
Authors’ Responses (in red) to the Comments on acp-2019-642 by Anonymous Referee # 1 and 
Changes Made (in blue) in the Manuscript 

This manuscript separated short-term synoptic-scale fluctuations from long-term baseline component 
embedded in the daily maximum 8-hr ozone time series using a filter and estimated the limit of air 
quality model’s accuracy (or predictability/uncertainties of air quality prediction). This is an interesting 
topic for air quality prediction.  

The authors thank the referee for recognizing the importance of our work.  

But to my surprise, the authors did not even consider lead time when discussing air quality predictability 
(or limit of air quality prediction). What is the configuration of the air quality prediction? Was this one-
day prediction? Two-day prediction? Prediction uncertainties/errors will change significantly with 
different lead time.  

It seems that the referee has misunderstood the modeling simulations we have examined in this paper.  
Please note that our paper focused on the evaluation of retrospective simulations of 21-years (1990 to 
2000) of the daily maximum 8-hour average ozone concentrations over the contiguous United States 
(CONUS) with the fully-coupled Weather Research Forecasting (WRF) meteorological model and the 
Community Multiscale Air Quality (CMAQ) chemical transport model.  While the concepts presented in 
our paper are applicable to examining air quality forecasting products, the results of our study reflect 
the prediction capability of the model based on retrospective simulations and not air quality forecasting.  
To ensure better characterization of the prevailing meteorology (i.e., synoptic forcing) for these 
retrospective 21-year simulations, four-dimensional data assimilation (FDDA) was utilized following the 
methodology suggested by Gilliam et al. (see Atmos. Environ., Vol.53, pp 186-201, 2012) and modified 
for fully-coupled meteorology-chemistry model applications as described in Hogrefe et al. (see Atmos. 
Environ., Vol. 115, pp 683-694, 2015).  The modeling set-up and performance evaluation of these 
historical multiyear WRF-CMAQ simulations have been published by Xing et al. (2015), Gan et al. (2015), 
and Astitha et al. (2017) as referenced in our manuscript.  The following material has been added in the 
revised manuscript. 

Expanded the model description in Section 2 (added after page 3 line 7 in the original manuscript) as 
follows:  ”To ensure better characterization of the prevailing meteorology (i.e., synoptic forcing) in the 
retrospective 21-year WRF-CMAQ simulations, four-dimensional data assimilation (FDDA) was utilized 
following the methodology suggested by Gilliam et al. (2012) and modified for fully-coupled 
meteorology-chemistry model applications as described in Hogrefe et al. (2015).  The model set-up and 
performance evaluation of these historical multiyear WRF-CMAQ simulations have been published by 
Xing et al. (2015), Gan et al. (2015), and Astitha et al. (2017).” 

It is also surprising to see the authors suggesting improving simulation of the baseline concentration by 
focusing on the quality of the emission inventory and the model’s treatment for the slow-changing 
atmospheric processes. I have no question for improving emission inventory, but I am confused by 
improving the slow-changing atmospheric processes.  



A number of papers have been published, documenting the importance of the baseline (longer-term) 
forcing embedded in ambient ozone data (see e.g., Rao et al., 1996 and 1997; Hogrefe et al., 2000; Rao 
et al., 2011; Porter et al., 2017; Astitha et al., 2017; Luo et al., 2019).  As noted in Astitha et al. (2017), 
the baseline level and the strength of the synoptic forcing are to be viewed as the necessary and 
sufficient conditions for observing peak ozone levels.  Rao et al. (2011), Hogrefe et al. (2000), Astitha et 
al. (2017), Porter et al (2017), and Luo et al. (2019) have demonstrated that when the magnitude of the 
baseline level is low, there will not be ozone exceedances of the USA’s National Ambient Air Quality 
Standard no matter how strong the synoptic forcing is.  In this study, we are working with the model 
(WRF-CMAQ)-predicted and corresponding observed time series of the daily maximum 8-hour ozone 
concentrations during 1990 to 2000 at various monitoring locations over CONUS; therefore, the Nyquist 
interval here is 2-days.  Using both Empirical Mode Decomposition (EMD) and KZ filtering, we separated 
the synoptic forcing (time scale < 24 days) and baseline (time scale > 1 month) forcing embedded in the 
time series of observed and modeled daily maximum 8-hour ozone concentrations.  To illustrate, the 
results of the application of EMD to the daily maximum 8-hr ozone time series data measured at 
Altoona, PA are presented in Fig. 1 below.  The top left panel displays the raw ozone time series while 
the top of the right panel shows its power spectrum.  The 7 intrinsic mode functions (IMFs) and the 
residual on the left side, and their corresponding power spectra on the right reveal that most of the 
synoptic-scale features in ozone data are reflected in IMFs 1 and 2.  The baseline ozone is extracted by 
removing the first two IMFs from the raw ozone time series.   

 



Figure 1.  Results of the application of the EMD technique, which is designed for analyzing non-stationary and 
non-linear time series data, to the daily maximum 8-hour ozone time series data at the Altoona, PA site.  The 
numbers on the right side represent the time scale (in days) associated with each IMF.  Note, the power 
spectrum of raw ozone time series shows that the energy in the 1-10 days (SY forcing) is an order of magnitude 
less than that in the longer (baseline) time scale. 

The scale separation achieved from the application of EMD and KZ filter, displayed in Fig. 2, reveal that 
the results are quite similar.  It should be noted that the short-term component (SY) extracted from the 
KZ filter as well as EMD’s high-frequency IMFs 1 and 2 resemble white noise process.  

Figure 2.  The top left panel displays the raw daily maximum 8-hour ozone time series together with the 
baselines extracted from the KZ filter and EMD while the top right panel reveals the similarity between white 
noise and synoptic forcing imbedded in these observed ozone time series.  The bottom two panels compare the 
power spectra of the baseline forcing (left) and the synoptic forcing (right) derived from KZ filtering and EMD 
(sum of IMF 1 and IMF2).  Notice that most of the energy in the baseline time series is in the longer time scale 
while most of the energy of the short-term component is in the high-frequency range.  The similarity of results 
from both scale separation techniques demonstrates that the two scales of interest (i.e., baseline and synoptic 
forcing) have been extracted reasonably well.   

This material to demonstrate good scale separation has been added in the revised manuscript.  

Added new material to the beginning of Section 3.1 (page 4 line 15 in the original manuscript): “Using 
both Improved CEEMDAN and KZ filtering, we separated the synoptic forcing (time scale < 24 days) and 
baseline (time scale > 1 month) forcing embedded in the time series of observed and modeled daily 
maximum 8-hour ozone concentrations.  To illustrate, the results from the application of Improved 
CEEMDAN to the daily maximum 8-hr ozone time series data measured at Altoona, PA are presented in 



Fig. 1. The top left panel displays the raw ozone time series while the top of the right panel shows its 
power spectrum. The 7 intrinsic mode functions (IMFs) and the residual on the left side, and their 
corresponding power spectra on the right reveal that most of the synoptic-scale features in ozone data 
are imbedded in IMFs 1 and 2.  The baseline ozone is extracted by removing the first two IMFs from the 
raw ozone time series. To illustrate the concept of the ozone baseline, DM8HR time series measured in 
2010 at Altoona, PA is presented in Fig. 2a together with the embedded baseline concentration as 
extracted by the KZ5,5 and Improved CEEMDAN. It is evident that high ozone levels are always 
associated with the elevated baseline. The difference between the raw ozone time series and baseline, 
denoted as the short-term or synoptic forcing (SY), is displayed in Fig. 2b.  The power spectra, displayed 
in Figs. 2c and d, reveal both methods yielded good scale separation. Due to the good agreement 
between both scale separation techniques, only the results from the KZ filter are presented for the 
remainder of the manuscript.” 

The huge advances of weather prediction during the past few decades has been focusing on 1-day or 2-
day prediction. On such short-term synoptic-scale weather processes, our weather prediction did 
excellent job and has been improved through years. Such improvement can benefit air quality prediction 
significantly (Zhang et al., 2007). I would thus imagine that such short-term practical predictability of air 
quality can be much improved through better model treatments and better initial conditions of 
meteorological and chemical variables, as well as emissions.  

As stated before, our study deals with evaluating the retrospective air quality simulations, not modeling 
results from an air quality forecasting effort.  Air quality modeling uncertainty even for the retrospective 
modeling cases, outside of the chemistry formulation and boundary conditions, is attributed primarily to 
meteorology and emissions inputs.  Vautard et al. (Atm. Environ., Vol. 53, pp 15-37, 2012) concluded 
that major challenges still remain in the simulation of prevailing meteorology (e.g., errors in wind speed, 
PBL, nighttime meteorology, clouds) in retrospective air quality modeling.  Based on retrospective ozone 
episodic modeling with the WRF-CMAQ model using various sets of equally likely initial conditions for 
meteorology along with FDDA, Gilliam et al. (2015) confirmed the presence of sizable spread in WRF 
solutions, including common weather variables of temperature, wind, boundary layer depth, clouds, and 
radiation, thereby causing a relatively large range of ozone concentrations.  Also, pollutant transport is 
altered by hundreds of kilometers over several days.  Ozone concentrations of the ensemble varied as 
much as 10–20 ppb (or 20–30%) in areas that typically have higher pollution levels.   

We acknowledge that air quality forecasting often is concerned with accurately predicting transient 
pollution events. The analysis of modeling uncertainty in our retrospective simulations that employed 
data assimilation suggest that the largest improvement in forecast accuracy can be achieved through 
implementing bias correction techniques (i.e. by correcting for systematic errors such as those caused 
by emission uncertainties that manifest themselves primarily in the baseline) as demonstrated by Kang 
et al. (2008 JGR-Atmospheres, Vol. 113, Issue D23308; 2010 Atmos. Environ., Vol. 44, 18, pp 2203-2212). 
However, we do not dispute the fact that any advances in predicting short-term atmospheric processes 
or phenomena, be it through model improvements, better initial conditions, or ensemble techniques, 
may help to reduce the portion of the prediction error that is not due to systematic biases. Rather, we 
argue through our analysis of both observations and retrospective air quality simulations that, at least 



for retrospective air quality planning applications, the focus of model development and evaluation 
efforts should be on longer time scales. The following discussion has been included in the revised 
manuscript. 

Expanded the relevant sentences in the conclusions (page 7, lines 9 – 11 of the original manuscript) as 
follows: “To improve regional-scale ozone air quality models, attention should be paid to accurately 
simulate the baseline concentration by focusing on the quality of the emission inventory and the 
model’s treatment for the boundary conditions and slow-changing (operating on sub-seasonal, seasonal, 
and longer-term time scales) atmospheric processes. Also, errors in reproducing the synoptic forcing can 
possibly be reduced with high-resolution meteorological modeling using appropriate data assimilation 
techniques.”   

Other specific comments: Many of the concept/discussion regarding inherent/practical predictability, 
reducible/irreducible uncertainties are questionable/wrong, or different from those used in weather 
prediction. For example, emissions are definitely reducible uncertainties and factors in practical 
predictability. Please carefully define those terms/concepts and refer to normally used/accepted 
definitions. The writing is overly concise, particularly in many cases where detailed explanation is 
needed. References: Zhang, F., Bei, N., Nielsen-Gammon, J. W., Li, G., Zhang, R., Stuart, A., & Aksoy, A. 
(2007). Impacts of meteorological uncertainties on ozone pollution predictability estimated through 
meteorological and photochemical ensemble forecasts. Journal of Geophysical Research, 112, D04304. 
https://doi.org/10.1029/2006JD007429 Interactive comment on Atmos. Chem. Phys. Discuss., 
https://doi.org/10.5194/acp-2019-642, 2019. 

