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Abstract. China’s fossil-fuel CO2 emissions (FFCO2) account for about 28% of the global total FFCO2 in 2016. An accurate 

estimate of China’s FFCO2 is a prerequisite for global and regional carbon budget analyses and monitoring of carbon emission 

reduction efforts. However, large uncertainties and discrepancies exist in China’s FFCO2 estimations due to lack of detailed 

traceable emission factors and multiple statistical data sources. Here, we evaluated China's FFCO2 emissions from 9 published 

global and regional emission datasets. These datasets show that the total emission increased from 3.4 (3.0-3.7) in 2000 to 9.8 35 

(9.2-10.4) Gt CO2 yr
-1

 in 2016. The variations in their estimates were due largely to the different emission factors (EF) 

(0.491-0.746 t C per t of coal) and activity data. The large-scale patterns of gridded emissions showed a reasonable agreement 

with high emissions concentrated in major city clusters, and the standard deviation mostly ranged 10-40% at provincial level. 
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However, patterns beyond the provincial scale vary greatly with the top 5% of grid-level account for 50-90% of total emissions 

for these datasets. Our findings highlight the significance of using locally-measured EF for the Chinese coals. To reduce the 40 

uncertainty, we call on the enhancement of physical CO2 measurements and use them for datasets validation, key input data 

sharing (e.g. point sources) and finer resolution validations at various levels. 

Keywords: fossil-fuel CO2 emissions, spatial disaggregation, emission factor, activity data, comprehensive dataset 

1 Introduction 

Anthropogenic emission of carbon dioxide (CO2) is one of the major contributions in accelerating global warming (IPCC, 45 

2007). The global CO2 emissions from fossil fuel combustion and industry processes increased to 36.23 Gt CO2 yr
-1 

in 2016, 

with a mean growth rate of 0.62 Gt CO2 yr
-1

 per year over the last decade (Le Quéré et al., 2018). In 2006, China became the 

world largest emitter of CO2 (Jones, 2007). The CO2 emission from fossil fuel combustion and cement production of China 

was 9.9 Gt CO2 in 2016, accounting for about 28% of all global fossil-fuel based CO2 emissions (Le Quéré et al., 2018;IPCC 

AR5, 2013). To avoid the potential adverse effects from climate change (Zeng et al., 2008;Qin et al., 2016), the Chinese 50 

government has pledged to peak its CO2 emissions by 2030 or earlier and to reduce the CO2 emission per unit gross domestic 

product (GDP) by 60-65% below 2005 levels (SCIO, 2015). Thus, an accurate quantification of China’s CO2 emissions is the 

first step in understanding its carbon budget and making carbon control policy. 

Chinese total emission estimates are thought to be uncertain or biased due to the lack of reliable statistical data and/or the use 

of generic emission factors (EF) (e.g. (Guan et al., 2012); (Liu et al., 2015b)). National and provincial data based inventories 55 

used activity data from different sources. The Carbon Dioxide Information Analysis Center (CDIAC) used national energy 

statistics from United Nations (UN) (Andres et al., 2012), and both the Open-Data Inventory for Anthropogenic Carbon 

dioxide (ODIAC) and Global Carbon Project (GCP) mainly use CDIAC total estimates and thus they are identical in time 

series (Le Quéré et al., 2018;Oda et al., 2018). The Emissions Database for Global Atmospheric Research (EDGAR) and 

Peking University CO2 (PKU-CO2, hereafter named as PKU) derived emissions from the energy balance statistics of the 60 

International Energy Agency (IEA) (Janssens-Maenhout et al., 2019a;Wang et al., 2013). On the other hand, provincial data 

based inventories developed within China all used provincial energy balance sheet in China Energy Statistics Yearbook 

(CESY) from National Bureau of Statistics of China (NBS) (Cai et al., 2018;Liu et al., 2015a;Liu et al., 2013;Shan et al., 

2018). As for EF, there are generally four sources, i.e., 1) The Intergovernmental Panel on Climate Change (IPCC) default 

values that has been adopted by ODIAC and EDGAR (Andres et al., 2012;Janssens-Maenhout et al., 2019b;Oda et al., 2018); 65 

2) National Development and Reform Commission (NDRC) (NDRC, 2012b); 3) China’s National Communication, which 

reported to the United Nations Framework Convention on Climate Change (UNFCCC) (NDRC, 2012a); 4) The China 

Emission Accounts and Datasets (CEADs) EF that are locally optimized through large sample measurements (Liu et al., 

2015b). The existing estimates of global total FFCO2 emissions are comparable in magnitude, with an uncertainty generally 
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within ±10% (Le Quéré et al., 2018;Oda et al., 2018). However, there are great differences at national scale (Marland et al., 70 

2010;Olivier et al., 2014), with the uncertainty ranging from a few percent to more than 50% in estimated emissions for 

individual countries (Andres et al., 2012;Boden et al., 2016;Oda et al., 2018). 

