Authors’ Responses (in red) to the Comments on the Revised Version of acp-2019-642 by
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Thanks for clarifying that this study only applies to retrospective simulations rather than real
forecasting. This is very very important! Please explicitly mention this in the article title and
abstract

We thank the referee for taking the time to review our responses to the previous comments
and the revised manuscript. Please note that the main object of our paper is to identify the
expected errors in regional air quality models since the current generation of models do not
explicitly treat the stochastic nature of the atmosphere. To this end, we have analyzed multi-
decadal historical ozone observations from several locations over the contiguous United States
and estimated the expected root mean square error (RMSE) from current operational
deterministic models driven with “perfect” input. Because ours is an observations-based
methodology, the results presented here are applicable to both forecasting and retrospective
simulations from deterministic models. Therefore, we see no need to change the title for our
article. However, we modified the abstract and text to clarify the types of errors that we are
dealing with in this paper as referee suggested.

Again, many of the concept/discussion regarding inherent/practical predictability,
reducible/irreducible uncertainties are wrong.

For example, emissions are definitely reducible uncertainties and factors in practical
predictability (10.1175/JAS-D-17-0157.1 10.1029/2018MS001457) while it is categorised as
inherent or irreducible uncertainties/predictability in this manuscript.

We agree that emissions are comprised mostly of reducible (systematic) errors, but our paper
does not deal with the errors attributable to the uncertainties in the emission inventories. In
this paper, we address only the unsystematic or random errors stemming from the stochastic
nature of the atmosphere. Also, we never used the term “predictability” in our paper.

See some definitions:

In Ying and Zhang (2018): Intrinsic predictability refers to the ability to predict given nearly
perfect representation of the dynamical system (by a forecast model) and nearly perfect inputs.

Emissions are inputs for air quality forecast models. Apparently emissions are not nearly perfect
in this study (or in any studies), thus prediction uncertainties due to emission uncertainties are
not intrinsic predictability.

In Thomas et al. (2019), it is explicitly mentioned that emissions pertains to practical
predictability rather than inherent predictability.



Please carefully define those terms/concepts and refer to normally used/accepted definitions.

We have clarified the definitions so the air quality modeling community can better understand
the problem addressed in this article (namely, stochasticity). We have referred to the 2 articles
suggested by the referee in this revision. Some researchers claim that ensemble modeling will
help address prediction uncertainties, but the range of values predicted from different
modeling systems reflects the structural and parametric uncertainty, which are reducible errors
because the model structure and its formulation can continually be improved with as new
knowledge emerges (e.g., Solazzo et al., https://doi.org/10.1016/j.atmosenv.2012.01.003;
Galmarini et al., https://doi.org/10.5194/acp-18-8727-2018; Solazzo et al.,
https://doi.org/10.5194/acp-17-3001-2017, 2017).

Our team has published numerous papers on model sensitivities attributable to the
meteorology (e.g., see Biswas and Rao, https://doi.org/10.1175/1520-
0450(2001)040<0117:UIEOMS>2.0.CO;2; Biswas, et al., 11th Joint Conference on the
Applications of Air Pollution Meteorology with the Air & Waste Management Association;
Zhang et al., https://doi.org/10.1023/A:1011557402158; Sistla et al.,
https://doi.org/10.1007/BF00480816; Gego et al., https://doi.org/10.1007/s10652-005-0486-3;
Wolke et al., https://doi.org/10.1016/j.atmosenv.2012.02.085; Makar et al.,
https://doi.org/10.1016/j.atmosenv.2014.10.021; Watson et al.,
https://doi.org/10.1016/j.atmosenv.2015.07.037; Kong et al.,
https://doi.org/10.1016/j.atmosenv.2014.09.020), attributable to emissions (e.g., Rao et al.,
EPA-230/2-89-026; Ku et al., https://doi.org/10.1023/A:1011513603066;, Rao and Sistla,
https://doi.org/10.1007/BF00480816; Im et al., https://doi.org/10.5194/acp-18-8929-2018;
Solazzo et al., https://doi.org/10.5194/acp-17-10435-2017, 2017; Napelenok et al.,
https://doi.org/10.1016/j.atmosenv.2011.03.030; Pierce et al.,
https://doi.org/10.1016/j.atmosenv.2010.05.046), and attributable to chemical mechanism
(e.g., Sarwar et al., https://doi.org/10.1016/j.atmosenv.2019.06.020; Sarwar et al.,
https://doi.org/10.1016/j.atmosenv.2007.12.065; Sarwar et al.,
https://doi.org/10.1016/j.atmosenv.2009.09.012; Kitayama et al.,
https://doi.org/10.1016/j.atmosenv.2018.11.003). Some of the papers relevant to our article
are included in the refences.

It should be noted that there will always be differences between a model estimate and it’s
corresponding observation because (1) what’s predicted isn’t what‘s observed; that is, while an
observation at any given time and location represents a single event out of a population, the
predicted value reflects the population average, and (2) the problem of point measurement vs.
volume-averaged concentration. This paper deals with only the first point since it is linked to



the stochastic nature of the atmosphere. We hope that the next generation of the operational
model will be a “regional-scale deterministic-stochastic modeling system” that can explicitly
treat the mean and fluctuation components for all variables simultaneously in simulating air
quality. Until such deterministic-stochastic models become available, the atmospheric
stochasticity imposes a limit to the accuracy that can be expected from the regional-scale air
quality models currently being used for forecasting and regulatory purposes. This paper
guantifies the errors that should be expected for various percentiles of the concentration
cumulative distribution function.

Overview of changed sections in the manuscript (see tracked changes version for details):

Abstract: “Regional-scale air pollution models are routinely being used world-wide for research,
forecasting air quality, and regulatory purposes. It is well recognized that there are both reducible
(systematic) and irreducible (unsystematic) errors in the meteorology-atmospheric chemistry modeling
systems. The inherent (random) uncertainty stems from our inability to properly characterize stochastic
variations in atmospheric dynamics and chemistry, and from the incommensurability associated with
comparisons of the volume-averaged model estimates with point measurements. Because these
stochastic variations are not being explicitly simulated in the current generation of regional-scale
meteorology-air quality models, one should expect to find differences between the model estimates and
corresponding observations.”

