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Abstract. Regional-scale air pollution models are routinely being used world-wide for research, forecasting air quality, and 

regulatory purposes. It is well known that there are both reducible and irreducible uncertainties in the meteorology-atmospheric 10 

chemistry modeling systems. Inherent or irreducible uncertainties stem from our inability to properly characterize stochastic 

variations in atmospheric dynamics and from the incommensurability associated with comparisons of the volume-averaged 

model estimates with point measurements. Because stochastic variations in atmospheric dynamics and emissions forcing 

influencing the air pollutant concentrations are difficult to explicitly simulate, one can expect to find a percentile value from 

the distribution of measured concentrations to have much greater variability than that of the model. This paper presents an 15 

observation-based methodology to determine the expected errors from regional air quality models even when the model design, 

physics, chemistry, and numerical analysis techniques as well as its input data were “perfect”. To this end, the short-term 

synoptic-scale fluctuations embedded in the daily maximum 8-hr ozone time series are separated from the longer-term forcing 

using a simple recursive moving average filter. The inherent variability attributable to the stochastic nature of the atmosphere 

is determined based on 30+ years of historical ozone time series data measured at various monitoring sites in the contiguous 20 

United States.  The results reveal that the expected root mean square error at the median and 95th percentile is about 2 ppb and 

5 ppb, respectively, even for “perfect” air quality models driven with “perfect” input data. Quantitative estimation of the limit 

to the model’s accuracy will help in objectively assessing the current state-of-the-science in regional air pollution models, 

measuring progress in their evolution, and providing meaningful and firm targets for improvements in their accuracy relative 

to ambient measurements.  25 

1 Introduction 

Confidence in model estimates of pollutant distributions is established through direct comparisons of modeled concentrations 

with corresponding observations made at discrete locations for retrospective cases. It is well known that there are both reducible 

and irreducible uncertainties in the meteorology-atmospheric chemistry modeling systems. Pinder et al. (2008) discussed the 

reducible (i.e., structural and parametric) uncertainties that are attributable to the errors in model input data (e.g., meteorology, 30 

emissions, initial and boundary conditions) as well as our incomplete or inadequate understanding of the relevant atmospheric 
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processes (e.g. chemical transformation, planetary boundary layer evolution, transport and dispersion, modeling domain, grid 

resolution, deposition, rain, clouds).  Inherent or irreducible uncertainties stem from our inability to properly characterize the 

stochastic variations in atmospheric dynamics (Rao et al., 1985; Rao et al., , 2011), from the incommensurability associated 

with comparing the volume-averaged model estimates with point measurements (e.g., McNair et al., 1996; Swall and Foley, 

2009), and our inability to precisely quantify the space and time variations in atmospheric emissions and other atmospheric 5 

variables and processes. Also, without completely knowing the 3-dimensional initial physical and chemical state of the 

atmosphere, its future state cannot be simulated accurately (Lamb, 1984; Lamb and Hati, 1987; Lewellen and Sykes, 1989; 

Pielke, 1998; Gilliam et al., 2015). Given the presence of the irreducible uncertainties, precise replication of observed 

concentrations or their changes by the models cannot be expected (Dennis et al., 2010; Rao et al., 2011; Porter et al., 2015).  

 10 

Whereas an air quality model’s prediction represents some time/space-averaged concentrations, an observation at any given 

time at a monitoring location reflects an individual event or specific realization out of a population that will almost always 

differ from the model estimate even if the model and its input data were perfect (Rao et al., 1985).  Consequently, comparisons 

of modeled and observed concentrations paired in space and time indicate biases and errors in simulating absolute levels of 

pollutant concentrations at individual monitoring sites (Porter et al., 2015). The scientific discussion on modeling uncertainty 15 

reduction goes back more than three decades with the current practice including data assimilation, ensemble modeling, and 

model performance evaluation (e.g., Fox, 1981, 1984; Lamb, 1984; Pielke, 1998; Lewellen and Sykes, 1989; Lee et al., 1997; 

Carmichael et al., 2008; Hogrefe et al., 2001a, 2001b; Grell and Baklanov, 2011; Gilliam et al., 2006; Baklanov et al., 2014; 

Bocquet et al., 2015; Solazzo and Galmarini, 2015). While ever-improving process knowledge and increasing computational 

power will continue to help reduce the structural and parametric uncertainties in air quality models, the inherent uncertainty 20 

cannot be eliminated because our inability to properly characterize the stochastic nature of the atmosphere will always result 

in some mismatch between the model results and measurements; this could lead to speculation on the inferred accuracy of the 

future states simulated by the regional-scale air quality models (Dennis et al., 2011; Rao et al., 2011; Porter et al., 2015; Astitha 

et al., 2017; Luo et al., 2019).  

