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We are grateful to the referees for their time and energy in providing helpful comments 
and guidance that have improved the manuscript. In this document, we describe how we 
have addressed the reviewer’s comments. Referee comments are shown in black italics 
and author responses are shown in blue regular text. 
 
Referee 1 
 
This vegetation model-based quantification of various components, including rising CO2, 
O3 pollution, and warming, influencing carbon sequestration across terrestrial 
ecosystems in China is not less than being complete. Moreover, there are many places 
that are quite interesting to me and would appeal to the broad communities around ACP. 
For example, to supplement with diffuse radiation the CMIP5 data the authors compiled 
empirical relationships between total and diffuse radiation and identified the best one 
therein to derive the diffuse radiation. What’s also interesting is that the authors drew a 
conclusion that the allowable carbon budget is higher than expected to achieve the 1.5 
deg C goal under a stabilized pathway. 
 
è Thank you for your positive evaluations. 
 
However, one major concern among other smaller ones is about land use change, which 
throughout the simulations with two different pathways the land cover is assumed fixed. 
The impacts of land cover change on the land carbon sink are undoubtedly tremendous. I 
argue it is more persuasive to include this in the quantification, especially considering 
the effort by the authors trying to offer numbers on allowable carbon budget. 
 
è We agree that land cover change (LCC) can induce different responses in regional 

carbon budget for different emission pathways. However, “For this study, we fix the 
land cover to isolate impacts of CO2 and climatic changes.” The effect of LCC can be 
quantitatively evaluated using TRENDY data shown as below: 
 

 

 
Fig. R1 Multi-model ensemble mean (a) GPP and (b) NBP from TRENDY for S2 
(fixed land cover, blue) and S3 (with LCC, red) simulations. Units: Pg C yr-1. 

 
 

In the above figure, we compare multi-model ensemble mean GPP and NBP with and 
without LCC in China. As it shows, the differences are only 0.6±0.2% for GPP 
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between simulations with (S3) and without (S2) LCC during 1901-2016 (Fig. R1a). 
The TRENDY dataset does not provide NEE for all models. Instead, it has net 
biospheric production (NBP = – NEE – LCC). For NBP, we can see some differences 
between the two simulations (Fig. R1b), especially over the 1980s when S3 is less 
positive than that of S2. This change means that land carbon sink is weakened (or 
more land carbon emissions) due to LCC in the 1980s. However, this change is not 
caused through the perturbations in ecosystem but by anthropogenic activities, 
because GPP with LCC shows little changes (Fig. R1a). From this aspect, the LCC 
acts as an additional anthropogenic emission, instead of ecosystem responses.  
 
Furthermore, the LCC changes in China are very uncertain (or unrealistic). From 
TRENDY simulations, we can see that NBP is lower in S3 than S2 during 2000-2016, 
indicating that LCC weakens land carbon sink. However, satellite observations 
suggest that afforestation significantly contributes to the greening in China over the 
recent decades (Chen et al., 2019), indicating that LCC actually strengthens regional 
carbon sink. For the future projections, LCC is even more uncertain because it is 
related to many policy-related and economic factors (Stehfest et al., 2019) that are not 
associated with CO2 emissions. Such uncertainties will undermine the main findings 
of this work. 
 
In the method section, we added following statement to explain why LCC is not 
included: “The main focus of this study is to quantify how the differences of 
anthropogenic emissions, including both CO2 and air pollution which are usually 
associated, will cause different responses in land carbon budget to the same global 
warming target. Especially, the role of air pollution on land carbon cycle has always 
been ignored. The assumptions of land use can be quite uncertain among future 
pathways (Stehfest et al., 2019), and these assumptions are not necessarily associated 
with CO2 and air pollution emissions. As a result, for this study, we consider fixed 
land cover in all simulations.” (Lines 244-250) 
 
CORRECTION: In the paper, we use –NBP from TRENDY to represent NEE (Fig. 
4b). We noticed that we incorrectly use S3 instead of S2 for comparison in the 
original paper. In the revised paper, we use output of S2 (no LCC) for the evaluation 
of YIBs simulations and discuss the results accordingly.   

 
 
Another concern is about scaling up leaf-scale co2 fixation to the canopy. How have the 
authors accounted for canopy layers and diffuse radiation produced within the canopy?  
 
è We use the multi-layer canopy radiative transfer scheme proposed by Spitters (1986) 

to separate diffuse and direct radiation for sunlit and shaded leaves. The canopy is 
divided into an adaptive number of layers (typically 2-16) for light stratification. The 
sunlit leaves can receive both direct and diffuse radiation, while the shading leaves 
receive only diffuse radiation. The details of this scheme have been well documented 
in Yue and Unger (2017) and fully evaluated in Yue and Unger (2018). For this 
study, we refer readers to these references as follows: “Leaf-level photosynthesis is 
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calculated hourly using the well-established Farquhar et al. (1980) scheme and is 
upscaled to canopy level by the separation of sunlit and shading leaves (Spitters, 
1986). Sunlit leaves can receive both direct and diffuse radiation, while shading 
leaves receive only the diffuse component (Yue and Unger, 2017).” (Lines 180-184) 
“Simulated GPP responses to direct and diffuse radiation show good agreement with 
observations at 24 global flux tower sites from FLUXNET network (Yue and Unger, 
2018). In general, diffuse radiation is more efficient to enhance canopy 
photosynthesis compared to the same level of direct radiation.” (Lines 210-213) 

 
 
Also, the authors compiled experimental studies on ozone impacts on plants in China, 
based on which sensitivity of differing PFTs are assigned and a high and low sensitivity 
scheme is implemented. The variability of plant-ozone sensitivity is undeniable, which 
can go all the way down to the species level, evidenced by experimental studies across 
the globe. I am wondering what magnitude of uncertainty would such a PFT scheme 
bring to the quantification of GPP dampening by ozone. 
 