It is difficult to identify exactly which terms the reviewer is referring to in comment that terms are not 
defined or are not defined as “normally used/accepted”.  From our perspective, we are consistent with 
the reviewer’s example (we agree that uncertainty in retrospectively simulated ozone concentrations 
can be improved with improvement in emissions characterizations).  The confusion in the definition of 
terms may be more to do with the reviewer’s misunderstanding that the manuscript was focused on air 
quality forecasting rather than on analysis of retrospective simulations.   We agree that terminologies 
between the weather forecasting community and the air quality modeling community may differ, but 
we believe that most air quality modelers are familiar with the terminology used in this paper.  We 
respectfully request the reviewer to read the articles by Rao et al. (January 2011 issue of the Bull. Amer. 
Meteor. Soc., pp 23-30), Dennis et al. (2010), Solazzo and Galmarini (2015), and Gilliam et al. (2015) 
included in the reference list.  



 Authors’ Response (in red) to Referee #2’s Comments and Changes in Manuscript (in blue) 

The paper presents some interesting findings about inherent uncertainties in chemistry transport model 
simulations of ozone concentrations. It is very well written, but sometimes hard to follow. In my opinion, 
some terms should be explained in more detail, before the paper can be published. 

We thank the reviewer for the positive feedback on our paper. 

General comments: 

The authors should explain why they think the data set they constructed by combining measured base 
line ozone with meteorology related short term variations from a 21 years CMAQ run could be seen as 
the output of a “perfect model”. They claim that there is some inherent variability in the meteorological 
data that cannot be captured by any model system. However, reanalysis data may represent 
meteorologically related variations on time scales of few days very well, i.e. part of the variation 
included in the SY component of the time series may be modelled quite well. 

We have revised the discussion in Section 3.2 to clarify that this analysis combining the observed 
baseline component with 21 CMAQ synoptic components is meant to quantify the amount of model 
error present in the current simulations that could conceivably be reduced through improving the 
representation of synoptic-scale processes and/or increased horizontal resolution. As part of this 
revision, we no longer refer to this combination of the measured baseline and modeled synoptic 
component as “perfect model”. Moreover, we have added text at the end of the introduction to clarify 
that when we refer to the errors that can be expected even from a “perfect” model with “perfect” 
inputs throughout the manuscript, we consider these errors to be those arising from atmospheric 
stochasticity which we estimate in Section 3.1 using historic observations. We also should have noted in 
our original manuscript that four-dimensional data assimilation (FDDA) was utilized following the 
methodology suggested by Gilliam et al. (see Atmos. Environ., Vol.53, pp 186-201, 2012) and modified 
for fully-coupled meteorology-chemistry model applications as described in Hogrefe et al. (see Atmos. 
Environ., Vol. 115, pp 683-694, 2015).  As the reviewer pointed out, the SY component in the model 
output contains some meteorologically related variations on time scales of few days.  The following 
revisions and additions have been made to address the reviewer’s comment: 

Revised and expanded the end of Section 1 (page 2, lines 29 – 32 in the original manuscript) as follows: 
“Also, no assessments have been made to date on the errors that are to be expected even from 
“perfect” regional-scale air quality modeling systems.  To estimate such irreducible model errors due to 
atmospheric stochasticity (which we consider to be the errors that are expected even from a “perfect” 
model with “perfect” inputs), we analyzed the observed daily maximum 8-hr (DM8HR) ozone time series 
data at monitoring locations across the contiguous United States (CONUS) during the 1981-2014 time 
period and present the results of this analysis in Section 3.1. In Section 3.2, we illustrate how this 
information could be used in guiding model development specifically aimed at addressing reducible 
errors in the synoptic component by contrasting the results from Section 3.1 with analysis using the 



synoptic component from a 21-year simulation performed with the fully coupled WRF-CMAQ 
simulations covering the 1990-2010 period.“  

Expanded the model description in Section 2 (added after page 3 line 7 in the original manuscript) as 
follows:  ”To ensure better characterization of the prevailing meteorology (i.e., synoptic forcing) in the 
retrospective 21-year WRF-CMAQ simulations, four-dimensional data assimilation (FDDA) was utilized 
following the methodology suggested by Gilliam et al. (2012) and modified for fully-coupled 
meteorology-chemistry model applications as described in Hogrefe et al. (2015).  The model set-up and 
performance evaluation of these historical multiyear WRF-CMAQ simulations have been published by 
Xing et al. (2015), Gan et al. (2015), and Astitha et al. (2017).” 

Modified the discussion in Section 3.2 (page 5, line 23 – page 6, line 9 in the original manuscript) as 
follows: “In this section, we analyze long-term records of model simulations in an attempt to quantify 
the error associated with the modeled SY component that results both from not explicitly representing 
stochastic variations in atmospheric dynamics and emission variability in the current generation regional 
air quality models and from other reducible sources of model error. … To isolate the impact of model 
imperfections on only the SY time scale on errors across the ozone distribution, we assume that the 
model perfectly reproduces the ‘true’ BL depicted by the observed 2010 BL.  We then use this ‘perfect’ 
modeled BL and reconstruct ‘pseudo-simulated’ ozone time series, similar to what was done in Fig. 3, 
except for using the SY component embedded in the 21 years of coupled WRF-CMAQ simulations. The 
rationale for this analysis is to quantify the amount of model error present in the current simulations 
that could conceivably be reduced through improving the representation of synoptic and mesoscale 
processes and/or increased horizontal resolution with appropriate data assimilation techniques.” 

Why do you use 30+ years of ozone measurements for analyzing the observations while only 21 years 
can be used for comparisons to the model results? Wouldn’t it be enough to look at the data set 1990 to 
2010 for the observations, too? And why do you need to construct “pseudo ozone observations” and 
cannot use the observational data set as such? Please explain this in the text. 

As noted in our paper, any observation at a given percentile represents an event or a single realization 
out of a population.  The object of our paper is to quantify the inherent variability in the observations 
due to the stochastic nature of the atmosphere.  To this end, we thought that the use of 30+ years of 
historical data rather than 21 years would help in making more robust estimates of the expected errors 
even from “perfect” models driven with “perfect” input.  As demonstrated in our previous research (see 
Porter, et al., 2017 Atm. Poll. Res.; Astitha, et al., 2017 and Luo, et al., 2019 in Atm. Env.), the baseline 
forcing can be viewed as the deterministic part in observations while the SY forcing is the near-
stochastic part.  We superimposed 30+ adjusted SY forcing on the baseline embedded in 2010 ozone 
observations to generate 30+ representations of ozone concentrations, which are equally likely to occur 
at any given probability point stemming from the stochastic nature of the atmosphere.  Details on this 
approach can be found in Luo, et al. (2019 AE). The discussion in Section 3.1 of the revised manuscript 
was modified in response to the reviewer’s comments. 



Updated the second paragraph of Section 3.1 (page 4, line 25 – page 5, line 11 in the original 
manuscript) as follows: “Once the scale separation is achieved with the KZ5,5, we superimposed the SY 
forcing imbedded in 30+ years of historical DM8HR ozone time series measured at a given location on 
the baseline component of the ozone time series at that location to generate 30+ reconstructed or 
pseudo ozone distributions. Illustrative results using eq. (3) at a suburban location in Altoona, PA are 
presented for 2010 base year in Fig. 3a … note, it is equally likely for any of these 30+ CDFs to occur 
because of the stochastic nature of the atmosphere even though the individual event in 2010 yielded 
the CDF shown in red.  As mentioned before, ozone mixing ratio at any given probability point on the red 
line in Fig. 3a reflects an individual event while ozone values at the same probability in different CDFs 
(gray lines) reflect the population stemming from the stochastic nature of the atmosphere. In other 
words, there are 30+ dynamically consistent ozone time series attributable to the 2010 baseline (given 
2010 emissions) for examining the inherent variability due to atmospheric stochasticity. … Using these 
30+ pseudo-observation ozone mixing ratios and the actual observed ozone values at each percentile, 
statistical metrics such as Bias, RMSE, coefficient of variation (CV=standard deviation/mean), normalized 
mean error (NME) and normalized mean bias (NMB) are presented in Fig. 3b and c (see Emery et al. 
(2016) for the description of the statistical metrics considered here). …  The extreme values are better 
described in statistical terms rather than in deterministic sense (Hogrefe and Rao, 2001).” 

Specific comments: 

Page 3, line 26: In equation (1) it should be made clear that the filter KZ(5,5) is applied to the ozone time 
series O3(t). 

Yes, the reviewer is correct that the SY component is estimated by applying the KZ filter with a window 
length of 5 days and 5 iterations to the ozone time series O3(t) as described in Porter et al. (2015), Rao 
et al. (2011), and Luo et al. (2019). We updated the notation in equations (1) and (2) and also changed 
occurrences of KZ(5,5) in the text to KZ5,5 to better reflect the operation of the filter. 

Equations 1 and 2: changed “KZ(5,5)” to “KZ5,5(O3(t))”.  Also changed all occurrences of KZ(5,5) in the text 
to KZ5,5  

Page 4, line 17: Can you show by statistical evaluation that the SY component represents white noise. 

Because we haven’t used the concept of white noise process to statistically model the SY forcing in our 
paper, we’ve removed the reference to white noise in the revised manuscript.  However, to respond to 
the referee’s question, we display below the autocorrelation function for time series in SY forcing and 
white noise.  It is evident that the correlation drops off after 1-day lag. 



 

In addition, we display below the autocovariance function as a function of lag (days), extracted from the 
article titled “Dealing with the ozone non-attainment problem in the Eastern United States” by Rao et al. 
on Page 20 in the January 1996 issue of the EM Magazine, a publication of the Air & Waste Management 
Association.  These results reveal that the short-term variation (SY component) in observed ozone time 
series data is statistically indistinguishable from “white noise” with an autocorrelation coefficient that 
drops to zero at a lag of 1 day.   

 

Page 4, line 18: please explain AR(1) 

An AR(1) autoregressive process is the first-order process, meaning that the current value is based on 
the immediately preceding value. However, since we removed the references to “white noise” and AR(1) 
from our manuscript, this explanation has not been added to the revised manuscript. 

Page 5, line 18-20: It isn’t obvious for the reader which stations are at elevated sites. 



We agree that adding this information would be useful for the reader and have added a panel to Figure 
5 that shows the elevation of each monitoring site over CONUS. 

The following new figure (Figure 5c) has been added to the revised manuscript: 

 

Page 5, line 25: Define the “strength” of the SY component (being the standard deviation of the time 
series) here. 

The definition has been added to the revised manuscript as follows: 

“it should be noted that the linear relationship between the strength of SY (defined as the standard 
deviation of the data in the synoptic component) and the magnitude of the BL (defined as the mean of 
the data in the baseline component) has been taken into account in generating 30+ years of adjusted SY 
forcing as illustrated in Luo et al. (2019)” 

Page 6, line 8: Is there any reason why you selected this site? 