Introduction: “Inherent or irreducible (random or unsystematic) uncertainties stem from our inability
to properly characterize the stochastic nature of the atmosphere (Wilmott, 1981, 1985: Fox, 1984; Rao
et al., 1985; Dennis et al., 2010; Rao et al., 2011) and from the incommensurability associated with
comparing the volume-averaged model estimates with point measurements (e.g., McNair et al., 1996;
Swall and Foley, 2009). Also, without completely knowing the 3-dimensional initial physical and chemical
state of the atmosphere, its future state cannot be simulated accurately (Lamb, 1984; Lamb and Hati,
1987; Lewellen and Sykes, 1989; Pielke, 1998; Gilliam et al., 2015). Given the presence of the irreducible
uncertainties, precise replication of observed concentrations or their changes by the models cannot be
expected (Dennis et al., 2010; Rao et al., 2011; Porter et al., 2015; Astitha, 2017)).”

“The scientific discussion on modeling uncertainty goes back more than three decades with the current
practice including data assimilation, ensemble modeling, and model performance evaluation (e.g., Fox,
1981, 1984; Lamb, 1984; Demerjian, 1985; Oreskes et al., 1994; Pielke, 1998; Lewellen and Sykes, 1989;
Lee et al., 1997; Carmichael et al., 2008; Hogrefe et al., 2001a, 2001b; Biswas and Rao, 2001; Grell and
Baklanov, 2011; Gilliam et al., 2006; Herwehe et al., 2011; Baklanov et al., 2014; Bocquet et al., 2015;
Solazzo and Galmarini, 2015; Ying and Zhang, 2018; McNider and Pour-Biazar, 2020; Stockwell et al.,
2020). While ever-improving process knowledge and increasing computational power will continue to
help reduce the structural and parametric uncertainties in air quality models, the inherent uncertainty
associated with our inability to properly characterize the stochastic nature of the atmosphere will



always result in some mismatch between the model results and measurements; this could lead to
speculation on the inferred accuracy of the future states simulated by the regional-scale air quality
models (Dennis et al., 2011; Rao et al., 2011; Porter et al., 2015; Astitha et al., 2017; Luo et al., 2019).

The sensitivity of model results to meteorology, chemical mechanisms, and emissions has been
examined in numerous studies (e.g., Vautard et al., 2012; Sarwar et al., 2013; Pierce et al., 2010;
Napelenok et al., 2011; Kang et al.,2013). Herwehe et al. (2011) attributed the differences in ground-
level ozone predictions between WRF-Chem and WRF-CMAQ models to the way meteorology and
chemistry interactions are handled within these two modeling systems. Thomas et al. (2019) examined
the ozone predictions in the Mid-Atlantic region of the United States during June 2016 through a series
of simulations with WRF-Chem, focusing on the sensitivity to the meteorological initial/boundary
conditions (IC/BCs), emissions inventory (El), and planetary boundary layer (PBL) scheme. Ying and
Zhang (2018) discussed the use of satellite-based observations for improving the predictability of
multiscale tropical weather and equatorial waves. Ensemble modeling is being advocated for
quantifying the uncertainty in model predictions; however, the spread in the model estimates for the
variable of interest reflects the impact of our incomplete or inadequate knowledge of the physical and
chemical processes (i.e., the reducible errors stemming from structural and parametric uncertainty)
occurring in the atmosphere (Solazzo et al., 2015; Thomas, et al., 2019; Stockwell et al., 2020). McNider
and Pour-Biazar (2020) reviewed the many issues in predicting the prevailing meteorology for regional
air quality simulations and indicated that errors in the specification of the physical atmosphere such as
temperature, winds, and mixing heights can affect the air quality predictions. Stockwell et al. (2020)
discussed the problems relating to the atmospheric chemical mechanisms currently being used for
simulating air quality. The current generation of regional models consider only the mean values of a
meteorological variable for a given timescale and the average rate constant derived from gas chamber
experiments for chemical reactions and does not include their fluctuations in solving the equations of
motion for each time step. Further, the current operational regional-scale meteorological and air
quality models do not explicitly simulate the stochastic nature of the atmosphere and, as such, typically
miss the extreme values at both the low and high ends of the concentration distribution function.”

“To estimate such irreducible model errors due to atmospheric stochasticity (which we consider to be
the errors that are expected even from a “perfect” model (devoid of structural and parametric
uncertainties) with “perfect” (error-free) inputs), we analyzed the observed daily maximum 8-hr
(DM8HR) ozone time series data at monitoring locations across the contiguous United States (CONUS)
during the 1981-2014 time period and present the results of this analysis in Section 3.1. In Section 3.2,
we illustrate how this information could be used in guiding model development specifically aimed at
addressing reducible errors in the synoptic component by contrasting the results from Section 3.1 with
analysis using the synoptic component from a 21-year simulation performed with the fully coupled WRF-
CMAQ simulations covering the 1990-2010 period. Since we relied on multi-decadal historical ozone
observations to assess the impact of the stochastic nature of the atmosphere, the results presented
here are applicable to both forecasting and retrospective applications of current regional-scale air
quality models.”



