remained. For example, EDGAR contains abundant industry 195 

process-relatedes emissions, while whereas CEADs only considersed cement production (Janssens-Maenhout et al., 2019b). 

EDGAR and MEIC have a similar trends, but except for their magnitudes, whereand MEIC is usually higher greater than 

EDGAR. This is a combined effect of the above three reasons. Moreover, MEIC uses thed provincial energy data from 

CESY (2016), while whereas EDGAR usesd the national- level data from IEA (2014). But However, MEIC’s EF is lower 

than that of EDGAR. These opposing effects would bring them the data sets closer in magnitude. The Both the gridded 200 
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products (ODIAC, EDGAR, MEIC and NJU) and national inventory (GCP/CDIAC) both show small differences in the 

magnitude of total emissions estimates and trends from 2000-—2007, and where the differences in magnitude increasesd 

gradually from 2008 onward. Although the range increasesd with time, the relative difference remains at around 

approximately 21% of the corresponding years’ total estimates, indicating potentially systematical differences, such as the 

fact that EFs remain stable. 205 

  

Figure 2. China’s total FFCO2 emissions from 2000 to 2016. The emissions are from the combustion of fossil fuels and cement production 

from different sources (EDGARv4.3.2_FT2016 includes international aviation and marine bunkers emissions). To keep maintain 

comparability and avoid differences resulteingd from the emissions disaggregation  (e.g., Oda et al. 2018(Oda et al., 2018)), the values 

for of the six6 gridded emission inventories are tabular data provided by the data developers before spatial disaggregation. Prior to 2014, 210 

GCP data was were taken from CDIAC, and those from 2015-2016 was were calculated based on BP data and the fraction of cement 

production emissions in 2014. SThe shadeding area (error bar for CHRED) indicates uncertainties from the coauthors’ previous studies 

(See Table 1). 

4.2 Spatial distribution of FFCO2 emissions 

The evaluation of spatially- explicit FFCO2 emissions is fundamentally limited by the lack of direct physical measurements 215 

on at the grid scales (e.g., (Oda et al., 2018)). We thusThus, we attempted to characterize the spatial patterns of China’s 

carbon emissions by presenting the available emissions estimates available. We compared six6 gridded products, including 

ODIAC, EDGAR, PKU, CHRED, MEIC and NJU, in for the year 2012. The, which  year 2012 was the most recent year for 

which all the six datasets were available. Spatially, the CO2 emissions from the different datasets are concentrated in eastern 

China (Figure 3). HighThe high- emission areas were mostly distributed in city clusters (e.g., BeijingTianjin-Hebei 220 
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(Jing-Jin-Ji), the Yangtze River Delta, and the Pearl River Delta) and densely populated areas (e.g., the North China Plain, 

the Northeast China Plain and Sichuan Basin). These major spatial patterns are primarily due to the use of spatial proxy data, 

and also are  are also in accordance with previous studies (Guan et al., 2018;Shan et al., 2018). However, there were notable 

differences among the different estimates at finer spatial scales. The lLarge carbon emissions regions were found in the 

North China Plain and the Northeast China Plain for ODIAC (Figure 3a), PKU (Figure 3c), MEIC (Figure 3e) and NJU 225 

(Figure 3f), which ranged from 1000 to 10, 000 t CO2/km
2
.  However, the high levels of emissions located in the Sichuan 

Basin were found from PKU, MEIC and NJU, but not from ODIAC. This discrepancy in identifying the large significant 

CO2 emissions was probably due to the emissions from rural settlements with high population densities (e.g., Sichuan Basin), 

which did not appear strongly in satellite nighttime lights and or on the ODIAC map (Wang et al., 2013). The more diffusive 

distributions for of MEIC and NJU is were attributed to the abundance of point sources abundance, with or without line 230 

sources and area sources proxies. Besides,. Moreover, EDGAR, PKU, CHRED, MEIC and NJU all showed relatively low 

emissions in western China, but the emissions from ODIAC was were zero due to no the lack of nighttime light therein that 

region, which tended to distribute more emissions towards strongly nightlights lit (at night) urban regions (Wang et al., 

2013).  

