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Responses to reviewers 

Dear Editor and Reviewers, 

We thank you for your letter and for the reviewers’ constructive comments concerning 

our manuscript. Those comments are all very valuable and helpful for revising and 

improving our paper. We have studied your comments carefully and have made 

corrections accordingly, which we hope to have addressed your concerns. Revised 

parts are marked in track change mode in the paper. The main corrections in the paper 

and the responses to the reviewer’s comments are as follows. 

 

 

Anonymous Referee #1 

Received and published: 28 April 2020 

Reducing uncertainty in China’s CO2 emissions and understanding its trends is very 

relevant of course. The presented attempt of a thorough comparison of nine 

inventories can be useful but in the current form I find it unconvincing. Some sections 

are not written clearly and do not present clear findings or conclusions. I find the 

balance between disusing the CO2 emission sources and strengths and the spatial 

distribution of CO2 is not right, the latter receives most of the attention while I think 

it should be the other way around, or in fact the discussion of emission and trends 

(section 4.1 is only 1 page) should be expanded. I believe, the paper needs a major 

revision but most of that should be deeper analysis and better 

characterization/discussion of reasons for differences and what does it mean for the 

future, ie., how can we do better. Still, I believe this work shall be published and with 

all the material collected and already evaluated to some extent, the manuscript can be 

revised successfully. Here are more specific comments that shall help to understand 

why I made the above statement. 

Response: We thank you for understanding the value of this paper. And we revised the 

MS as you have suggested. 
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Abstract: Line 31: Bearing in mind uncertainties, using ‘about/around’ rather than a 

precise 28% might be more appropriate.  

Response: Thank you. Revised accordingly. 

Line 37: Suggest adding a unit for the emission factors. Additionally (and this is 

something more important for the section discussing emission factors), there are some 

good reasons for variability in CO2 EF for coal as well as change over time (this is 

something that is not discussed enough in the paper) and so the authors could 

potentially revisit this statement later after revision. 

Response: Thank you. Added unit for coal EF (t C per t of coal). Indeed the EF for 

coal varied with time due to the changing coal quality, we added this in the discussion 

(lines 413-417). Averaged coal qualities are varying with time, yet we lacked such 

time-series quality data on raw coal. Bottom-up inventories typically use 

time-invariant EFs for CO2 due to the lack of information on coal heating values over 

time and the MEIC model also uses constant EFs of CO2 (Zheng et al., 2018). Teng 

and Zhu (2015) recommended time varied conversion factors from raw coal to 

standard coal, and change the raw coal to commodity coal in energy balance statistics 

since the latter has relatively efficient statistics on EF. Moreover, Liu et al. (2015b) 

considered the EFs and fractions of imported coal and local productions and thus the 

weighted value reflected coal quality varying to a certain degree. 

Introduction: I recommend a closer look at the whole introduction and consider 

rewriting it. I find it lack structure and order; it contains lots of information and 

references but all of it appears to be arranged in a bit chaotic way. A clear separation 

of discussion of total emissions and trends from spatial distribution would help for 

example, now these are mixed in different paragraphs (see for example 2nd para). 

Also, please check Reference style as in the text references use of ‘single names’ as 

authors while many of those are papers with many authors as given in the Reference 

section. The CO2 emission inventories are uncertain everywhere, highlighting why 

Chinese are possible more uncertain and why it matters would be important. 

Response: Thank you so much for your constructive suggestions. We rearranged it as 

you suggested. We separated total emissions and spatial disaggregation through 
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rewriting the 2
nd

 and 3
rd

 paragraphs. We arranged the introduction from a general 

background of China’s fossil fuel CO2 emissions, and then to the total estimates and 

spatial proxies, followed by the local inventories developed within China using more 

detailed provincial activity data and local optimized emission factors. Finally as you 

have suggested, we pointed out the importance of this study: Why Chinese are 

possible more uncertain and why it is important. 

Thank you for the careful review. We checked and corrected the Ref styles, and the 

original wrong format was caused by incorrect comma used in EndNote. 

Line 49-50: suggest adding a reference to IPCC AR5 too 

Response: Thank you. We added this reference. 

2. Emission data As shown in Table 1, the evaluated inventories are covering various 

periods but overlap. I’d expect that after reading this section (line 107-113) one would 

know for which years the evaluation will be performed. In fact, even in the method 

section (3), this is not evident. 

Response: Thank you for this advice. We added it (year 2012) in lines 160-162. 

I see that in the SI, there is an extended version of Table 1. I was wondering if adding 

a row with EFs for cement industry across inventories would be also useful. 

Response: Thank you for this suggestion. We added EFs for cement productions. 

I think it would be useful to add a short paragraph explaining why it is important to 

evaluate spatial distribution of CO2 emissions. It is certainly obvious for the authors 

and many but not for all. Not sure if this is the best place but (could be also in the 

introduction or method). 

Response: Thank you. We added such explanations in the introduction part (lines 

73-77). The gridded products provide basic understanding of where emissions come 

from and provide key inputs for transport and data assimilation models. Furthermore, 

policy makers can use this information for emissions reductions and environmental 

monitoring can use it for instruments deployment. 

3. Methods I am struggling a little to understand the significance of the Figure 1 as the 

concept for the evaluation method. The figure does not show anything beyond 

obvious and sources of data or sectors are listed in further text anyway. In general, I 
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find this whole section is not written very well or informative yet; in fact, beyond the 

2
nd

 para where there is some information about spatial analysis I do not see here much 

of a concept or method explained. I think, this needs further work and clear statement 

why and how certain things are done and why priority is given to X or Y. Additionally, 

some of the assumptions about the considered sectors for comparison could be briefly 

discussed here as inventories do not have the same sources included [some of that is 

mentioned in the Discussion section but I believe it should be already brought in 

here]and for a comparison it would be sensible to assure apples are compared to 

apples as much as possible. 

Response: Thank you for this suggestion. We added more information in lines 

146-149. Actually Fig. 1 only depicts the conceptual procedure in total emissions 

estimates and how gridded maps are produced for all inventories for a broad range of 

readers, who may be not specialized or familiar with inventories, thus it is important 

to know the differences in activity data, EF and spatial proxy data and spatial 

disaggregation methods they used, to further understand the differences among 

inventories in total emissions estimates and spatial characteristics. 

We totally agree with you on this point that assuring apples are compared to apples as 

much as possible. And we followed this principle to include only the fossil fuel CO2 

(FFCO2) and industry processes associated CO2 emissions. We excluded not so 

comparable inventories, such as BP and IEA, which only considered FFCO2. 

Line 125: Is “nearest neighbor algorithm’ a standard used name and most will be 

familiar with it? 

Response: Thank you, and we added an explanation on this term. 

4. Results I think section 4.1 needs some clearer writing and add discussion as to why 

the range and uncertainties grow with time. I find the discussion of total (and also 

sectoral) emissions and trends deserves a lot more space and I find it more important 

than spatial distribution. 

Response: Thank you. We added discussions in lines 193-194 explaining the range 

and uncertainties grow with time. Although the range increased with time, the relative 

difference remains at around 21%, indicating the systematical differences such as EFs 
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remains stable. And we added more discussions on EF and emissions sectors in lines 

178-187, 335, and 346. 

Line 146: ref to point 1); the EFs were the same for all sectors? Are these country 

averages? Were they changing over time in these or other inventories? I think it might 

be useful to add this discussion. 

Response: Thank you. We added this discussion in lines 178-182. The EFs were 

different for different fossil fuel types and cement production (Table S2). And they are 

from either IPCC default values or local optimized values from different sources. 

They generally do not change over time in these inventories although they should due 

to the unavailability of EFs over time (Teng and Zhu, 2015;Zheng et al., 2018a). 

Line 149: What are “differences in emission definitions”? Do you mean sources? If so, 

then it might be important to try to bring it to a common denominator and if not 

possible then say why and what implications it has rather than saying they are 

different. 

Response: Yes, here we mean emission sources or sectors. We agree with you and 

added in lines 185-187. Although we tried to make these datasets as comparable as 

possible, there are still minor differences in emission sources (sectors). For example, 

EDGAR contains abundant industry processes emissions while CEADs only 

considered cement production. 

Line 153: MEIC EF lower than EDGAR? Both average over all sectors for coal, or all 

fuels? In what units? How did change over time if inventories consider this (I think 

MEIC does). 

Response: Indeed, MEIC used lower EFs from CEADs (Zheng et al., 2018) than 

EDGAR for coal and cement productions, while for oil and gas the EF are very close 

(Table S1). For coal, the EF for MEIC is 0.499 tC per t coal, while EDGAR used 

IPCC default values, for coal it is 0.713 tC per t coal. Bottom-up inventories typically 

use time-invariant EFs for CO2 due to the lack of information on coal heating values 

over time and the MEIC model also uses constant EFs of CO2 (Zheng et al., 2018). 