Along with the total emissions estimates, spatial distributions are also important for several reasons: 1) Spatial gridded 

products provide basic understandings on CO2 emissions; 2) They are key inputs (as priors) for transport and data 

assimilation models and influenced the carbon budget (Bao et al., 2020); 3) For high emissions areas recognized by multiple 75 

inventories, they can be used for policy making in emissions reductions and can provide useful information for deployment 

of instruments in emissions monitoring (Han et al., 2020). At the global level, gridded emission datasets are often based on 

disaggregation of country scale emissions (Janssens-Maenhout et al., 2017;Wang et al., 2013). Thus, the gridded emissions 

are subjected to errors and uncertainties from the total emission calculation and emission spatial disaggregation (Andres et 

al., 2016;Oda et al., 2018;Oda and Maksyutov, 2011). For example, the Carbon Dioxide Information Analysis Center 80 

(CDIAC) distributes national energy statistics at a resolution of 1°×1° using population density as a proxy (Andres et al., 

2016;Andres et al., 2011). Further, to improve spatial resolution of emission inventory, the Open-Data Inventory for 

Anthropogenic Carbon dioxide (ODIAC) distributes national emissions based on CDIAC and BP statistics with satellite 

nighttime lights and power plant emissions (Oda et al., 2018;Oda and Maksyutov, 2011).  (EDGAR) derived emissions 

from the energy balance statistics of the International Energy Agency (IEA), and country specific activity datasets from BP 85 

plc, United States Geological Survey (USGS), World Steel Association, Global Gas Flaring Reduction Partnership 

(GGFR)/U.S. National Oceanic and Atmospheric Administration (NOAA) and International Fertilizer Association (IFA). 

Gridded emission maps at 0.1°x0.1°were produced using spatial proxy data based on the population density, traffic networks, 

nighttime lights and point sources as described in Janssens-Maenhout et al. (2017). Based on the sub-national fuel data, 

population and other geographically resolved data, a high-resolution inventory of global CO2 emissions was developed at 90 

Peking University  (Wang et al., 2013). . 

In order to accurately calculate emissions, a series of efforts have been conducted to quantitatively evaluate China’s CO2 

emissions using national or provincial activity data, local EF, and detailed data set of point sources (Cai et al., 2018;Li et al., 

2017;Wang et al., 2013). The China High Resolution Emission Database (CHRED) was developed by Cai et al. (2018) and 

Wang et al. (2014) based on the provincial statistics, traffic network, point sources and industrial and fuel-specific EF. 95 

CHRED was featured by its exclusive point source data for 1.58 million industrial enterprises from the First China Pollution 

Source Census. The Mutli-resolution Emission Inventory for China (MEIC) was developed by Qiang et al. (2007), Lei et al. 

(2011) and Liu et al. (2015a) at Tsinghua University through integrating provincial statistics, unit-based power plant 

emissions, population density, traffic networks, and emission factor (EF) (Li et al., 2017;Zheng et al., 2018b;Zheng et al., 

2018a). MEIC used China Power Emissions Database (CPED), and the unit-based approach is used to calculate emissions 100 
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for each coal-fired power plant in China with detailed unit-level information (e.g., coal use, geographical coordinates). For 

the mobile sources, a high-resolution mapping approach is adopted to constrain the vehicle emissions using county-level 

activity database. CEADs was constructed by (Shan et al., 2018;Shan et al., 2016) and Guan et al. (2018) based on different 

levels of inventories to provide emissions at national and provincial scales. CEADs used coal EF from the large-sample 

measurements (602 coal samples and samples from 4,243 coal mines). And this is assumed to be more accurate than the 105 

IPCC default EFs. 

Regardless of these efforts, however, the amount of China’s CO2 emissions remains uncertain due to the large discrepancy 

among current estimates, of which the difference ranges from 8-24% of the total estimates (Shan et al., 2018;Shan et al., 

2016). Several studies made efforts of quantifying the possible uncertainty in China’s FFCO2, such as differences from 

estimation approaches (Berezin et al., 2013), energy statistics (Hong et al., 2017;Han et al., 2020), spatial scales (Wang and 110 

Cai, 2017), and point source data . Importantly, the authors would like to point out that the lack of a comprehensive 

understanding and comparison of the potential uncertainty in estimates of China’s FFCO2, including spatial, temporal, proxy, 

and magnitude components, makes Chinese emissions possible more uncertain, and thus it is important to present, analyze 

and explain such differences among inventories .  

Here we evaluated the uncertainty in China’s FFCO2 estimates by synthesizing global gridded emissions datasets (ODIAC, 115 

EDGAR, and PKU) and China-specific emission maps (CHRED, MEIC, and the Nanjing University CO2 (NJU) emission 

inventory). Moreover, several other inventories were used in the evaluation analysis, such as the Global Carbon Budget from 

the Global Carbon Project, the National Communication on Climate Change of China (NCCC).  

The purposes of this study were to: 1) quantify the magnitude and the uncertainty in China’s FFCO2 estimates using the 

spread of values from the state-of-the-art inventories; 2) identify the spatiotemporal differences of China’s FFCO2 emissions 120 

between the existing emission inventories and explore the underlying reasons for such differences. To our knowledge, this is 

the first comprehensive evaluation of the most up-to-date and mostly publicly available carbon emission inventories for 

China. 