è The uncertainties of ozone vegetation damaging are quantified using a low-to-high 

range of sensitivities for each individual PFT. Such range has been evaluated against 
available observations as shown in Fig. S4. In the revised text, we quantified and 
showed the uncertainties of ozone effects due to different damaging sensitivities: “In 
the present day, O3 decreases GPP by 6.7±2.6% (uncertainties ranging from low to 
high damaging sensitivities) in China (Fig. 7d), because of the direct inhibition of 
photosynthesis by 6±2.4% (Fig. 7a) and the consequent reduction of 1.8±0.8% in leaf 
area index (LAI, Fig. 7g). For 1.5°C global warming, this weakening effect shows 
opposite tendencies in the two RCP scenarios, with a reduced GPP loss of 4.7±2.0% 
in RCP2.6 (Fig. 7e) but an increased loss of 7.9±3.0% in RCP8.5 (Fig. 7f). … 
Consequently, changes in O3 help increase GPP by 0.1±0.03 Pg C yr-1 in RCP2.6 but 
decrease GPP by 0.14±0.04 Pg C yr-1 in RCP8.5 for the same 1.5°C warming. 
Following the benefits to GPP, the lower O3 decreases NEE (strengthens the sink) by 
0.06±0.02 Pg C yr-1 in RCP2.6, offsetting more than half of the negative effect 
(weakens the sink) from CO2 (Fig. 6b)”. (Lines 367-380) 
 
 

Finally, a couple of spots of language errors are obvious: L64: changing ‘in differing 
pathways’ to ‘of differing pathways’ would be better. L164: ‘respectively’ should be 
added. 

 
è Corrected as suggested. 
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Referee 2 
 
In this manuscript, the authors use the YIBs model to simulate ecosystem productivity 
under two pathways to 1.5 C warming: and ensemble based on RCP2.6 and an ensemble 
based on RCP8.5. Overall, the 1.5 C warming is delayed by 30 years in RCP2.6, and 
results in weaker carbon sink overall on this pathway to 1.5 C. But the authors 
demonstrate that reductions air pollution emissions from RCP2.6 (resulting in increased 
light availability and decrease surface O3) is better for land carbon uptake compared to 
RCP8.5. The slower warming scenario from RCP2.6 increases the allowable 
anthropogenic carbon emissions.  
 
This is a very interesting study that replaces the more familiar “temporal” domain for a 
“temperature” domain. This results in some initial awkwardness, since the different 
carbon sinks are not being compared at/over equivalent time periods, but the authors 
make a clear argument in their introduction for why they have chosen this approach, and 
why this experiment is a useful exercise. In general, I think some points of clarification 
would help this manuscript, as I outline below. Overall, this is a sound and novel study 
with results that should be of interest to the ACP audience. 
 
è Thank you for your positive evaluations. 
 
 
First, I would encourage the authors to explicitly describe how they have calculated 
NEE. While it is an obvious term to some, many of the readers in ACP may not find it as 
intuitive. If I have interpreted the authors work correctly (e.g. Figure 4 and its 
discussion), it seems like NEE is being calculated here as: NEE = – [GPP – Reco], 
where the authors have taken the convention that a negative NEE means a net carbon 
sink. I’m not sure why this equation isn’t explicitly included somewhere, even if it might 
seem obvious. Actually, I couldn’t find where the authors even define the abbreviation “
NEE” (presumably “net ecosystem exchange”). Nor would I necessarily even expect 
ACP readers to be so well acquainted with the term “gross primary production” that this 
doesn’t require an explanation/definition. 
 
è Sorry for the missing information. We added definitions of GPP and NEE in the 

revised paper to clarify: “We focus on the changes of gross primary productivity 
(GPP) and net ecosystem exchange (NEE). GPP represents the total canopy 
photosynthesis through gross carbon assimilation. NEE is the residue after subtraction 
of GPP from ecosystem (plant plus soil) respiration (Reco – GPP), indicating the net 
carbon sink from land to atmosphere. The larger the GPP values, the stronger carbon 
assimilation by ecosystems. In contrast, the more negative the NEE, the stronger 
carbon sink of land.” (Lines 83-88). 

	
 
Without these definitions being explicitly laid out, things are in danger of becoming a bit 
unclear. For example, it might not be immediately obvious whether an “enhancement” in 
NEE is referring to a “more negative” value (and therefore a “stronger sink”). We run 



	 5	

into confusing instances such as that found in Line 316, referring to an “enhancement” 
in NEE of “0.03 Pg”, which is somehow equivalent to a “-17%” difference. How can it 
be a simultaneously positive and negative difference, unless we know that enhancement 
refers to a more negative value? These instances could just use some clarification. 
 