Line 155: “minor difference” Is this good? Sensible? Or the match seems fine but 

maybe for wrong reason? As mentioned earlier the whole 4.1 misses actual 
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discussion. 

Response: The “minor differences in magnitude” may be misleading, so we changed 

this into “small differences in magnitude of total emissions estimates”. As explained 

above, the relative difference remains around 21%, indicating the potential 

systematical differences in EFs, which do not change over time. 

Line 184: “could be attributed”; If information is available and assume it is, then 

maybe one shall be more certain about it and say “is attributed” stating that this was 

identified as a reason. 

Response: We agree with you. We changed it to “is attributed”. 

Line 188: editorial “ODIAC was lack”  

Response: Sorry that we cannot quite understand the comment on Line 188: editorial 

“ODIAC was lack”, and we added more background information in line 228. Here we 

mean that ODIAC included point sources and area sources and do not have line 

sources in spatial disaggregation. 

Fig3. The scale/ranges selected are a bit odd, changing x10/x2.5/x2/x5/x2 and so it 

makes interpretation of differences a bit more challenging. 

Response: Thank you for the question. We revised the ranges in Fig.3 to x10. In the 

old versions, we tried several schemes and used those ranges to fully reflect the 

differences of inventories to avoid potential saturation of colors.  

Line 200-2002: Why is this important for cumulative total? I assumed that the spatial 

distribution comes after emissions are calculated? 

Response: Thank you for the question. The spatial distribution indeed comes after 

total emissions are calculated. Cumulative total is important in understanding the 

spatial distributions, potential use for assignment of responsibilities in emissions 

reductions, and also for modeling studies that focus on spatial distributions of carbon 

dioxide sources and sinks. 

Line 206: I believe somewhere in Discussion section there is mention of 

issues/completeness of CARMA (and a reference to the paper evaluating it) but it 

would be useful to mention this also here I think 

Response: Thank you for this good suggestion. We added completeness and issues of 
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CARMA in lines 305-311. CARMA is the only global database for tracking CO2 that 

gathered and presented the best available estimates of CO2 emissions for 50,000 

power plants around the world, of which around 15, 000 have latitude and longitude 

information with emissions larger than 0. The database is responsible for about 

one-quarter of all greenhouse gas emissions. However, CARMA is no longer active 

(the last update was November 28, 2012), and the geolocations of power plants are 

not accurate enough, especially in China (Byers et al., 2019;Liu et al., 2013;Wang et 

al., 2013;Liu et al., 2015a). Therefore users have to do corrections themselves (Liu et 

al., 2013;Oda et al., 2018;Wang et al., 2013;Janssens-Maenhout et al., 2019b;Liu et al., 

2015a). 

Line 241-244: Isn’t it obvious? Anything different would be strange, wouldn’t it?  

Response: Indeed, you are right, and this is assumed to be so and proved to be. In 

presenting this, we also want to indicate that when doing spatial disaggregation, 

national-data-based inventories can use provincial fractions as constraints. Since 

national inventories do not directly include provincial information, they can use the 

weights from provincial data based inventories to rescale and redistribute the national 

total estimates. 

Fig 5: Editorial: The numbers are actually not always ‘under’ so it might be better to 

say that the numbers simply refer to the green bars 

Response: Thank you for the careful review. Revised accordingly. 

5. Discussion Suggest to revisit the whole 5.1 to improve clarity. I am struggling to 

understand several statements here. 

Response: Thank you. We added more explanations and discussions around lines 

335-347. 

Line 256: “Artificial factors” – what is meant here? 

Response: Added descriptions in lines 341-342. Here“Artificial factors” means data 

may be adjusted artificially to meet certain goals. For example, Hong et al. (2017) 

pointed out that some provinces had zero statistical difference; that is the supply data 

matches the consumption data exactly, which may indicate that some provincial data 

were adjusted to achieve the exact match. Moreover, the energy revisions in 2005 and 
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2010 have adjusted the total national energy use with special attention to the annual 

coal consumption (Guan et al., 2012), after the second economic census it was found 

to bring the country closer to achieving its energy conservation targets (Aden, 2010).  

Line 257-259: I have difficulty to understand what is suggested here. 

Response: Here we mean that the fractions of provincial emissions in 

province-data-based inventories can serve as regional constraints in spatial 

disaggregation of national-data-based inventories. Since national inventories do not 

directly include provincial activity data information, they can use the weights from 

provincial data based inventories to rescale and redistribute the national total 

estimates. 

Line 265: First sentence; what does it mean? It hints that possibly the comparison is 

not really addressing the same sources and that in some inventories some are missing? 

If so, then I think this should be mentioned much earlier and then statements about 

which specific sectors are of concern and if the other (common) sectors compare 

reasonably. 

Response: Yes, you are right, and we added explanations in lines 185-187. Although 

we tried to make the inventories as comparable as possible, some minor 

sources/sectors are different among inventories (see table S1 emission sectors for 

detail), and most datasets only provide total estimates or major sectors, and do not 

provide such detailed sub-sectors data.  

Section 5.2 could benefit from additional discussion of: - % of CO2 from coal use vs. 

cement production vs. liquid fuels (transport, etc) - Differences between coals used in 

different sectors; where such info exists and how important it could be - Change in 

EFs (especially for coal) over time owing to potentially declining or improving fuel 

quality in specific sectors 

Response: Thank you for the good suggestions. And we added such discussions in 

lines 346-347. Such results (see below figure) are already prepared in another 

sectorial comparison paper.  
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Fractions of sectoral emissions in inventories. 

Section 5.4 – I think the title should really explicitly refer to ‘area sources and line 

sources’. In fact, I thought that one can have one section 5.3 for “spatial distributon’ 

and then sub sections on point sources and area sources. 

Response: We agree with you on this good idea. We combined 5.3 and 5.4 and make 

point, line and area sources as sub sections. 

Table S1: I find this table very difficult to read. One should consider reformatting and 

to show included source-sectors in each inventory I’d suggest to make a row for each 

sector and then ‘tick’ the ones that are covered in specific inventory. It would make 

reading of the table much easier. 

Response: Thank you for this good suggestion, and we revised accordingly. 

Anonymous Referee #2 

This is a potentially very interesting paper but the current version is poorly organized 

and inadequately explained. It needs serious reorganization to tell a direct and clear 

story.  

Response: Thank you for your good suggestions, and we reorganized the results from 

national scale (total estimates in Section 4.1 and spatial distribution in Section 4.2), to 

provincial scale estimates and correlations, and finally to the finer grid level. 
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Most of the graphics are quite adequate but need a bit more explanation. Figures4a, 4b, 

etc need a lot more explanation. 

Response: We added more descriptions and explanations in lines 297–300 for Figures 

6a, 6b, 6d, 6g.  

The problems start early. This is a comparison of 9 datasets but sentence number 3 

seems to accept values from one dataset (Le Quere et al.) – but this dataset does not 

appear to be part of the comparison.  

Response: Thank you for this question. Le Quere et al. dataset is named GCP/CDIAC 

in this comparison because their works in Global Carbon Project (GCP) used CDIAC 

data set for most years and used BP data to extrapolate the most recent two years. 

Sentence number 3 is a general background introduction due to its relatively large 

impact. 

Table 1 lists the properties of the datasets to be compared, but there are only 7 in the 

table.  

Response: Thank you for this question. We agree with you to complete Table 1 and 

added the other two datasets (GCP/CDIAC and NCCC) in Table 1. The original 

intention was to only include the gridded data that have been further analyzed for 

spatial characteristics in the latter part.  

Sentence number 2 of paragraph 2 jumps abruptly and without explanation from 

Chinese emissions estimates to global gridded emissions datasets.  

Response: Thank you, and we reorganized the introduction as total emissions estimate 

and spatial disaggregation. And we used transitional words to make the conjunction 

smoother. 

Line 58 introduces the CDIAC dataset, which also turns out to be not part of the 

comparison.  

Response: Thank you for this question. CDIAC is used by GCP and ODIAC, thus in 

total estimates they were identical for most of years, except for the recent two years 

that were extrapolated by BP data. And we added descriptions in lines 57-58, 

136-137. 

In line 100 datasets from EIA, IEA, and BP are introduced, but also apparently not 
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used in the comparison. There is no consistent story line on what is being compared 

and why, on the fact that comparison will be made at the national, provincial, and grid 

bases.  

Response: These three data sets do not include cement production emissions, and to 

make the data sets as comparable as possible, we did not include them in the main text. 

Moreover, we showed them in the supplement (Figure S1) and pointed out this caveat. 

Table 1, text line 110, and Figure 2 all seem to say that CHRED exists only for 2007, 

but it appears elsewhere, for example Figure 4, with data for 2012? 