It has complete data for 30+ years.  We could have picked another site; they all exhibit same features. 

Page 6, line 10/11: Is there an explanation why the model doesn’t perform well for low concentrations? 

The CMAQ team at the U.S. Environmental Protection Agency is investigating the reasons for model’s 
poor performance at the low end of the concentration distribution.  Plausible causes include 36-km grid 
spacing not resolving the effects of NO titration in urban areas, errors in atmospheric deposition, 
representation of variability in background concentrations of O3, precursor and reservoir species, etc.  
Also, it should be noted that the stochastic variability affects mostly the lower and upper tails of the 
pollutant concentration distribution. 

Page 6, line 31/32: Couldn’t this also be caused by emissions missing the correct temporal variation? 



Yes, it is possible. To address the reviewer’s comment, we have expanded an earlier sentence that also 
discusses the limitations of the current model setup as follows: 

Revised sentence (page 6, lines 1-2 in the original manuscript): “The 36-km grid may be better 
representing the large-scale synoptic forcing associated with the translation of weather systems than 
the meso-scale weather and urban influences (both dynamics and emission driven) that are embedded 
in the observed SY component.” 

Page 7, line 9: How could these “slow changing processes” be improved in the models? What is the role 
of stratosphere/troposphere exchange which – to my knowledge – isn’t well represented in the CMAQ 
model runs. 

As already indicated in the manuscript discussion, one needs to pay more attention to properly 
specifying the lateral boundary conditions, duration/strength of stratosphere-troposphere exchanges, 
Madden-Julian Oscillation (MJO), ENSO, climate change, control policies, spatio-temporal variability in 
emissions loading, etc. The hemispheric CMAQ simulations used to drive the regional CMAQ runs used 
here employed potential vorticity-based scaling to represent O3 in the model’s upper troposphere-lower 
stratosphere (UTLS). The method was subsequently enhanced to represent seasonal and latitudinal 
dependencies in the relationship between potential vorticity and ozone and improved the 3-dimensional 
O3 distribution represented by the model as well as the seasonal impacts of STE on lower tropospheric 
and surface-level O3 as detailed in analyses presented in Xing et al. (2016) and Mathur et al. (2017).  
Interested readers are pointed to these studies and references are also included in the discussion. 

Modified the second paragraph of Section 2 (Page 3, Lines 11-19 in the original manuscript) and added 
two references as follows: “It has been shown that time series of the daily maximum 8-hr ozone 
concentrations contain fluctuations operating on different time scales (e.g., intra-day forcing induced by 
the fast-changing emissions and atmospheric boundary layer evolution; diurnal forcing induced by the 
day and night differences; synoptic forcing induced by the passage of weather systems across the 
country, sub-seasonal forcing due to Madden-Julian Oscillation (MJO), and long-term forcing induced by 
emissions, El-Nino-Southern Oscillation (ENSO), climate change, and other slow-varying processes such 
as seasonal and sub-seasonal variations in the atmospheric deposition and stratosphere-troposphere 
exchange processes) as noted by Rao et al. (1997), Vukovich, (1997),  Hogrefe et al. (2000),  Porter et al. 
(2015), Astitha et al. (2017), Xing et al. (2016), and Mathur et al. (2017)).” 

Mathur, R.; Xing, J.; Gilliam, R.; Sarwar, G.; Hogrefe, C.; Pleim, J.; Pouliot, G.; Roselle, S.; Spero, T.L.; 
Wong, D.C.; Young, J. Extending the Community Multiscale Air Quality (CMAQ) modeling system to 
hemispheric scales: overview of process considerations and initial applications. Atmos. Chem. Phys. 
2017, 17, 12449-12474, https://doi.org/10.5194/acp-17-12449-2017. 

Xing, J., R. Mathur, J. Pleim, C. Hogrefe, J. Wang, C.-M. Gan, G. Sarwar, D. Wong, and S. McKeen, 
Representing the effects of stratosphere-troposphere exchange on 3D O3 distributions in chemistry 
transport models using a potential vorticity based parameterization, Atmos. Chem. Phys., 16, 10865-
10877, doi:10.5194/acp-16-10865-2016, 2016 

https://doi.org/10.5194/acp-17-12449-2017
https://doi.org/10.5194/acp-17-12449-2017


 

Page 7, line 13: See my comment above: I couldn’t fully understand how you constructed the “perfect 
model data”. As far as I understood it, they would in any case only be perfect for this model setup and 
model grid. Could you comment on this? 

We have revised the discussion in Section 3.2 to clarify that this analysis combining the observed 
baseline component with 21 CMAQ synoptic components is meant to quantify the amount of model 
error present in the current simulations that could conceivably be reduced through improving the 
representation of synoptic-scale processes and/or increased horizontal resolution. As part of this 
revision, we no longer refer to this combination of the measured baseline and modeled synoptic 
component as “perfect model”. Moreover, we have added text at the end of the introduction to clarify 
that when we refer to the errors that can be expected even from a “perfect” model with “perfect” 
inputs throughout the manuscript, we consider these errors to be those arising from atmospheric 
stochasticity which we estimate in Section 3.1 using historic observations. We also should have noted in 
our original manuscript that four-dimensional data assimilation (FDDA) was utilized following the 
methodology suggested by Gilliam et al. (see Atmos. Environ., Vol.53, pp 186-201, 2012) and modified 
for fully-coupled meteorology-chemistry model applications as described in Hogrefe et al. (see Atmos. 
Environ., Vol. 115, pp 683-694, 2015).  As the reviewer pointed out, the SY component in the model 
output contains some meteorologically related variations on time scales of few days.  The following 
revisions and additions have been made to address the reviewer’s comment: 

Revised and expanded the end of Section 1 (page 2, lines 29 – 32 in the original manuscript) as follows: 
“Also, no assessments have been made to date on the errors that are to be expected even from 
“perfect” regional-scale air quality modeling systems.  To estimate such irreducible model errors due to 
atmospheric stochasticity (which we consider to be the errors that are expected even from a “perfect” 
model with “perfect” inputs), we analyzed the observed daily maximum 8-hr (DM8HR) ozone time series 
data at monitoring locations across the contiguous United States (CONUS) during the 1981-2014 time 
period and present the results of this analysis in Section 3.1. In Section 3.2, we illustrate how this 
information could be used in guiding model development specifically aimed at addressing reducible 
errors in the synoptic component by contrasting the results from Section 3.1 with analysis using the 
synoptic component from a 21-year simulation performed with the fully coupled WRF-CMAQ 
simulations covering the 1990-2010 period.“  

Expanded the model description in Section 2 (added after page 3 line 7 in the original manuscript) as 
follows:  ”To ensure better characterization of the prevailing meteorology (i.e., synoptic forcing) in the 
retrospective 21-year WRF-CMAQ simulations, four-dimensional data assimilation (FDDA) was utilized 
following the methodology suggested by Gilliam et al. (2012) and modified for fully-coupled 
meteorology-chemistry model applications as described in Hogrefe et al. (2015).  The model set-up and 
performance evaluation of these historical multiyear WRF-CMAQ simulations have been published by 
Xing et al. (2015), Gan et al. (2015), and Astitha et al. (2017).” 



Modified the discussion in Section 3.2 (page 5, line 23 – page 6, line 9 in the original manuscript) as 
follows: “In this section, we analyze long-term records of model simulations in an attempt to quantify 
the error associated with the modeled SY component that results both from not explicitly representing 
stochastic variations in atmospheric dynamics and emission variability in the current generation regional 
air quality models and from other reducible sources of model error. … To isolate the impact of model 
imperfections on only the SY time scale on errors across the ozone distribution, we assume that the 
model perfectly reproduces the ‘true’ BL depicted by the observed 2010 BL.  We then use this ‘perfect’ 
modeled BL and reconstruct ‘pseudo-simulated’ ozone time series, similar to what was done in Fig. 3, 
except for using the SY component embedded in the 21 years of coupled WRF-CMAQ simulations. The 
rationale for this analysis is to quantify the amount of model error present in the current simulations 
that could conceivably be reduced through improving the representation of synoptic and mesoscale 
processes and/or increased horizontal resolution with appropriate data assimilation techniques.” 

Caption of Figure 2: Explain the meaning of the number 420130801. Explain that the “observed” line in 
Fig 2a is for 2010. 

The number represents the site # in EPA’s AQS database; it has no specific meaning other than being an 
identifier for the location of the monitoring site.  

The figure caption (Figure 2 in the original manuscript, Figure 3 in the revised manuscript) has been 
updated as follows: “Figure 3a: Comparison between the observed cumulative distribution function 
(CDF) for 2010 shown in red with 30+ pseudo-observations CDFs generated from historical DM8HR 
ozone time series shown in gray at a suburban site at Altoona in PA (AQS station identifier 420130801). 
The blue line represents the average of the 30+ gray lines; Figure 3b: Display of various statistical metrics 
(standard deviation (std), root mean square error (RMSE), bias) derived by comparing the actual 
observed and pseudo ozone values in Fig. 3a; Figure 3c: Normalized statistical metrics of normalized 
mean error (NME), normalized mean bias (NMB), coefficient of variation (CV). Notice the large variability 
occurring at the lower and upper percentiles” 

Caption of Figure 3: Give the equations you refer to somewhere in this paper (e.g. in an appendix). 

The paper by Emery et al. (2016) and many other papers included in the references list recommended 
the statistical metrics such as RMSE, NME, Bias, NMB, CV, etc. whose definitions are well known.  

Updated the second paragraph of Section 3.1 (page 5 line 9 of the original manuscript) in which Figure 3 
(Figure 2 in the original manuscript) is discussed as follows: “see Emery et al. (2016) for the description 
of the statistical metrics considered here” 

Figure 5: Use same colors for observations and model in both graphs. 

Done. 

Caption of Figure 6: “5)” should be “c)”. “Light blue” in Fig 6d) appears to be grey. Figure 4 and Figure 7: 
Give units (ppb). 
 



Done. 



Authors’ Response (in red) to Dr. William Stockwell’s Comments 

 

Rao et al. examine how the stochastic variability of the atmosphere affects the accuracy of regional air 
quality model predictions. Stochastic variability would be expected to introduce error in predictions 
even if the model is “perfect”. This paper provides an analysis of the expected error. The question of the 
limits of “predictability” of models is well known in meteorology but it has not been explored very 
extensively for air quality models. Therefore, this paper provides a valuable contribution to the 
literature. The paper provides an excellent basis for future research and improvements to air quality 
models as well.  

We thank Dr. Stockwell for his positive feedback on our paper. 

Atmospheric stochastic variability extends to scales that are well below current Eulerian model 
resolution. Eulerian models calculate gas-phase chemical transformations across the modeling domain 
within grid-boxes and instantaneous uniform mixing of chemical species is assumed for each grid-box. 
However, the stochastic variability of wind fields suggests that chemical concentrations should be 
represented by mean and varying components. This difference between reality and model 
representation may be most important for rapid, diffusion-limited reactions that affect ozone and 
particulate formation (Stockwell, J. of Meteor. and Atmos. Phys., 57, 159-172, 1995).  