è In the revised text, we double checked that all the words “enhancement” or “enhance” 

are used only for GPP, not for NEE. For the descriptions mentioned above, we 
changed them as follows: “Projected NEE continues to be more negative in the 
RCP8.5 scenario after the year 2016 (Fig. S7b). Meanwhile, future NEE reaches the 
minimum value (or the maximum sink strength) around the year 2025 and then 
reverses to be less negative in the RCP2.6 scenario (Fig. S7b). By the period of 1.5°C 
global warming, NEE changes in China show opposite tendencies between the two 
pathways. Compared to the present day, NEE increases by 0.03 ± 0.03 Pg C yr-1 (-
17.4±19.6 %) in RCP2.6 (Fig. 5d) but decreases by 0.14 ± 0.04 Pg C yr-1 (94.4±24.9 
%) in RCP8.5 (Fig. 5e), suggesting that land carbon sink is slightly weakened in the 
former but strengthened in the latter.” (Lines 329-337) 

 
 
This clarification is especially important when the authors eventually start taking the 
differences in “NEE” between the two different pathways, further exacerbating the 
importance of keeping track of the sign convention. It isn’t immediately obvious whether 
the authors are taking the difference of two negative numbers (E.g. (-1.5 – [-2]) = 0.5), 
or whether they are comparing absolute NEE values (i.e. so that in the hypothetical 
example above, (1.5 – 2) = -0.5). The choice is important since these deltas have opposite 
meanings! It is also possible I have misinterpreted the authors’ approach. I encourage 
the authors to explicitly define all conventions, and repeat them appropriately, to help 
guide the reader. 
 
è We carefully went through all descriptions related to changes in NEE and made 

following clarifications (underlined):  
 
“The higher ∆GPP in RCP2.6 instead yields a weakened NEE (more positive) due to 
the CO2 effects (Fig. 6b)” (Lines 352-353) 
“Following the benefits to GPP, the lower O3 decreases NEE (strengthens the sink) by 
0.06±0.02 Pg C yr-1 in RCP2.6, offsetting more than half of the negative effect 
(weakens the sink) from CO2 (Fig. 6b).” (Lines 378-380) 
“Climate-induced ΔNEE is -0.02 Pg C yr-1 (strengthened sink) for both pathways 
(Fig. 6b)” (Lines 418-419) 
 
We also flip y-axis of Figure 8 (see the end of this response) as suggested. The 
revised figure now shows carbon loss with positive numbers and carbon uptake (sink) 
with negative numbers, consistent with the sign of NEE. 

 
Nevertheless, despite some of this awkwardness, I suppose the implications of the results 
are usually clear to the reader: E.g. improvements in air quality result in more light 
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availability and less ozone damage, which in turn drives a “better” land carbon uptake. 
(I would still encourage the authors to use clearer language than “better”, see Line 399.) 
 
è Yes, that’s the main conclusion we achieved in this study. We removed the word 

“better” and revised the sentence as follows: “For a warming target of 1.5°C, our 
analyses suggest that a simultaneous reduction of CO2 and air pollution emissions 
enhances the efficiency of land carbon uptake compared to a pathway without air 
pollution emission control.” (Lines 424-426) 

 
 
Specific comments: 
Line 107: “We further remove…” Why is the word “further” here? Have the authors 
removed some models based on other criteria that weren’t mentioned above? 
 
è We deleted the word “further” to avoid confusions. 
 
 
Line 138-139: “…apply the same protocols for anthropogenic and biomass burning 
emissions ...” What do the authors mean by “same protocols?” Please be specific. 
 
è The same protocols mean that these ACCMIP models all use the same anthropogenic 

and biomass burning emissions defined by CMIP5 RCP scenarios. In this case, the 
differences in the simulated air pollution originated from modeling structures and 
parameters, instead of emission inventories. To clarify, we revised this sentence as 
follows: “However, these models apply the same anthropogenic and biomass burning 
emissions specified for CMIP5 RCP scenarios (e.g., RCP2.6 or RCP8.5), though 
different models perform simulations at different time slices.” (Lines 143-146) 

 
Line 141-142: I’m curious about the approach used to account for the temporal gaps in 
O3 in the various ACCMIP models. The authors state they fill gaps using a linear fitting 
approach. Does this ignore seasonality? Or is it accounted for? This also means that 
Figure 3b is a bit misleading, since the ozone concentrations at some of these timeslices 
were not actually from any model output all, but from a very simple interpolation that 
might not capture multi-decade variability. For example, around the 2060 time slice of 
Figure 3b, I only see a couple of models in Table S3 that would actually have real output 
for this time slice. Most go from around 2030 to around 2090. 
 
It seems to me that drawing a straight line between two time slices that are 70 years 
apart is a bit dubious, even if it doesn’t change the direction of the overall conclusions. 
I think this limitation could be more explicitly mentioned/discussed. [Also: I see there 
must be a typo in the first row of Table S3, which says “2100-2019”.] 
 
è We retain the seasonality of ozone concentrations when interpolating ACCMIP data. 

Here, we use GFDL-AM3 model as an example (Fig. R2). The original model 
provides time slice simulations of 2001-2010 and 2031-2040. We perform linear 
interpolations for individual months. For example, we derive a linear fit using all the 
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July concentrations during 2001-2010 and 2031-2040, and then estimate July values 
within 2011-2030 based on this linear fit. Using the same method, we estimate ozone 
concentrations in all months individually so as to retain the seasonality of O3.  

 
 

 
Fig. R2 Monthly ozone concentrations from GFDL-AM3 model for (a) RCP2.6 and 
(b) RCO8.5 scenarios. Time series from the original model are shown in red and the 
interpolations are shown in blue. 
 
We agree that the linear interpolation may introduce some uncertainties in the gap 
filling. However, this is likely the best way we can consider in deriving unknown 
data. Other interpolation methods (e.g., polyfit, logfit) can also cause varied 
uncertainties. In addition, we believe that the multi-model ensemble average can in 
part smooth the data and achieve a reasonable time series of ozone concentrations 
that match the RCP emissions.  
 
We corrected the typo in Table S3 (should be 2100-2109). 

 
 
Line 284: “The YIBs simulations show variabilities of: : :” It wasn’t immediately clear to 
me what the authors meant by “variabilities”. It looks like they are referring to the full 
range of results from each YIBs ensemble? 
 