Response: Thank you for the careful review, revised. This is our overlook during data 

update. CHRED for year 2012 was just available in recent months through 

cooperation with data developer. The original comparison for CHRED was in 2007 

and scaled to 2012 (Originally described in Figure 3 captions, and deleted after data 

update). 

Interesting but ad hoc statements appear throughout the text. Line 102 says that one of 

the purposes of the study was to identify “spatiotemporal differences” but there is no 

further mention of temporal differences.  

Response: Thank you for this question. We described the temporal differences in 

Section 4.1 (Figure 1) in lines around 168, 175, and 192.  

CARMA enters the discussion in line 109, without definition or citation.  

Response: Thank you. We added definition and citation in lines 304-310. 

EF enters the discussion in line 88 but if it is defined it is lost in a sea of acronyms.  

Response: Thank you, revised. 

Biomass burning appears in line 118 but there is no mention, until the closing 

discussion, on how it is used.  

Response: Thank you your question. Actually, only PKU included natural biomass 

burning from wild fire (Table S1, Emissions sectors), yet this only contributed a very 

small share close to 0, therefore it does not affect the estimates. 

I did not find enough discussion of Figure 1 to make it useful.  

Response: Thank you for this remind. We added in lines 146-149 and 334-336. Figure 

1 is the summary of methodology for both total estimates and spatial disaggregation, 
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i.e., activity data and EF determine the total emission estimates, and then affect the 

spatial distributions through disaggregation proxies of point, line and area sources. 

IF FCPSC was defined I missed it. 

Response: Sorry for the inconvenience. It first appeared in Table 1, and defined at the 

footnotes. We added it in the main text and also the acronym list. 

Line 139 says “both are 21%”. But does not say % of what. This problem appears 

elsewhere in the text as well.  

Response: Sorry for the misleading. The range of the 9 estimates increased 

simultaneously from 0.7 to 2.1 Gt CO2, both of the ranges are 21% of the 

corresponding years’ total emissions, indicating the relative differences remained the 

same level.  

Also checked the others and revised in lines 111, 169 and 193. 

In line 299, “same” as what?  

Response: Thank you. Revised in line 393. The geolocation errors in China are 

relatively large, and only 45% of power plants were located in the same 0.1×0.1° grid 

in CARMA v2.0 as the real power plants locations that were identified by 

eyeballing in google maps (Fig. S1 in Wang t al, (2013)). 
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Text around lines 145 to 155 is so poorly organized that it is hard to follow.  

Response: Thank you. We reorganized and improved it by deleting trivial results and 

adding more explanations. Indeed, it is very challenging to explain all the differences 

among datasets, yet we provided the two main contributing factors: i.e., differences in 

EF for coal and systematic biases among national and provincial activity data. 

Page 10 is rambling and disconnected. On line 225 do I understand that total 

emissions from large point sources are approximately the same even though one data 

set has 2320 points and the other 945? How does this fit in with the 720, 1706, and 

2320 in line 303? 

Response: Yes. Liu et al., (2015) reported that MEIC’s power plant emissions are 2.5 

Pg CO2 from 2320 power plants, while CARMA also estimated it 2.5 Pg CO2 from 

945 plants (See below Fig. 13 from Liu et al., (2015)). 

As suggested in lines 308-309, The CARMA dataset does not provide accurate 

geolocations (latitude and longitude) (Byers et al., 2019) for the Chinese power plants 

and almost all inventories have corrected the original data and thus have different 

power plant numbers (Janssens-Maenhout et al., 2019b;Liu et al., 2015a;Liu et al., 
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2013;Wang et al., 2013). Moreover, EDGAR used CARMA3.0 while ODIAC and 

PKU used CARMA2.0, new version included more power plants. 

 

 

I could list many additional problems of organization and flow of the text. There is 

much here that appears to be interesting. The paper needs a major re-organization and 

significant increase in explanations of what was done and why and what we learn 

from it. 

Response: Thank you. We re-organized the Introductions, Results and added more 

contents in discussions. We separated total emissions and spatial disaggregation 

through rewriting the 2
nd

 and 3
rd

 paragraphs. We arranged the introduction from a 

general background of China’s fossil fuel CO2 emissions, and then to the total 

estimates and spatial proxies, followed by the local inventories developed within 

China using more detailed provincial activity data and local optimized emission 

factors. Finally we pointed out the importance of this study: Why Chinese are possible 
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more uncertain and why it is important. 
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Abstract. China’s fossil-fuel CO2 emissions (FFCO2) account for about 28% of the global total FFCO2 in 2016. An accurate 

estimate of China’s FFCO2 is a prerequisite for global and regional carbon budget analyses and monitoring of carbon emission 

reduction efforts. However, large uncertainties and discrepancies exist in China’s FFCO2 estimations due to lack of detailed 

traceable emission factors and multiple statistical data sources. Here, we evaluated China's FFCO2 emissions from 9 published 

global and regional emission datasets. These datasets show that the total emission increased from 3.4 (3.0 -3.7) in 2000 to 9.8 35 

(9.2-10.4) Gt CO2 yr
-1

 in 2016. The variations in their estimates were due largely to the different emission factors (EF) 

(0.491-0.746 t C per t of for coal) and activity data. The large-scale patterns of gridded emissions showed a reasonable 

agreement with high emissions concentrated in major city clusters, and the standard deviation mostly ranged 10-40% at 
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provincial level. However, patterns beyond the provincial scale vary greatly with the top 5% of grid -level account for 50-90% 

of total emissions for these datasets. Our findings highlight the significance of using locally-measured EF for the Chinese coals. 40 

To reduce the uncertainty, we call on the enhancement of physical CO2 measurements and use them for datasets validation, key 

input data sharing (e.g. point sources) and finer resolution validations at various levels. 

Keywords: fossil-fuel CO2 emissions, spatial disaggregation, emission factor, activity data, comprehensive dataset 

1 Introduction 

Anthropogenic emission of carbon dioxide (CO2) is one of the major contributions in accelerating global warming (IPCC, 45 

2007). The global CO2 emissions from fossil fuel combustion and industry processes increased to 36.23 Gt CO2 yr
-1 

in 2016, 

with a mean growth rate of 0.62 Gt CO2 yr
-1

 per year over the last decade (Le Quéré et al., 2018). In 2006, China became the 

world largest emitter of CO2 (Jones, 2007). The CO2 emission from fossil fuel combustion and cement production of China 

was 9.9 Gt CO2 in 2016, accounting for about 28% of all global fossil-fuel based CO2 emissions (Le Quéré et al., 2018;IPCC 

AR5, 2013). To avoid the potential adverse effects from climate change (Zeng et al., 2008;Qin et al., 2016), the Chinese 50 

government has pledged to peak its CO2 emissions by 2030 or earlier and to reduce the CO2 emission per unit gross domestic 

product (GDP) by 60-65% below 2005 levels (SCIO, 2015). Thus, an accurate quantification of China’s CO2 emissions is the 

first step in understanding its carbon budget and making carbon control policy. 

Chinese total emission estimates are thought to be uncertain or biased due to the lack of reliable statistical data and/or the use 

of generic emission factors (EF) (e.g. (Guan et al., 2012); (Liu et al., 2015b)). National and provincial data based inventories 55 

used activity data from different sources. The Carbon Dioxide Information Analysis Center (CDIAC) used national energy 

statistics from United Nations (UN) (Andres et al., 2012), and both the Open-Data Inventory for Anthropogenic Carbon 

dioxide (ODIAC) and Global Carbon Project (GCP) mainly use CDIAC total estimates and thus they are identical in time 

series (Le Quéré et al., 2018;Oda et al., 2018). The Emissions Database for Global Atmospheric Research (EDGAR) and 

Peking University CO2 (PKU-CO2, hereafter named as PKU) derived emissions from the energy balance statistics of the 60 

International Energy Agency (IEA) (Janssens-Maenhout et al., 2019a;Wang et al., 2013). On the other hand, provincial data 

based inventories developed within China all used provincial energy balance sheet in China Energy Statistics Yearbook 

(CESY) from National Bureau of Statistics of China (NBS) (Cai et al., 2018;Liu et al., 2015a;Liu et al., 2013;Shan et al., 

2018). As for EF, there are generally four sources, i.e., 1) The Intergovernmental Panel on Climate Change (IPCC) default 

values that has been adopted by ODIAC and EDGAR (Andres et al., 2012;Janssens-Maenhout et al., 2019b;Oda et al., 2018); 65 

2) National Development and Reform Commission (NDRC) (NDRC, 2012b); 3) China’s National Communication, which 

reported to the United Nations Framework Convention on Climate Change (UNFCCC) (NDRC, 2012a); 4) The China 

Emission Accounts and Datasets (CEADs) EF that are locally optimized through large sample measurements (Liu et al., 

2015b). The existing estimates of global total FFCO2 emissions are comparable in magnitude , with an uncertainty generally 
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within ±10% (Le Quéré et al., 2018;Oda et al., 2018). However, there are great differences at national scale (Marland et al., 70 

2010;Olivier et al., 2014), with the uncertainty ranging from a few percent to more than 50% in estimated emissions for 

individual countries (Andres et al., 2012;Boden et al., 2016;Oda et al., 2018). 