EDGAR, CHRED and MEIC all showed the traffic line source emissions by inducing traffic networks in the spatial 235 

disaggregation. The line emissions (such as expressways, arterial highways) depicted a more detailed spatial distribution in 

CHRED than in either EDGAR and or MEIC. This discrepancy could be attributed to the different road networks and 

corresponding weighting factors they that were used by each. CHRED disaggregated emissions from the transport sector 

based on traffic networks and traffic flows (Cai et al., 2018). MEIC applied the traffic network from the China Digital 

Road-network Map (CDRM) (Zheng et al., 2017), and EDGAR traffic networks were obtained from the OpenStreetMap and 240 

OpenRailwayMap (Geofabrik, 2015). ODIAC considered point and area sources and was lackwhile lacking of line source 

emissions in the spatial disaggregation, which would putplaces more emissions towardsin populated areas than in suburbs 

(Oda et al., 2018). Oda and Maksyutov (2011) (Oda and Maksyutov, 2011) pointed outnoted the possible utility of the street 

lights to represent line source spatial distributions even without the associated specific traffic spatial data. The spatial 

distributions of traffic emissions are highly uncertain, with biases of 100% or more (Gately et al., 2015), which is largely due 245 

largely to mismatches between the downscaling proxies and the actual vehicle activity distribution.
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Figure 3. Spatial distributions of ODIAC (a), EDGAR (b), PKU (c), CHRED (d), MEIC (e) and NJU (f) at a 10 km resolution for 2012. 

ODIAC was aggregated from 1 km data, such that MEIC, PKU, and EDGAR was were resampled from 0.25, 0.1 and 0.1 degrees. 

  250 

4.3 CO2 emissions at the provincial level 

The provincial level results showed more consistency than the grid level results in terms of spatial distribution. All the 

products agreed that the eastern and southern provinces are were high emitters (>400 Mt CO2/yr, Figure 4 and S3), and while 

the western provinces were low emitters (<200 Mt CO2/yr, Figure 4 and S3). The top 5five greatestmost emitting provinces 

were Shandong, Jiangsu, Hebei, Henan, and Inner Mongolia, with the amountthe emissions values ranging from 577 ± 48 Mt 255 

to 820 ± 102 Mt CO2 in 2012 (Figure 4). While Meanwhile, the provinces located in the western area with low economic 

activity and population density showed low carbon emissions (<200 Mt CO22, Figure 4 and S3). There is a clear discrepancy 

in the provincial-level emissions among the different estimates, and the mean standard deviation (SD) for the 31 provinces’ 

emissions was 62 Mt CO2 (or 20%) in 2012. A large SD (>100 Mt CO22) occurreds in the high- emitting provinces, such as 

Shandong, Jiangsu, Inner Mongolia, Shanxi, Hebei, and Liaoning. For the Shandong provinceProvince, the inventories 260 

variedy from 675-965 Mt CO2/yr, with a relative SD of 12% (Figure 4 and 5), and for the other high- emitting provinces, the 

relative SD ranged from 12% -- 48%, which. This implied that there is still room to reducethe uncertainty could be further 
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reduced. 

Since Because estimates based on provincial energy statistics are assumed to be more accurate than those derived from the 

disaggregation of national totals using spatial proxies, we evaluated the provincial emissions of each inventory using the 265 

provincial-based inventory mean (CHRED, MEIC, and NJU) (Figure 5). The results showed that emissions derived from the 

provincial energy statistics are highly correlated, with R-values ranging from 0.99 to 1.00 and slopes ranging 0.96 to 1.04. 

By In contrast, the estimates for ODIAC, EDGAR, and PKU, which used IEA national energy statistics, showed an obvious 

disparity, especially in the top 5five greatestmost - emitting provinces, suggesting the large significant impact of spatial 

disaggregated approaches in allocating the allocation of total emissions. The potential implication is that when doing 270 

performing spatial disaggregation, national-data-based inventories can use provincial fractions as constraints. 