è We explained that this variability is due to uncertainties in driven climate from 

CMIP5 models: “The YIBs simulations show variabilities of 0.41±0.23 Pg C yr-1 
(6.2±3.9%, blue shading in Fig. 4a) due to uncertainties in climate from CMIP5 
models” (Lines 299-301) 

 
 
Line 334-340: I would have liked to see a more detailed discussion on the role of changes 
in ecosystem respiration on the difference in NEE between the two periods for each 
pathway. I had to spend a lot of time with Figure 6b to wrap my head around the “net” 
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difference between “net ecosystem exchange” at two different times, and how GPP and 
Reco must each play a role in this separately. 
 
è We explained more details about changes in GPP and soil respiration, and their joint 

effects on NEE as follows: “The higher ∆GPP in RCP2.6 instead yields a weakened 
NEE (more positive) due to the CO2 effects (Fig. 6b). The stabilization of CO2 
concentrations in this scenario (Fig. 3a) results in a stabilized GPP after the year 2040 
(Fig. S7a). Meanwhile, the 55-year (from 2005 to 2060) carbon accumulation 
enhances soil carbon storage by 10.5±1.3 Pg C and promotes soil respiration to 
0.71±0.19 Pg C yr-1. The stabilized GPP while enhanced soil respiration (NEE = Reco 
– GPP, Reco includes both soil and plant respiration) together lead to a weakened 
carbon sink (less negative NEE) by 1.5°C warming period (Fig. 7b). In contrast, soil 
carbon storage increases only 5.2±0.5 Pg C in RCP8.5 due to relatively short time 
period (from 2005 to 2031) for carbon accumulation, leading to lower soil respiration 
of 0.41±0.15 Pg C yr-1 in the fast warming pathway. The continuous increase of GPP 
and lower soil respiration jointly strengthen the land carbon sink (more negative 
NEE) in China by 0.1 Pg C yr-1 under RCP8.5 scenario (Fig. 6a).” (Lines 352-364) 

 
 
Figure 4: I wondered about also showing the YIBs future projections timeseries in this 
plot (or somewhere in the Supplemental material). I understand that the focus of this 
paper is in “temperature” space, instead of “temporal” space, but I just kept wondering 
what the projections actually looked like in the more familiar time x-axis. Obviously the 
RCP8.5 line would end earlier than the RCP2.6 line, but this might actually help clarify 
other points in the paper. 
 
è We plotted the changes of GPP and NEE along the temporal axis and added it as 

Figure S7 in SI as suggested.  
 

 

 
 

Figure S7. Projected historical and future carbon fluxes in China. Results shown are 
simulated (a) GPP and (b) net ecosystem exchange (NEE) during historical period 
(1901-2016) and future periods by 1.5ºC global warming (2017-2060 for RCP2.6 and 
2017-2031 for RCP8.5). The bold lines are ensemble means with shadings for inter-
vegetation-model uncertainties (blue for RCP2.6 and red for RCP8.5). All YIBs 
simulations are driven with daily meteorology from CMIP5 models. 
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We included following descriptions in the main text: “Projected GPP continues to 
increase in both RCP2.6 and RCP8.5 scenarios after the year 2016 (Fig. S7a)” (Lines 
322-323) and “Projected NEE continues to be more negative in the RCP8.5 scenario 
after the year 2016 (Fig. S7b). Meanwhile, future NEE reaches the minimum value 
(or the maximum sink strength) around the year 2025 and then reverses to be less 
negative in the RCP2.6 scenario (Fig. S7b).” (Lines 329-332) 

 
 
Figure 6: Should there be “delta” signs in the Y-axis label of these panels? This was a 
source of initial confusion for me. 
 
è Corrected as suggested. 
 
Figure 8: Here the signs could potentially be confusing again (in this case, positive refers 
to a land sink), although I guess the meaning is clear overall. It just doesn’t seem 
consistent with the choices elsewhere in the paper. Also, I would encourage panel b to 
include the word “net” somewhere, although perhaps this implicit in the word 
“accumulated” and would just add to the confusion? 
 
è We agree with the reviewer’s comment that the original figure 8 may cause confusion 

due to the inconsistency of signs. In the revised paper, we flip around the y-axis to 
make the variables (either carbon loss or carbon sink) consistent with the sign of NEE. 
We also added the word “net” in the title of panel b as suggested. 
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 26 

 27 

Abstract 28 

 29 

China is currently the world’s largest emitter of both CO2 and short-lived air pollutants. 30 

The ecosystems in China help mitigate a part of its carbon emissions, but are subject to 31 

perturbations in CO2, climate, and air pollution. Here, we use a dynamic vegetation 32 

model and data from three model inter-comparison projects to examine ecosystem 33 

responses in China under different emission pathways towards the 1.5°C warming 34 

target set by the Paris Agreement. At 1.5°C warming, gross primary productivity (GPP) 35 

increases by 15.5±5.4 % in a stabilized pathway and 11.9±4.4 % in a transient pathway. 36 

CO2 fertilization is the dominant driver of GPP enhancement and climate change is the 37 

main source of uncertainties. However, differences in ozone and aerosols explain the 38 

GPP differences between pathways at 1.5oC warming. Although the land carbon sink is 39 

weakened by 17.4±19.6 % in the stabilized pathway, the ecosystems mitigate 10.6±1.4% 40 

of national emissions in the stabilized pathway, more efficient than the fraction of 41 