Agreed.  We hope that the next generation of operational Eulerian models would be able to handle the 
physical and chemical processes as suggested by Dr. Stockwell.  Also, it is important to resolve emissions 
inventories to the time and space scales of the model. 
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Abstract. Regional-scale air pollution models are routinely being used world-wide for research, forecasting air quality, and 

regulatory purposes. It is well known that there are both reducible and irreducible uncertainties in the meteorology-atmospheric 

chemistry modeling systems. Inherent or irreducible uncertainties stem from our inability to properly characterize stochastic 

variations in atmospheric dynamics and from the incommensurability associated with comparisons of the volume-averaged 

model estimates with point measurements. Because stochastic variations in atmospheric dynamics and emissions forcing 15 

influencing the air pollutant concentrations are difficult to explicitly simulate, one can expect to find a percentile value from 

the distribution of measured concentrations to have much greater variability than that of the model. This paper presents an 

observation-based methodology to determine the expected errors from regional air quality models even when the model design, 

physics, chemistry, and numerical analysis techniques as well as its input data were “perfect”. To this end, the short-term 

synoptic-scale fluctuations embedded in the daily maximum 8-hr ozone time series are separated from the longer-term 20 

forcingsforcing using a simple recursive moving average filter. The inherent variability attributable to the stochastic nature of 

the atmosphere is determined based on 30+ years of historical ozone time series data measured at various monitoring sites in 

the contiguous United States.  The results reveal that the expected root mean square error at the median and 95th percentile is 

about 2 ppb and 5 ppb, respectively, even for “perfect” air quality models driven with “perfect” input data. Quantitative 

estimation of the limit to the model’s accuracy will help in objectively assessing the current state-of-the-science in regional air 25 

pollution models, measuring progress in their evolution, and providing meaningful and firm targets for improvements in their 

accuracy relative to ambient measurements.  

1 Introduction 

Confidence in model estimates of pollutant distributions is established through direct comparisons of modeled concentrations 

with corresponding observations made at discrete locations for retrospective cases. It is well known that there are both reducible 30 

and irreducible uncertainties in the meteorology-atmospheric chemistry modeling systems. Pinder et al. (2008) discussed the 
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reducible (i.e., structural and parametric) uncertainties that are attributable to the errors in model input data (e.g., meteorology, 

emissions, initial and boundary conditions) as well as our incomplete or inadequate understanding of the relevant atmospheric 

processes (e.g. chemical transformation, planetary boundary layer evolution, transport and dispersion, modeling domain, grid 

resolution, deposition, rain, clouds).  Inherent or irreducible uncertainties stem from our inability to properly characterize the 

stochastic variations in atmospheric dynamics (GilliamRao et al., 20151985; Rao et al., , 2011), from the incommensurability 5 

associated with comparing the volume-averaged model estimates with point measurements (e.g., McNair et al., 1996; Swall 

and Foley, 2009), and our inability to precisely quantify the space and time variations in atmospheric emissions and other 

atmospheric variables and processes. Also, without completely knowing the 3-dimensional initial physical and chemical state 

of the atmosphere, its future state cannot be simulated accurately (Lamb, 1984; Lamb and Hati, 1987; Lewellen and Sykes, 

1989; Pielke, 1998; Gilliam et al., 2015). Given the presence of the irreducible uncertainties, precise replication of observed 10 

concentrations or their changes by the models cannot be expected (Dennis et al., 2010).; Rao et al., 2011; Porter et al., 2015).  

 

Whereas an air quality model’s prediction represents some time/space-averaged concentrations, an observation at any given 

time at a monitoring location reflects an individual event or specific realization out of a population that will almost always 

differ from the model estimate even if the model and its input data were perfect (Rao et al., 1985).  Consequently, comparisons 15 

of modeled and observed concentrations paired in space and time indicate biases and errors in simulating absolute levels of 

pollutant concentrations at individual monitoring sites (Porter et al., 2015). The scientific discussion on modeling uncertainty 

reduction goes back more than three decades with the current practice including data assimilation, ensemble modeling, and 

model performance evaluation (e.g., Fox, 1981, 1984; Lamb, 1984; Pielke, 1998; Lewellen and Sykes, 1989; Lee et al., 1997; 

Carmichael et al., 2008; Hogrefe et al., 2001a, 2001b; Grell and Baklanov, 2011; Gilliam et al., 2006; Baklanov et al., 2014; 20 

Bocquet et al., 2015).; Solazzo and Galmarini, 2015). While ever-improving process knowledge and increasing computational 

power will continue to help reduce the structural and parametric uncertainties in air quality models, the inherent uncertainty 

cannot be eliminated because our inability to properly characterize the stochastic nature of the atmosphere will always result 

in some mismatch between the model results and measurements; this could lead to speculation on the inferred accuracy of the 

future states simulated by the regional-scale air quality models (Dennis et al., 2011; Rao et al., 2011; Porter et al., 2015; Astitha 25 

et al., 2017; Luo et al., 2019).  

 

In most applications of regional-scale air quality models, statistical metrics such as bias, root mean square error (RMSE), 

correlation, and index of agreement are being used to judge the quality of model predictions and determine if the model is 

suitable for forecasting or regulatory purposes (e.g., Fox, 1981, 1984; Solazzo et al., 2011; Appel et al., 2012; Simon et al., 30 

2012; Foley et al., 2014; Ryan et al., 2016; EmoryEmery et al. 2016; Zhang, 2016; U.S. EPA, 2018).  While significant 

improvements in the formulation, physical and chemical parameterizations, and numerical techniques have been implemented 

in atmospheric models over the past three-decades, it is not clear if the improvement claimed in the model’s performance 

relative to the routine network measurements is statistically significant based on these metrics (Hogrefe et al., 2008).  Also, no 
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assessments have been made to date on the errors that are to be expected ineven from “perfect” regional-scale air quality 

models.modeling systems.  To this end,estimate such irreducible model errors due to atmospheric stochasticity (which we 

consider to be the errors that are expected even from a “perfect” model with “perfect” inputs), we analyzed the observed daily 

maximum 8-hr (DM8HR) ozone time series data at monitoring locations across the contiguous United States (CONUS) during 

the 1981-2014 time period alongand present the results of this analysis in Section 3.1. In Section 3.2, we illustrate how this 5 

information could be used in guiding model development specifically aimed at addressing reducible errors in the synoptic 

component by contrasting the results from Section 3.1 with the analysis using the synoptic component from a 21-year 

simulation performed with the fully coupled WRF-CMAQ simulations covering the 1990-2010 period as detailed below..   

2 Data and Methods 

Ground-level DM8HR ozone data covering the CONUS during May to September in each year were obtained from the U.S. 10 

Environmental Protection Agency’s (EPA) Air Quality System (AQS) (see https://www.epa.gov/aqs). A valid ozone season 

consists of at least 80% data coverage during May to September at each station. A total 185 monitoring stations with at least 

30 valid years (to provide enough variety of synoptic conditions, denoted hereafter as 30+ in this paper) from the year 1981 to 

2014 are analyzed. Also, fully coupled WRF-CMAQ model simulations over the CONUS for the 1990-2010 period were 

utilized in this study to demonstrate a new perspective on model performance evaluation.  To ensure better characterization of 15 

the prevailing meteorology (i.e., synoptic forcing) in the retrospective 21-year WRF-CMAQ simulations, four-dimensional 

data assimilation (FDDA) was utilized following the methodology suggested by Gilliam et al. (2012) and modified for fully-

coupled meteorology-chemistry model applications as described in Hogrefe et al. (2015).  The model set-up and performance 

evaluation of these historical multiyear WRF-CMAQ simulations have been published by Xing et al. (2015), Gan et al. (2015), 

and Astitha et al. (2017). Time-varying chemical lateral boundary conditions are nested from the 108 km hemispheric WRF-20 

CMAQ simulation from 1990 to 2010 (Xing et al., 2015). Evaluation of the 21-year long WRF-CMAQ simulation using 36-

km grid can be found in Gan et al. (2015). 

 

It has been shown that time series of the daily maximum 8-hr ozone concentrations contain fluctuations operating on different 

time scales, reflecting the short-term (e.g., intra-day forcing induced by the fast-changing emissions and atmospheric boundary 25 

layer evolution; diurnal forcing induced by the day and night differences; synoptic forcing induced by the passage of weather 

systems across the country, sub-seasonal forcing due to Madden-Julian Oscillation (MJO), and long-term forcing induced by 

emissions, El-Nino-Southern Oscillation (ENSO), climate change, and other slow-varying processes such as seasonal and sub-

seasonal variations in the atmospheric deposition and stratosphere-troposphere exchange processes () as noted by Rao et al., 

1996, . (1997;), Vukovich, (1997;),  Hogrefe et al., . (2000;),  Porter et al., . (2015;), Astitha et al., . (2017).), Xing et al. (2016), 30 

and Mathur et al. (2017)).  Variations in ambient8-hour  ozone can be thought of comprising of the baseline of pollution that 

is created by various emitting sources and modulated by the prevailing synoptic weather conditions (Rao et al., 2011).  Thus, 

https://www.epa.gov/aqs
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the level of the baseline (BL) concentration and the strength of the synoptic component (SY) should be viewed as the necessary 

and sufficient conditions for how high ozone levels can reach on a given day (Astitha et al., 2017). Scale separation can be 

achieved by applying filtering methods such as the Empirical Mode Decomposition (Huang et al., 1998), Elliptic filter 

(Poularika, 1998), KolomogorovKolmogorov-Zurbenko (KZ) filter (Rao and Zurbenko, 1994), Adaptive Filter Technique 

(Zurbenko, et al., 1996), and Wavelet (Lau and Weng, 1995). Because Improved Complete Ensemble Empirical Mode 5 

Decomposition with Adaptive Noise (Improved CEEMDAN, a version of the Empirical Mode Decomposition) and KZ filter 

yielded similar results for the DM8HR time series data as shown in Figs. 1-2 discussed in the next section, only the results 

from the KZ filter are presented in the subsequent analysis for quantifying the impact of the stochastic nature of the atmosphere 

on observed and simulated ozone concentrations. Furthermore, the KZ filtering is a simple method and works well even in the 

presence of missing data (Hogrefe et al., 2003),).  In this study, we used the KZ(KZ5,5,5) in this study with a window size of 10 

5 days and 5 iterations on raw ozone time series [O3 (t)]  in the same manner as in Porter et al. (2015), Rao et al. (2011), and 

Luo et al. (2019). The size of the window and the number of iterations determine the desired scale separation. The KZ(KZ5,5,5) 

filtering process helps separate the synoptic-scale weather-induced variations embedded in the May-September DM8HR time 

series data (short-term component, noted as SY) from the long-term baseline component (noted as BL). It should be noted that 

the application of the Empirical Mode Decomposition (EMD) and KZ (5,5) to the DM8HR time series data yielded similar 15 

results. 