2. Emissions data 

The evaluation analysis was conducted from 6 gridded datasets (listed in Table 1) and 3 other statistical data. We selected 125 

year 2012 for spatial analysis since this is the most recent year available for all gridded data sets and also this is a peak year 

of emissions due to the strong reductions from impacts of the 12th-Five-Year-Plan. Specifically, the global fossil fuel CO2 

emission datasets included the year 2017 version of ODIAC (ODIAC2017), the version v4.3.2 of EDGAR (EDGARv4.3.2), 

PKU-CO2, which all used the Carbon Monitoring for Action (CARMA) as point source. The China-specific emission data 

used were the year 2007 of CHRED, the MEIC v1.3, NJU-CO2 v2017, which all used China Energy Statistical Yearbook 130 
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(CESY) activity data. Moreover, 3 inventories were used as a reference, i.e., GCP/CDIAC, CEADs and NCCC, since GCP 

and ODIAC used CDIAC for most of the years, except for the recent two years that were extrapolated by BP data, these three 

were treated as one in time series comparison. Data were collected from official websites for ODIAC, EDGAR, PKU and 6 

tabular statistic data, and were acquired from their authors for CHRED, MEIC and NJU. See supporting information for 

more details on data sources and methodology of each dataset. 135 

3. Methodology for evaluation of multiple datasets  

We evaluated these datasets from three aspects: data sources, boundary (emission sectors) and methodology (Figure 1, Table 

1 and S1, S2). For data source, there are two levels: national data such as UN or IEA statistics and provincial level data such 

as CESY. The emission sectors mainly include fossil fuel production, industry production and processes, households, 

transportation, aviation/shipping, agriculture, natural biomass burning from wild fire and waste for these datasets, and Table 140 

S1 listed sectors included in each inventory. And for methodology, analysis of inventories includes total estimates (activity 

data and EF) aspect and spatial disaggregation of point, line and area sources. As Fig. 1 depicted the conceptual procedure in 

total emissions estimates and how gridded maps are produced for all inventories, it is important to know the differences in 

activity data, EF and spatial proxy data and spatial disaggregation methods they used, to understand the differences among 

inventories in total emissions estimates and spatial characteristics. 145 

 

Figure 1 Conceptual diagram for data evaluation based on data sources, emission sectors and methodologies.  
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Preprocessing of six gridded CO2 emission datasets included several steps that are described as follows. First, The global 

map of CO2 emissions (i.e. ODIAC, EDGAR and PKU) were re-projected to Albers Conical Equal Area projection (that of 

CHRED). And the nearest neighbor algorithm was used to resample different spatial resolution into a pixel size of 10 km by 150 

10 km, and this method takes the value from the cell closest to the transformed cell as the new value. Second, the national 

total emissions were derived using ArcGIS zonal statistics tool for CHRED while the others were from tabular data provided 

by data owners. Finally, the grids for each inventory were sorted in ascending order and then plotted on a logarithmic scale to 

represent the distribution of emissions. To identify the contribution of high emission grids, emissions at grid level that 

exceeded 50 kt CO2 yr
-1

 km
-2

 and the top 5% emitting grids were selected for analysis. 155 
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Table 1 General information for emission data sets* 156 

Data 
ODIAC2

017 
EDGARv432 PKU CHRED MEIC NJU CEADs GCP/CDIAC NCCC 

Domain Global Global Global China China China China Global China 

Temporal 

coverage 

2000-201

6 
1970-2012 1960-2014 2007, 2012 2000-2016 

2000-2

015 

1997-20

15 
1959-2018 2005, 2012, 2014 

Temporal 

resolution 
Monthly Annual Monthly 

Biennially 

or 

triennially 

Monthly Annual Annual Annual Annual 

Spatial 

resolution 
1 km 0.1 degree 0.1 degree 10 km 0.25 degree 

0.25 

degree 
N/A N/A N/A 

Emission 

estimates 

Global & 

National 
Global & National 

Global & 

National 

National & 

Provincial 

National & 

Provincial 

Nationa

l & 

Provinc

ial 

National 

& 

Provinci

al 

Global & National National 

Emission 

factor for 

raw coal 

(tC per t of 

coal) 

0.746 0.713 0.518 0.518 0.491 0.518 0.499 0.746 0.491 

Uncertaint

y 

17.5% 

(95% CI) 
±15% ±19% (95% CI) ±8% ±15% 

7-10% 

(90% 

CI) 

-15% - 

25% 

(95% 

CI) 

17.5% (95% CI) 5.40% 

Point CARMA CARMA3.0 CARMA2.0 FCPSC CPED CEC;A N/A N/A N/A 
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source 2.0  CC;CC

TEN 

Line 

source 
N/A 

the OpenStreetMap 

and 

OpenRailwayMap, 

Int. aviation and 

bunker 

N/A 

The 

national 

road, 

railway, 

navigation 

network, 

and traffic 

flows 

Transport 

networks 
N/A N/A N/A N/A 

Area 

source 

Nighttim

e light 

Population density, 

nighttime light 

Vegetation and 

population 

density, 

nighttime light 

Population 

density, 

land use, 

human 

activity 

Population 

density, land 

use 

Populat

ion 

density, 

GDP 

N/A N/A N/A 

Version 

name 

ODIAC2

017 

EDGARv4.3.2_FT2

016，EDGARv4.3.2 
PKU-CO2-v2 CHRED MEIC v.1.3 

NJU-C

O2v201

7 

CEADs N/A N/A 

Year 

published/

updated 

2018 2017 2016 2017 2018 2017 2017 2019 2018 
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Data 

sources 

http://db.

cger.nies.

go.jp/dat

aset/ODI

AC/ 

http://edgar.jrc.ec.e

uropa.eu/overview.

php?v=432_GHG&

SECURE=123 

http://inventory.

pku.edu.cn/dow

nload/download.

html 

Data 

developer 
Data developer 

Data 

develop

er 

http://w

ww.cead

s.net/ 

(registrat

ion 

requred) 

https://www.globalcarbon

project.org/carbonbudget/

19/data.htm 

https://unfccc.int/sit

es/default/files/resou

rce/China 

2BUR_English.pdf 

Reference

s 

Oda 

(2018) 

Janssens-Maenhout 

(2017) 

Wang et al., 

2013 

Cai et al. 