6.3±0.8% in the transient pathway. To achieve the 1.5oC warming target, our analysis 42 

suggests a higher allowable carbon budget for China under a stabilized pathway with 43 

reduced emissions in both CO2 and air pollution. 44 

 45 

Keywords: Ecosystems, climate change, 1.5oC warming, emission pathway, ozone 46 

vegetation damage 47 

 48 
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1 Introduction 50 

The past decade has seen record-breaking warming largely related to anthropogenic 51 

greenhouse gas emissions (Mann et al., 2017). This warming trend presents a challenge 52 

to achieve the temperature control target of 1.5°C above the pre-industrial (PI) level set 53 

by the 2015 Paris climate agreement. Many studies have shown that a conservative 54 

warming such as 1.5°C is necessary to limit climatic extremes (Nangombe et al., 2018), 55 

avoid heat-related mortality (Mitchell et al., 2018), reduce economic loss(Burke et al., 56 

2018), and alleviate ecosystem risks (Warszawski et al., 2013) compared to stronger 57 

anthropogenic warming. To achieve this target, each country must aim to control its 58 

greenhouse gas emissions. A full understanding of regional ecosystem response to the 59 

changing climate and environmental stress is essential to reduce uncertainties in 60 

allowable carbon budget estimates at 1.5°C (Mengis et al., 2018). China is covered with 61 

a wide range of terrestrial biomes (Fang et al., 2012). While China’s ecosystem 62 

response to possible future climate has been explored (Wu et al., 2009;He et al., 63 

2017;Dai et al., 2016), impacts on the regional carbon budget of differing pathways to 64 

the 1.5°C target are not known. 65 

 66 

There are two distinct pathways to the 1.5°C global warming. One is a fast process in 67 

which global temperature passes 1.5°C and continues to increase (scenarios assuming 68 

high CO2 emissions and no climate mitigation) while the other is a stabilized process 69 

with an equilibrium warming right below 1.5°C and last for decades before the end of 70 

21st century (scenarios including climate mitigation). The stabilized pathway is the one 71 

proposed by the 2015 Paris agreement. However, the unprecedented warming in 2016 72 

results in an increase of global average temperature by 1.1°C above PI 73 

(https://public.wmo.int), suggesting that the 1.5°C limit can be broken in a near future 74 

under a transient pathway. A few studies have compared allowable carbon budgets 75 

between these two pathways (Collins et al., 2018;Millar et al., 2017), but none has 76 

estimated the mitigation potential of regional ecosystems with joint impacts of changes 77 

in climate, CO2, and air pollution under different pathways.  78 

 79 
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Here, we apply the Yale Interactive terrestrial Biosphere Model (YIBs) (Yue and Unger, 83 

2015;Yue and Unger, 2018) to investigate the response of terrestrial ecosystem 84 

productivity in China to both stabilized and transient global warming of 1.5°C relative 85 

to PI period. We focus on the changes of gross primary productivity (GPP) and net 86 

ecosystem exchange (NEE). GPP represents the total canopy photosynthesis through 87 

gross carbon assimilation. NEE is the residue after subtraction of GPP from ecosystem 88 

(plant plus soil) respiration (Reco – GPP), indicating the net carbon sink from land to 89 

atmosphere. The larger the GPP values, the stronger carbon assimilation by ecosystems. 90 

In contrast, the more negative the NEE, the stronger carbon sink of land. The YIBs 91 

model is driven with meteorology from an ensemble of climate models in Climate 92 

Model Intercomparison Project Phase 5 (CMIP5). The stabilized global warming 93 

pathway is represented by the RCP2.6 low emissions scenario that yields an equilibrium 94 

change in Global Mean Temperature (∆GMT) of 1.49°C by 2050-2070 with selected 95 

climate models (Fig. S1). The transient pathway is represented by RCP8.5 high 96 

emission scenario in which ∆GMT grows rapidly and realizes a transient 1.5°C around 97 

the year 2021-2041. We select the present-day period of 1995-2015 as a reference.  98 

 99 

 100 

2 Methods 101 

2.1 Datasets 102 

2.1.1 CMIP5 data 103 

We use both daily and monthly meteorology predicted by CMIP5 models 104 

(https://cmip.llnl.gov/). The daily data are used as input for YIBs model. In total, we 105 

select 15 climate models (Table S1) with all available daily meteorology, including 106 

surface air temperature, precipitation, specific humidity, surface downward shortwave 107 

radiation, surface pressure, and surface wind speed, for historical and two future 108 

scenarios (RCP2.6 and RCP8.5). These two scenarios assume distinct emission 109 

pathways of both CO2 and air pollutants, with the RCP2.6 scenario projecting much 110 

lower CO2 and pollution concentrations than RCP8.5. Simulated annual GMT is 111 

smoothed with a 21-year window to remove decadal variations. The ensemble changes 112 
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of GMT relative to PI period (1861-1900) from two scenarios are examined (Fig. S1a). 113 

The low emission scenario RCP2.6 yields an equilibrium ∆GMT of 1.85°C by 2100. 114 

We remove 8 climate models predicting stabilized ∆GMT higher than 1.85°C by the 115 

end of century. The 7 remaining models yield an ensemble warming close to 1.5°C 116 

(1.49°C for 2050-2070, Fig. S1b). Meanwhile, ∆GMT in the high emission scenario 117 

RCP8.5 grows fast and realizes a transient 1.5°C warming around the year 2021-2041. 118 