Section 3.2: “Perhaps, the next generation of regional-scale meteorological and air quality models
might be capable of explicitly simultaneously treating the mean and fluctuation components for all
variables within the deterministic-stochastic modeling framework to properly account for the stochastic
nature of the atmosphere.”
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Abstract. Regional-scale air pollution models are routinely being used world-wide for research, forecasting air quality, and
regulatory purposes. It is well recognizedknews that there are both reducible (systematic) and irreducible (unsystematic)
errorsuneertainties in the meteorology-atmospheric chemistry modeling systems. The inherent (random) uncertainty

stemshrherent-or-irreducible- uneertaintiesstem from our inability to properly characterize stochastic variations in atmospheric

dynamics and chemistry, and from the incommensurability associated with comparisons of the volume-averaged model

estimates with point measurements. Because_these stochastic variations in-atmespherie—dynamies—and-emissions—foreing

influeneing-theair poHutant coneentrations-are not beingdiffienltte explicitly simulated in the current generation of regional-
scale meteorology-air quality modelssimutate, one shouldean expect to find differences between a-pereentile-valuefrom-the

he-model estimates and corresponding

observations.: This paper presents an observation-based methodology to determine the expected errors from current generation

regional air quality models even when the model design, physics, chemistry, and numerical analysis,techniques as well as its
input data, were “perfect”. To this end, the short-term synoptic-scale fluctuations embedded in the daily maximum 8-hr ozone
time series are separated from the longer-term forcing using a simple recursive moving average filter. The inherent
uncertaintyvariability attributable to the stochastic nature of the atmosphere is determined based on 30+ years of historical
ozone time series data measured at various monitoring sites in the contiguous United States. The results reveal that the
expected root mean square error at the median and 95% percentile is about 2 ppb and 5 ppb, respectively, even for “perfect” air
quality models driven with “perfect” input data. Quantitative estimation of the limit to the model’s accuracy will help in
objectively assessing the current state-of-the-science in regional air pollution models, measuring progress in their evolution,

and providing meaningful and firm targets for improvements in their accuracy relative to ambient measurements.

1 Introduction

Confidence in model estimates of pollutant distributions is established through direct comparisons of modeled concentrations
with correspondlng observations made at discrete locations for retrospective cases. His-welknown-thatthere-are both-redueible
~Pinder et al. (2008) discussed the
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reducible (i.e., structural and parametric) uncertainties that are attributable to the errors in model input data (e.g., meteorology,
emissions, initial and boundary conditions) as well as our incomplete or inadequate understanding of the relevant atmospheric
processes (e.g. chemical transformation, planetary boundary layer evolution, transport and dispersion, modeling domain, grid
resolution, deposition, rain, clouds). Inherent or irreducible (random or unsystematic) uncertainties stem from our inability to
properly characterize the stochastic nature of the atmosphere (Wilmott, 1981, 1985: Fox, 1984; wvariations—inatmespherie
dynamies(Rao et al., 1985; Dennis et al., 2010; Rao et al., ;-2011) and); from the incommensurability associated with

comparing the volume-averaged model estimates with point measurements (e.g., McNair et al., 1996; Swall and Foley, 2009).);

and-preeesses: Also, without completely knowing the 3-dimensional initial physical and chemical state of the atmosphere, its
future state cannot be simulated accurately (Lamb, 1984; Lamb and Hati, 1987; Lewellen and Sykes, 1989; Pielke, 1998;
Gilliam et al., 2015). Given the presence of the irreducible uncertainties, precise replication of observed concentrations or their

changes by the models cannot be expected (Dennis et al., 2010; Rao et al., 2011; Porter et al., 2015; Astitha, 2017)).>-

Whereas an air quality model’s prediction represents some time/space-averaged concentrations, an observation at any given
time at a monitoring location reflects an individual event or specific realization out of a population that will almost always
differ from the model estimate even if the model and its input data were perfect (Rao et al., 1985). Consequently, comparisons
of modeled and observed concentrations paired in space and time indicate biases and errors in simulating absolute levels of
pollutant concentrations at individual monitoring sites (Porter et al., 2015). The scientific discussion on modeling uncertainty
reduetion goes back more than three decades with the current practice including data assimilation, ensemble modeling, and
model performance evaluation (e.g., Fox, 1981, 1984; Lamb, 1984; Demerjian, 1985; Oreskes et al., 1994: Pielke, 1998;
Lewellen and Sykes, 1989; Lee et al., 1997; Carmichael et al., 2008; Hogrefe et al., 2001a, 2001b; Biswas and Rao, 2001;
Grell and Baklanov, 2011; Gilliam et al., 2006; Herwehe et al., 2011; Baklanov et al., 2014; Bocquet et al., 2015; Solazzo and
Galmarini, 2015; Ying and Zhang, 2018; McNider and Pour-Biazar, 2020; Stockwell et al., 2020).)- While ever-improving

process knowledge and increasing computational power will continue to help reduce the structural and parametric uncertainties
in air quality models, the inherent uncertainty associated witheannot—be—eliminated—beeause our inability to properly
characterize the stochastic nature of the atmosphere will always result in some mismatch between the model results and
measurements; this could lead to speculation on the inferred accuracy of the future states simulated by the regional-scale air
quality models (Dennis et al., 2011; Rao et al., 2011; Porter et al., 2015; Astitha et al., 2017; Luo et al., 2019).

The sensitivity of model results to meteorology, chemical mechanisms, and emissions has been examined in numerous studies

(e.g., Vautard et al., 2012; Sarwar et al., 2013; Pierce et al., 2010; Napelenok et al., 2011; Kang et al..2013). Herwehe et al.