Along with the total emissions estimates, spatial distributions are also important for several reasons: 1) Spatial gridded 

products provide basic understandings on CO2 emissions; 2) They are key inputs (as priors) for transport and data 

assimilation models and influenced the carbon budget (Bao et al., 2020); 3) For high emissions areas recognized by multiple 75 

inventories, they can be used for policy making in emissions reductions and can provide useful information for deployment 

of instruments in emissions monitoring (Han et al., 2020). At the Gglobal level, gridded emission datasets are often based on 

disaggregation of country scale emissions (Janssens-Maenhout et al., 2017;Wang et al., 2013). Thus, the gridded emissions 

are subjected to errors and uncertainties from the total emission calculation and emission spatial disaggregation  (Andres et 

al., 2016;Oda et al., 2018;Oda and Maksyutov, 2011). For example, the Carbon Dioxide Information Analysis Center 80 

(CDIAC) distributes national energy statistics at a resolution of 1°×1° using population density as a proxy (Andres et al., 

2016;Andres et al., 2011). Further, to improve spatial resolution of emission inventory, the Open-Data Inventory for 

Anthropogenic Carbon dioxide (ODIAC) distributes national emissions based on CDIAC and BP statistics with satellite 

nighttime lights and power plant emissions (Oda et al., 2018;Oda and Maksyutov, 2011). The Emissions Database for Global 

Atmospheric Research (EDGAR) derived emissions from the energy balance statistics of the International Energy Agency 85 

(IEA), and country specific activity datasets from BP plc, United States Geological Survey (USGS), World Steel Association, 

Global Gas Flaring Reduction Partnership (GGFR)/U.S. National Oceanic and Atmospheric Administration (NOAA) and 

International Fertilizer Association (IFA). Gridded emission maps at 0.1°x0.1° degree were produced using spatial proxy 

data based on the population density, traffic networks, nighttime lights and point sources as described in Janssens-Maenhout 

et al. (2017). Based on the sub-national fuel data, population and other geographically resolved data, a high-resolution 90 

inventory of global CO2 emissions was developed at Peking University (PKU-CO2, hereafter named as PKU) (Wang et al., 

2013). The existing estimates of global total FFCO2 emissions are comparable in magnitude , with an uncertainty generally 

within ±10% . However, there are great differences at national scale , with the uncertainty ranging from a few percent to 

more than 50% in estimated emissions for individual countries . 

In order to accurately calculate emissions, a series of efforts have been conducted to quantitatively evaluate China’s CO 2 95 

emissions using national or provincial activity data, local EF, and detailed data set of point sources (Cai et al., 2018;Li et al., 

2017;Wang et al., 2013). The China High Resolution Emission Database (CHRED) was developed by Cai et al. (2018) and 

Wang et al. (2014) based on the provincial statistics, traffic network, point sources and industrial and fuel-specific EF. 

CHRED was featured by its exclusive point source data for 1.58 million industrial enterprises from the First China Pollution 

Source Census. The Mutli-resolution Emission Inventory for China (MEIC) was developed by Qiang et al. (2007), Lei et al. 100 
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(2011) and Liu et al. (2015a) at Tsinghua University through integrating provincial statistics, unit-based power plant 

emissions, population density, traffic networks, and emission factor (EF) (Li et al., 2017;Zheng et al., 2018b;Zheng et al., 

2018a). MEIC used China Power Emissions Database (CPED), and the unit-based approach is used to calculate emissions 

for each coal-fired power plant in China with detailed unit-level information (e.g., coal use, geographical coordinates). For 

the mobile sources, a high-resolution mapping approach is adopted to constrain the vehicle emissions using county-level 105 

activity database. The China Emission Accounts and Datasets (CEADs) was constructed by (Shan et al., 2018;Shan et al., 

2016) and Guan et al. (2018) based on different levels of inventories to provide emissions at national and provincial scales. 

CEADs used coal EFs from the large-sample measurements (602 coal samples and samples from 4,243 coal mines). And this 

is assumed to be more accurate than the IPCC default EFs. 

Regardless of these efforts, however, the amount of China’s CO2 emissions remains uncertain due to the large discrepancy 110 

among current estimates, of which the difference ranges from 8-24% of the total estimates (Shan et al., 2018;Shan et al., 

2016). Several studies made efforts of quantifying the possible uncertainty in China’s FFCO2, such as differences from 

estimation approaches (Berezin et al., 2013), energy statistics (Hong et al., 2017;Han et al., 2020), spatial scales (Wang and 

Cai, 2017), and point source data . Importantly, the authors would like to point out that the lack of a comprehensive 

understanding and comparison of the potential uncertainty in estimates of China’s FFCO2, including spatial, temporal, proxy, 115 

and magnitude components, makes Chinese emissions possible more uncertain, and thus it is important to present, analyze 

and explain such differences among inventories as one of the root causes of the uncertainty.  

Here we evaluated the uncertainty in China’s FFCO2 estimates by synthesizing global gridded emissions datasets (ODIAC, 

EDGAR, and PKU) and China-specific emission maps (CHRED, MEIC, and the Nanjing University CO2 (NJU) emission 

inventory). Moreover, several other inventories were used in the evaluation analysis, such as the Global Carbon Budget from 120 

the Global Carbon Project (GCP), the National Communication on Climate Change of China (NCCC), the U.S. Energy 

Information Administration (EIA), IEA and BP.  

The purposes of this study were to: 1) quantify the magnitude and the uncertainty in China’s FFCO2 estimates using the 

spread of values from the state-of-the-art inventories; 2) identify the spatiotemporal differences of China’s FFCO2 emissions 

between the existing emission inventories and explore the underlying reasons for such differences. To our knowledge, this is 125 

the first comprehensive evaluation of the most up-to-date and mostly publicly available carbon emission inventories for 

China. 

2. Emissions data 

The evaluation analysis was conducted from 6 gridded datasets (listed in Table 1) and 3 other statistical data. We selected 

year 2012 for spatial analysis since this is the most recent year available for all gridded data sets and also this is a peak year 130 
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of emissions due to the strong reductions from impacts of the 12th-Five-Year-Plan. Specifically, the global fossil fuel CO2 

emission datasets included the year 2017 version of ODIAC (ODIAC2017), the version v4.3.2 of EDGAR (EDGARv4.3.2), 

PKU-CO2, which all used the Carbon Monitoring for Action (CARMA) as point source. The China-specific emission data 

used were the year 2007 of CHRED, the MEIC v1.3, NJU-CO2 v2017, which all used China Energy Statistical Yearbook 

(CESY) activity data. Moreover, 3 inventories were used as a reference, i.e., GCP/CDIAC, CEADs and NCCC, since GCP 135 

and ODIAC used CDIAC for most of the years, except for the recent two years that were extrapolated by BP data, these three 

were treated as one in time series comparison. Data were collected from official websites for ODIAC, EDGAR, PKU and 6 

tabular statistic data, and were acquired from their authors for CHRED, MEIC and NJU. See supporting information for 

more details on data sources and methodology of each dataset. 

3. Methodology for evaluation of multiple datasets  140 

We evaluated these datasets from three aspects: data sources, boundary (emission sectors) and methodology (Figure 1, Table 

1 and S1, S2). For data source, there are two levels: national data such as UN or IEA statistics and provincial level data such 

as CESY. The emission sectors mainly include fossil fuel production, industry production and processes, households, 

transportation, aviation/shipping, agriculture, natural biomass burning from wild fire and waste for these datasets, and Table 

S1 listed sectors included in each inventory. And for methodology, it analysis of inventories includes total estimates (activity 145 

data and EF) aspect and spatial disaggregation of point, line and area sources. As Fig. 1 depicted the conceptual procedure in 

total emissions estimates and how gridded maps are produced for all inventories, it is important to know the differences in 

activity data, EF and spatial proxy data and spatial disaggregation methods they used, to understand the differences among 

inventories in total emissions estimates and spatial characteristics. 
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 150 

Figure 1 Conceptual diagram for data evaluation based on data sources, emission sectors and methodologies.  