 

Figure 4. Provincial mean total emissions for ODIAC, EDGAR, PKU, CHRED, MEIC and NJU in 2012. The nNumbers refer tobeneath the 

green bars are the provincial total CO2 emissions in Mt. 
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 275 

Figure 5. Scatter plots of the provincial total emissions for ODIAC, EDGAR, PKU, CHRED, MEIC and NJU in 2012 with the top 5five 

greatest- most emitting provinces highlighted, and the x- axis is the mean of provincial-data-based products (CHRED, MEIC and NJU). 

4.4 Statistics of CO2 emissions at the grid level 

To further characterize the spatial pattern of China’s CO2 emissions, the probability density function (PDF), cumulative 

emissions, and top 5% emitting grids were analyzed to identify the spatial differences from the distribution of grid cell 280 

emissions (Figure 6). As illustrated in Figure 4a, ODIAC showed a large significant number of cells with zero emissions 

(62%) (Figure 6a), with medium- emitting grids (500-50,000 t CO2/km
2
) consistedconstituted 30%, while and high- emitting 

grids (>50,000 t CO2/km
2
) consisted constituted 3%. While Although the low- emissions cells (1 ~- 500 t CO2/km

2
) were 

mainly located in EDGAR (58%) and CHRED (69%) (Figure 6b and d), and the medium- emitting grids consisted 

constituted 30-40%, while nonetheless the high- emitting grids consisted only amounted to 2-3%. This situation could have a 285 

notable significant impact on the cumulative national total emissions (Figure 6g). The frequency distribution of high- 

emissions grids revealed the differences in thet point source data. MEIC showed the largest number of high-emitting cells 

(500-~500,000 t CO2/km
2
, 5% compared in comparison with the others, which were at 2-3%, Figure 6e) by using a 

high-resolution emissions database (CPED) including that included more power plant information (Li et al., 2017;Liu et al., 

2015a). Furthermore, ODIAC and EDGAR showed a good agreementagreed well regarding the in high emissions (> 100,000 290 

t CO2/km
2
), because because their point source emissions were both from the CARMA database (Table 1). Moreover, 
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CARMA is the only global database for trackingthat tracks CO2 that gathersed and presentsed the best available estimates of 

CO2 emissions for 50,000 power plants around the world, of which around approximately 15, 000 have latitude and 

longitude information with emissions larger greater than 0. The database is responsible forincludes approximately about 

one-quarter of all greenhouse gas emissions. However, CARMA is no longer active (the last update was November 28, 2012), 295 

and the geolocations of power plants are not sufficiently accurate enough, especially in China (Byers et al., 2019;Liu et al., 

2013;Wang et al., 2013;Liu et al., 2015a). Therefore, users have tomust perform do corrections themselves (Liu et al., 

2013;Oda et al., 2018;Wang et al., 2013;Janssens-Maenhout et al., 2019b;Liu et al., 2015a). 

As depicted shown inby  the cumulative emissions plot (Figure 6g), PKU and NJU showed very similar cumulative curves, 

and soand the situation was similarly for did EDGAR and CHRED. Moreover, the total emissions for EDGAR and CHRED 300 

were largely determined by a small proportion of high- emitting grids with that showed a steep increase at the last stage of 

the cumulative curves (Figure 6g), and the top 5% emitting grids accounted for approximately ~90% of the total emissions 

(Figure 6e), higher than those ofwhich is greater than the comparable values of 82%, 71%, 58% and 51% in for ODIAC, 

MEIC, NJU and PKU, respectively. The emissions from PKU, MEIC and NJU were relatively evenly distributed. This was 

due to the fact thatbecause CHRED was mainly derived from enterprise-level point sources (Cai et al., 2018). In contrast, the 305 

emissions of PKU showed were the most evenly patterndistributed, and the emissions from the top 5% emitting grids only 

accounted for 51% (Figure 6g). This was because PKU had incorporated a special area source survey data for the Chinese 

rural areas from a 34,489-household energy-mix survey and a 1,670-household fuel-weighing campaign (Tao et al., 2018). 

Moreover, the use of a spatial disaggregation proxy using based on population density also contributed to this spatial pattern. 