 25 

In most applications of regional-scale air quality models, statistical metrics such as bias, root mean square error (RMSE), 

correlation, and index of agreement are being used to judge the quality of model predictions and determine if the model is 

suitable for forecasting or regulatory purposes (e.g., Fox, 1981, 1984; Solazzo et al., 2011; Appel et al., 2012; Simon et al., 

2012; Foley et al., 2014; Ryan et al., 2016; Emery et al. 2016; Zhang, 2016; U.S. EPA, 2018).  While significant improvements 

in the formulation, physical and chemical parameterizations, and numerical techniques have been implemented in atmospheric 30 

models over the past three-decades, it is not clear if the improvement claimed in the model’s performance relative to the routine 

network measurements is statistically significant based on these metrics (Hogrefe et al., 2008).  Also, no assessments have 

been made to date on the errors that are to be expected even from “perfect” regional-scale air quality modeling systems.  To 

estimate such irreducible model errors due to atmospheric stochasticity (which we consider to be the errors that are expected 
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even from a “perfect” model with “perfect” inputs), we analyzed the observed daily maximum 8-hr (DM8HR) ozone time 

series data at monitoring locations across the contiguous United States (CONUS) during the 1981-2014 time period and present 

the results of this analysis in Section 3.1. In Section 3.2, we illustrate how this information could be used in guiding model 

development specifically aimed at addressing reducible errors in the synoptic component by contrasting the results from 

Section 3.1 with analysis using the synoptic component from a 21-year simulation performed with the fully coupled WRF-5 

CMAQ simulations covering the 1990-2010 period.   

2 Data and Methods 

Ground-level DM8HR ozone data covering the CONUS during May to September in each year were obtained from the U.S. 

Environmental Protection Agency’s (EPA) Air Quality System (AQS) (see https://www.epa.gov/aqs). A valid ozone season 

consists of at least 80% data coverage during May to September at each station. A total 185 monitoring stations with at least 10 

30 valid years (to provide enough variety of synoptic conditions, denoted hereafter as 30+ in this paper) from the year 1981 to 

2014 are analyzed. Also, fully coupled WRF-CMAQ model simulations over the CONUS for the 1990-2010 period were 

utilized in this study to demonstrate a new perspective on model performance evaluation.  To ensure better characterization of 

the prevailing meteorology (i.e., synoptic forcing) in the retrospective 21-year WRF-CMAQ simulations, four-dimensional 

data assimilation (FDDA) was utilized following the methodology suggested by Gilliam et al. (2012) and modified for fully-15 

coupled meteorology-chemistry model applications as described in Hogrefe et al. (2015).  The model set-up and performance 

evaluation of these historical multiyear WRF-CMAQ simulations have been published by Xing et al. (2015), Gan et al. (2015), 

and Astitha et al. (2017). Time-varying chemical lateral boundary conditions are nested from the 108 km hemispheric WRF-

CMAQ simulation from 1990 to 2010 (Xing et al., 2015).  
 20 

It has been shown that time series of the daily maximum 8-hr ozone concentrations contain fluctuations operating on different 

time scales (e.g., intra-day forcing induced by the fast-changing emissions and atmospheric boundary layer evolution; diurnal 

forcing induced by the day and night differences; synoptic forcing induced by the passage of weather systems across the 

country, sub-seasonal forcing due to Madden-Julian Oscillation (MJO), and long-term forcing induced by emissions, El-Nino-

Southern Oscillation (ENSO), climate change, and other slow-varying processes such as seasonal and sub-seasonal variations 25 

in the atmospheric deposition and stratosphere-troposphere exchange processes) as noted by Rao et al. (1997), Vukovich, 