Preprocessing of six gridded CO2 emission datasets included several steps that are described as follows. First, The global 

map of CO2 emissions (i.e. ODIAC, EDGAR and PKU) were re-projected to Albers Conical Equal Area projection (that of 

CHRED). And the nearest neighbor algorithm was used to resample different spatial resolution into a pixel size of 10 km by 

10 km, and this method takes the value from the cell closest to the transformed cell as the new value. Second, the national 155 

total emissions were derived using ArcGIS zonal statistics tool for CHRED while the others were from tabular data provided 

by data owners. Finally, the grids for each inventory were sorted in ascending order and then plotted on a logarithmic scale to 

represent the distribution of emissions. To identify the contribution of high emission grids, emissions at grid level that 

exceeded 50 kt CO2 yr
-1

 km
-2

 and the top 5 % emitting grids were selected for analysis. 
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Table 1 General information for emission data sets* 160 

Data 
ODIAC2

017 
EDGARv432 PKU CHRED MEIC NJU CEADs GCP/CDIAC NCCC 

Domain Global Global Global China China China China Global China 

Temporal 

coverage 

2000-201

6 
1970-2012 1960-2014 2007, 2012 2000-2016 

2000-2

015 

1997-20

15 
1959-2018 2005, 2012, 2014 

Temporal 

resolution 
Monthly Annual Monthly 

Biennially 

or 

triennially 

Monthly Annual Annual Annual Annual 

Spatial 

resolution 
1 km 0.1 degree 0.1 degree 10 km 0.25 degree 

0.25 

degree 
N/A N/A N/A 

Emission 

estimates 

Global & 

National 
Global & National 

Global & 

National 

National & 

Provincial 

National & 

Provincial 

Nationa

l & 

Provinc

ial 

National 

& 

Provinci

al 

Global & National National 

Emission 

factor for 

raw coal 

(tC per t of 

coal) 

0.746 0.713 0.518 0.518 0.491 0.518 0.499 0.746 0.491 

Uncertaint

y 

17.5% 

(95% CI) 
±15% ±19% (95% CI) ±8% ±15% 

7-10% 

(90% 

CI) 

-15% - 

25% 

(95% 

CI) 

17.5% (95% CI) 5.40% 

Point CARMA CARMA3.0 CARMA2.0 FCPSC CPED CEC;A N/A N/A N/A 
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source 2.0  CC;CC

TEN 

Line 

source 
N/A 

the OpenStreetMap 

and 

OpenRailwayMap, 

Int. aviation and 

bunker 

N/A 

The 

national 

road, 

railway, 

navigation 

network, 

and traffic 

flows 

Transport 

networks 
N/A N/A N/A N/A 

Area 

source 

Nighttim

e light 

Population density, 

nighttime light 

Vegetation and 

population 

density, 

nighttime light 

Population 

density, 

land use, 

human 

activity 

Population 

density, land 

use 

Populat

ion 

density, 

GDP 

N/A N/A N/A 

Version 

name 

ODIAC2

017 

EDGARv4.3.2_FT2

016，EDGARv4.3.2 
PKU-CO2-v2 CHRED MEIC v.1.3 

NJU-C

O2v201

7 

CEADs N/A N/A 

Year 

published/

updated 

2018 2017 2016 2017 2018 2017 2017 2019 2018 
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Data 

sources 

http://db.

cger.nies.

go.jp/dat

aset/ODI

AC/ 

http://edgar.jrc.ec.e

uropa.eu/overview.

php?v=432_GHG&

SECURE=123 

http://inventory.

pku.edu.cn/dow

nload/download.

html 

Data 

developer 
Data developer 

Data 

develop

er 

http://w

ww.cead

s.net/ 

(registrat

ion 

requred) 

https://www.globalcarbon

project.org/carbonbudget/

19/data.htm 

https://unfccc.int/sit

es/default/files/resou

rce/China 

2BUR_English.pdf 

Reference

s 

Oda 

(2018) 

Janssens-Maenhout 

(2017) 

Wang et al., 

2013 

Cai et al. 

(2018); 

Wang et al. 

(2014) 

Zheng (2018); 

Liu et al. (2015) 

Liu 

(2013) 

Shan et 

al. 

(2018) 

Friedlingstein et al. 

(2019) 
NCCC (2018) 

 161 

Data ODIAC2017 EDGARv432 PKU CHRED MEIC NJU CEADs 

Domain Global Global Global China China China China 

Temporal coverage 2000-2016 1970-2012 1960-2014 2007 2000-2016 2000-2015 1997-2015 

Temporal 

resolution 

Monthly Annual Monthly 

Biennially or 

triennially 

Monthly Annual Annual 

Spatial resolution 1 km 0.1 degree 0.1 degree 10 km 0.25 degree 0.25 degree N/A 

Emission estimates Global & National Global & National Global & National 

National & 

Provincial 

National & 

Provincial 

National & 

Provincial 

National & 

Provincial 
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Emission factor for 

raw coal (tC per t 

of coal) 

0.746 0.713 0.518 0.518 0.491 0.518 0.499 

Uncertainty 17.5% (95% CI) ±15% ±19% (95% CI) ±8% ±15% 7-10% (90% CI) 

-15% - 25% (95% 

CI) 

Point source CARMA2.0  CARMA3.0 CARMA2.0 FCPSC CPED 

CEC;ACC;CCTE

N 

N/A 

Line source N/A 

the 

OpenStreetMap 

and 

OpenRailwayMap, 

Int. aviation and 

bunker 

N/A 

The national road, 

railway, navigation 

network, and 

traffic flows 

Transport 

networks 

N/A N/A 
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Area source Nighttime light 

Population density, 

nighttime light 

Vegetation and 

population density, 

nighttime light 

Population density, 

land use, human 

activity 

Population density, 

land use 

Population density, 

GDP 

N/A 

Version name ODIAC2017 

EDGARv4.3.2_FT

2016，

EDGARv4.3.2 

PKU-CO2-v2 CHRED MEIC v.1.3 NJU-CO2v2017 CEADs 

Year 

published/updated 

2018 2017 2016 2017 2018 2017 2017 

Data sources 

http://db.cger.nies.

go.jp/dataset/ODI

AC/ 

http://edgar.jrc.ec.e

uropa.eu/overview.

php?v=432_GHG

&SECURE=123 

http://inventory.pk

u.edu.cn/download

/download.html 

Data developer Data developer Data developer 

http://www.ceads.n

et/ (registration 

requred) 

References Oda et al. (2018) 

Janssens-Maenhou

t et al. (2017) 

Wang et al., 2013 

Cai et al. (2018); 

Wang et al. (2014) 

Zheng et al. 

(2018a); Liu et al. 

(2015b) 

Liu et al. (2013) Shan et al. (2018) 

* CI: Confidence interval; FCPSC: the First China Pollution Source Census; CPED: China Power Emissions Database; CEC: Commission for Environmental Cooperation; 162 

ACC: China Cement Almanac; CCTEN: China Cement Industry Enterprise Indirectory; GDP: Gross domestic product; N/A: Not available.163 
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4. Results 

4.1 Total emissions and recent trends 165 

The interannual variations of China’s CO2 emissions from 2000 to 2016 were evaluated from 6 gridded emission maps and 3 

national total inventories (Figure 2). All datasets show a significant increasing trend in the period of 2000 to 2013 from 3.4 

to 9.9 Gt CO2. The range of the 9 estimates increased simultaneously from 0.7 to 2.1 Gt CO2 (both are 21% of the 

corresponding years’ total emissions). In the second period (from 2013 to 2016), the temporal variations mostly levelled off 

or even decreased. Specifically, the emissions estimated from PKU and CEADs showed a slight downward trend although 170 

they used independent activity data of IEA (2014) and Statistics (2016), and this downward trend is attributed to changes in 

industrial structure, improved combustion efficiency, emissions control and slowing economic growth (Guan et al., 

2018;Zheng et al., 2018a). 

There is a large discrepancy among the current estimates, ranging from 8.0 to 10.7 Gt CO2 in 2012. NJU has the highest 

emissions during the periods of 2005—2015, followed by EDGAR, MEIC and CDIAC/GCP/ODIAC, while CEADs 175 

(National) and PKU were much lower (Figure 2). This is mainly because of three reasons: 1) the EF for raw coal was higher 

for EDGAR and ODIAC than the others. The EFs were different for different fossil fuel types and cement production (Table 

S2). Since coal consumption consisted 70-80% of total emissions, coal EF is more significant than the others. The EFs were 

different for three major fossil fuel types (raw coal, oil and natural gas) and cement production (Table 1 and S2). And they 

are from either IPCC default values or local optimized values from different sources. They do not change over time in these 180 

inventories although they should, due to the unavailability of EFs over time; 2) differences in activity data, NJU, MEIC and 

CEADs (Provincial) used provincial data from CESY (2016), while CEADs (National), PKU used national data from CESY 

(2016) and IEA (2014), respectively (Table 1 and S1), and sum of provincial emissions would be higher than the national 

total; 3) differences in emission definitions (Table 1 and S1, emissions sectors). Although we tried to make these datasets as 

comparable as possible, there are still minor differences in emission sources (sectors). For example, EDGAR contains 185 

abundant industry processes emissions while CEADs only considered cement production (Janssens-Maenhout et al., 2019b). 