(2018); 

Wang et al. 

(2014) 

Zheng (2018); 

Liu et al. (2015) 

Liu 

(2013) 

Shan et 

al. 

(2018) 

Friedlingstein et al. 

(2019) 
NCCC (2018) 

* CI: Confidence interval; FCPSC: the First China Pollution Source Census; CPED: China Power Emissions Database; CEC: Commission for Environmental Cooperation; 157 

ACC: China Cement Almanac; CCTEN: China Cement Industry Enterprise Indirectory; GDP: Gross domestic product; N/A: Not available.158 

file:///D:/paper/China_C_emissions/data/Table1,2%20and%20S1_hpf20190130_TO.xlsx%23RANGE!_ENREF_37
file:///D:/paper/China_C_emissions/data/Table1,2%20and%20S1_hpf20190130_TO.xlsx%23RANGE!_ENREF_37
file:///D:/paper/China_C_emissions/data/Table1,2%20and%20S1_hpf20190130_TO.xlsx%23RANGE!_ENREF_24
file:///D:/paper/China_C_emissions/data/Table1,2%20and%20S1_hpf20190130_TO.xlsx%23RANGE!_ENREF_24
file:///D:/paper/China_C_emissions/data/Table1,2%20and%20S1_hpf20190130_TO.xlsx%23RANGE!_ENREF_31
file:///D:/paper/China_C_emissions/data/Table1,2%20and%20S1_hpf20190130_TO.xlsx%23RANGE!_ENREF_31
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4. Results 

4.1 Total emissions and recent trends 160 

The interannual variations of China’s CO2 emissions from 2000 to 2016 were evaluated from 6 gridded emission maps and 3 

national total inventories (Figure 2). All datasets show a significant increasing trend in the period of 2000 to 2013 from 3.4 

to 9.9 Gt CO2. The range of the 9 estimates increased simultaneously from 0.7 to 2.1 Gt CO2 (both are 21% of the 

corresponding years’ total emissions). In the second period (from 2013 to 2016), the temporal variations mostly levelled off 

or even decreased. Specifically, the emissions estimated from PKU and CEADs showed a slight downward trend although 165 

they used independent activity data of IEA (2014) and Statistics (2016), and this downward trend is attributed to changes in 

industrial structure, improved combustion efficiency, emissions control and slowing economic growth (Guan et al., 

2018;Zheng et al., 2018a). 

There is a large discrepancy among the current estimates, ranging from 8.0 to 10.7 Gt CO2 in 2012. NJU has the highest 

emissions during the periods of 2005—2015, followed by EDGAR, MEIC and CDIAC/GCP/ODIAC, while CEADs 170 

(National) and PKU were much lower (Figure 2). This is mainly because of three reasons: 1) the EF for raw coal was higher 

for EDGAR and ODIAC than the others. The EFs were different for different fossil fuel types and cement production (Table 

S2). Since coal consumption consisted 70-80% of total emissions, coal EF is more significant than the others. The EFs were 

different for three major fossil fuel types (raw coal, oil and natural gas) and cement production (Table 1 and S2). And they 

are from either IPCC default values or local optimized values from different sources. They do not change over time in these 175 

inventories although they should, due to the unavailability of EFs over time; 2) differences in activity data, NJU, MEIC and 

CEADs (Provincial) used provincial data from CESY (2016), while CEADs (National), PKU used national data from CESY 

(2016) and IEA (2014), respectively (Table 1 and S1), and sum of provincial emissions would be higher than the national 

total; 3) differences in emission definitions (Table 1 and S1, emissions sectors). Although we tried to make these datasets as 

comparable as possible, there are still minor differences in emission sources (sectors). For example, EDGAR contains 180 

abundant industry processes emissions while CEADs only considered cement production (Janssens-Maenhout et al., 2019b). 

EDGAR and MEIC have a similar trend, but for magnitude, MEIC is usually higher than EDGAR. This is a combined effect 

of the above three reasons. MEIC used provincial energy data CESY (2016) while EDGAR used national level IEA (2014). 

But MEIC’s EF is lower than EDGAR. These opposing effects would bring them closer in magnitude. The gridded products 

(ODIAC, EDGAR, MEIC and NJU) and national inventory (GCP/CDIAC) both show small differences in magnitude of total 185 

emissions estimates and trend from 2000—2007, and the differences in magnitude increased gradually from 2008 onward. 

Although the range increased with time, the relative difference remains at around 21% of the corresponding years’ total 
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estimates, indicating potential systematical differences such as that EFs remain stable. 