𝐵𝐿(𝑡) = 𝐾𝑍(5,5)         𝐾𝑍5,5(𝑂3(𝑡))                                 (1)   

𝑆𝑌(𝑡) = 𝑂3(𝑡) − 𝐾𝑍(5,5)         𝐾𝑍5,5(𝑂3(𝑡))                 (2) 

𝑂3(𝑡) = 𝑆𝑌(𝑡) + 𝐵𝐿(𝑡)                               (3) 

 20 

where O3(t) is the original time series of the observed DM8HR ozone concentration, BL(t) is the baseline component and 

SY(t) is the synoptic component at any given time.  Because we are working with the daily maximum 8-hr ozone data, the 

Nyquist interval is 2-days, indicating that the dynamical features having time scales less than 2 days (e.g., intra-day forcing 

from fast changing emissions and chemical transformations, boundary layer evolution, diurnal forcing due to night vs. day 

differences) are not resolvable in this analysis (see Fig. 2 in Dennis et al., 2010). The 50% cut-off frequency for the KZ(KZ5,5,5) 25 

is ~24 days, and, hence, time scales less than those associated with synoptic-scale weather fluctuations are embedded in the 

short-term or SY forcing.  The KZ filtering is applied to both DM8HR observations and modeled DM8HR time series.  Once 

the baseline is separated from the original DM8HR time series from all monitoring stations, then the synoptic forcing in the 

historical ozone time series data is used to estimate the variability in ozone concentrations that can be expected because of the 

chaotic/stochastic nature of the atmosphere by taking into account the relationship between the strength of synoptic forcing 30 

and mean of baseline ozone at each location over CONUS.  This methodology was applied to both measured and modeled 

ozone concentrations (see details in Luo et al., 2019).  Whereas the objective of Luo et al. (2019) was on transforming the 

deterministic modeling results into a probabilistic framework for assessing the efficacy of different emission control strategies 

in achieving compliance with the ozone standard, this paper is aimed at quantifying the model performance errors to be 
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expected at each monitoring site over CONUS even from “perfect” regional ozone models driven with “perfect” input data 

from the ever-present stochastic nature of the atmosphere. 

3 Results and Discussion 

3.1 Analysis of ambient ozone data 

Using both Improved CEEMDAN and KZ filtering, we separated the synoptic forcing (time scale < 24 days) and baseline 5 

(time scale > 1 month) forcing embedded in the time series of observed and modeled daily maximum 8-hour ozone 

concentrations.  To illustrate, the results from the application of Improved CEEMDAN to the daily maximum 8-hr ozone time 

series data measured at Altoona, PA are presented in Fig. 1. The top left panel displays the raw ozone time series while the top 

of the right panel shows its power spectrum. The 7 intrinsic mode functions (IMFs) and the residual on the left side, and their 

corresponding power spectra on the right reveal that most of the synoptic-scale features in ozone data are imbedded in IMFs 1 10 

and 2.  The baseline ozone is extracted by removing the first two IMFs from the raw ozone time series. To illustrate the concept 

of the ozone baseline, DM8HR time series measured in 2010 at Altoona, PA is presented in Fig. 1a2a together with the 

embedded baseline concentration as extracted by the KZ(KZ5,5,5) filter and Improved CEEMDAN. It is evident that high 

ozone levels are always associated with the elevated baseline. The difference between the raw ozone time series and baseline, 

denoted as the short-term or synoptic forcing (SY), is displayed in Fig. 1b along with time series of white noise.  By 15 

superimposing AR(1) process on the ozone baseline, Rao et al. (1996) demonstrated that the number of observed ozone 

exceedances above a given threshold at a monitoring site can be reproduced. A comparison between the SY component and 

white noise process, presented in Fig. 1b, reveals that the SY component having finite variance and zero mean resembles near-

stochastic process. Hence, the baseline concentration is to be viewed as the deterministic part and SY is considered the 

stochastic component in the ambient ozone time series2b.  The power spectra, displayed in Figs. 2c and d, reveal both methods 20 

yielded good scale separation. Due to the good agreement between both scale separation techniques, only the results from the 

KZ filter are presented for the remainder of the manuscript. 

 

Once the scale separation is achieved with the KZ(KZ5,5,5), we superimposed the SY forcing imbedded in 30+ years of 

historical DM8HR ozone time series measured at a given location on the baseline component of the ozone time series at that 25 

location to generate 30+ reconstructed or pseudo ozone distributions. Illustrative results using eq. (3) at a suburban location in 

Altoona, PA are presented for 2010 base year in Fig. 2a3a; it should be noted that the linear relationship between the strength 

of SY (defined as the standard deviation of the data in the synoptic component) and the magnitude of the BL (defined as the 

mean of the data in the baseline component) has been taken into account in generating 30+ years of adjusted SY forcing as 

illustrated in Luo et al. (2019).  As expected, there is excellent agreement between the average of 30+ values (solid blue line) 30 

and observed ozone in 2010 at each percentile of the concentration distribution function (red line). Also, the original cumulative 

distribution function (CDF) in 2010 (red line) is constrained within the 30+ CDFs of pseudo-observations distributions (Fig. 
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2a3a); note, it is equally likely for any of thethese 30+ CDFs to occur due tobecause of the stochastic nature of the atmosphere 

even though the individual event in 2010 yielded the CDF shown in red.  As mentioned before, ozone mixing ratio at any given 

probability point on the red line in Fig. 2a3a reflects a specifican individual event while ozone values at the same probability 

in different CDFs (light bluegray lines) reflect the population stemming from the chaoticstochastic nature of the atmosphere. 

In other words, there are 30+ dynamically consistent ozone time series attributable to the 2010 baseline (given 2010 emissions 5 

loading) for examining the inherent variability. due to atmospheric stochasticity. It is evident in Fig. 2a3a that there is larger 

variability at the lower and upper percentiles than that in inter-quartile range, revealing that the tails of the concentration 

distribution function are subject to large inherent uncertainty. Using these 30+ pseudo-observation ozone mixing ratios and 

the actual observed ozone values at each percentile, statistical metrics such as Bias, RMSE, coefficient of variation 

(CV=standard deviation/mean), normalized mean error (NME) and normalized mean bias (NMB) are presented in Fig. 2b and 10 

c.3b and c (see Emery et al. (2016) for the description of the statistical metrics considered here). As expected, the lower and 

upper tails of the distribution are prone to large errors. These results demonstrate the presence of largersubstantial natural 

variability at the upper 95th percentile, which is of primary interest in regulatory analyses.  The extreme values are better 

described in statistical terms rather than in deterministic sense (Hogrefe and Rao, 2001). 

 15 

Ozone time series at 185 monitoring stations covering CONUS, having at least 80% data completeness, are analyzed in the 

above manner and the results are displayed as box plots in Fig. 34. Note the presence of large variability in the CV, NME, and 

NMB, and Bias at the lower and upper percentiles (Fig. 34). The RMSE expected for the ozone mixing ratios in the interquartile 

range is ~1.5 ppb, but it is >5 ppb for the upper 95th percentile (Fig. 3b4b). The spatial distribution of RMSE at the 50th and 

95th percentiles is displayed in Figures 4a5a and 4b5b, respectively.  The RMSE at the upper 95th percentile is very high at 20 

some monitoring sites in California and Michigan (Fig. 4b5b).  Monitoring stations at high elevations, residing well above the 

nocturnal boundary layer, tend to exhibit lower variability than those situated in the urban areas, near large water bodies, and 

in regions of complex terrain due to the dominance of influenced predominantly by local conditions tend to exhibit higher 

RMSE.  The elevation of the monitoring sites is displayed in Fig. 5c. 

3.2 Analysis of modeled ozone concentrations 25 

The analysis in the previous section quantified the inherent stochastic variability represented bythat is present in the SY 

component using long-term records of ozone observations. In this section, we analyze long-term records of model simulations 

in an attempt to quantify the error associated with the modeled SY component that results both from not explicitly representing 

stochastic variations in atmospheric dynamics and emission variability in the current generation regional air quality models. 

and from other reducible sources of model error. The model simulations were performed with the fully coupled WRF-CMAQ 30 

system with a 36-km horizontal grid cell size and covered the 21-year period from 1990 to 2010 (Gan et al., 2015). To provide 

an illustration of the differences between observed and modeled time series over this period, Figure 5a6a displays a scatter 

plot of the strength of the SY component vs.(standard deviation of data in the SY component) vs. the mean of the baseline 
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(BL) component for both observations and model simulations at the Altoona, PA site.  While both observations and WRF-

CMAQ simulations show a strong correlation between these two variables, it is evident that at this monitoring location the 

standard deviation (i.e., strength) of the SY component is substantially lower for the WRF-CMAQ simulations for a given 

mean of the BL component (i.e., for any given year).  The year-to-year variation in the observed and modeled mean of BL and 

strength of SY forcing, displayed in Fig. 5b6b, reveals that the model overestimated BL and underestimated the strength of 5 

SY forcing. The 36-km grid may be better reproducingrepresenting the large-scale synoptic forcing associated with the 

translation of weather systems than the meso-scale weather and urban influences (both dynamics and emission driven) that are 

embedded in the observed SY component. Meteorological modeling with higher horizontal grid resolution might be able to 

capture the land-sea breeze, lake-sea breeze, and terrain influences that observations are seeing at certain monitoring locations. 

 10 

An understandingTo isolate the impact of the expected error even when the model’s physics, chemistry, numerical solver, and 

the input data are “perfect” would help model developers in making decisionsimperfections on model improvements.  To this 

endonly the SY time scale on errors across the ozone distribution, we assume that the model perfectly reproduces the ‘true’ 

BL depicted by the observed 2010 BL.  We then use this ‘perfect’ modeled BL and reconstruct ‘pseudo-simulated’ ozone time 

series, similar to what was done in Fig. 23, except for using the SY component fromembedded in the 21 years of coupled 15 

WRF-CMAQ simulations. The rationale for this analysis is to quantify the amount of model error present in the current 

simulations that could conceivably be reduced through improving the representation of synoptic and mesoscale processes 

and/or increased horizontal resolution with appropriate data assimilation techniques. Fig. 6a shows7a displays the CDF of 

actual observed ozone (red line) overlaid on 21 pseudo-simulated ozone CDFs (bluegray lines, with averages of all 21 pseudo-

simulated ozone percentiles shown in blue) at the Altoona, PA site while Figs. 6b7b and 6c7c display absolute and normalized 20 

performance metrics. Figure 6a7a confirms that the coupled WRF-CMAQ SY components have less intra-annual (sub-

seasonal) variability than observed SY components, causing an overestimation at the low end and an underestimation at the 

high end of the observed CDF for all 21 years of reconstruction; these results imply that the model’s results at the upper and 

lower percentiles will always tend to be unreliable or prone to large errors even when the baseline concentration is predicted 

perfectly. The U-shape of the absolute and relative error curves in Figures 6b7b and c is similar to the corresponding curves 25 

in Figure 23, but the larger magnitude at the high and low end of the distribution indicates that the effects of the underestimated 

intra-annual (sub-seasonal) SY variability (note that the distribution of modeled values in Fig. 6a7a is much flatter (i.e., having 

higher Kurtosis) than that of the observations) outweigh those errors attributable to the stochastic variability presented in 

Figure 23. The shape of the absolute and normalized bias curves deviates from those shown for the pseudo-observations in 

Figures 2b3b-c and, thus, also reveals the effect of the underestimation of the sub-seasonalintra-annual SY variability.  Figures 30 

6d7d-f present differences between the curves shown in Figures 6a7a-c and a version of Figure 2a3a-c computed from the 

1990-2010 rather than data instead of 30+ years of historical ozone observations. Panels e and f show that at the 50th percentile, 

the differences in the error curves are close to zero due to the fact that both the pseudo-simulations and pseudo-observations 

used the same observed BL component. At the upper percentiles, the differences reach 3 – 5 ppb, providing an estimate of the 
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reducible error in simulating the extreme values at this location because of the differences in the observed and WRF-CMAQ 

SY components at this location; high-resolution meteorological modeling may help address these reducible errors. 