EDGAR and MEIC have a similar trend, but for magnitude, MEIC is usually higher than EDGAR. This is a combined effect 

of the above three reasons. MEIC used provincial energy data CESY (2016) while EDGAR used national level IEA (2014). 

But MEIC’s EF is lower than EDGAR. These opposing effects would bring them closer in magnitude. CEADs (National) 

showed the lowest estimates from 2000—2007 and PKU afterwards. The gridded products (ODIAC, EDGAR, MEIC and 190 

NJU) and national inventory (GCP/CDIAC) both show minor small differences in magnitude of total emissions estimates 

and trend from 2000—2007, and the differences in magnitude increased gradually from 2008 onward. Although the range 
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increased with time, the relative difference remains at around 21% of the corresponding years’ total estimates, indicating 

potential systematical differences such as that EFs remain stable. 

  195 

Figure 2. China’s total FFCO2 emissions from 2000 to 2016. The emissions are from combustion of fossil fuels and cement production 

from different sources (EDGARv4.3.2_FT2016 includes international aviation and marine bunkers emissions). To keep comparabili ty and 

avoid differences resulted from the emissions disaggregation  (e.g. Oda et al. 2018(Oda et al., 2018)). The values for 6 gridded emission 

inventories are tabular data provided by data developers before spatial disaggregation. Prior to 2014, GCP data was taken fro m CDIAC 

and 2015-2016 was calculated based on BP data and fraction of cement production emissions in 2014. Shading area (error bar for CHRED) 200 

indicates uncertainties from coauthors’ previous studies (See Table 1). 

4.2 Spatial distribution of FFCO2 emissions 

The evaluation of spatially-explicit FFCO2 emissions is fundamentally limited by the lack of direct physical measurements 

on grid scales (e.g. (Oda et al., 2018)). We thus attempted to characterize the spatial patterns of China’s carbon emissions by 

presenting emission estimates available. We compared 6 gridded products including ODIAC, EDGAR, PKU, CHRED, 205 

MEIC and NJU in 2012. The year 2012 was the most recent year for which all the six datasets were available. Spatially, CO 2 

emissions from different datasets are concentrated in eastern China (Figure 3). High emission areas were mostly distributed 

in city clusters (e.g. BeijingTianjin-Hebei (Jing-Jin-Ji), the Yangtze River Delta, and the Pearl River Delta) and densely 

populated areas (e.g. the North China Plain, the Northeast China Plain and Sichuan Basin). These major spatial patterns are 

primarily due to the use of spatial proxy data, and also in accordance with previous studies (Guan et al., 2018;Shan et al., 210 

2018). However, there were notable differences among different estimates at finer spatial scales. The large carbon emission 
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regions were found in the North China Plain and the Northeast China Plain for ODIAC (Figure 3a), PKU (Figure 3c), MEIC 

(Figure 3e) and NJU (Figure 3f), which ranged from 1000 to 5000 10, 000 t CO2/km
2
.  However, the high emissions located 

in the Sichuan Basin were found from PKU, MEIC and NJU, but not from ODIAC. This discrepancy in identifying the large 

CO2 emissions was probably due to the emissions from rural settlements with high population densities (e.g. Sichuan Basin), 215 

did not appear strongly in satellite nighttime lights and ODIAC map (Wang et al., 2013). The more diffusive distribution for 

MEIC and NJU could beis attributed to the point sources abundance, with or without line sources and area sources proxies. 

Besides, EDGAR, PKU, CHRED, MEIC and NJU all showed relatively low emissions in western China, but the emission 

from ODIAC was zero due to no nighttime light there, which tended to distribute more emissions towards strong nightlights 

urban regions (Wang et al., 2013).  220 

EDGAR, CHRED and MEIC all showed the traffic line source emissions by inducing traffic networks in spatial 

disaggregation. The line emissions (such as expressway, arterial highway) depicted a more detailed spatial distribution in 

CHRED than EDGAR and MEIC. This discrepancy could be attributed to the different road networks and corresponding 

weighting factors they used. CHRED disaggregated emissions from the transport sector based on traffic networks and traffic 

flows (Cai et al., 2018). MEIC applied the traffic network from the China Digital Road-network Map (CDRM) (Zheng et al., 225 

2017), and EDGAR traffic networks were obtained from the OpenStreetMap and OpenRailwayMap (Geofabrik, 2015). 

ODIAC considered point and area sources and was lack of line source emissions in spatial disaggregation, which would put 

more emissions towards populated areas than suburbs (Oda et al., 2018). Oda and Maksyutov (2011) (Oda and Maksyutov, 

2011) pointed out the possible utility of the street lights to represent line source spatial distributions even without the specifi c 

traffic spatial data. The spatial distributions of traffic emissions are highly uncertain with biases of 100% or more  (Gately et 230 

al., 2015), which is due largely to mismatches between downscaling proxies and the actual vehicle activity distribution.
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Figure 3. Spatial distributions of ODIAC (a), EDGAR (b), PKU (c), CHRED (d), MEIC (e) and NJU (f) at 10 km resolution for 2012. 

ODIAC was aggregated from 1 km data, MEIC, PKU, and EDGAR was resampled from 0.25, 0.1 and 0.1 degree , CHRED was scaled 235 
from 2007 data using 2012 total emission. 

4.3 Statistics of CO2 emissions at grid level 

To further characterize the spatial pattern of China’s CO2 emissions, the probability density function (PDF), cumulative 

emissions, and top 5% emitting grids were analyzed to identify the spatial differences from the distribution of grid cell 

emissions (Figure 4). As illustrated in Figure 4a, ODIAC showed a large number of cells with zero emissions (62%) (Figure 240 

4a). While low emissions cells (1 ~ 500 t CO2/km
2
) were mainly located in EDGAR and CHRED (Figure 4b and d). This 

could have a notable impact on cumulative national total emissions. The frequency distribut ion of high emission grids 

revealed the different point source data. MEIC showed the largest number of high-emitting cells (500~500000 t CO2/km
2
, 5% 

compared with others 2-3%, Figure 4e) by using a high-resolution emission database (CPED) including more power plant 

information (Li, 2017;Liu, 2015). Furthermore, ODIAC and EDGAR showed a good agreement in high emissions (> 100000 245 

t CO2/km
2
), because their point source emissions were both from CARMA database (Table 1).(Byers et al., 2019;Liu, 

2013;Wang, 2013;Liu, 2015)(Liu, 2013;Oda, 2018;Wang, 2013;Janssens-Maenhout et al., 2019;Liu, 2015) 

As depicted by the cumulative emissions plot (Figure 4g), PKU and NJU showed very similar cumulative curves, and so did 

EDGAR and CHRED. Moreover, the total emissions for EDGAR and CHRED were largely determined by a small 

proportion of high emitting grids with a steep increase at the last stage of cumulative curves (Figure 4g), and the top 5% 250 
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emitting grids accounted for ~90% of the total emissions (Figure 4e), higher than those of 82%, 71%, 58% and 51% in 

ODIAC, MEIC, NJU and PKU, respectively. The emissions from PKU, MEIC and NJU were relatively evenly distributed. 

This could be due to CHRED was mainly derived from enterprise-level point sources (Cai et al., 2018). In contrast, the 

emissions of PKU showed the most even pattern, and the emissions from top 5% emitting grids only accounted for 51% 

(Figure 4g). This was because PKU had a special area source survey data for the Chinese rural areas from a 255 

34,489-household energy-mix survey and a 1,670-household fuel-weighing campaign (Tao et al., 2018). Similarly, MEIC 

and NJU exhibited a even distribution because of the same activity data from CESY, National Bureau of Statistics (Table 1).  

 

Figure 4. Frequency counts (a-f), cumulative emissions (g) (grids were sorted from low to high), and top 5% emitting grids plots (h) for 

ODIAC, EDGAR, PKU, CHRED, MEIC and NJU in 2012 at 10 km resolution. 260 

To identify the locations of hotspots, the bubble plots (Figure S2) demonstrated the spatial distribution of high -emitting grid 

cells that were larger than 50 kt CO2/km
2
. CHRED, EDGAR and ODIAC showed a similar pattern, with high-emitting grids 

concentrated in city clusters (e.g. Jing-Jin-Ji, the Yangtze River Delta, and the Pearl River Delta) and the eastern coast 

(Figure S2). EDGAR and ODIAC both derived the power plant emissions from CARMA, but  ODIAC was likely to put more 

emissions than EDGAR over urbanized regions with lights, especially in the North China Plain. The emissions of CPED and 265 

CARMA were similar in China with a minor difference of 2%, but the numbers of power plants had a large difference (2320 
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vs. 945) (Liu, 2015). This implied that CARMA tended to allocate similar emissions to fewer plants than CPED.  