Similarly, MEIC and NJU exhibited a even distributionwere evenly distributed because of the same activity data from CESY, 310 

National Bureau of Statistics (Table 1). 
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Figure 6. Frequency counts (a-f), cumulative emissions (g) (grids were are sorted from low to high), and the top 5% emitting grids plots (h) 

for ODIAC, EDGAR, PKU, CHRED, MEIC and NJU in 2012 at a 10- km resolution. 

To identify the locations of hotspots, the bubble plots (Figure S2) demonstrated the spatial distribution of high-emitting grid 315 
cells that were larger greater than 50 kt CO2/km

2
. CHRED, EDGAR and ODIAC showed a similar patterns, with 

high-emitting grids concentrated in city clusters (e.g., Jing-Jin-Ji, the Yangtze River Delta, and the Pearl River Delta) and the 

eastern coast (Figure S2). EDGAR and ODIAC both derived their power plant emissions from CARMA, but ODIAC was 

likely to put place more emissions than EDGAR over urbanized regions with lights, especially in the North China Plain. The 

emissions of CPED and CARMA were similar in China, with a minor difference of 2%, but although the numbers of power 320 
plants had a large differencevaried significantly (2320 vs. 945) (Liu et al., 2015a), which. This implied that CARMA tended 

to allocate similar emissions to fewer plants than CPED. 

5. Discussion 

5.1 Activity data differences in the datasets and their effects 

Activity The activity data sources, data level and sectors wereare the significant determinants ofed the total emissions largely. 325 

As can be seenAs seen in Fig. 1, activity data and EF determine the total emission estimates, and then affect the spatial 

distributions through by using disaggregation proxies of for point, line and area sources. It has been well-discussed that the 
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sum of the provincial data is larger greater than the national total (Guan et al., 2012;Hong et al., 2017;Liu et al., 2015b;Shan 

et al., 2018;Liu et al., 2013). CEADs (pProvincial) is 8-18% higher greater than CEADs (nNational) after year 2008 (Figure 

2). And thusThus, the province-based estimates (e.g., NJU and MEIC) are higher greater than CEADs (nNational). This 330 

difference could be attributed to the differences in national and provincial statistical systems and artificial factors, such as the 

fact that some of provincial energy balance sheets were adjusted to make to achieve the an exact match between supply and 

consumption (Hong et al., 2017). For example, the provincial statistics has suffer from data inconsistency and double 

counting problems (Zhang et al., 2007;Guan et al., 2012). One possible way to improve these statistics is is to use the 

provincial consumption fractions to rescale the national total consumptions when distributing emissions to grids. Hong et al. 335 

(2017) found that the ratio of the maximum discrepancy to the mean value was 16% due to the use of different versions of 

national and provincial data in CESY. Ranges of 32-47% of CO2 emissions from the power sector (mainly coal use) were 

found among the inventories, while for the transport sector (mainly liquid fuels), the fractions ranged from 7-9%. Apart from 

such differences, one peak of FFCO2 emissions was identified by most datasets in 2013, which were which was due largely 

found to be due to the slowing economic growth (National Bureau of Statistics, 1998–2017), changes in the industrial 340 

structure (Mi et al., 2017;Guan et al., 2018) and a decline in the share of coal used for energy (Qi et al., 2016). S, and 

strategies for reducing emissions could be based on such uniformed trends, while making reduction policies for provinces 

needs requires the support of provincial -energy-based datasets instead of national -energy-based onesdatasets.  

Estimates with more sectors would are usually higher than those with fewer sectors. For In regard to the incorporation of 

different emissions sectors, EDGAR has includes international aviation and bunkers (Janssens-Maenhout et al., 2017) and 345 

NJU has incorporates wastes sector(Liu et al., 2013) (Table S1), and thus, both were higher than the others. Moreover, for 

MEIC v.1.3 downloaded from the official website, it included biofuel combustion (which accounted for approximately 5.7% 

of the total) was included, and; however, the version used here was specially prepared to exclude biofuel to increase the 

database’s comparability of the database. For another instanceIn addition, CEADs industry processes only take account 

ofinclude cement production and was thus lower than those (e.g., NJU and EDGAR) with that include more processes (iron 350 

and steel, etc.) (Janssens-Maenhout et al., 2017;Shan et al., 2018;Liu et al., 2013). For The PKU dataset, it used IEA energy 

statistics with more detailed energy sub-subtypes. The emissions factors was were based on more detailed energy 

sub-subtypes with lower EFs, and while other inventories used the averages of large groups (Table 1), and such that the sum 

of more detailed sub-subtypes might not equal to the total of large groups due to the incompleteness of the statistics., and 

tThese factors could be explain the reasons for its the lower emissions estimate (Wang et al., 2013). A further comparison 355 

with IEA, EIA and BP estimates with only energy- related emissions also confirmed that estimates with more sectors would 

be higher greater than those with fewer (Figure S1). 