(1997),  Hogrefe et al. (2000),  Porter et al. (2015), Astitha et al. (2017), Xing et al. (2016), and Mathur et al. (2017)).  Variations 

in 8-hour  ozone can be thought of comprising of the baseline of pollution that is created by various emitting sources and 

modulated by the prevailing synoptic weather conditions (Rao et al., 2011).  Thus, the level of the baseline (BL) concentration 

and the strength of the synoptic component (SY) should be viewed as the necessary and sufficient conditions for how high 30 

ozone levels can reach on a given day (Astitha et al., 2017). Scale separation can be achieved by applying filtering methods 

such as the Empirical Mode Decomposition (Huang et al., 1998), Elliptic filter (Poularika, 1998), Kolmogorov-Zurbenko (KZ) 

https://www.epa.gov/aqs
https://www.epa.gov/aqs
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filter (Rao and Zurbenko, 1994), Adaptive Filter Technique (Zurbenko, et al., 1996), and Wavelet (Lau and Weng, 1995). 

Because Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (Improved CEEMDAN, a 

version of the Empirical Mode Decomposition) and KZ filter yielded similar results for the DM8HR time series data as shown 

in Figs. 1-2 discussed in the next section, only the results from the KZ filter are presented in the subsequent analysis for 

quantifying the impact of the stochastic nature of the atmosphere on observed and simulated ozone concentrations. 5 

Furthermore, the KZ filtering is a simple method and works well even in the presence of missing data (Hogrefe et al., 2003).  

In this study, we used the KZ5,5 with a window size of 5 days and 5 iterations on raw ozone time series [O3 (t)]  in the same 

manner as in Porter et al. (2015), Rao et al. (2011), and Luo et al. (2019). The size of the window and the number of iterations 

determine the desired scale separation. The KZ5,5 filtering process helps separate the synoptic-scale weather-induced variations 

embedded in the May-September DM8HR time series data (short-term component, noted as SY) from the long-term baseline 10 

component (noted as BL).  

𝐵𝐵𝐵𝐵(𝑡𝑡) = 𝐾𝐾𝐾𝐾5,5�𝑂𝑂3(𝑡𝑡)�                                 (1)   
𝑆𝑆𝑆𝑆(𝑡𝑡) = 𝑂𝑂3(𝑡𝑡) − 𝐾𝐾𝐾𝐾5,5�𝑂𝑂3(𝑡𝑡)�                 (2) 
𝑂𝑂3(𝑡𝑡) = 𝑆𝑆𝑆𝑆(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡)                               (3) 
 15 
  Because we are working with the daily maximum 8-hr ozone data, the Nyquist interval is 2-days, indicating that the dynamical 

features having time scales less than 2 days (e.g., intra-day forcing from fast changing emissions and chemical transformations, 

boundary layer evolution, diurnal forcing due to night vs. day differences) are not resolvable in this analysis (see Fig. 2 in 

Dennis et al., 2010). The 50% cut-off frequency for the KZ5,5 is ~24 days, and, hence, time scales less than those associated 

with synoptic-scale weather fluctuations are embedded in the short-term or SY forcing.  The KZ filtering is applied to both 20 

DM8HR observations and modeled DM8HR time series.  Once the baseline is separated from the original DM8HR time series 

from all monitoring stations, then the synoptic forcing in the historical ozone time series data is used to estimate the variability 

in ozone concentrations that can be expected because of the chaotic/stochastic nature of the atmosphere by taking into account 

the relationship between the strength of synoptic forcing and mean of baseline ozone at each location over CONUS.  This 

methodology was applied to both measured and modeled ozone concentrations (see details in Luo et al., 2019).  Whereas the 25 

objective of Luo et al. (2019) was on transforming the deterministic modeling results into a probabilistic framework for 

assessing the efficacy of different emission control strategies in achieving compliance with the ozone standard, this paper is 

aimed at quantifying the model performance errors to be expected at each monitoring site over CONUS even from “perfect” 

regional ozone models driven with “perfect” input data from the ever-present stochastic nature of the atmosphere. 