4.4 3 CO2 emissions at provincial level 

The provincial level results showed more consistency than the grid level in spatial distribution. All products agree that 

eastern and southern provinces are high emitters (>400 Mt CO2/yr, Figure 5 4 and S3), and western provinces were low 270 

emitters (<200 Mt CO2/yr, Figure 5 4 and S3). The top 5 emitting provinces were Shandong, Jiangsu, Hebei, Henan, and 

Inner Mongolia with the amount ranging from 577 ± 48 Mt to 820 ± 102 Mt CO2 in 2012 (Figure 54). While provinces 

located in western area with low economic activity and population density showed low carbon emissions (<200 Mt CO2, 

Figure 5 4 and S3). There is a clear discrepancy in provincial-level emissions among different estimates, and the mean 

standard deviation (SD) for 31 provinces’ emissions was 62 Mt CO2 (or 20%) in 2012. A large SD (>100 Mt CO2) occurs in 275 

high emitting provinces, such as Shandong, Jiangsu, Inner Mongolia, Shanxi, Hebei, and Liaoning. For Shandong province, 

the inventories vary from 675-965 Mt CO2/yr, with a relative SD of 12% (Figure 5 4 and 65), and for other high emitting 

provinces the relative SD ranged 12% - 48%. This implied that there is still room to reduce uncertainty. 

Since estimates based on provincial energy statistics are assumed to be more accurate than those derived from disaggregation 

of national total using spatial proxies, we evaluated the provincial emissions of each inventory using the provincial-based 280 

inventory mean (CHRED, MEIC, and NJU) (Figure 65). The results showed that emissions derived from the provincial 

energy statistics are highly correlated, with R ranging from 0.99 to 1.00 and slope ranging 0.96 to 1.04. By contrast, the 

estimates for ODIAC, EDGAR, and PKU which used IEA national energy statistics, showed an obvious disparity, especially 

in the top 5 emitting provinces, suggesting the large impact of spatial disaggregated approaches in allocating total emissions. 

The potential implication is when doing spatial disaggregation, national-data-based inventories can use provincial fractions 285 

as constraints. 



35 
 

 

Figure 54. Provincial mean total emissions for ODIAC, EDGAR, PKU, CHRED, MEIC and NJU in 2012. Numbers under refer to the green 

bar are provincial total CO2 emissions in Mt. 
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 290 

Figure 65. Scatter plots of provincial total emissions for ODIAC, EDGAR, PKU, CHRED, MEIC and NJU in 2012 with top 5 provinces 

highlighted, and the x axis is the mean of provincial-data-based products (CHRED, MEIC and NJU). 

4.4 Statistics of CO2 emissions at grid level 

To further characterize the spatial pattern of China’s CO2 emissions, the probability density function (PDF), cumulative 

emissions, and top 5% emitting grids were analyzed to identify the spatial differences from the distribution of grid cell 295 

emissions (Figure 6). As illustrated in Figure 4a, ODIAC showed a large number of cells with zero emissions (62%) (Figure 

6a), medium emitting grids (500-50000 t CO2/km
2
) consisted 30%, while high emitting grids (>50000 t CO2/km

2
) consisted 

3%. While low emissions cells (1 ~ 500 t CO2/km
2
) were mainly located in EDGAR (58%) and CHRED (69%) (Figure 6b 

and d), and medium emitting grids consisted 30-40%, while high emitting grids consisted 2-3%. This could have a notable 

impact on cumulative national total emissions (Figure 6g). The frequency distribution of high emission grids revealed the 300 

different point source data. MEIC showed the largest number of high-emitting cells (500~500000 t CO2/km
2
, 5% compared 

with others 2-3%, Figure 6e) by using a high-resolution emission database (CPED) including more power plant information  

(Li et al., 2017;Liu et al., 2015a). Furthermore, ODIAC and EDGAR showed a good agreement in high emissions (> 100000 

t CO2/km
2
), because their point source emissions were both from CARMA database (Table 1). Moreover, CARMA is the 

only global database for tracking CO2 that gathered and presented the best available estimates of CO2 emissions for 50,000 305 

power plants around the world, of which around 15, 000 have latitude and longitude information with emissions larger than 0. 
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The database is responsible for about one-quarter of all greenhouse gas emissions. However, CARMA is no longer active 

(the last update was November 28, 2012), and the geolocations of power plants are not accurate enough, especially in China 

(Byers et al., 2019;Liu et al., 2013;Wang et al., 2013;Liu et al., 2015a). Therefore users have to do corrections themselves 

(Liu et al., 2013;Oda et al., 2018;Wang et al., 2013;Janssens-Maenhout et al., 2019b;Liu et al., 2015a). 310 

As depicted by the cumulative emissions plot (Figure 6g), PKU and NJU showed very similar cumulative curves, and so did 

EDGAR and CHRED. Moreover, the total emissions for EDGAR and CHRED were largely determined by a small 

proportion of high emitting grids with a steep increase at the last stage of cumulative curves (Figure 6g), and the top 5% 

emitting grids accounted for ~90% of the total emissions (Figure 6e), higher than those of 82%, 71%, 58% and 51% in 

ODIAC, MEIC, NJU and PKU, respectively. The emissions from PKU, MEIC and NJU were relatively evenly distributed. 315 

This was due to CHRED was mainly derived from enterprise-level point sources (Cai et al., 2018). In contrast, the emissions 

of PKU showed the most even pattern, and the emissions from top 5% emitting grids only accounted for 51% (Figure 6g). 

This was because PKU had a special area source survey data for the Chinese rural areas from a 34,489-household 

energy-mix survey and a 1,670-household fuel-weighing campaign (Tao et al., 2018). Moreover, the spatial disaggregation 

proxy using population density also contributed to this spatial pattern. Similarly, MEIC and NJU exhibited a even 320 

distribution because of the same activity data from CESY, National Bureau of Statistics (Table 1).  
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Figure 6. Frequency counts (a-f), cumulative emissions (g) (grids were sorted from low to high), and top 5% emitting grids plots (h) for 

ODIAC, EDGAR, PKU, CHRED, MEIC and NJU in 2012 at 10 km resolution. 

To identify the locations of hotspots, the bubble plots (Figure S2) demonstrated the spatial distribution of high-emitting grid 325 
cells that were larger than 50 kt CO2/km

2
. CHRED, EDGAR and ODIAC showed a similar pattern, with high-emitting grids 

concentrated in city clusters (e.g. Jing-Jin-Ji, the Yangtze River Delta, and the Pearl River Delta) and the eastern coast 

(Figure S2). EDGAR and ODIAC both derived the power plant emissions from CARMA, but ODIAC was likely to put more 

emissions than EDGAR over urbanized regions with lights, especially in the North China Plain. The emissions of CPED and 

CARMA were similar in China with a minor difference of 2%, but the numbers of power plants had a large difference (2320 330 
vs. 945) (Liu et al., 2015a). This implied that CARMA tended to allocate similar emissions to fewer plants than CPED.  

5. Discussion 

5.1 Activity data differences in datasets and their effects 

Activity data source, data level and sectors determined the total emissions largely.  As can be seen in Fig. 1, activity data and 

EF determine the total emission estimates, and then affect the spatial distributions through disaggregation proxies of point, 335 

line and area sources. It has been well-discussed that sum of provincial data is larger than the national total (Guan et al., 
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2012;Hong et al., 2017;Liu et al., 2015b;Shan et al., 2018;Liu et al., 2013). CEADs (Provincial) is 8-18% higher than 

CEADs (National) after year 2008 (Figure 2). And thus province-based estimates (e.g. NJU and MEIC) are higher than 

CEADs (National). This could be attributed to the differences in national and provincial statistical systems and artificial 

factors, such as that some of provincial energy balance sheets were adjusted to make to achieve the exact match between 340 

supply and consumption (Hong et al., 2017). For example, the provincial statistics has data inconsistency and double 

counting problems (Qiang et al., 2007;Guan et al., 2012). One possible way to improve this is to use the provincial 

consumption fractions to rescale the national total consumptions when distributing emissions to grids. Hong et al. (2017) 

found that the ratio of the maximum discrepancy to the mean value was 16% due to different versions of national and 

provincial data in CESY. Ranges of 32-47% of CO2 emissions from power sector (mainly coal use) were found among 345 

inventories, while for transport sector (mainly liquid fuels) the fractions ranged from 7-9%. Apart from such differences, one 

peak of FFCO2 emissions was identified by most dataset in 2013, which was due largely to the slowing economic growth 

(NBS, 1998–2017), changes in industrial structure (Mi et al., 2017;Guan et al., 2018) and a decline in the share of coal used 

for energy (Qi et al., 2016), and strategies for reducing emissions could be based on such uniformed trends, while making 

reduction policies for provinces needs the support of provincial-energy-based datasets instead of national-energy-based ones.  350 

Estimates with more sectors would usually be higher than those with fewer. For different emission sectors, EDGAR has 

international aviation and bunkers (Janssens-Maenhout et al., 2017) and NJU has wastes sector(Liu et al., 2013) (Table S1), 

and thus were higher than others. Moreover, for MEICv.1.3 downloaded from official website, it included biofuel 

combustion (which accounted for ~5.7% of the total), and the version used here was specially prepared to exclude biofuel to 

increase comparability. For another instance, CEADs industry processes only take account of cement production and was 355 

thus lower than those (e.g., NJU and EDGAR) with more processes (iron and steel, etc.)  (Janssens-Maenhout et al., 

2017;Shan et al., 2018;Liu et al., 2013). For PKU dataset, it used IEA energy statistics with more detailed energy sub-types. 