Daily meteorology from 7 selected models (Table S1) are then interpolated to the 119 

uniform 1°×1° resolution and used to drive YIBs model to simulate terrestrial carbon 120 

fluxes in China for 1850-2100. Due to the large data storage, we retain only the domain 121 

of [15-60ºN, 60-150ºE] covering China territory. We bias correct modeled meteorology 122 

with WFDEI (WATCH Forcing Data methodology applied to ERA-Interim reanalysis) 123 

data (Weedon et al., 2014): 124 

 125 

𝑉"# = 𝑉"×𝑆' 𝑆(                                         (1) 126 

 127 

Here Vd is the original daily variables and 𝑉"#  is the scaled value. Sw is the 2-128 

dimensional WFDEI value averaged for 1980-2004 and Sm is the modeled values 129 

averaged at the same period. In this case, the average climate from each individual 130 

model matches observations at present day, meanwhile, climate variability from models 131 

are retained to estimate uncertainties in carbon fluxes. 132 

 133 

2.1.2 TRENDY-v6 data 134 

We acquire the global GPP and NEE datasets from 1901 to 2016 simulated by 14 135 

Dynamic Global Vegetation Models (DGVMs) participating in TRENDY project 136 

(Table S2). All DGVMs are implemented following the same simulation protocol and 137 

driven by consistent input datasets, including CRU-NCEP climate data, atmospheric 138 

CO2 concentrations, but fixed present-day land use (Le Quere et al., 2018). 139 

 140 

2.1.3 ACCMIP O3 data  141 

We use monthly output of surface O3 concentrations from 12 models joining the 142 
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Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, 144 

Lamarque et al., 2013) (Table S3). The ACCMIP models have a wide range of 145 

horizontal and vertical resolutions, natural emissions, chemistry schemes, and 146 

interaction with radiation and clouds. However, these models apply the same 147 

anthropogenic and biomass burning emissions specified for CMIP5 RCP scenarios (e.g., 148 

RCP2.6 or RCP8.5), though different models perform simulations at different time 149 

slices. Here, we use surface O3 and interpolate original output to 1°×1° resolution. We 150 

fill the temporal gaps between two adjacent time slices using a linear fitting approach. 151 

In this way, we derive the monthly O3 from 1850 to 2100 for each model and their 152 

ensemble average at each grid point.  153 

 154 

2.1.4 Diffuse radiation data 155 

The original CMIP5 archive does not provide diffuse component of shortwave radiation. 156 

Here, we use empirical relations between total and diffuse radiation from 11 studies to 157 

calculate hourly diffuse radiation (Table S4). The diffuse fraction kd in all equations 158 

depends on clearness index kt, which is defined as the ratio between global solar 159 

radiation It and extra-terrestrial solar radiation I0  (Ghosh et al., 2017):  160 

𝑘* = 𝐼* 𝐼,                                               (2) 161 

𝐼, = 𝐼#- 1 + 0.033𝑐𝑜𝑠 67,8
679

𝑐𝑜𝑠𝜑                          (3) 162 

Here Isc = 1367 W m-2 is solar constant, N is Julian day of the year, and φ is solar zenith. 163 

The empirical equations are evaluated using hourly total and diffuse radiation from 164 

Modern-Era Retrospective Analysis for Research and Applications (MERRA) 165 

(Rienecker et al., 2011) during 2008-2012. For each grid in China, we calculate hourly 166 

diffuse radiation (Dc) using MERRA total radiation and compare it with the standard 167 

output (Dm). Statistical metrics including correlation, normalized mean bias (NMB), 168 

and normalized root mean square error (NRMSE) are used to evaluate the performance 169 

of empirical equations: 170 

NMB = 𝐷- − 𝐷( 𝐷(                                      (4)  171 

NRMSE = CDECF G

H
𝐷(                                   (5) 172 
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Here 𝐷-  and 𝐷(  are mean values of calculated and MERRA diffuse radiation, 176 

respectively. The evaluation is performed month by month for 2008-2012 and n is the 177 

number of daytime samples (grids with total radiation > 5 W m-2). The value of n varies 178 

from month to month with a minimum of 540,000 in December 2010. Evaluation shows 179 

the empirical model M01 (Lam and Li, 1996) yields the highest correlation and the 180 

lowest NRMSE (Fig. S2). As a result, we use M01 model to derive diffuse radiation 181 

from CMIP5 models.  182 

 183 

2.2 Model 184 

We apply the YIBs model (Yue and Unger, 2015;Yue et al., 2017) to simulate historical 185 

and future (1850-2100) ecosystem productivity. The YIBs model dynamically 186 

calculates LAI and tree height based on carbon assimilation and allocation. Leaf-level 187 

photosynthesis is calculated hourly using the well-established Farquhar et al. (1980) 188 

scheme and is upscaled to canopy level by the separation of sunlit and shading leaves 189 

(Spitters, 1986). Sunlit leaves can receive both direct and diffuse radiation, while 190 

shading leaves receive only the diffuse component (Yue and Unger, 2017). The 191 

assimilated carbon is in part used for maintenance and growth respiration, and the rest 192 

is allocated among leaf, stem, and root for plant growth (Clark et al., 2011). Soil 193 

respiration is calculated as the loss of carbon flows among 12 soil carbon pools 194 

(Schaefer et al., 2008). The YIBs model considers 9 plant functional types (PFTs) 195 

including evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), 196 

evergreen broadleaf forest (EBF), shrubland, tundra, C3 grassland, C4 grassland, C3 197 

cropland, and C4 cropland. The land cover is prescribed based on satellite retrievals 198 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) (Hansen et al., 199 

2003) and the Advanced Very High Resolution Radiometer (AVHRR) (Defries et al., 200 

2000). For this study, we fix the land cover to isolate impacts of CO2 and climatic 201 

changes. Other studies also show only moderate changes in vegetation fraction and 202 

composition at a low warming level (Warszawski et al., 2013). The YIBs model can be 203 

applied at the site, regional, and global scales. The site-level model has been evaluated 204 

with measured carbon fluxes from 145 FLUXNET sites (Yue and Unger, 2015). For 205 
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this study, all simulations are performed at the 1°×1° resolution over China. During the 207 

period of 1982-2011, YIBs predicts an average GPP of 7.17 Pg C yr-1 in China (Fig. 208 