3 Results and Discussion 30 

3.1 Analysis of ambient ozone data 

Using both Improved CEEMDAN and KZ filtering, we separated the synoptic forcing (time scale < 24 days) and baseline 

(time scale > 1 month) forcing embedded in the time series of observed and modeled daily maximum 8-hour ozone 
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concentrations.  To illustrate, the results from the application of Improved CEEMDAN to the daily maximum 8-hr ozone time 

series data measured at Altoona, PA are presented in Fig. 1. The top left panel displays the raw ozone time series while the top 

of the right panel shows its power spectrum. The 7 intrinsic mode functions (IMFs) and the residual on the left side, and their 

corresponding power spectra on the right reveal that most of the synoptic-scale features in ozone data are imbedded in IMFs 1 

and 2.  The baseline ozone is extracted by removing the first two IMFs from the raw ozone time series. To illustrate the concept 5 

of the ozone baseline, DM8HR time series measured in 2010 at Altoona, PA is presented in Fig. 2a together with the embedded 

baseline concentration as extracted by the KZ5,5 and Improved CEEMDAN. It is evident that high ozone levels are always 

associated with the elevated baseline. The difference between the raw ozone time series and baseline, denoted as the short-

term or synoptic forcing (SY), is displayed in Fig. 2b.  The power spectra, displayed in Figs. 2c and d, reveal both methods 

yielded good scale separation. Due to the good agreement between both scale separation techniques, only the results from the 10 

KZ filter are presented for the remainder of the manuscript. 

 

Once the scale separation is achieved with the KZ5,5, we superimposed the SY forcing imbedded in 30+ years of historical 

DM8HR ozone time series measured at a given location on the baseline component of the ozone time series at that location to 

generate 30+ reconstructed or pseudo ozone distributions. Illustrative results using eq. (3) at a suburban location in Altoona, 15 

PA are presented for 2010 base year in Fig. 3a; it should be noted that the linear relationship between the strength of SY 

(defined as the standard deviation of the data in the synoptic component) and the magnitude of the BL (defined as the mean of 

the data in the baseline component) has been taken into account in generating 30+ years of adjusted SY forcing as illustrated 

in Luo et al. (2019).  As expected, there is excellent agreement between the average of 30+ values (solid blue line) and observed 

ozone in 2010 at each percentile of the concentration distribution function (red line). Also, the original cumulative distribution 20 

function (CDF) in 2010 (red line) is constrained within the 30+ CDFs of pseudo distributions (Fig. 3a); note, it is equally likely 

for any of these 30+ CDFs to occur because of the stochastic nature of the atmosphere even though the individual event in 

2010 yielded the CDF shown in red.  As mentioned before, ozone mixing ratio at any given probability point on the red line 

in Fig. 3a reflects an individual event while ozone values at the same probability in different CDFs (gray lines) reflect the 

population stemming from the stochastic nature of the atmosphere. In other words, there are 30+ dynamically consistent ozone 25 

time series attributable to the 2010 baseline (given 2010 emissions) for examining the inherent variability due to atmospheric 

stochasticity. It is evident in Fig. 3a that there is larger variability at the lower and upper percentiles than that in inter-quartile 

range, revealing that the tails of the concentration distribution function are subject to large inherent uncertainty. Using these 

30+ pseudo-observation ozone mixing ratios and the actual observed ozone values at each percentile, statistical metrics such 

as Bias, RMSE, coefficient of variation (CV=standard deviation/mean), normalized mean error (NME) and normalized mean 30 

bias (NMB) are presented in Fig. 3b and c (see Emery et al. (2016) for the description of the statistical metrics considered 

here). As expected, the lower and upper tails of the distribution are prone to large errors. These results demonstrate the presence 

of substantial natural variability at the upper 95th percentile, which is of primary interest in regulatory analyses.  The extreme 

values are better described in statistical terms rather than in deterministic sense (Hogrefe and Rao, 2001). 
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Ozone time series at 185 monitoring stations covering CONUS, having at least 80% data completeness, are analyzed in the 

above manner and the results are displayed as box plots in Fig. 4. Note the presence of large variability in the CV, NME, and 

NMB, and Bias at the lower and upper percentiles (Fig. 4). The RMSE expected for the ozone mixing ratios in the interquartile 

range is ~1.5 ppb, but it is >5 ppb for the upper 95th percentile (Fig. 4b). The spatial distribution of RMSE at the 50th and 5 

95th percentiles is displayed in Figures 5a and 5b, respectively.  The RMSE at the upper 95th percentile is very high at some 

monitoring sites in California and Michigan (Fig. 5b).  Monitoring stations situated in the urban areas, near large water bodies, 

and in regions of complex terrain influenced predominantly by local conditions tend to exhibit higher RMSE.  The elevation 

of the monitoring sites is displayed in Fig. 5c. 