(2011) attributed the differences in ground-level ozone predictions between WRF-Chem and WRF-CMAQ models to the way

meteorology and chemistry interactions are handled within these two modeling systems. Thomas et al. (2019) examined the

ozone predictions in the Mid-Atlantic region of the United States during June 2016 through a series of simulations with WREF-

Chem, focusing on the sensitivity to the meteorological initial/boundary conditions (IC/BCs), emissions inventory (EI), and

2
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planetary boundary layer (PBL) scheme. Ying and Zhang (2018) discussed the use of satellite-based observations for

improving the predictability of multiscale tropical weather and equatorial waves. Ensemble modeling is being advocated for

quantifying the uncertainty in model predictions; however, the spread in the model estimates for the variable of interest reflects

the impact of our incomplete or inadequate knowledge of the physical and chemical processes (i.e., the reducible errors

stemming from structural and parametric uncertainty) occurring in the atmosphere (Solazzo et al., 2015; Thomas, et al., 2019;

Stockwell et al., 2020). McNider and Pour-Biazar (2020) reviewed the many issues in predicting the prevailing meteorology

for regional air quality simulations and indicated that errors in the specification of the physical atmosphere such as temperature,

winds, and mixing heights can affect the air quality predictions. Stockwell et al. (2020) discussed the problems relating to the

atmospheric chemical mechanisms currently being used for simulating air quality. The current generation of regional models

consider only the mean values of a meteorological variable for a given timescale and the average rate constant derived from

gas chamber experiments for chemical reactions and does not include their fluctuations in solving the equations of motion for

each time step. Further, the current operational regional-scale meteorological and air quality models do not explicitly simulate

the stochastic nature of the atmosphere and, as such, typically miss the extreme values at both the low and high ends of the

concentration distribution function.

In most applications of regional-scale air quality models, statistical metrics such as bias, root mean square error (RMSE),
correlation, and index of agreement are being used to judge the quality of model predictions and determine if the model is
suitable for forecasting or regulatory purposes (e.g., Fox, 1981, 1984; Solazzo et al., 2011; Appel et al., 2012; Simon et al.,
2012; Foley et al., 2014; Ryan et al., 2016; Emery et al. 2016; Zhang, 2016; U.S. EPA, 2018). While significant improvements
in the formulation, physical and chemical parameterizations, and numerical techniques have been implemented in atmospheric
models over the past three-decades, it is not clear if the improvement claimed in the model’s performance relative to the routine
network measurements is statistically significant based on these metrics (Hogrefe et al., 2008). Also, no assessments have
been made to date on the errors that are to be expected even from “perfect” regional-scale air quality modeling systems. To
estimate such irreducible model errors due to atmospheric stochasticity (which we consider to be the errors that are expected

even from a “perfect” model (devoid of structural and parametric uncertainties) with “perfect” (error-free) inputs), we analyzed

the observed daily maximum 8-hr (DM8HR) ozone time series data at monitoring locations across the contiguous United States
(CONUS) during the 1981-2014 time period and present the results of this analysis in Section 3.1. In Section 3.2, we illustrate
how this information could be used in guiding model development specifically aimed at addressing reducible errors in the
synoptic component by contrasting the results from Section 3.1 with analysis using the synoptic component from a 21-year

simulation performed with the fully coupled WRF-CMAQ simulations covering the 1990-2010 period. Since we relied on

multi-decadal historical ozone observations to assess the impact of the stochastic nature of the atmosphere, the results presented

here are applicable to both forecasting and retrospective applications of current regional-scale air quality models.
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2 Data and Methods

Ground-level DM8HR ozone data covering the CONUS during May to September in each year were obtained from the U.S.

Environmental Protection Agency’s (EPA) Air Quality System (AQS) (see https://www.epa.gov/ags). A valid ozone season

consists of at least 80% data coverage during May to September at each station. A total 185 monitoring stations with at least
30 valid years (to provide enough variety of synoptic conditions, denoted hereafter as 30+ in this paper) from the year 1981 to
2014 are analyzed. Also, fully coupled WRF-CMAQ model simulations over the CONUS for the 1990-2010 period were
utilized in this study to demonstrate a new perspective on model performance evaluation. To ensure better characterization of
the prevailing meteorology (i.e., synoptic forcing) in the retrospective 21-year WRF-CMAQ simulations, four-dimensional
data assimilation (FDDA) was utilized following the methodology suggested by Gilliam et al. (2012) and modified for fully-
coupled meteorology-chemistry model applications as described in Hogrefe et al. (2015). The model set-up and performance
evaluation of these historical multiyear WRF-CMAQ simulations have been published by Xing et al. (2015), Gan et al. (2015),
and Astitha et al. (2017). Time-varying chemical lateral boundary conditions are nested from the 108 km hemispheric WRF-
CMAQ simulation from 1990 to 2010 (Xing et al., 2015).

It has been shown that time series of the daily maximum 8-hr ozone concentrations contain fluctuations operating on different
time scales (e.g., intra-day forcing induced by the fast-changing emissions and atmospheric boundary layer evolution; diurnal
forcing induced by the day and night differences; synoptic forcing induced by the passage of weather systems across the
country, sub-seasonal forcing due to Madden-Julian Oscillation (MJO), and long-term forcing induced by emissions, El-Nino-
Southern Oscillation (ENSO), climate change, and other slow-varying processes such as seasonal and sub-seasonal variations
in the atmospheric deposition and stratosphere-troposphere exchange processes) as noted by Rao et al. (1997), Vukovich,
(1997), Hogrefe et al. (2000), Porter etal. (2015), Astitha et al. (2017), Xing et al. (2016), and Mathur et al. (2017)). Variations
in the 8-hour- ozone can be thought of comprising of the baseline of pollution that is created by various emitting sources and
modulated by the prevailing synoptic weather conditions (Rao et al., 1996 and 2011). Thus, the magnitudelevel of the baseline
(BL) concentration and the strength of the synoptic component (SY) should be viewed as the necessary and sufficient
conditions for how high ozone levels can reach on a given day (Astitha et al., 2017). Scale separation can be achieved by
applying filtering methods such as the Empirical Mode Decomposition (Huang et al., 1998), Elliptic filter (Poularika, 1998),
Kolmogorov-Zurbenko (KZ) filter (Rao and Zurbenko, 1994), Adaptive Filter Technique (Zurbenko, et al., 1996), and Wavelet
(Lau and Weng, 1995). Because Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
(Improved CEEMDAN, a version of the Empirical Mode Decomposition method) and KZ filter yielded similar results for the

DMB8HR time series data as shown in Figs. 1-2 discussed in the next section, only the results from the KZ filter are presented
in the subsequent analysis for quantifying the impact of the stochastic nature of the atmosphere on observed and simulated
ozone concentrations. Furthermore, the KZ filtering is a simple method and works well even in the presence of missing data

(Hogrefe et al., 2003). In this study, we used the KZs 5 with a window size of 5 days and 5 iterations on raw ozone time series
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[O; (t)] in the same manner as in Luo et al. (2019), Porter et al. (2015), and Rao et al. (2011).};-and-Eue-etab2049): The size
of the window and the number of iterations determine the desired scale separation. The KZs 5 filtering process helps separate
the synoptic-scale weather-induced variations embedded in the May-September DM8HR time series data (short-term

component, noted as SY) from the long-term baseline component (denotedreted as BL).