 

Figs. 7a8a and 7b showb display the RMSE at the median and 95th percentile for the ‘pseudo-simulated’ ozone values at each 

monitoring site.  For the 50th percentile, the RMSE values range from 0.2 ppb to 3.2 ppb over CONUS with a median value of 5 

1 ppb while at the 95th percentile, the RMSE values range from 1 ppb to 14.915 ppb with a median value of 3.84 ppb across 

all sites over CONUS.  The values are highest along the California coast and near Great Lakes, possibly due to errors in 

boundary conditions and inadequacies in simulating the land-sea breeze and land-lake breeze regimes, respectively, with 

modeling at 36 km grids. grid cells.  Air quality modeling uncertainty even for the retrospective modeling cases, outside of the 

chemistry formulation and boundary conditions, is attributed primarily to meteorology and emissions inputs.  Vautard et al. 10 

(2012) concluded that major challenges still remain in the simulation of prevailing meteorology (e.g., errors in wind speed, 

PBL, night-time meteorology, clouds) in retrospective air quality modeling.  Based on the retrospective ozone episodic 

modeling with the WRF-CMAQ model using various sets of equally likely initial conditions for meteorology along with 

FDDA, Gilliam et al. (2015) confirmed the presence of sizable spread in WRF solutions, including common weather variables 

of temperature, wind, boundary layer depth, clouds, and radiation, thereby causing a relatively large range of ozone 15 

concentrations.  Also, pollutant transport is altered by hundreds of kilometers over several days.  Ozone concentrations of the 

ensemble varied as much as 10–20 ppb (or 20–30%) in areas that typically have higher pollution levels. As model 

improvements are made, one can quantitatively assess how close the predictions of the improved model are to the expected or 

target RMSE at each monitoring site for each percentile for the given base year simulation (see Fig.4a and b forto the expected 

errors from a “perfect” modelsmodel with “perfect” input at, i.e. the mediantarget RMSE shown in Fig.5a and 95th percentile).b. 20 

4 Conclusions 

Weather is a stochastic process that impacts the prediction of air pollutants, and regardlessRegardless of how accurate the 

regional air quality model is, thisthe stochastic componentvariations in the atmosphere cannot be consistently reproduced by 

the deterministic numerical models.  In this study, we demonstrate how to quantify this irreproducible stochastic component 

by isolating the synoptic forcing imbedded in 30+ years of historical observations and assess the performance of the 36 km 25 

fully coupled WRF-CMAQ model in simulating 21 years of ozone concentrations over CONUSthe contiguous U.S.  

Observation-based analysis reveals that on average, the irreducible error attributable to the stochastic nature of the atmosphere 

ranges from ~2 ppb at the 50th percentile to ~ 5 ppb at the 95th percentile.  To improve regional-scale ozone air quality models, 

attention should be paid to accurately simulate the baseline concentration by focusing on the quality of the emission inventory 

and the model’s treatment for the boundary conditions and slow-changing (operating on sub-seasonal, seasonal, and longer-30 

term time scales) atmospheric processes. Also, errors in reproducing the sub-seasonal variabilitysynoptic forcing can possibly 

be reduced with high-resolution meteorological modeling using appropriate data assimilation techniques.  Nonetheless, these 
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results demonstrate the presence of large variability in the upper tail of the DM8HR O3 concentration cumulative distribution 

even with “perfect” models using “perfect” input data. Having this quantitative estimation of practical limits for model’s 

accuracy helps in objectively assessing the current state of regional-scale air quality models, measuring progress in their 

evolution, and providing meaningful and firm targets for improvements in their accuracy relative to measurements from routine 

networks. 5 

 

Code availability: Source code for version 5.0.2 of the Community Multiscale Air Quality (CMAQ) modeling system can be 

downloaded from https://github.com/USEPA/CMAQ/tree/5.0.2. For further information, please visit the U.S. Environmental 

Protection Agency website for the CMAQ system: https://www.epa.gov/cmaq. 
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Data availability: All ozone observations used in this article are available from 

https://aqs.epa.gov/aqsweb/airdata/download_files.html (AQS). Paired ozone observation and CMAQ model data used in the 

analysis will be made available at https://edg.epa.gov/metadata/catalog/main/home.page. Raw CMAQ model outputs are 

available on request from the U.S EPA authors.  

 15 

Competing interests: The authors declare that they have no conflict of interest. 

 

Author Contribution:  STR conceptualized the idea. STR, CH, VG, and RM designed the analysis approach.  CH and RM 

post-processed previously conducted model simulations. HL performed data analyses and prepared the illustrations. STR 

prepared the manuscript with contributions from all co-authors. 20 

 

Disclaimer:  The views expressed in this paper are those of the authors and do not necessarily represent the view or policies 

of the U.S. Environmental Protection Agency. 

References 

Appel, K.W., Chemel, C., Roselle, S.J., Francis, X.V., Hu, R.-M., Sokhi, R.S., Rao, S.T., and Galmarini, S.: Examination of 25 

the Community Multiscale Air Quality (CMAQ) model performance over the North American and European domains. 

Atmospheric Environment, AQMEII: An International Initiative for the Evaluation of Regional-Scale Air Quality Models 

- Phase 1 53, 142–155. https://doi.org/10.1016/j.atmosenv.2011.11.016, 2012. 

Astitha, M., Luo, H., Rao, S.T., Hogrefe, C., Mathur, R., and Kumar, N.: Dynamic evaluation of two decades of WRF-CMAQ 

ozone simulations over the contiguous United States. Atmospheric Environment 164, 102–116. 30 

https://doi.org/10.1016/j.atmosenv.2017.05.020, 2017. 

https://github.com/USEPA/CMAQ/tree/5.0.2
https://www.epa.gov/cmaq
https://edg.epa.gov/metadata/catalog/main/home.page


 

10 

 

Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, 

J., Forkel, R., Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre, S., Jorba, O., Kaas, E., Kaasik, M., Kallos, G., Kong, 

X., Korsholm, U., Kurganskiy, A., Kushta, J., Lohmann, U., Mahura, A., Manders-Groot, A., Maurizi, A., Moussiopoulos, 

N., Rao, S.T., Savage, N., Seigneur, C., Sokhi, R.S., Solazzo, E., Solomos, S., Sørensen, B., Tsegas, G., Vignati, E., Vogel, 

B., and Zhang, Y.: Online coupled regional meteorology chemistry models in Europe: current status and prospects. 5 

Atmospheric Chemistry and Physics 14, 317–398. https://doi.org/10.5194/acp-14-317-2014, 2014. 

Bocquet, M., Elbern, H., Eskes, H., Hirtl, M., Žabkar, R., Carmichael, G.R., Flemming, J., Inness, A., Pagowski, M., Pérez 

Camaño, J.L., Saide, P.E., San Jose, R., Sofiev, M., Vira, J., Baklanov, A., Carnevale, C., Grell, G., and Seigneur, C.: Data 

assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology 

models. Atmospheric Chemistry and Physics 15, 5325–5358. https://doi.org/10.5194/acp-15-5325-2015, 2015. 10 

Carmichael, G.R., Sakurai, T., Streets, D., Hozumi, Y., Ueda, H., Park, S.U., Fung, C., Han, Z., Kajino, M., Engardt, M., 

Bennet, C., Hayami, H., Sartelet, K., Holloway, T., Wang, Z., Kannari, A., Fu, J., Matsuda, K., Thongboonchoo, N., and 

Amann, M.: MICS-Asia II: The model intercomparison study for Asia Phase II methodology and overview of findings. 

Atmospheric Environment, MICS-ASIA II 42, 3468–3490. https://doi.org/10.1016/j.atmosenv.2007.04.007, 2008. 

Colominas, M.A., Schlotthauer, G., Torres, M.E., 2014. Improved complete ensemble EMD: A suitable tool for biomedical 15 

signal processing. Biomedical Signal Processing and Control 14, 19–29. 

Dennis, R., Fox, T., Fuentes, M., Gilliland, A., Hanna, S., Hogrefe, C., Irwin, J., Rao, S.T., Scheffe, R., Schere, K., Steyn, and 

D., Venkatram, A.: A framework for evaluating regional-scale numerical photochemical modeling systems. Environ Fluid 

Mech 10, 471–489. https://doi.org/10.1007/s10652-009-9163-2, 2010. 

Emery, C., Liu, Z., Russell, A.G.,Talat Odman,M., Yarwood, G., and Kumar, N.: Recommendations on statistics and 20 

benchmarks to assess photochemical model performance, J. Air & Waste Manage. Assoc., 

https://doi.org/10.1080/10962247.2016.1265027, 2016. 

Foley, K.M., Napelenok, S.L., Jang, C., Phillips, S., Hubbell, B.J., and Fulcher, C.M.: Two reduced form air quality modeling 

techniques for rapidly calculating pollutant mitigation potential across many sources, locations and precursor emission 

types. Atmospheric Environment 98, 283–289. https://doi.org/10.1016/j.atmosenv.2014.08.046, 2014. 25 

Fox, D.G.: Judging Air Quality Model Performance: A Summary of the AMS Workshop on Dispersion Model Performance, 

Douglas O. box Woods Hole, Mass., 8-11 September 1980, Bull. Amer. Met. Soc., Vol. 62, No. 5, May 1981, pp 599-609, 

1981. 

Fox, D.G.: Uncertainty in Air Quality Modeling A Summary of the AMS Workshop on Quantifying and Communicating 

Model Uncertainty, Woods Hole, Mass., September 1982, Vol. 65, No. 1, January, pp 27-36, 1984. 30 

Gan, C.-M., Pleim, J., Mathur, R., Hogrefe, C., Long, C. N., Xing, J., Wong, D., Gilliam, R., and Wei, C.: Assessment of long-

term WRF–CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States, 

Atmos. Chem. Phys., 15, PP 12193-12209, doi:10.5194/acp-15-12193-2015, 2015. 

https://www.tandfonline.com/author/Odman%2C+M+Talat
https://www.tandfonline.com/author/Yarwood%2C+Greg


 

11 

 

Gilliam, R.C., Hogrefe, C., and Rao, S.T.: New methods for evaluating meteorological models used in air quality applications, 

Atm. Environ., Vol. 40, Issue 26, PP 5073-5086, 2006. 

Gilliam, R.C., Godowitch, J, and Rao, S.T.: Diagnostic evaluation of ozone production and horizontal transport in a regional 

photochemical air quality modeling system, Atmos. Environ., 53, PP 3977-3987, doi.org/10.1016/j.atmosenv.2011.04.062, 

2012. 5 

Gilliam, R.C., Hogrefe, C., Godowitch, G., Napelenok, S., Mathur, R., and Rao, S.T.: Impact of inherent meteorology 

uncertainty on air quality model predictions, J. Geophy. Res.: Atmospheres, Vol. 120, No. 23. 

https://doi.org/10.1002/2015JD023674, 2015. 

Grell, G., and Baklanov, A.: Integrated modeling for forecasting weather and air quality: A call for fully coupled approaches. 

Atmospheric Environment, Modeling of Air Quality Impacts, Forecasting and Interactions with Climate. 45, 6845–6851. 10 

https://doi.org/10.1016/j.atmosenv.2011.01.017, 2011.  