S3), close to the 7.25 Pg C yr-1 estimated in the benchmark product (Jung et al., 2009). 209 

 210 

YIBs model calculates O3 damage to plant photosynthesis using a flux-based 211 

parameterization (Sitch et al., 2007). The inhibition rate of GPP is dependent on both 212 

ambient O3 concentrations and stomatal conductance. Compared to hundreds of meta-213 

analyses data from China (Table S5) and the world (Yue and Unger, 2018), the scheme 214 

shows good performance in estimating GPP responses to O3 for DBF, EBF, C3 and C4 215 

herbs (Fig. S4). The predicted O3 damaging effects to ENF might be underestimated. 216 

The YIBs model separates the effects of diffuse and direct light on plant photosynthesis 217 

(Spitters, 1986). Simulated GPP responses to direct and diffuse radiation show good 218 

agreement with observations at 24 global flux tower sites from FLUXNET network 219 

(Yue and Unger, 2018). In general, diffuse radiation is more efficient to enhance canopy 220 

photosynthesis compared to the same level of direct radiation.  221 

 222 

2.3 Simulations 223 

We perform two main groups of simulations, one for RCP2.6 and the other for RCP8.5. 224 

For each group, 7 sub-groups are designed with varied climatic or CO2 forcings (Table 225 

S6). In each sub-group, separate runs are conducted for the YIBs model driven with 226 

climate variables from 7 selected CMIP5 models (Table S1), making a total of 98 runs. 227 

A baseline group (HIST_2000) is perform with fixed meteorology and CO2 after the 228 

year 2000. Another four sub-group simulations are performed to quantify O3 effects on 229 

photosynthesis (Table S7). These simulations are driven with both CMIP5 meteorology 230 

and monthly O3 concentrations from an ensemble of 12 ACCMIP models. The runs are 231 

distinguished with different O3 damaging sensitivity (high or low) and scenario 232 

projections (RCP2.6 or RCP8.5). Monthly O3 concentrations are downscaled to hourly 233 

step using the diurnal cycle simulated by a chemistry-climate model NASA ModelE2 234 

(Schmidt et al., 2014). The O3-affected GPP or NEE are calculated as the average of 235 

simulations with low and high sensitivities.  236 
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 237 

For each run, a 251-year simulation is performed with historical climate for 1850-2000 238 

and future climate for 2001-2100. For simulations driven with meteorology from the 239 

same climate model, all sensitivity tests apply the same climate forcing during historical 240 

period but utilize varied forcings after the year 2000. For example, RCP26_CO2 is 241 

identical to RCP26_MET for the period of 1850-2000. However, after the year 2000, 242 

the former runs fix climatic conditions at the year 2000 but allow changes in CO2 243 

concentrations year by year for 2001-2100 following the pathway projection, while the 244 

latter fix CO2 level at the year 2000 but continue to use day-to-day meteorology after 245 

2000. For all simulations, we initialize vegetation and soil carbon pools in the YIBs 246 

model with a 200-year spin up by recycling meteorology at the year of 1850. 247 

Contributions of individual factors are calculated as the differences between sensitivity 248 

and baseline group (e.g., RCP26_CO2 – HIST_2000 for CO2 fertilization in RCP2.6 249 

scenario). 250 

 251 

The main focus of this study is to quantify how the differences of anthropogenic 252 

emissions, including both CO2 and air pollution which are usually associated, will cause 253 

different responses in land carbon budget to the same global warming target. Especially, 254 

the role of air pollution on land carbon cycle has always been ignored. The assumptions 255 

of land use can be quite uncertain among future pathways (Stehfest et al., 2019), and 256 

these assumptions are not necessarily associated with CO2 and air pollution emissions. 257 

As a result, for this study, we consider fixed land cover in all simulations. 258 

 259 

3 Results 260 

3.1 Changes of atmospheric compositions and radiation 261 

The ensemble concentrations of ACCMIP O3 show good agreement with ground-based 262 

observations from 1580 sites in China (Fig. 1). The spatial correlation is R=0.80 (p < 263 

0.01) between observations and the ensemble O3 concentrations ([O3]), though the latter 264 

is higher by 25% (Figs. 1a-1c). Such overestimation is likely attributed to the high [O3] 265 

at night in the models, because the evaluation of maximum daily 8-hour average 266 
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(MDA8) [O3], which mainly occurs in the daytime, shows more reasonable predictions 267 

with a lower bias of 10% (Figs. 1d-1f). Since the O3 vegetation damage in general 268 

occurs in the daytime, when both plant photosynthesis and [O3] are at high levels, the 269 

ACCMIP [O3] is good to be used as input for YIBs model to derive long-term O3 270 

inhibition effects on ecosystem productivity. 271 

 272 

The ensemble radiation from CMIP5 models matches observations at 106 sites in China 273 

(Fig. 2). For total shortwave radiation, the model prediction shows high values in the 274 

West and low values in the Southeast, consistent with observations for a correlation 275 

coefficient of R = 0.79 (p < 0.01) and a mean bias of 8.9%. The derived diffuse radiation 276 

is highest in the Southeast, where the total radiation is lowest. Observed diffuse 277 

radiation is available only at 17 sites. Compared to these sites, predictions show 278 

reasonable spatial distribution with a correlation of R = 0.65 (p < 0.01) and a low bias 279 

of 7.1%. Both the total radiation and derived diffuse radiation are used as input for YIBs 280 

model to estimate GPP responses to joint changes in direct and diffuse radiation caused 281 

by aerosol removal. 282 

 283 

Atmospheric compositions and radiation show varied changes in different scenarios. 284 