5.2 Emission factor eEffects of emission factors on the total emissions 

Carbon emissions are calculated from activity data and EFs, and the uncertainty in estimates is typically reported as 5% - 
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-10%, while the maximum difference in this study reached 33.8% (or 2.7 PgC) in 2012. One major reason for this difference 360 

is the EF used by these inventories (Table 1). The EF for raw coal ranged from 0.491 to 0.746. For example, CEADs used 

0.499 tC per ton of coal based on large-sample measurements, while EDGAR used 0.713 from the default values 

recommended by IPCC (Janssens-Maenhout et al., 2017;Liu et al., 2015b;Shan et al., 2018), and the differences are were due 

largely due to the low quality and high ash content of Chinese coal. The variability of lignite and coal quality is quite 

largesignificant. In Liu et al., (2015), the carbon content of lignite ranged from 11% to- 51%, with a mean±SD of 28%±13 365 

(n=61). Furthermore, another study showed that the uncertainty from EFs (-16 – to  24%) was much significantly higher 

greater than that from activity data (-1 – to 9%) (Shan et al., 2018). We recommended substituting the IPCC default coal EF 

with the CEADs EF. Regarding the plant-level emissions from coal consumptions, the collection of their the EFs measured at 

fields representing the quality and type of various coals are is highly much-needed to calibrate the large point source 

emissions, and we call for the inclusion of physical measurements for the calibration and validation of existing datasets (Bai 370 

et al., 2007;Dai et al., 2012;Kittner et al., 2018;Yao et al., 2019). Different fuel types would contribute differently to 

emissions factors, i.e., for the same net heating value, natural gas emitted lowest the least amount of carbon dioxide (61.7 kg 

CO2/TJ energy), followed by oil (65.3 kg CO2/TJ energy) and coal (94.6 kg CO2/TJ energy), and one). Similarly, one 

successful example for reducing the reduction of air pollutants and CO2 was that the Chinese government initiated the 

“project of replacement of coal with natural gas and electricity in North China” in 2016 (Zheng et al., 2018a). Moreover, the 375 

non-oxidation fraction of 8% used in Liu et al. (2015) (Liu et al., 2015b) for coal was attributable to the differences when 

comparing with a default non-oxidation fraction of 0%, as recommended by IPCC (2006) in EDGAR (Janssens-Maenhout et 

al., 2017). Moreover, the averaged qualities of coal qualities are varyingvary with time, yet we lacked such time-series 

quality data on raw coal. Bottom-up inventories typically use time-invariant EFs for CO2 due to the lack of information on 

coal heating values over time; similarly, and the MEIC model also uses constant EFs of CO2 (Zheng et al., 2018). Teng and 380 

Zhu (2015) recommended time- varied conversion factors from raw coal to standard coal, and as well as to change the raw 

coal to commodity coal in energy balance statistics since because the latter has relatively efficient statistics on EF. 

5.3 Spatial distribution of point, line and area sources 

5.3.1 Point sources in datasets and their effects on spatial distribution 

Point sources emissions account for a large proportion of the total emissions (Hutchins et al., 2017). Power plants consumed 385 

about approximately half of the total coal production in the past decade (Liu et al., 2015a). Thus, the accuracy of point 

sources was extremely important for improving emission estimates. ODIAC, EDGAR, and PKU all distributed power plant 

emissions from the CARMA dataset. However, the geolocation errors in China are relatively large, and only 45% of power 

plants were are located in the same 0.1°×0.1° grid in CARMA v2.0 as according to the real power plants locations that were 

identified by eyeballing visual inspection in google Google maps (Wang et al., 2013), because. This discrepancy is due to the 390 
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fact thatbecause CARMA generally treats the city-center latitudes and longitudes as the approximate coordinates of the 

power plants (Wheeler and Ummel, 2008;Ummel, 2012). 