  

Figure 2. China’s total FFCO2 emissions from 2000 to 2016. The emissions are from combustion of fossil fuels and cement production 190 

from different sources (EDGARv4.3.2_FT2016 includes international aviation and marine bunkers emissions). To keep comparability and 

avoid differences resulted from the emissions disaggregation  (e.g. Oda et al. 2018(Oda et al., 2018)). The values for 6 gridded emission 

inventories are tabular data provided by data developers before spatial disaggregation. Prior to 2014, GCP data was taken from CDIAC 

and 2015-2016 was calculated based on BP data and fraction of cement production emissions in 2014. Shading area (error bar for CHRED) 

indicates uncertainties from coauthors’ previous studies (See Table 1). 195 

4.2 Spatial distribution of FFCO2 emissions 

The evaluation of spatially-explicit FFCO2 emissions is fundamentally limited by the lack of direct physical measurements 

on grid scales (e.g. (Oda et al., 2018)). We thus attempted to characterize the spatial patterns of China’s carbon emissions by 

presenting emission estimates available. We compared 6 gridded products including ODIAC, EDGAR, PKU, CHRED, 

MEIC and NJU in 2012. The year 2012 was the most recent year for which all the six datasets were available. Spatially, CO2 200 

emissions from different datasets are concentrated in eastern China (Figure 3). High emission areas were mostly distributed 

in city clusters (e.g. BeijingTianjin-Hebei (Jing-Jin-Ji), the Yangtze River Delta, and the Pearl River Delta) and densely 

populated areas (e.g. the North China Plain, the Northeast China Plain and Sichuan Basin). These major spatial patterns are 

primarily due to the use of spatial proxy data, and also in accordance with previous studies (Guan et al., 2018;Shan et al., 

2018). However, there were notable differences among different estimates at finer spatial scales. The large carbon emission 205 

regions were found in the North China Plain and the Northeast China Plain for ODIAC (Figure 3a), PKU (Figure 3c), MEIC 
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(Figure 3e) and NJU (Figure 3f), which ranged from 1000 to 10, 000 t CO2/km
2
.  However, the high emissions located in 

the Sichuan Basin were found from PKU, MEIC and NJU, but not from ODIAC. This discrepancy in identifying the large 

CO2 emissions was probably due to the emissions from rural settlements with high population densities (e.g. Sichuan Basin), 

did not appear strongly in satellite nighttime lights and ODIAC map (Wang et al., 2013). The more diffusive distribution for 210 

MEIC and NJU is attributed to the point sources abundance, with or without line sources and area sources proxies. Besides, 

EDGAR, PKU, CHRED, MEIC and NJU all showed relatively low emissions in western China, but the emission from 

ODIAC was zero due to no nighttime light there, which tended to distribute more emissions towards strong nightlights urban 

regions (Wang et al., 2013).  

EDGAR, CHRED and MEIC all showed the traffic line source emissions by inducing traffic networks in spatial 215 

disaggregation. The line emissions (such as expressway, arterial highway) depicted a more detailed spatial distribution in 

CHRED than EDGAR and MEIC. This discrepancy could be attributed to the different road networks and corresponding 

weighting factors they used. CHRED disaggregated emissions from the transport sector based on traffic networks and traffic 

flows (Cai et al., 2018). MEIC applied the traffic network from the China Digital Road-network Map (CDRM) (Zheng et al., 

2017), and EDGAR traffic networks were obtained from the OpenStreetMap and OpenRailwayMap (Geofabrik, 2015). 220 

ODIAC considered point and area sources and was lack of line source emissions in spatial disaggregation, which would put 

more emissions towards populated areas than suburbs (Oda et al., 2018). Oda and Maksyutov (2011) (Oda and Maksyutov, 

2011) pointed out the possible utility of the street lights to represent line source spatial distributions even without the specific 

traffic spatial data. The spatial distributions of traffic emissions are highly uncertain with biases of 100% or more (Gately et 

al., 2015), which is due largely to mismatches between downscaling proxies and the actual vehicle activity distribution.225 
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Figure 3. Spatial distributions of ODIAC (a), EDGAR (b), PKU (c), CHRED (d), MEIC (e) and NJU (f) at 10 km resolution for 2012. 

ODIAC was aggregated from 1 km data, MEIC, PKU, and EDGAR was resampled from 0.25, 0.1 and 0.1 degree. 

  

4.3 CO2 emissions at provincial level 230 

The provincial level results showed more consistency than the grid level in spatial distribution. All products agree that 

eastern and southern provinces are high emitters (>400 Mt CO2/yr, Figure 4 and S3), and western provinces were low 

emitters (<200 Mt CO2/yr, Figure 4 and S3). The top 5 emitting provinces were Shandong, Jiangsu, Hebei, Henan, and Inner 

Mongolia with the amount ranging from 577 ± 48 Mt to 820 ± 102 Mt CO2 in 2012 (Figure 4). While provinces located in 

western area with low economic activity and population density showed low carbon emissions (<200 Mt CO2, Figure 4 and 235 

S3). There is a clear discrepancy in provincial-level emissions among different estimates, and the mean standard deviation 

(SD) for 31 provinces’ emissions was 62 Mt CO2 (or 20%) in 2012. A large SD (>100 Mt CO2) occurs in high emitting 

provinces, such as Shandong, Jiangsu, Inner Mongolia, Shanxi, Hebei, and Liaoning. For Shandong province, the inventories 

vary from 675-965 Mt CO2/yr, with a relative SD of 12% (Figure 4 and 5), and for other high emitting provinces the relative 

SD ranged 12% - 48%. This implied that there is still room to reduce uncertainty. 240 

Since estimates based on provincial energy statistics are assumed to be more accurate than those derived from disaggregation 
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of national total using spatial proxies, we evaluated the provincial emissions of each inventory using the provincial-based 

inventory mean (CHRED, MEIC, and NJU) (Figure 5). The results showed that emissions derived from the provincial 

energy statistics are highly correlated, with R ranging from 0.99 to 1.00 and slope ranging 0.96 to 1.04. By contrast, the 

estimates for ODIAC, EDGAR, and PKU which used IEA national energy statistics, showed an obvious disparity, especially 245 

in the top 5 emitting provinces, suggesting the large impact of spatial disaggregated approaches in allocating total emissions. 