BL(t) = KZ55(05(1)) (€]
SY(t) = 05(t) — KZs 5(05(1)) (2)
05(t) = SY(t) + BL(t) )

—Because we are working with the daily maximum 8-hr ozone data, the Nyquist interval is 2-days, indicating that the dynamical
features having time scales less than 2 days (e.g., intra-day forcing from fast changing emissions and chemical transformations,
boundary layer evolution, diurnal forcing due to night vs. day differences) are not resolvable in this analysis (see Fig. 2 in
Dennis et al., 2010). The 50% cut-off frequency for the KZs5 is ~24 days, and, hence, time scales less than those associated
with synoptic-scale weather fluctuations are embedded in the short-term or SY forcing. The KZ filtering is applied to both
DMBS8HR observations and modeled DM8HR time series. Once the baseline is separated from the original DM8HR time series
from all monitoring stations, then the synoptic forcing in the historical ozone time series data is used to estimate the variability
in ozone concentrations that can be expected because of the chaotic/stochastic nature of the atmosphere by taking into account
the relationship between the strength of synoptic forcing and mean of baseline ozone at each location over CONUS. This
methodology was applied to both measured and modeled ozone concentrations (see details in Luo et al., 2019). Whereas the
focusebjeetive of Luo et al. (2019) was on transforming the deterministic modeling results into a probabilistic framework for
assessing the efficacy of different emission control strategies in achieving compliance with the ozone standard, this paper is
aimed at quantifying the model performance errors to be expected at each monitoring site over CONUS even from “perfect”

regional-scale ozone models driven with “perfect” input data from the ever-present stochastic nature of the atmosphere.

3 Results and Discussion
3.1 Analysis of ambient ozone data

Using both Improved CEEMDAN and KZ filtering_methods, we separated the synoptic forcing (time scale < 24 days) and
baseline (time scale > 1 month) forcing embedded in the time series of observed and modeled daily maximum 8-hour ozone
concentrations. To illustrate, the results from the application of Improved CEEMDAN to the daily maximum 8-hr ozone time
series data measured at Altoona, PA are presented in Fig. 1. The top left panel displays the raw ozone time series while the top
of the right panel shows its power spectrum. The 7 intrinsic mode functions (IMFs) and the residual on the left side, and their
corresponding power spectra on the right reveal that most of the synoptic-scale features in ozone data are imbedded in IMFs 1
and 2. The baseline ozone is extracted by removing the first two IMFs from the raw ozone time series. To illustrate the concept
of the ozone baseline, DM8HR time series measured in 2010 at Altoona, PA is presented in Fig. 2a together with the embedded
baseline concentration as extracted by the KZs 5 and Improved CEEMDAN. It is evident that high ozone levels are always

5
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associated with the elevated baseline. The difference between the raw ozone time series and baseline, denoted as the short-
term or synoptic forcing (SY), is displayed in Fig. 2b. The power spectra, displayed in Figs. 2c and d, reveal both methods
yielded good scale separation. Due to the good agreement between both scale separation techniques, only the results from the

KZ filter are presented for the remainder of the manuscript.

Once the scale separation is achieved with the KZs 5, we superimposed the SY forcing imbedded in 30+ years of historical
DMS8HR ozone time series measured at a given location on the baseline component of the ozone time series at that location to
generate 30+ reconstructed or pseudo ozone distributions. Illustrative results using eq. (3) at a suburban location in Altoona,
PA are presented for 2010 base year in Fig. 3a; it should be noted that the linear relationship between the strength of SY
(defined as the standard deviation of the data in the synoptic component) and the magnitude of the BL (defined as the mean of
the data in the baseline component) has been taken into account in generating 30+ years of adjusted SY forcing as illustrated
inLuo etal. (2019). As expected, there is excellent agreement between the average of 30+ values (solid blue line) and observed
ozone in 2010 at each percentile of the concentration distribution function (red line). Also, the original cumulative distribution
function (CDF) in 2010 (red line) is constrained within the 30+ CDFs of pseudo distributions (Fig. 3a); note, it is equally likely
for any of these 30+ CDFs to occur because of the stochastic nature of the atmosphere even though the individual event in
2010 yielded the CDF shown in red. As mentioned before, 0zone mixing ratio at any given probability point on the red line
in Fig. 3a reflects an individual event while ozone values at the same probability in different CDFs (gray lines) reflect the
population stemming from the stochastic nature of the atmosphere. In other words, there are 30+ dynamically consistent ozone
time series attributable to the 2010 baseline (given 2010 emissions) for examining the inherent variability due to atmospheric
stochasticity. It is evident in Fig. 3a that there is larger variability at the lower and upper percentiles than that in inter-quartile
range, revealing that the tails of the concentration distribution function are subject to large inherent uncertainty. Using these
30+ pseudo-observation ozone mixing ratios and the actual observed ozone values at each percentile, statistical metrics such
as Bias, RMSE, coefficient of variation (CV=standard deviation/mean), normalized mean error (NME) and normalized mean
bias (NMB) are presented in Fig. 3b and ¢ (see Emery et al. (2016) for the description of the statistical metrics considered
here). As expected, the lower and upper tails of the distribution are prone to large errors. These results demonstrate the presence
of substantial natural variability at the upper 95th percentile, which is of primary interest in regulatory analyses. The extreme

values are better described in statistical terms rather than in deterministic sense (Hogrefe and Rao, 2001; Luo et al.. 2019).