Liu et al. (2015a) found that CARMA neglected about approximately 1300 small power plants in China. Thus, CARMA 

allocated similar emissions to a more limited number of plants than CPED (Table S2, 720, 1706 and 2320 point sources for 

ODIAC, EDGAR and MEIC, respectively), and ODIAC had fewer point sources due to the elimination of wrong incorrect 395 

geolocations. The high-emitting grids in CHRED were attributed to the 1.58 million industrial enterprises from the First 

China Pollution Source Census (FCPSC) that were, used as point sources (Wang et al., 2014). Following the CARMA 

example, we call on the open source of large point sources for datasets and reinforce the importance that Chinese scientists 

need tomust adjust the locations of point sources from CARMA. 

5.3.2 Effects of spatial disaggregation methods on line and area sources 400 

Downscaling methods are widely used for because of its their uniformity and simplicity because of thedue to the lack of 

detailed spatial data. The dDisaggregation methods used (e.g., nighttime light, population) by inventories strongly 

significantly affect the resulting spatial pattern. For example, ODIAC mainly uses nighttime light from satellite images to 

distribute emissions. Thus, the hotspots concentrated more in strongly in high nighttime light regions. However, using the 

use of remote sensing data tendsed to underestimate industrial and transportation emissions (Ghosh et al., 2010). For instance, 405 

coal-fired power plants do not emit strong lights and may be far away from cities by because transmission lines are used. 

Electricity generation and use are usually happened atoccur in different placeslocations, and stronger night-time light does 

not always mean indicate higher CO2 emissions (Cai et al., 2018;Doll et al., 2000). Furthermore, night time lights would 

ignore some other main fossil fuel emissions, such as household cooking with coal. The good correlation between night-time 

light and CO2 emissions is usually on a larger scale basis (national or continental) (Oda et al., 2010;Raupach et al., 2010), 410 

while this relationship would fails in populated or industrialized rural areas. 

Transport networks are also used in several inventories for spatial disaggregation. EDGAR and CHRED both showed clear 

transport emissions, especially in western China. EDGAR usesd three road types and their corresponding weighting factors 

to disaggregate line source emissions. CHRED usesd national traffic networks and their flows to distribute traffic emissions 

(Cai et al., 2018;Cai et al., 2012). It is easier to obtain the traffic networks but rather difficult to get obtain the traffic flows 415 

and vehicle kilometers travelled (VKT) data, and thus, the weighting factors method are is much significantly easier to apply. 

Population is widely used in spatial disaggregation (Andres et al., 2014;Andres et al., 2016;Janssens-Maenhout et al., 2017). 

The CDIAC emissions maps originally used a static population data to distribute emissions and but have recently have 

changed to a temporally varying population proxy, which has largely reduced the uncertainty. However, the unified algorithm 

for spatial disaggregation, such as the population density approach, has encounters difficulties in depicting the uneven 420 

development of rural and urban areas, and instead, it usually uses interpolation for a limited number of base years and does 

not truly vary across years at high spatial resolution (Andres et al., 2014). Furthermore, downscaling approaches may 
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introduce approximately 50% error per pixel, which are spatially correlated (Rayner et al., 2010), and this problem needs toa 

problem whichthat must be considered in future studies. 

Moreover, big cities have virtually eliminated thed use of coal (Guan et al., 2018;Zheng et al., 2018a), while in rural areas, 425 

the use of coal has even often increased (Meng et al., 2019). For example, a national survey showed that China’s rural 

residential coal consumption fractions for heating increased from 19.2% to 27.2% (Tao et al., 2018). These transitions has 

have impacts on the spatial distribution of both CO2 and air pollutants. And In addition, the high- resolution CO2 emissions 

have can serve as a potential proxy for fossil fuel emissions (Wang et al., 2013);, thus, further improvements on to spatial 

disaggregation should consider these transitions and the surveyed data. 430 
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