The emission factors was based on more detailed energy sub-types with lower EFs, and other inventories used average of 

large groups (Table 1) and sum of more detailed sub-types might not equal to the total of large groups due to incomplete of 

the statistics, and these could be reasons for its lower estimate (Wang et al., 2013). A further comparison with IEA, EIA and 360 

BP estimates with only energy related emissions also confirm that estimates with more sectors would be higher than those 

with fewer (Figure S1). 

5.2 Emission factor effects on total emissions 

Carbon emissions are calculated from activity data and EF, and the uncertainty in estimates is typically reported as 5% - 10%, 

while the maximum difference in this study reached 33.8% (or 2.7 PgC) in 2012. One major reason for this difference is the 365 

EF used by these inventories (Table 1). The EF for raw coal ranged from 0.491 to 0.746. For example, CEADs used 0.499 tC 

per ton of coal based on large-sample measurements, while EDGAR used 0.713 from the default values recommended by 

IPCC (Janssens-Maenhout et al., 2017;Liu et al., 2015b;Shan et al., 2018), and the differences are due largely to the low 
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quality and high ash content of Chinese coal. The variability of lignite and coal quality is quite large. In Liu et al., (201 5) the 

carbon content of lignite ranged from 11% to 51% with mean±SD of 28%±13 (n=61). Furthermore, another study showed 370 

that the uncertainty from EF (-16 – 24%) was much higher than that from activity data (-1 – 9%) (Shan et al., 2018). We 

recommended substituting IPCC default coal EF with the CEADs EF. Regarding the plant-level emissions from coal 

consumptions, the collection of their EFs measured at fields representing the quality and type of various coals are highly 

needed to calibrate the large point source emissions, and we call for inclusion of physical measurements for calibration and 

validation of existing datasets (Bai et al., 2007;Dai et al., 2012;Kittner et al., 2018;Yao et al., 2019). Different fuel types 375 

would contribute differently to emission factors, i.e., for the same net heating value, natural gas emitted lowest carbon 

dioxide (61.7 kg CO2/TJ energy), followed by oil (65.3 kg CO2/TJ energy) and coal (94.6 kg CO2/TJ energy), and one 

successful example for reducing air pollutants and CO2 was that the Chinese government initiated the “project of 

replacement of coal with natural gas and electricity in North China” in 2016 (Zheng et al., 2018a). Moreover, the 

non-oxidation fraction of 8% used in Liu et al. (2015) (Liu et al., 2015b) for coal was attributable to the differences 380 

comparing with a default non-oxidation fraction of 0% recommended by IPCC (2006) in EDGAR (Janssens-Maenhout et al., 

2017). Moreover, averaged coal qualities are varying with time, yet we lacked such time-series quality data on raw coal. 

Bottom-up inventories typically use time-invariant EFs for CO2 due to the lack of information on coal heating values over 

time and the MEIC model also uses constant EFs of CO2 (Zheng et al., 2018). Teng and Zhu (2015) recommended time 

varied conversion factors from raw coal to standard coal, and change the raw coal to commodity coal in energy balance 385 

statistics since the latter has relatively efficient statistics on EF. 

5.3 Spatial distribution of point, line and area sources 

5.3.1 Point sources in datasets and the effects on spatial distribution 

Point sources emissions account for a large proportion of total emissions (Hutchins et al., 2017). Power plants consumed 

about half of the total coal production in the past decade (Liu et al., 2015a). Thus, the accuracy of point sources was 390 

extremely important for improving emission estimates. ODIAC, EDGAR, and PKU all distributed power plant emissions 

from CARMA dataset. However, the geolocation errors in China are relatively large, and only 45% of power plants were 

located in the same 0.1×0.1° grid in CARMA v2.0 as the real power plants locations that were identified by eyeballing in 

google maps (Wang et al., 2013), because CARMA generally treats the city-center latitudes and longitudes as the 

approximate coordinates of the power plants (Wheeler and Ummel, 2008). 395 

Liu et al. (2015a) found that CARMA neglected about 1300 small power plants in China. Thus CARMA allocated similar 

emissions to a limited number of plants than CPED (Table S2, 720, 1706 and 2320 point sources for ODIAC, EDGAR and 

MEIC, respectively), and ODIAC had fewer point sources due to elimination of wrong geolocations. The high-emitting grids 

in CHRED were attributed to the 1.58 million industrial enterprises from the First China Pollution Source Census (FCPSC) 
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used as point sources (Wang et al., 2014). Following the CARMA example, we call on the open source of large point sources 400 

for datasets and Chinese scientists need to adjust the locations of point sources from CARMA. 

5.3.24 Effects of spatial disaggregation methods on spatial distributionline and area sources 

Downscaling methods are widely used for its uniformity and simplicity because of the lack of detailed spatial data. 

Disaggregation methods used (e.g. nighttime light, population) by inventories strongly affect the spatial pattern. For exampl e, 

ODIAC mainly use nighttime light from satellite to distribute emissions. Thus the hotspots concentrated more in strong 405 

nighttime light regions. However, using remote sensing data tended to underestimate industrial and transportation emissions  

(Ghosh et al., 2010). For instance, coal-fired power plants do not emit strong lights and may be far away from cities by 

transmission lines. Electricity generation and use are usually happened at different places, and stronger night-time light does 

not always mean higher CO2 emissions (Cai et al., 2018;Doll et al., 2000). Furthermore, night time lights would ignore some 

other main fossil fuel emissions such as household cooking with coal. The good correlation between night-time light and 410 

CO2 emissions is usually on a larger scale basis (national or continental) (Oda et al., 2010;Raupach et al., 2010), while this 

relationship would fail in populated or industrialized rural areas. 

Transport networks are also used in several inventories for spatial disaggregation. EDGAR and CHRED both showed clear 

transport emissions especially in western China. EDGAR used three road types and corresponding weighting factors to 

disaggregate line source emissions. CHRED used national traffic networks and their flows to distribute traffic emissions  (Cai 415 

et al., 2018;Cai et al., 2012). It is easier to obtain the traffic networks but rather difficult to get the traffic flows and vehicle 

kilometers travelled (VKT) data, and thus the weighting factors method are much easier to apply. 

Population is widely used in spatial disaggregation (Andres et al., 2014;Andres et al., 2016;Janssens-Maenhout et al., 2017). 

The CDIAC emission maps originally used a static population data to distribute emissions and recently have changed to a 

temporally varying population proxy, which largely reduced the uncertainty. However, the unified algorithm for spatial  420 

disaggregation such as population density approach has difficulties in depicting the uneven development of rural and urban 

areas, and it usually use interpolation for limited base years and does not truly vary across years at high spatial resolution 

(Andres et al., 2014). Furthermore, downscaling approaches may introduce approximately 50% error per pixel, which are 

spatially correlated (Rayner et al., 2010), and this problem needs to be considered in future studies. 

Moreover, big cities virtually eliminated use of coal (Guan et al., 2018;Zheng et al., 2018a), while in rural areas use of coal 425 

even increased (Meng et al., 2019). For example, a national survey showed that China’s rural residential coal consumption 

fractions for heating increased from 19.2% to 27.2% (Tao et al., 2018). These transitions has impacts on spatial distribution 

of both CO2 and air pollutants. And the high resolution CO2 emissions have a potential proxy for fossil fuel emissions (Wang 

et al., 2013), thus further improvements on spatial disaggregation should consider these transitions and the surveyed data. 

 430 
Data availability. The data sets of ODIAC, EDGAR, PKU and CEADs are freely available from 
http://db.cger.nies.go.jp/dataset/ODIAC/, http://edgar.jrc.ec.europa.eu/overview.php?v=432_GHG&SECURE=123,  
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http://inventory.pku.edu.cn/download/download.html and http://www.ceads.net/  respectively. And CHRED, MEIC 
and NJU are available from data developers upon request. 
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