3.2 Analysis of modeled ozone concentrations 10 

The analysis in the previous section quantified the inherent stochastic variability that is present in the SY component using 

long-term records of ozone observations. In this section, we analyze long-term records of model simulations in an attempt to 

quantify the error associated with the modeled SY component that results both from not explicitly representing stochastic 

variations in atmospheric dynamics and emission variability in the current generation regional air quality models and from 

other reducible sources of model error. The model simulations were performed with the fully coupled WRF-CMAQ system 15 

with a 36-km horizontal grid cell size and covered the 21-year period from 1990 to 2010 (Gan et al., 2015). To provide an 

illustration of the differences between observed and modeled time series over this period, Figure 6a displays a scatter plot of 

the strength of the SY component (standard deviation of data in the SY component) vs. the mean of the baseline (BL) 

component for both observations and model simulations at the Altoona, PA site.  While both observations and WRF-CMAQ 

simulations show a strong correlation between these two variables, it is evident that at this monitoring location the standard 20 

deviation (i.e., strength) of the SY component is substantially lower for the WRF-CMAQ simulations for a given mean of the 

BL component (i.e., for any given year).  The year-to-year variation in the observed and modeled mean of BL and strength of 

SY forcing, displayed in Fig. 6b, reveals that the model overestimated BL and underestimated the strength of SY forcing. The 

36-km grid may be better representing the large-scale synoptic forcing associated with the translation of weather systems than 

the meso-scale weather and urban influences (both dynamics and emission driven) that are embedded in the observed SY 25 

component. Meteorological modeling with higher horizontal grid resolution might be able to capture the land-sea breeze, lake-

sea breeze, and terrain influences that observations are seeing at certain monitoring locations. 

 

To isolate the impact of model imperfections on only the SY time scale on errors across the ozone distribution, we assume that 

the model perfectly reproduces the ‘true’ BL depicted by the observed 2010 BL.  We then use this ‘perfect’ modeled BL and 30 

reconstruct ‘pseudo-simulated’ ozone time series, similar to what was done in Fig. 3, except for using the SY component 

embedded in the 21 years of coupled WRF-CMAQ simulations. The rationale for this analysis is to quantify the amount of 

model error present in the current simulations that could conceivably be reduced through improving the representation of 
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synoptic and mesoscale processes and/or increased horizontal resolution with appropriate data assimilation techniques. Fig. 7a 

displays the CDF of actual observed ozone (red line) overlaid on 21 pseudo-simulated ozone CDFs (gray lines, with averages 

of all 21 pseudo-simulated ozone percentiles shown in blue) at the Altoona, PA site while Figs. 7b and 7c display absolute and 

normalized performance metrics. Figure 7a confirms that the coupled WRF-CMAQ SY components have less intra-annual 

variability than observed SY components, causing overestimation at the low end and underestimation at the high end of the 5 

observed CDF for all 21 years of reconstruction; these results imply that the model’s results at the upper and lower percentiles 

will always tend to be unreliable or prone to large errors even when the baseline concentration is predicted perfectly. The U-

shape of the absolute and relative error curves in Figures 7b and c is similar to the corresponding curves in Figure 3, but the 

larger magnitude at the high and low end of the distribution indicates that the effects of the underestimated intra-annual SY 

variability (note that the distribution of modeled values in Fig. 7a is much flatter (i.e., having higher Kurtosis) than that of the 10 

observations) outweigh those errors attributable to the stochastic variability presented in Figure 3. The shape of the absolute 

and normalized bias curves deviates from those shown for the pseudo-observations in Figures 3b-c and, thus, also reveals the 

effect of the underestimation of the intra-annual SY variability.  Figures 7d-f present differences between the curves shown in 

Figures 7a-c and a version of Figure 3a-c computed from the 1990-2010 data instead of 30+ years of historical ozone 

observations. Panels e and f show that at the 50th percentile, the differences in the error curves are close to zero due to the fact 15 

that both the pseudo-simulations and pseudo-observations used the same observed BL component. At the upper percentiles, 

the differences reach 3 – 5 ppb, providing an estimate of the reducible error in simulating the extreme values at this location 

because of the differences in the observed and WRF-CMAQ SY components at this location; high-resolution meteorological 

modeling may help address these reducible errors. 