Ozone time series at 185 monitoring stations covering CONUS, having at least 80% data completeness, are analyzed in the
above manner and the results are displayed as box plots in Fig. 4. Note the presence of large variability in the CV, NME, and
NMB, and Bias at the lower and upper percentiles (Fig. 4). The RMSE expected for the 0zone mixing ratios in the interquartile
range is ~1.5 ppb, but it is >5 ppb for the upper 95th percentile (Fig. 4b). The spatial distribution of RMSE at the 50th and
95th percentiles is displayed in Figures 5a and 5b, respectively. The RMSE at the upper 95th percentile is very high at some

monitoring sites in California and Michigan (Fig. 5b). Monitoring stations situated in the urban areas, near large water bodies,
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and in regions of complex terrain influenced predominantly by local conditions tend to exhibit higher RMSE. The elevation

of the monitoring sites is displayed in Fig. 5c.

3.2 Analysis of modeled ozone concentrations

The analysis in the previous section quantified the inherent stochastic variability that is present in the SY component using
long-term records of ozone observations. In this section, we analyze long-term records of model simulations in an attempt to
quantify the error associated with the modeled SY component that results both from not explicitly representing stochastic
variations in atmospheric dynamics and-emission—vartabtity-in the current generation regional air quality models and from
other reducible sources of model error. The model simulations were performed with the fully coupled WRF-CMAQ system

with a 36-km horizontal grid cell size and covered the 21-year period from 1990 to 2010 (Gan et al., 2015). _In this section

we examine the impact of superimposing different SY forcings embedded in ozone observations vs. those in the WRF-CMAQ

model on the observed baseline concentration. To provide an illustration of the differences between observed and modeled

time series over this period, Figure 6a displays a scatter plot of the strength of the SY component (standard deviation of data
in the SY component) vs. the mean of the baseline (BL) component for both observations and model simulations at the Altoona,
PA site. While both observations and WRF-CMAQ simulations show a strong correlation between these two variables, it is
evident that at this monitoring location the standard deviation (i.e., strength) of the SY component is substantially lower for
the WRF-CMAQ simulations for a given mean of the BL component (i.e., for any given year). The year-to-year variation in
the observed and modeled mean of BL and strength of SY forcing, displayed in Fig. 6b, reveals that the model overestimated
BL and underestimated the strength of SY forcing. The 36-km grid may be better representing the large-scale synoptic forcing
associated with the translation of weather systems than the meso-scale weather and urban influences (both dynamics and
chemistryemission-driven) that are embedded in the observed SY component. Meteorological modeling with higher horizontal
grid resolution might be able to capture the land-sea breeze, lake-sea breeze, and terrain influences that observations are seeing

at certain monitoring locations.

To isolate the impact of model imperfections on only the SY time scale on errors across the ozone distribution, we assume that
the model perfectly reproduces the ‘true’ BL depicted by the observed 2010 BL. We then use this ‘perfect’ modeled BL and
reconstruct ‘pseudo-simulated’ ozone time series, likesimilarto what was done in Fig. 3, except for using the SY component
embedded in the 21 years of coupled WRF-CMAQ simulations. The rationale for this analysis is to quantify the amount of
model error present in the current simulations that could conceivably be reduced through improving the representation of
synoptic and mesoscale processes and/or increased horizontal resolution with appropriate data assimilation techniques. Fig. 7a
displays the CDF of actual observed ozone (red line) overlaid on 21 pseudo-simulated ozone CDFs (gray lines, with averages
of all 21 pseudo-simulated ozone percentiles shown in blue) at the Altoona, PA site while Figs. 7b and 7c¢ display absolute and
normalized performance metrics. Figure 7a confirms that the coupled WRF-CMAQ SY components have less intra-annual

variability than observed SY components, causing overestimation at the low end and underestimation at the high end of the
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observed CDF for all 21 years of reconstruction; these results imply that the model’s results at the upper and lower percentiles
will always tend to be unreliable or prone to large errors even when the baseline concentration is predicted perfectly. The U-
shape of the absolute and relative error curves in Figures 7b and c is similar to the corresponding curves in Figure 3, but the
larger magnitude at the high and low end of the distribution indicates that the effects of the underestimated intra-annual SY
variability (note that the distribution of modeled values in Fig. 7a is much flatter (i.e., having higher Kurtosis) than that of the
observations) outweigh those errors attributable to the stochastic variability presented in Figure 3. The shape of the absolute
and normalized bias curves deviates from those shown for the pseudo-observations in Figures 3b-c and, thus, also reveals the
effect of the underestimation of the intra-annual SY variability. Figures 7d-f present differences between the curves shown in
Figures 7a-c and a version of Figure 3a-c computed from the 1990-2010 data instead of 30+ years of historical ozone
observations. Panels e and f show that at the 50" percentile, the differences in the error curves are close to zero sincedue-to-the
faet—that both the pseudo-simulations and pseudo-observations used the same observed BL component. At the upper
percentiles, the differences reach 3 — 5 ppb, providing an estimate of the reducible error in simulating the extreme values at
this location because of the differences in the observed SY and WRF-CMAQ SY components at this location; high-resolution

meteorological modeling may help address these reducible errors.