Hogrefe, C., Rao, S.T., Zurbenko, I.G., and Porter, P.S.: Interpreting the Information in Ozone Observations and Model 

Predictions Relevant to Regulatory Policies in the Eastern United States. Bull. Amer. Meteor. Soc. 81, 2083–2106. 

https://doi.org/10.1175/1520-0477(2000)081<2083:ITIIOO>2.3.CO;2, 2000.  

Hogrefe, C., and Rao, S.T.: Demonstrating attainment of the air quality standards: Integration of observations and model 15 

predictions into the probabilistic framework. J. of the Air & Waste Manage. Assoc., 51:7, 1060-1072, DOI: 

10.1080/10473289.2001.10464332 

Hogrefe, C., Rao, S.T., Kasibhatla, P., Hao, W., Sistla, G., Mathur, R., and McHenry, J.: Evaluating the performance of 

regional-scale photochemical modeling systems: Part II—ozone predictions. Atm. Environ., 35, 4175–4188. 

https://doi.org/10.1016/S1352-2310(01)00183-2, 2001a. 20 

Hogrefe, C., Rao, S.T., Kasibhatla, P., Kallos, G., Tremback, C.J., Hao, W., Olerud, D., Xiu, A., McHenry, J., and Alapaty, 

K.: Evaluating the performance of regional-scale photochemical modeling systems: Part I—meteorological predictions. 

Atm. Environ., 35, 4159–4174. https://doi.org/10.1016/S1352-2310(01)00182-0, 2001b. 

Hogrefe, C., Vempaty, S., Rao, S.T., and Porter, P.S.: A comparison of four techniques for separating different time scales in 

atmospheric variables. Atmos. Environ., Vol. 37, Issue 3, 313-325, https://doi.org/10.1016/S1352-2310(02)00897-X, 25 

2003.Hogrefe, C., Ku, J.Y., Sistla, G., Gilliland, A., Irwin, J.S., Porter, P.S., Gégo, E., and Rao, S.T.: How has model 

performance for regional scale ozone simulations changed over the past decade?, Air Pollution Modeling and its 

Application XIX, C. Borrego and A.I. Miranda (Eds.), Springer, Dordrecht, The Netherlands, pp. 394 - 403, 2008. 

Hogrefe, C., Pouliot, G., Wong, D., Torian, A., Roselle, S., Pleim, J., and Mathur, R.: Annual application and evaluation of 

the online coupled WRF–CMAQ system over North America under AQMEII phase 2, Atmos. Environ., 115, pp 683-694, 30 

doi.org/10.1016/j.atmosenv.2014.12.034, 2015. 

Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H. H., Zheng, Q., Yen, N.C., Tung, C.C., and Liu, H.H. The empirical 

mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the 

https://www.sciencedirect.com/science/article/pii/S1352231006000902
https://www.sciencedirect.com/science/journal/13522310
https://doi.org/10.1016/j.atmosenv.2011.04.062
https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2015JD023674
https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2015JD023674
https://agupubs.onlinelibrary.wiley.com/journal/21698996
https://agupubs.onlinelibrary.wiley.com/toc/21698996/2015/120/23
https://doi.org/10.1002/2015JD023674
https://www.sciencedirect.com/science/article/pii/S135223100200897X
https://www.sciencedirect.com/science/article/pii/S135223100200897X
https://www.sciencedirect.com/science/journal/13522310
https://doi.org/10.1016/S1352-2310(02)00897-X
https://doi.org/10.1016/j.atmosenv.2014.12.034


 

12 

 

Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454, 903–995. 

https://doi.org/10.1098/rspa.1998.0193, 1998. 

Lamb, R. G.: Air pollution models as descriptors of cause-effect relationships, Atmos. Environ., 18, 591–606, 1984. 

Lamb, R.G., and Hati, S.K.: The representation of atmospheric motions in models of regional-scale air pollution, J. 

Climatology and Appl. Meteor, 26, 837-846, 1987.  5 

Lau, K.-M., and Weng, H.-Y.: Climate signal detection using wavelet transform: how to make a time series sing. Bull. Amer. 

Meteor. Soc., 76, 2391–2402, 1995. 

Lee, A. M., Carver, G.D., Chipperfield, M.P., and Pyle, P.A.: Three-dimensional chemical forecasting: A methodology, J. 

Geophys. Res., 102, 3905-3919, 1997. 

Lewellen, W. S., and Sykes, R.I.: Meteorological data needs for modeling air quality uncertainties, J. Atmos. Oceanic Technol., 10 

6, 759–768, 1989. 

Luo, H., Astitha, M., Hogrefe, C., Mathur, R., and Rao, S.T: A new method for assessing the efficacy of emission control 

strategies. Atm. Environ. 199, 233–243. https://doi.org/10.1016/j.atmosenv.2018.11.010, 2019. 

Mathur, R.; Xing, J.; Gilliam, R.; Sarwar, G.; Hogrefe, C.; Pleim, J.; Pouliot, G.; Roselle, S.; Spero, T.L.; Wong, D.C.; Young, 

J. Extending the Community Multiscale Air Quality (CMAQ) modeling system to hemispheric scales: overview of process 15 

considerations and initial applications. Atmos. Chem. Phys. 2017, 17, 12449-12474, https://doi.org/10.5194/acp-17-12449-

2017. 

McNair, L.A., Hartley, and Russell, A.G.: Spatial inhomogeneity in pollutant concentrations, and their implications for air 

quality model evaluation, Atm. Environ., 30, 4291-4301. https://doi.org/10.1016/1352-2310(96)00098-2, 1996. 

Pielke, R. A.: The need to assess uncertainty in air quality evaluations, Atmos. Environ., 32, 1467–1468, 1998. 20 

Pinder, R.W., Gilliam, R.C., Appel, K.W., Napelenok, S., Foley, K.M., and Gilliland, A.B.: Efficient Probabilistic Estimates 

of Surface Ozone Concentration Using an Ensemble of Model Configurations and Direct Sensitivity Calculations, Environ. 

Sci. Technol., 43 (7), pp 2388–2393, 2008. 

Porter, P.S., Rao, S.T., Hogrefe, C., Gego, E., and Mathur, R.: Methods for reducing biases and errors in regional 

photochemical model outputs for use in emission reduction and exposure assessments. Atm. Environ., 112, 178–188.  25 

https://doi.org/10.1016/j.atmosenv.2015.04.039, 2015. 

Poularika, A.D.: The Handbook of Formulas and Tables for Signal Processing. CRC Press, Boca Raton, FL, 1998. 

Rao, S.T., Sistla, G., Pagnotti, V., Petersen, W.B., Irwin, J.S., and Turner, D.B.: Resampling and Extreme Value Statistics in 

Air Quality Model Performance Evaluation, Atm. Environ., Vol. 19. No. 9. pp. I503-1518, 1985. 

Rao, S.T., and Zurbenko, I.G.: Detecting and Tracking Changes in Ozone Air Quality. Air & Waste 44, 1089–1092. 30 

https://doi.org/10.1080/10473289.1994.10467303, 1994. 

Rao S.T., Zurbenko I.G., Porter P.S., Ku J-Y, and Henry R.F.: Dealing with the ozone non-attainment problem in the Eastern 

United States. Environmental Management, January 17–31, 1996. 

https://doi.org/10.5194/acp-17-12449-2017
https://doi.org/10.5194/acp-17-12449-2017
https://pubs.acs.org/doi/10.1021/es8025402
https://pubs.acs.org/doi/10.1021/es8025402


 

13 

 

Rao, S.T., Zurbenko, I.G., Neagu, R., Porter, P.S., Ku, J.Y., and Henry, R.F.: Space and Time Scales in Ambient Ozone Data. 

Bull. Amer. Meteor. Soc. 78, 2153–2166. https://doi.org/10.1175/1520-0477(1997)078<2153:SATSIA>2.0.CO;2, 1997. 

Rao, S.T., Galmarini, S., and Pucket, K.: Air Quality Model Evaluation International Initiative (AQMEII)-Advancing the 

State of the Science in Regional Photochemical Modeling and Its Applications, Bull. Amer. Meteor. Soc., 23-30, 

DOI:10.1175/2010BAMS3069.1, 2011. 5 

Rao S.T., Porter P.S., Mobley J.D., and Hurley F.: Understanding the spatio-temporal variability in air pollution concentrations. 

Environmental Management, November 42–48, 2011. 

Ryan, W.F.: The air quality forecast rote: Recent changes and future challenges, Journal of the Air & Waste Manage. Assoc., 

66, 576–596. https://doi.org/10.1080/10962247.2016.1151469, 2016. 

Solazzo, E., and Galmarini, S.: Comparing apples with apples: Using spatially distributed time series of monitoring data for 10 

model evaluation, Atmos. Environ. 112, 234–245. https://doi.org/10.1016/j.atmosenv.2015.04.037, 2015. 

Solazzo E., and Galmarini, S.: A science-based use of ensembles of opportunities for assessment and scenario studies, Atmos. 

Chem. Phys. 15, 2535-2544, 2015. 

Swall, J.L., and Foley, K.M.: The impact of spatial correlation and incommensurability on model evaluation, Atmospheric 

Environment, 43, 1204-1217, https://doi.org/10.1016/j.atmosenv.2008.10.057, 2009. 15 

U.S. Environmental Protection Agency: Modeling Guidance for Demonstrating Air Quality Goals for Ozone, PM2.5, and 

Regional Haze, EPA 454/R-18-009, 203 pp., available online at https://www3.epa.gov/ttn/scram/guidance/guide/O3-PM-

RH-Modeling_Guidance-2018.pdf, 2018. 

Vautard, R., Moran, M.D., Solazzo, E., Gilliam, R., Mathias, V., Bianconi, R., Chemel, C., Ferreira, J., Geyer, B., Hansen, 

A.B., Jericevic, A., Prank, M., Segers, A., Silver, J.D., Werhahn, J., Wolke, Rao, S.T., and Galmarini, S.: Evaluation of the 20 

meteorological forcing used for the Air Quality Model Evaluation International Initiative (AQMEII) air quality simulations, 

Atmos. Environ., Vol. 53, 15-37, doi.org/10.1016/j.atmosenv.2011.10.065, 2012. 

Vukovich, F.M.: Time Scales of Surface Ozone Variations in the Regional, Non-URBAN Environment, Atm. Environ., Vol. 

31, No. 10, pp. 1513-1530, 1997. 

Xing, J., Mathur, R., Pleim, J., Hogrefe, C., Gan, C.-M., Wong, D.C., Wei, C., Gilliam, R., and Pouliot, G.: Observations and 25 

modeling of air quality trends over 1990–2010 across the Northern Hemisphere: China, the United States and Europe. 

Atmospheric Chemistry and Physics 15, 2723–2747. https://doi.org/10.5194/acp-15-2723-2015, 2015. 

Xing, J., R. Mathur, J. Pleim, C. Hogrefe, J. Wang, C.-M. Gan, G. Sarwar, D. Wong, and S. McKeen, Representing the effects 

of stratosphere-troposphere exchange on 3D O3 distributions in chemistry transport models using a potential vorticity 

based parameterization, Atmos. Chem. Phys., 16, 10865-10877, doi:10.5194/acp-16-10865-2016, 2016 30 

Zhang, Y., Hong, C.P., Yahya, K., Li, Q., Zhang, Q., and He, K.-B.: Comprehensive evaluation of multi-year real-time air 

quality forecasting using an online-coupled meteorology-chemistry model over southeastern United States, Atmos. 