 20 

Figs. 8a and b display the RMSE at the median and 95th percentile for the ‘pseudo-simulated’ ozone values at each monitoring 

site.  For the 50th percentile, the RMSE values range from 0.2 ppb to 3.2 ppb over CONUS with a median value of 1 ppb while 

at the 95th percentile, the RMSE values range from 1 ppb to 15 ppb with a median value of 4 ppb across all sites over CONUS.  

The values are highest along the California coast and near Great Lakes, possibly due to inadequacies in simulating the land-

sea breeze and land-lake breeze regimes, respectively, with modeling at 36 km grid cells.  Air quality modeling uncertainty 25 

even for the retrospective modeling cases, outside of the chemistry formulation and boundary conditions, is attributed primarily 

to meteorology and emissions inputs.  Vautard et al. (2012) concluded that major challenges still remain in the simulation of 

prevailing meteorology (e.g., errors in wind speed, PBL, night-time meteorology, clouds) in retrospective air quality modeling.  

Based on the retrospective ozone episodic modeling with the WRF-CMAQ model using various sets of equally likely initial 

conditions for meteorology along with FDDA, Gilliam et al. (2015) confirmed the presence of sizable spread in WRF solutions, 30 

including common weather variables of temperature, wind, boundary layer depth, clouds, and radiation, thereby causing a 

relatively large range of ozone concentrations.  Also, pollutant transport is altered by hundreds of kilometers over several days.  

Ozone concentrations of the ensemble varied as much as 10–20 ppb (or 20–30%) in areas that typically have higher pollution 

levels. As model improvements are made, one can quantitatively assess how close the predictions of the improved model are 
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for each percentile for the given base year simulation to the expected errors from a “perfect” model with “perfect” input, i.e. 

the target RMSE shown in Fig.5a and b. 

4 Conclusions 

Regardless of how accurate the regional air quality model is, the stochastic variations in the atmosphere cannot be consistently 

reproduced by the deterministic numerical models.  In this study, we demonstrate how to quantify this irreproducible stochastic 5 

component by isolating the synoptic forcing imbedded in 30+ years of historical observations and assess the performance of 

the 36 km fully coupled WRF-CMAQ model in simulating 21 years of ozone concentrations over the contiguous U.S.  

Observation-based analysis reveals that on average, the irreducible error attributable to the stochastic nature of the atmosphere 

ranges from ~2 ppb at the 50th percentile to ~ 5 ppb at the 95th percentile.  To improve regional-scale ozone air quality models, 

attention should be paid to accurately simulate the baseline concentration by focusing on the quality of the emission inventory 10 

and the model’s treatment for the boundary conditions and slow-changing (operating on sub-seasonal, seasonal, and longer-

term time scales) atmospheric processes. Also, errors in reproducing the synoptic forcing can possibly be reduced with high-

resolution meteorological modeling using appropriate data assimilation techniques.  Nonetheless, these results demonstrate the 

presence of large variability in the upper tail of the DM8HR O3 concentration cumulative distribution even with “perfect” 

models using “perfect” input data. Having this quantitative estimation of practical limits for model’s accuracy helps in 15 

objectively assessing the current state of regional-scale air quality models, measuring progress in their evolution, and providing 

meaningful and firm targets for improvements in their accuracy relative to measurements from routine networks. 

 

Code availability: Source code for version 5.0.2 of the Community Multiscale Air Quality (CMAQ) modeling system can be 

downloaded from https://github.com/USEPA/CMAQ/tree/5.0.2. For further information, please visit the U.S. Environmental 20 

Protection Agency website for the CMAQ system: https://www.epa.gov/cmaq. 
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analysis will be made available at https://edg.epa.gov/metadata/catalog/main/home.page. Raw CMAQ model outputs are 25 

available on request from the U.S EPA authors.  
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List of Figures 

Figure 1.  Results of the application of the Improved CEEMDAN technique (a modified version of EMD) technique, which is 

designed for analyzing non-stationary and non-linear time series data, to the daily maximum 8-hour ozone time series data at 

the Altoona, PA site.  The numbers on the right side represent the time scale (in days) associated with each IMF.  Note, the 

power spectrum of raw ozone time series (upper right panel) shows that the energy in the 1-10 days (synoptic) time scale is an 5 

order of magnitude less than that in the longer (baseline) time scale. 