Figs. 8a and b display the RMSE at the median and 95 percentile for the ‘pseudo-simulated’ ozone values at each monitoring
site. For the 50" percentile, the RMSE values range from 0.2 ppb to 3.2 ppb over CONUS with a median value of 1 ppb while
at the 95" percentile, the RMSE values range from 1 ppb to 15 ppb with a median value of 4 ppb across all sites over CONUS.
The values are highest along the California coast and near Great Lakes, possibly due to inadequacies in simulating the land-
sea breeze and land-lake breeze regimes, respectively, with modeling at 36 km grid cells. Air quality modeling uncertainty
even for the retrospective modeling cases, outside of the chemistry formulation and boundary conditions, is attributed primarily

to meteorology and emissions inputs. —~Vautard et al. (2012) and McNider and Pour-Biazar (2020) concluded that major

challenges stik-remain in the simulation of prevailing meteorology (e.g., errors in wind speed, PBL, night-time meteorology,

nocturnal transport aloft, clouds) in retrospective air quality modeling. Based on the retrospective ozone episodic modeling

with the WRF-CMAQ model using various sets of equally likely initial conditions for meteorology along with FDDA, Gilliam
et al. (2015) confirmed the presence of sizable spread in WRF solutions, including common weather variables of temperature,
wind, boundary layer depth, clouds, and radiation, thereby causing a relatively large range of ozone concentrations. Also,
pollutant transport is altered by hundreds of kilometers over several days. Ozone concentrations of the ensemble varied as
much as 10-20 ppb (or 20-30%) in areas that typically have higher pollution levels. As model improvements are made, one
can quantitatively assess how close the predictions of the improved model are for each percentile for the given base year
simulation to the expected errors from a “perfect” model with “perfect” input, i.e. the target RMSE shown in Fig.5a and b.

Perhaps, the next generation of regional-scale meteorological and air quality models might be capable of explicitly

simultaneously treating the mean and fluctuation components for all variables within the deterministic-stochastic modeling

framework to properly account for the stochastic nature of the atmosphere.
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4 Conclusions

Regardless of how accurate the regional air quality model is, the stochastic variations in the atmosphere cannot be consistently
reproduced by the deterministic numerical models. In this study, we demonstrate how to quantify this irreproducible stochastic
component by isolating the synoptic forcing imbedded in 30+ years of historical observations and assess the performance of
the 36 km fully coupled WRF-CMAQ model in simulating 21 years of ozone concentrations over the contiguous U.S.
Observation-based analysis reveals that on average, the irreducible error attributable to the stochastic nature of the atmosphere
ranges from ~2 ppb at the 50" percentile to ~ 5 ppb at the 95" percentile. To improve regional-scale ozone air quality models,
attention should be paid to accurately simulate the baseline concentration by focusing on the quality of the emission inventory
and the model’s treatment for the boundary conditions and slow-changing (operating on sub-seasonal, seasonal, and longer-
term time scales) atmospheric processes. Also, errors in reproducing the synoptic forcing can possibly be reduced with high-
resolution meteorological modeling using appropriate data assimilation techniques. Nonetheless, these results demonstrate the
presence of large variability in the upper tail of the DM8HR O; concentration cumulative distribution even with “perfect”
models using “perfect” input data. Having this quantitative estimation of practical limits for model’s accuracy helps in
objectively assessing the current state of regional-scale air quality models, measuring progress in their evolution, and providing

meaningful and firm targets for improvements in their accuracy relative to measurements from routine networks.

Code availability: Source code for version 5.0.2 of the Community Multiscale Air Quality (CMAQ) modeling system can be
downloaded from https://github.com/USEPA/CMAQ/tree/5.0.2. For further information, please visit the U.S. Environmental
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Figure 1. Results of the application of the Improved CEEMDAN technique (a modified version of EMD) technique, which is
designed for analyzing non-stationary and non-linear time series data, to the daily maximum 8-hour ozone time series data at
the Altoona, PA site. The numbers on the right side represent the time scale (in days) associated with each IMF. Note, the
power spectrum of raw ozone time series (upper right panel) shows that the energy in the 1-10 days (synoptic) time scale is an

order of magnitude less than that in the longer (baseline) time scale.

Figure 2a. Raw observed DM8HR ozone time series (black) and the embedded baseline (red for EMD and blue for KZ) at
Altoona, PA in 2010; Figure 2b. Time series of synoptic forcing (red for EMD and blue for KZ); Figure 2¢ and 2d are their
corresponding power spectra. The bottom two panels compare the power spectra of the baseline forcing (left) and the synoptic
forcing (right) derived from KZ filtering and EMD (sum of IMF 1 and IMF2). Notice that most of the energy in the baseline
time series is in the longer time scale while most of the energy of the short-term component is in the high-frequency range.
The similarity of results from both scale separation techniques demonstrates that the two scales of interest (i.e., baseline and

synoptic forcing) have been extracted reasonably well by these two methods.

Figure 3a: Comparison between the observed cumulative distribution function (CDF) for 2010 shown in red with 30+ pseudo-
observations CDFs generated from historical DM8HR ozone time series shown in gray at a suburban site at Altoona in PA
(AQS station identifier 420130801). The blue line represents the average of the 30+ gray lines; Figure 3b: Display of various
statistical metrics (standard deviation (std), root mean square error (RMSE), bias) derived by comparing the actual observed
and pseudo ozone values in Fig. 3a; Figure 3c: Normalized statistical metrics of normalized mean error (NME), normalized

mean bias (NMB), coefficient of variation (CV). Notice the large variability occurring at the lower and upper percentiles.

Figure 4. Box plots of statistical metrics based on the results from the analysis of DM8HR data at 185 monitoring sites: (a)
Standard deviation, (b) Root mean square error, (¢) Mean bias, (d) Coefficient of variation, (¢) Normalized mean error, and (f)
Normalized mean bias. The lower and upper edges of the boxes represent the 25th and 75th percentile values while the whiskers
represent the 5th and 95th percentiles. See data analysis procedures using the ozone baseline observed in the year 2010 as the

target BL in equations 7 and 8 of Luo et al. (2019).

Figure 5. Spatial distribution of the lower bound for the RMSE or expected RMSE at each monitoring site over CONUS (a) at

the median and (b) at the 95th percentile; (c) elevation (km) above the mean sea level of each monitoring site.