Environ., 138, 162-182, doi:10.1016/j.atmosenv.2016.05.006, 2016. 

https://doi.org/10.1016/j.atmosenv.2015.04.037
https://doi.org/10.1016/j.atmosenv.2011.10.065


 

14 

 

Zurbenko, I.G.,  Porter, P.S., Gui, R., Rao, S.T., Ku, J.Y., and Eskridge, R.E.: Detecting discontinuities in time series of upper-

air data: Development and demonstration of an adaptive filter technique, J. of Climate, Vol. 9, PP 3548-3560, 

https://doi.org/10.1175/1520-0442(1996)009<3548:DDITSO>2.0.CO;2, 1996.  

https://doi.org/10.1175/1520-0442(1996)009%3C3548:DDITSO%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1996)009%3C3548:DDITSO%3E2.0.CO;2


 

15 

 

List of Figures 

Figure 1a. Observed DM8HR ozone time series (blue line) and the embedded baseline (black line) at Altoona, PA in 2010; 

Figure 1b. Time series of synoptic forcing (black line) and time series of Gaussian white noise (blue line) having the same 

variance as SY forcing1.  Results of the application of the Improved CEEMDAN technique (a modified version of EMD) 

technique, which is designed for analyzing non-stationary and non-linear time series data, to the daily maximum 8-hour ozone 5 

time series data at the Altoona, PA site.  The numbers on the right side represent the time scale (in days) associated with each 

IMF.  Note, the power spectrum of raw ozone time series (upper right panel) shows that the energy in the 1-10 days (synoptic) 

time scale is an order of magnitude less than that in the longer (baseline) time scale. 

 

Figure 2a. Raw observed DM8HR ozone time series (black) and the embedded baseline (red for EMD and blue for KZ) at 10 

Altoona, PA in 2010; Figure 2b. Time series of synoptic forcing (red for EMD and blue for KZ); Figure 2c and 2d are their 

corresponding power spectra.  The bottom two panels compare the power spectra of the baseline forcing (left) and the synoptic 

forcing (right) derived from KZ filtering and EMD (sum of IMF 1 and IMF2).  Notice that most of the energy in the baseline 

time series is in the longer time scale while most of the energy of the short-term component is in the high-frequency range.  

The similarity of results from both scale separation techniques demonstrates that the two scales of interest (i.e., baseline and 15 

synoptic forcing) have been extracted reasonably well by these two methods. 

 

Figure 3a: Comparison between the observed cumulative distribution function (CDF) for 2010 shown in red with 30+ pseudo-

observations CDFs generated from historical DM8HR ozone time series shown in light bluegray at a suburban site (at Altoona 

in PA (AQS station identifier 420130801) at Altoona in PA.). The dark blue line represents the average of the 30+ light 20 

bluegray lines; Figure 2b3b: Display of various statistical metrics (standard deviation (std), root mean square error (RMSE), 

bias) derived by comparing the actual observed and pseudo ozone values in Fig. 2a3a; Figure 2c3c: Normalized statistical 

metrics. of normalized mean error (NME), normalized mean bias (NMB), coefficient of variation (CV). Notice the large 

variability occurring at the lower and upper percentiles. 

 25 

Figure 34. Box plots of statistical metrics based on the results from the analysis of DM8HR data at 185 monitoring sites. : (a) 

Standard deviation, (b) Root mean square error, (c) Mean bias, (d) Coefficient of variation, (e) Normalized mean error, and (f) 

Normalized mean bias. The lower and upper edges of the boxes represent the 25th and 75th percentile values while the whiskers 

represent the 5th and 95th percentiles. See data analysis procedures using the ozone baseline observed in the year 2010 as the 

target BL in equations 7 and 8 of Luo et al. (2019). 30 

 

Figure 45. Spatial distribution of the lower bound for the RMSE or expected RMSE at each monitoring site over CONUS (a) 

at the median and (b) at the 95th percentile; (c) elevation (km) above the mean sea level of each monitoring site. 



 

16 

 

 

Figure 6. (a) Scatter plot of the standard deviation (i.e., strength) of the SY component vs. the mean of the baseline (BL) 

component for each of the 21 years from 1990 to 2010 at the Altoona, PA monitoring site. Figure 5. (a) Scatter plot of the 

standard deviation (i.e., strength) of the SY component vs. the mean of the baseline (BL) component for each of the 21 years 

from 1990 to 2010 at the Altoona, PA monitoring site. Observations are shown in bluered while WRF-CMAQ results are 5 

shown in redblue. (b) Inter-annual variability in the mean of the baseline component and standard deviation of the synoptic 

component in the WRF-CMAQ model and observations at the Altoona, PA site.  Although year-to-year variation is captured, 

the model has overestimated the baseline forcing and underestimated the synoptic forcing. 

 

Figure 67.  a) Comparison between the observed CDF overlainoverlaid on 21 ‘pseudo-simulated’ or reconstructed ozone CDFs 10 

with SY generated from modeled DM8HR ozone time series at a suburban site (420130801) at Altoona in; PA (AQS station 

identifier 420130801); b) Display of various statistical metrics derived by comparing the actual observed and pseudo-simulated 

ozone values in Fig. 6a; 57a; c) Normalized statistical metrics; d).Difference between the pseudo-simulated CDFs shown in 

Figure 6a7a and the pseudo-observed CDFs as shown in Figure 2a7a but calculated from 21 years (1990-2010) of observations 

only. The light bluegray lines represent the differences for a specific SY year while the thick blue line represents the differences 15 

between the means of the 21 reconstructions; e) Difference between the absolute performance metrics for pseudo-simulations 

shown in Figure 6b7b and those calculated for pseudo-observations as shown in Figure 2b7b but calculated for 21 years (1990-

2010) only. f) As in panel e) but for normalized performance metrics. 

 

Figure 78. Errors attributable to the different synoptic forcings in model results the 21 ‘pseudo-simulated’ or reconstructed 20 

ozone time series with SY generated from modeled DM8HR ozone time series using BL obtained from observations at (a) the 

median and (b) 95th percentile.   
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Figure 1a. Observed1.  Results of the application of the Improved CEEMDAN technique (a modified version of EMD) technique, 

which is designed for analyzing non-stationary and non-linear time series data, to the daily maximum 8-hour ozone time series data 

at the Altoona, PA site.  The numbers on the right side represent the time scale (in days) associated with each IMF.  Note, the power 

spectrum of raw ozone time series (upper right panel) shows that the energy in the 1-10 days (synoptic) time scale is an order of 5 
magnitude less than that in the longer (baseline) time scale. 
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Figure 2a. Raw observed DM8HR ozone time series (blue lineblack) and the embedded baseline (black linered for EMD and blue 

for KZ) at Altoona, PA in 2010; Figure 1b2b. Time series of synoptic forcing (black line) and time series of Gaussian white noise 

(red for EMD and blue line) having the same variance as SY forcingfor KZ); Figure 2c and 2d are their corresponding power spectra.  

The bottom two panels compare the power spectra of the baseline forcing (left) and the synoptic forcing (right) derived from KZ 5 
filtering and EMD (sum of IMF 1 and IMF2).  Notice that most of the energy in the baseline time series is in the longer time scale 

while most of the energy of the short-term component is in the high-frequency range.  The similarity of results from both scale 

separation techniques demonstrates that the two scales of interest (i.e., baseline and synoptic forcing) have been extracted reasonably 

well by these two methods. 
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Figure 2a3a: Comparison between the observed cumulative distribution function (CDF) for 2010 shown in red with 30+ pseudo-

observations CDFs generated from historical DM8HR ozone time series shown in light bluegray at a suburban site (at Altoona in 5 
PA (AQS station identifier 420130801) at Altoona in PA.). The dark blue line represents the average of the 30+ light bluegray lines; 

Figure 2b3b: Display of various statistical metrics (standard deviation (std), root mean square error (RMSE), bias) derived by 

comparing the actual observed and pseudo ozone values in Fig. 2a3a; Figure 2c3c: Normalized statistical metrics. of normalized 

mean error (NME), normalized mean bias (NMB), coefficient of variation (CV). Notice the large variability occurring at the lower 

and upper percentiles. 10 
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Figure 34. Box plots of statistical metrics based on the results from the analysis of DM8HR data at 185 monitoring sites: (a) Standard 

deviation, (b) Root mean square error, (c) Mean bias, (d) Coefficient of variation, (e) Normalized mean error, and (f) Normalized 

mean bias. The lower and upper edges of the boxes represent the 25th and 75th percentile values while the whiskers represent the 

5th and 95th percentiles. See data analysis procedures using the ozone baseline observed in the year 2010 as the target BL in 5 
equations 7 and 8 of Luo et al. (2019). 
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.  See data analysis procedures using the ozone baseline observed in the year 2010 as the target BL in equations 7 and 8 of Luo et al. 

(2019). 
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Figure 4.Figure 5. Spatial distribution of the lower bound for the RMSE or expected RMSE at each monitoring site over CONUS 

(a) at the median and (b) at the 95th percentile; (c) elevation (km) above the mean sea level of each monitoring site. 
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Figure 5. (a) Scatter plot of the standard deviation (i.e., strength) of the SY component vs. the mean of the baseline (BL) 

component for each of the 21 years from 1990 to 2010 at the Altoona, PA monitoring site.  
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Figure 6. (a) Scatter plot of the standard deviation (i.e., strength) of the SY component vs. the mean of the baseline (BL) component 

for each of the 21 years from 1990 to 2010 at the Altoona, PA monitoring site. Observations are shown in bluered while WRF-CMAQ 

results are shown in redblue. (b) Inter-annual variability in the mean of the baseline component and standard deviation of the 

synoptic component in the WRF-CMAQ model and observations at the Altoona, PA site.  Although year-to-year variation is 5 
captured, the model has overestimated the baseline forcing and underestimated the synoptic forcing.  
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Figure 6. 

 
Figure 7.  a) Comparison between the observed CDF overlainoverlaid on 21 ‘pseudo-simulated’ or reconstructed ozone CDFs with 

SY generated from modeled DM8HR ozone time series at a suburban site (420130801) at Altoona in PA; (AQS station identifier 

420130801); b) Display of various statistical metrics derived by comparing the actual observed and pseudo-simulated ozone values 

in Fig. 6a; 57a; c) Normalized statistical metrics; d).Difference between the pseudo-simulated CDFs shown in Figure 6a7a and the 

pseudo-observed CDFs as shown in Figure 2a7a but calculated from 21 years (1990-2010) of observations only. The light bluegray 5 
lines represent the differences for a specific SY year while the thick blue line represents the differences between the means of the 21 

reconstructions; e) Difference between the absolute performance metrics for pseudo-simulations shown in Figure 6b7b and those 

calculated for pseudo-observations as shown in Figure 2b7b but calculated for 21 years (1990-2010) only. f) As in panel e) but for 

normalized performance metrics.  
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Figure 8. Figure 7. Errors attributable to in the different synoptic forcings in model results21 ‘pseudo-simulated’ or reconstructed 

ozone time series with SY generated from modeled DM8HR ozone time series using BL obtained from observations at (a) the median 

and (b) 95th percentile. 5 
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