The potential implication is when doing spatial disaggregation, national-data-based inventories can use provincial fractions 

as constraints. 

 

Figure 4. Provincial mean total emissions for ODIAC, EDGAR, PKU, CHRED, MEIC and NJU in 2012. Numbers refer to the green bar are 250 
provincial total CO2 emissions in Mt. 
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Figure 5. Scatter plots of provincial total emissions for ODIAC, EDGAR, PKU, CHRED, MEIC and NJU in 2012 with top 5 provinces 

highlighted, and the x axis is the mean of provincial-data-based products (CHRED, MEIC and NJU). 

4.4 Statistics of CO2 emissions at grid level 255 

To further characterize the spatial pattern of China’s CO2 emissions, the probability density function (PDF), cumulative 

emissions, and top 5% emitting grids were analyzed to identify the spatial differences from the distribution of grid cell 

emissions (Figure 6). As illustrated in Figure 4a, ODIAC showed a large number of cells with zero emissions (62%) (Figure 

6a), medium emitting grids (500-50000 t CO2/km
2
) consisted 30%, while high emitting grids (>50000 t CO2/km

2
) consisted 

3%. While low emissions cells (1 ~ 500 t CO2/km
2
) were mainly located in EDGAR (58%) and CHRED (69%) (Figure 6b 260 

and d), and medium emitting grids consisted 30-40%, while high emitting grids consisted 2-3%. This could have a notable 

impact on cumulative national total emissions (Figure 6g). The frequency distribution of high emission grids revealed the 

different point source data. MEIC showed the largest number of high-emitting cells (500~500000 t CO2/km
2
, 5% compared 

with others 2-3%, Figure 6e) by using a high-resolution emission database (CPED) including more power plant information 

(Li et al., 2017;Liu et al., 2015a). Furthermore, ODIAC and EDGAR showed a good agreement in high emissions (> 100000 265 

t CO2/km
2
), because their point source emissions were both from CARMA database (Table 1). Moreover, CARMA is the 

only global database for tracking CO2 that gathered and presented the best available estimates of CO2 emissions for 50,000 

power plants around the world, of which around 15, 000 have latitude and longitude information with emissions larger than 0. 
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The database is responsible for about one-quarter of all greenhouse gas emissions. However, CARMA is no longer active 

(the last update was November 28, 2012), and the geolocations of power plants are not accurate enough, especially in China 270 

(Byers et al., 2019;Liu et al., 2013;Wang et al., 2013;Liu et al., 2015a). Therefore users have to do corrections themselves 

(Liu et al., 2013;Oda et al., 2018;Wang et al., 2013;Janssens-Maenhout et al., 2019b;Liu et al., 2015a). 

As depicted by the cumulative emissions plot (Figure 6g), PKU and NJU showed very similar cumulative curves, and so did 

EDGAR and CHRED. Moreover, the total emissions for EDGAR and CHRED were largely determined by a small 

proportion of high emitting grids with a steep increase at the last stage of cumulative curves (Figure 6g), and the top 5% 275 

emitting grids accounted for ~90% of the total emissions (Figure 6e), higher than those of 82%, 71%, 58% and 51% in 

ODIAC, MEIC, NJU and PKU, respectively. The emissions from PKU, MEIC and NJU were relatively evenly distributed. 

This was due to CHRED was mainly derived from enterprise-level point sources (Cai et al., 2018). In contrast, the emissions 

of PKU showed the most even pattern, and the emissions from top 5% emitting grids only accounted for 51% (Figure 6g). 

This was because PKU had a special area source survey data for the Chinese rural areas from a 34,489-household 280 

energy-mix survey and a 1,670-household fuel-weighing campaign (Tao et al., 2018). Moreover, the spatial disaggregation 

proxy using population density also contributed to this spatial pattern. Similarly, MEIC and NJU exhibited a even 

distribution because of the same activity data from CESY, National Bureau of Statistics (Table 1). 
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Figure 6. Frequency counts (a-f), cumulative emissions (g) (grids were sorted from low to high), and top 5% emitting grids plots (h) for 285 
ODIAC, EDGAR, PKU, CHRED, MEIC and NJU in 2012 at 10 km resolution. 