 

Figure 2a. Raw observed DM8HR ozone time series (black) and the embedded baseline (red for EMD and blue for KZ) at 

Altoona, PA in 2010; Figure 2b. Time series of synoptic forcing (red for EMD and blue for KZ); Figure 2c and 2d are their 

corresponding power spectra.  The bottom two panels compare the power spectra of the baseline forcing (left) and the synoptic 10 

forcing (right) derived from KZ filtering and EMD (sum of IMF 1 and IMF2).  Notice that most of the energy in the baseline 

time series is in the longer time scale while most of the energy of the short-term component is in the high-frequency range.  

The similarity of results from both scale separation techniques demonstrates that the two scales of interest (i.e., baseline and 

synoptic forcing) have been extracted reasonably well by these two methods. 

 15 

Figure 3a: Comparison between the observed cumulative distribution function (CDF) for 2010 shown in red with 30+ pseudo-

observations CDFs generated from historical DM8HR ozone time series shown in gray at a suburban site at Altoona in PA 

(AQS station identifier 420130801). The blue line represents the average of the 30+ gray lines; Figure 3b: Display of various 

statistical metrics (standard deviation (std), root mean square error (RMSE), bias) derived by comparing the actual observed 

and pseudo ozone values in Fig. 3a; Figure 3c: Normalized statistical metrics of normalized mean error (NME), normalized 20 

mean bias (NMB), coefficient of variation (CV). Notice the large variability occurring at the lower and upper percentiles. 

 

Figure 4. Box plots of statistical metrics based on the results from the analysis of DM8HR data at 185 monitoring sites: (a) 

Standard deviation, (b) Root mean square error, (c) Mean bias, (d) Coefficient of variation, (e) Normalized mean error, and (f) 

Normalized mean bias. The lower and upper edges of the boxes represent the 25th and 75th percentile values while the whiskers 25 

represent the 5th and 95th percentiles. See data analysis procedures using the ozone baseline observed in the year 2010 as the 

target BL in equations 7 and 8 of Luo et al. (2019). 

 

Figure 5. Spatial distribution of the lower bound for the RMSE or expected RMSE at each monitoring site over CONUS (a) at 

the median and (b) at the 95th percentile; (c) elevation (km) above the mean sea level of each monitoring site. 30 

 

Figure 6. (a) Scatter plot of the standard deviation (i.e., strength) of the SY component vs. the mean of the baseline (BL) 

component for each of the 21 years from 1990 to 2010 at the Altoona, PA monitoring site. Observations are shown in red while 



15 
 

WRF-CMAQ results are shown in blue. (b) Inter-annual variability in the mean of the baseline component and standard 

deviation of the synoptic component in the WRF-CMAQ model and observations at the Altoona, PA site.  Although year-to-

year variation is captured, the model has overestimated the baseline forcing and underestimated the synoptic forcing. 

 

Figure 7.  a) Comparison between the observed CDF overlaid on 21 ‘pseudo-simulated’ or reconstructed ozone CDFs with SY 5 

generated from modeled DM8HR ozone time series at a suburban site at Altoona in PA (AQS station identifier 420130801); 

b) Display of various statistical metrics derived by comparing the actual observed and pseudo-simulated ozone values in Fig. 

7a; c) Normalized statistical metrics; d).Difference between the pseudo-simulated CDFs shown in Figure 7a and the pseudo-

observed CDFs as shown in Figure 7a but calculated from 21 years (1990-2010) of observations only. The gray lines represent 

the differences for a specific SY year while the blue line represents the differences between the means of the 21 reconstructions; 10 

e) Difference between the absolute performance metrics for pseudo-simulations shown in Figure 7b and those calculated for 

pseudo-observations as shown in Figure 7b but calculated for 21 years (1990-2010) only. f) As in panel e) but for normalized 

performance metrics. 