Figure 6. (a) Scatter plot of the standard deviation (i.e., strength) of the SY component vs. the mean of the baseline (BL)

component for each of the 21 years from 1990 to 2010 at the Altoona, PA monitoring site. Observations are shown in red while
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WRF-CMAQ results are shown in blue. (b) Inter-annual variability in the mean of the baseline component and standard
deviation of the synoptic component in the WRF-CMAQ model and observations at the Altoona, PA site. Although year-to-

year variation is captured, the model has overestimated the baseline forcing and underestimated the synoptic forcing.

Figure 7. a) Comparison between the observed CDF overlaid on 21 ‘pseudo-simulated’ or reconstructed ozone CDFs with SY
generated from modeled DM8HR ozone time series at a suburban site at Altoona in PA (AQS station identifier 420130801);
b) Display of various statistical metrics derived by comparing the actual observed and pseudo-simulated ozone values in Fig.
7a; ¢) Normalized statistical metrics; d).Difference between the pseudo-simulated CDFs shown in Figure 7a and the pseudo-
observed CDFs as shown in Figure 7a but calculated from 21 years (1990-2010) of observations only. The gray lines represent
the differences for a specific SY year while the blue line represents the differences between the means of the 21 reconstructions;
e) Difference between the absolute performance metrics for pseudo-simulations shown in Figure 7b and those calculated for
pseudo-observations as shown in Figure 7b but calculated for 21 years (1990-2010) only. f) As in panel e) but for normalized

performance metrics.

Figure 8. Errors in the 21 ‘pseudo-simulated’ or reconstructed ozone time series with SY generated from modeled DM8HR

ozone time series using BL obtained from observations at (a) the median and (b) 95th percentile.
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Figure 1. Results of the application of the Improved CEEMDAN technique (a modified version of EMD) technique, which is designed
for analyzing non-stationary and non-linear time series data, to the daily maximum 8-hour ozone time series data at the Altoona,
PA site. The numbers on the right side represent the time scale (in days) associated with each IMF. Note, the power spectrum of
raw ozone time series (upper right panel) shows that the energy in the 1-10 days (synoptic) time scale is an order of magnitude less
than that in the longer (baseline) time scale.
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Figure 2a. Raw observed DM8HR ozone time series (black) and the embedded baseline (red for EMD and blue for KZ) at Altoona,
PA in 2010; Figure 2b. Time series of synoptic forcing (red for EMD and blue for KZ); Figure 2¢ and 2d are their corresponding
power spectra. The bottom two panels compare the power spectra of the baseline forcing (left) and the synoptic forcing (right)
derived from KZ filtering and EMD (sum of IMF 1 and IMF2). Notice that most of the energy in the baseline time series is in the
longer time scale while most of the energy of the short-term component is in the high-frequency range. The similarity of results
from both scale separation techniques demonstrates that the two scales of interest (i.e., baseline and synoptic forcing) have been
extracted reasonably well by these two methods.
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Figure 3a: Comparison between the observed cumulative distribution function (CDF) for 2010 shown in red with 30+ pseudo-
observations CDFs generated from historical DM8HR ozone time series shown in gray at a suburban site at Altoona in PA (AQS
station identifier 420130801). The blue line represents the average of the 30+ gray lines; Figure 3b: Display of various statistical
metrics (standard deviation (std), root mean square error (RMSE), bias) derived by comparing the actual observed and pseudo
ozone values in Fig. 3a; Figure 3c: Normalized statistical metrics of normalized mean error (NME), normalized mean bias (NMB),
coefficient of variation (CV). Notice the large variability occurring at the lower and upper percentiles.
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Figure 4. Box plots of statistical metrics based on the results from the analysis of DMS8HR data at 185 monitoring sites: (a) Standard
deviation, (b) Root mean square error, (¢) Mean bias, (d) Coefficient of variation, (¢) Normalized mean error, and (f) Normalized
mean bias. The lower and upper edges of the boxes represent the 25th and 75th percentile values while the whiskers represent the
S5th and 95th percentiles. See data analysis procedures using the ozone baseline observed in the year 2010 as the target BL in

equations 7 and 8 of Luo et al. (2019).
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Figure 6. (a) Scatter plot of the standard deviation (i.e., strength) of the SY component vs. the mean of the baseline (BL) component
for each of the 21 years from 1990 to 2010 at the Altoona, PA monitoring site. Observations are shown in red while WRF-CMAQ
results are shown in blue. (b) Inter-annual variability in the mean of the baseline component and standard deviation of the synoptic
component in the WRF-CMAQ model and observations at the Altoona, PA site. Although year-to-year variation is captured, the
model has overestimated the baseline forcing and underestimated the synoptic forcing.
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Figure 7. a) Comparison between the observed CDF overlaid on 21 ‘pseudo-simulated’ or reconstructed ozone CDFs with SY
generated from modeled DM8HR ozone time series at a suburban site at Altoona in PA (AQS station identifier 420130801); b)
Display of various statistical metrics derived by comparing the actual observed and pseudo-simulated ozone values in Fig. 7a; ¢)
Normalized statistical metrics; d).Difference between the pseudo-simulated CDFs shown in Figure 7a and the pseudo-observed CDF's
as shown in Figure 7a but calculated from 21 years (1990-2010) of observations only. The gray lines represent the differences for a
specific SY year while the blue line represents the differences between the means of the 21 reconstructions; e) Difference between
the absolute performance metrics for pseudo-simulations shown in Figure 7b and those calculated for pseudo-observations as shown
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in Figure 7b but calculated for 21 years (1990-2010) only. f) As in panel e) but for normalized performance metrics.
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Figure 8. Errors in the 21 ‘pseudo-simulated’ or reconstructed ozone time series with SY generated from modeled DM8HR ozone
time series using BL obtained from observations at (a) the median and (b) 95th percentile.
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