To identify the locations of hotspots, the bubble plots (Figure S2) demonstrated the spatial distribution of high-emitting grid 

cells that were larger than 50 kt CO2/km
2
. CHRED, EDGAR and ODIAC showed a similar pattern, with high-emitting grids 

concentrated in city clusters (e.g. Jing-Jin-Ji, the Yangtze River Delta, and the Pearl River Delta) and the eastern coast 

(Figure S2). EDGAR and ODIAC both derived the power plant emissions from CARMA, but ODIAC was likely to put more 290 
emissions than EDGAR over urbanized regions with lights, especially in the North China Plain. The emissions of CPED and 

CARMA were similar in China with a minor difference of 2%, but the numbers of power plants had a large difference (2320 

vs. 945) (Liu et al., 2015a). This implied that CARMA tended to allocate similar emissions to fewer plants than CPED. 

5. Discussion 

5.1 Activity data differences in datasets and their effects 295 

Activity data source, data level and sectors determined the total emissions largely. As can be seen in Fig. 1, activity data and 

EF determine the total emission estimates, and then affect the spatial distributions through disaggregation proxies of point, 

line and area sources. It has been well-discussed that sum of provincial data is larger than the national total (Guan et al., 
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2012;Hong et al., 2017;Liu et al., 2015b;Shan et al., 2018;Liu et al., 2013). CEADs (Provincial) is 8-18% higher than 

CEADs (National) after year 2008 (Figure 2). And thus province-based estimates (e.g. NJU and MEIC) are higher than 300 

CEADs (National). This could be attributed to the differences in national and provincial statistical systems and artificial 

factors, such as that some of provincial energy balance sheets were adjusted to make to achieve the exact match between 

supply and consumption (Hong et al., 2017). For example, the provincial statistics has data inconsistency and double 

counting problems (Qiang et al., 2007;Guan et al., 2012). One possible way to improve this is to use the provincial 

consumption fractions to rescale the national total consumptions when distributing emissions to grids. Hong et al. (2017) 305 

found that the ratio of the maximum discrepancy to the mean value was 16% due to different versions of national and 

provincial data in CESY. Ranges of 32-47% of CO2 emissions from power sector (mainly coal use) were found among 

inventories, while for transport sector (mainly liquid fuels) the fractions ranged from 7-9%. Apart from such differences, one 

peak of FFCO2 emissions was identified by most dataset in 2013, which was due largely to the slowing economic growth 

(NBS, 1998–2017), changes in industrial structure (Mi et al., 2017;Guan et al., 2018) and a decline in the share of coal used 310 

for energy (Qi et al., 2016), and strategies for reducing emissions could be based on such uniformed trends, while making 

reduction policies for provinces needs the support of provincial-energy-based datasets instead of national-energy-based ones.  

Estimates with more sectors would usually be higher than those with fewer. For different emission sectors, EDGAR has 

international aviation and bunkers (Janssens-Maenhout et al., 2017) and NJU has wastes sector(Liu et al., 2013) (Table S1), 

and thus were higher than others. Moreover, for MEICv.1.3 downloaded from official website, it included biofuel 315 

combustion (which accounted for ~5.7% of the total), and the version used here was specially prepared to exclude biofuel to 

increase comparability. For another instance, CEADs industry processes only take account of cement production and was 

thus lower than those (e.g., NJU and EDGAR) with more processes (iron and steel, etc.) (Janssens-Maenhout et al., 

2017;Shan et al., 2018;Liu et al., 2013). For PKU dataset, it used IEA energy statistics with more detailed energy sub-types. 

The emission factors was based on more detailed energy sub-types with lower EFs, and other inventories used average of 320 

large groups (Table 1) and sum of more detailed sub-types might not equal to the total of large groups due to incomplete of 

the statistics, and these could be reasons for its lower estimate (Wang et al., 2013). A further comparison with IEA, EIA and 

BP estimates with only energy related emissions also confirm that estimates with more sectors would be higher than those 

with fewer (Figure S1). 

5.2 Emission factor effects on total emissions 325 

Carbon emissions are calculated from activity data and EF, and the uncertainty in estimates is typically reported as 5% - 10%, 

while the maximum difference in this study reached 33.8% (or 2.7 PgC) in 2012. One major reason for this difference is the 

EF used by these inventories (Table 1). The EF for raw coal ranged from 0.491 to 0.746. For example, CEADs used 0.499 tC 

per ton of coal based on large-sample measurements, while EDGAR used 0.713 from the default values recommended by 

IPCC (Janssens-Maenhout et al., 2017;Liu et al., 2015b;Shan et al., 2018), and the differences are due largely to the low 330 
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quality and high ash content of Chinese coal. The variability of lignite and coal quality is quite large. In Liu et al., (2015) the 

carbon content of lignite ranged from 11% to 51% with mean±SD of 28%±13 (n=61). Furthermore, another study showed 

that the uncertainty from EF (-16 – 24%) was much higher than that from activity data (-1 – 9%) (Shan et al., 2018). We 

recommended substituting IPCC default coal EF with the CEADs EF. Regarding the plant-level emissions from coal 

consumptions, the collection of their EFs measured at fields representing the quality and type of various coals are highly 335 

needed to calibrate the large point source emissions, and we call for inclusion of physical measurements for calibration and 

validation of existing datasets (Bai et al., 2007;Dai et al., 2012;Kittner et al., 2018;Yao et al., 2019). Different fuel types 

would contribute differently to emission factors, i.e., for the same net heating value, natural gas emitted lowest carbon 

dioxide (61.7 kg CO2/TJ energy), followed by oil (65.3 kg CO2/TJ energy) and coal (94.6 kg CO2/TJ energy), and one 

successful example for reducing air pollutants and CO2 was that the Chinese government initiated the “project of 340 

replacement of coal with natural gas and electricity in North China” in 2016 (Zheng et al., 2018a). Moreover, the 

non-oxidation fraction of 8% used in Liu et al. (2015) (Liu et al., 2015b) for coal was attributable to the differences 

comparing with a default non-oxidation fraction of 0% recommended by IPCC (2006) in EDGAR (Janssens-Maenhout et al., 

2017). Moreover, averaged coal qualities are varying with time, yet we lacked such time-series quality data on raw coal. 