 

Figure 8. Errors in the 21 ‘pseudo-simulated’ or reconstructed ozone time series with SY generated from modeled DM8HR 15 

ozone time series using BL obtained from observations at (a) the median and (b) 95th percentile.   
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raw ozone time series (upper right panel) shows that the energy in the 1-10 days (synoptic) time scale is an order of magnitude less 
than that in the longer (baseline) time scale. 5 
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Figure 2a. Raw observed DM8HR ozone time series (black) and the embedded baseline (red for EMD and blue for KZ) at Altoona, 
PA in 2010; Figure 2b. Time series of synoptic forcing (red for EMD and blue for KZ); Figure 2c and 2d are their corresponding 
power spectra.  The bottom two panels compare the power spectra of the baseline forcing (left) and the synoptic forcing (right) 
derived from KZ filtering and EMD (sum of IMF 1 and IMF2).  Notice that most of the energy in the baseline time series is in the 
longer time scale while most of the energy of the short-term component is in the high-frequency range.  The similarity of results 5 
from both scale separation techniques demonstrates that the two scales of interest (i.e., baseline and synoptic forcing) have been 
extracted reasonably well by these two methods. 
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Figure 3a: Comparison between the observed cumulative distribution function (CDF) for 2010 shown in red with 30+ pseudo-
observations CDFs generated from historical DM8HR ozone time series shown in gray at a suburban site at Altoona in PA (AQS 5 
station identifier 420130801). The blue line represents the average of the 30+ gray lines; Figure 3b: Display of various statistical 
metrics (standard deviation (std), root mean square error (RMSE), bias) derived by comparing the actual observed and pseudo 
ozone values in Fig. 3a; Figure 3c: Normalized statistical metrics of normalized mean error (NME), normalized mean bias (NMB), 
coefficient of variation (CV). Notice the large variability occurring at the lower and upper percentiles. 



19 
 

 

Figure 4. Box plots of statistical metrics based on the results from the analysis of DM8HR data at 185 monitoring sites: (a) Standard 
deviation, (b) Root mean square error, (c) Mean bias, (d) Coefficient of variation, (e) Normalized mean error, and (f) Normalized 
mean bias. The lower and upper edges of the boxes represent the 25th and 75th percentile values while the whiskers represent the 
5th and 95th percentiles. See data analysis procedures using the ozone baseline observed in the year 2010 as the target BL in 5 
equations 7 and 8 of Luo et al. (2019). 
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Figure 5. Spatial distribution of the lower bound for the RMSE or expected RMSE at each monitoring site over CONUS (a) at the 5 
median and (b) at the 95th percentile; (c) elevation (km) above the mean sea level of each monitoring site. 

  



21 
 

 
 
 
 

 

 
Figure 6. (a) Scatter plot of the standard deviation (i.e., strength) of the SY component vs. the mean of the baseline (BL) component 
for each of the 21 years from 1990 to 2010 at the Altoona, PA monitoring site. Observations are shown in red while WRF-CMAQ 5 
results are shown in blue. (b) Inter-annual variability in the mean of the baseline component and standard deviation of the synoptic 
component in the WRF-CMAQ model and observations at the Altoona, PA site.  Although year-to-year variation is captured, the 
model has overestimated the baseline forcing and underestimated the synoptic forcing.  
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Figure 7.  a) Comparison between the observed CDF overlaid on 21 ‘pseudo-simulated’ or reconstructed ozone CDFs with SY 
generated from modeled DM8HR ozone time series at a suburban site at Altoona in PA (AQS station identifier 420130801); b) 
Display of various statistical metrics derived by comparing the actual observed and pseudo-simulated ozone values in Fig. 7a; c) 
Normalized statistical metrics; d).Difference between the pseudo-simulated CDFs shown in Figure 7a and the pseudo-observed CDFs 
as shown in Figure 7a but calculated from 21 years (1990-2010) of observations only. The gray lines represent the differences for a 5 
specific SY year while the blue line represents the differences between the means of the 21 reconstructions; e) Difference between 
the absolute performance metrics for pseudo-simulations shown in Figure 7b and those calculated for pseudo-observations as shown 
in Figure 7b but calculated for 21 years (1990-2010) only. f) As in panel e) but for normalized performance metrics.  
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Figure 8. Errors in the 21 ‘pseudo-simulated’ or reconstructed ozone time series with SY generated from modeled DM8HR ozone 
time series using BL obtained from observations at (a) the median and (b) 95th percentile. 
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