Bottom-up inventories typically use time-invariant EFs for CO2 due to the lack of information on coal heating values over 345 

time and the MEIC model also uses constant EFs of CO2 (Zheng et al., 2018). Teng and Zhu (2015) recommended time 

varied conversion factors from raw coal to standard coal, and change the raw coal to commodity coal in energy balance 

statistics since the latter has relatively efficient statistics on EF. 

5.3 Spatial distribution of point, line and area sources 

5.3.1 Point sources in datasets and the effects on spatial distribution 350 

Point sources emissions account for a large proportion of total emissions (Hutchins et al., 2017). Power plants consumed 

about half of the total coal production in the past decade (Liu et al., 2015a). Thus, the accuracy of point sources was 

extremely important for improving emission estimates. ODIAC, EDGAR, and PKU all distributed power plant emissions 

from CARMA dataset. However, the geolocation errors in China are relatively large, and only 45% of power plants were 

located in the same 0.1×0.1° grid in CARMA v2.0 as the real power plants locations that were identified by eyeballing in 355 

google maps (Wang et al., 2013), because CARMA generally treats the city-center latitudes and longitudes as the 

approximate coordinates of the power plants (Wheeler and Ummel, 2008). 

Liu et al. (2015a) found that CARMA neglected about 1300 small power plants in China. Thus CARMA allocated similar 

emissions to a limited number of plants than CPED (Table S2, 720, 1706 and 2320 point sources for ODIAC, EDGAR and 

MEIC, respectively), and ODIAC had fewer point sources due to elimination of wrong geolocations. The high-emitting grids 360 

in CHRED were attributed to the 1.58 million industrial enterprises from the First China Pollution Source Census (FCPSC) 
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used as point sources (Wang et al., 2014). Following the CARMA example, we call on the open source of large point sources 

for datasets and Chinese scientists need to adjust the locations of point sources from CARMA. 

5.3.2 Effects of spatial disaggregation methods on line and area sources 

Downscaling methods are widely used for its uniformity and simplicity because of the lack of detailed spatial data. 365 

Disaggregation methods used (e.g. nighttime light, population) by inventories strongly affect the spatial pattern. For example, 

ODIAC mainly use nighttime light from satellite to distribute emissions. Thus the hotspots concentrated more in strong 

nighttime light regions. However, using remote sensing data tended to underestimate industrial and transportation emissions 

(Ghosh et al., 2010). For instance, coal-fired power plants do not emit strong lights and may be far away from cities by 

transmission lines. Electricity generation and use are usually happened at different places, and stronger night-time light does 370 

not always mean higher CO2 emissions (Cai et al., 2018;Doll et al., 2000). Furthermore, night time lights would ignore some 

other main fossil fuel emissions such as household cooking with coal. The good correlation between night-time light and 

CO2 emissions is usually on a larger scale basis (national or continental) (Oda et al., 2010;Raupach et al., 2010), while this 

relationship would fail in populated or industrialized rural areas. 

Transport networks are also used in several inventories for spatial disaggregation. EDGAR and CHRED both showed clear 375 

transport emissions especially in western China. EDGAR used three road types and corresponding weighting factors to 

disaggregate line source emissions. CHRED used national traffic networks and their flows to distribute traffic emissions (Cai 

et al., 2018;Cai et al., 2012). It is easier to obtain the traffic networks but rather difficult to get the traffic flows and vehicle 

kilometers travelled (VKT) data, and thus the weighting factors method are much easier to apply. 

Population is widely used in spatial disaggregation (Andres et al., 2014;Andres et al., 2016;Janssens-Maenhout et al., 2017). 380 

The CDIAC emission maps originally used a static population data to distribute emissions and recently have changed to a 

temporally varying population proxy, which largely reduced the uncertainty. However, the unified algorithm for spatial 

disaggregation such as population density approach has difficulties in depicting the uneven development of rural and urban 

areas, and it usually use interpolation for limited base years and does not truly vary across years at high spatial resolution 

(Andres et al., 2014). Furthermore, downscaling approaches may introduce approximately 50% error per pixel, which are 385 

spatially correlated (Rayner et al., 2010), and this problem needs to be considered in future studies. 

Moreover, big cities virtually eliminated use of coal (Guan et al., 2018;Zheng et al., 2018a), while in rural areas use of coal 

even increased (Meng et al., 2019). For example, a national survey showed that China’s rural residential coal consumption 

fractions for heating increased from 19.2% to 27.2% (Tao et al., 2018). These transitions has impacts on spatial distribution 

of both CO2 and air pollutants. And the high resolution CO2 emissions have a potential proxy for fossil fuel emissions (Wang 390 

et al., 2013), thus further improvements on spatial disaggregation should consider these transitions and the surveyed data. 
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