The GMT changes mainly follow those in CO2 concentrations, which show fast growth 285 

in RCP8.5 but slow changes in RCP2.6 (Fig. 3a). The latter assumes a large reduction 286 

of carbon emissions globally after the year 2020 (Meinshausen et al., 2011). Global 287 

CO2 levels reduce slightly after the year 2030 in RCP2.6, while GMT continues 288 

growing until 2050 due to air-sea interactions (Solomon et al., 2009). As a low emission 289 

scenario, RCP2.6 experiences a slow growth in nitrogen oxide (NOx) emissions and a 290 

continuous reduction after the year 2020 (Fig. S5), resulting in a decline of 6.4 ppb 291 

(15.2%) in surface O3 over eastern China by 1.5°C warming at 2060 (Fig. 3b). In 292 

contrast, RCP8.5 assumes fast growth of NOx emissions with delayed controls after the 293 

year 2030, leading to surface O3 enhancements of 6.6 ppb (15.7%) by 1.5°C warming 294 

at 2030. The lower emissions in RCP2.6 also result in smaller aerosol optical depth 295 

(AOD) than RCP8.5 (Fig. S6), leading to higher surface total radiation (Fig. 3c) while 296 
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lower diffuse radiation (Fig. 3d) due to reducing light extinction (Yu et al., 2006).  297 

 298 

3.2 Historical ecosystem productivity in China 299 

The ensemble simulations show an increasing trend in GPP in China of 0.011 Pg C yr-300 

2 over the historical period, 1901-2016 (Fig. 4a). A stronger trend of 0.022 Pg C yr-2 is 301 

found after 1960. Such change is much faster than the trend of 0.013 Pg C yr-2 estimated 302 

by a benchmark product (Jung et al., 2009) for 1982-2011 but close to a recent estimate 303 

of 0.02 Pg C yr-2 combining machine learning algorithms and eddy flux measurements 304 

from 40 sites in China (Yao et al., 2018). Simulated trend is also consistent with the 305 

TRENDY ensemble, which predicts trends of 0.013 ± 0.006 Pg C yr-2 (ensemble ± inter-306 

model uncertainty) for 1901-2016 and 0.022 ± 0.01 Pg C yr-2 for 1961-2016. The YIBs 307 

simulations show variabilities of 0.41±0.23 Pg C yr-1 (6.2±3.9%, blue shading in Fig. 308 

4a) due to uncertainties in climate from CMIP5 models, much smaller than the value of 309 

1.33±0.16 Pg C yr-1 (19.2±2.6%, red shading in Fig. 4a) caused by structural 310 

uncertainties across different vegetation models.  311 

 312 

NEE in China is negative, suggesting a regional land carbon sink (Fig. 4b). This sink is 313 

-94.7 Tg C yr-1 with a trend of -1.7 Tg C yr-2 during 1901-2016. Such change matches 314 

TRENDY simulations, which predict a multi-model mean carbon sink of -74.1±30.8 315 

Tg C yr-1 (uncertainties due to inter-model variations) and a trend of -1.3±0.7 Tg C yr-316 

2 for the same period. During 1980-1989, the ground-based estimate (Piao et al., 2009) 317 

suggests a sink of 177±73 Tg C yr-1 in China, consistent with the sink intensity of 318 

149±20 Tg C yr-1 from the YIBs ensemble prediction. For the recent period of 1980-319 

2000, YIBs estimates a strengthened sink of 154±30 Tg C yr-1 in China, weaker than 320 

the estimate of 198±114 Tg C yr-1 with the DLEM vegetation model (Tian et al., 2011) 321 

but is within the estimates of 137-177 Tg C yr-1 based on both ground and satellite data 322 

(Fang et al., 2007). The interannual variability in YIBs simulations is much weaker than 323 

the estimates in other studies, because the ensemble approach largely dampen variations 324 

among different runs. Similar to GPP, the NEE simulations exhibit smaller variability 325 

of 62±50 Tg C yr-1 among different YIBs runs than that of 122±57 Tg C yr-1 among 326 
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different TRENDY models.  346 

 347 

3.3 Future changes of carbon fluxes 348 

Projected GPP continues to increase in both RCP2.6 and RCP8.5 scenarios after the 349 

year 2016 (Fig. S7a). By the global warming of 1.5°C, GPP increases significantly in 350 

China, especially over eastern and northeastern parts (Fig. 5). Compared to the present 351 

day, GPP with O3 effects increases by 1.07 ± 0.38 Pg C yr-1 (15.5 ± 5.4 %) in the RCP2.6 352 

scenario (Fig. 5a) and 0.82 ± 0.30 Pg C yr-1 (11.9 ± 5.4%) in RCP8.5 (Fig. 5b). The 353 

spatial pattern of the GPP changes is similar in the two pathways (correlation coefficient 354 

R=0.93), except that ∆GPP in RCP2.6 is higher than in RCP8.5 by 30% with a positive 355 

center over eastern China (Fig. 5c). Projected NEE continues to be more negative in the 356 

RCP8.5 scenario after the year 2016 (Fig. S7b). Meanwhile, future NEE reaches the 357 

minimum value (or the maximum sink strength) around the year 2025 and then reverses 358 

to be less negative in the RCP2.6 scenario (Fig. S7b). By the period of 1.5°C global 359 

warming, NEE changes in China show opposite tendencies between the two pathways. 360 

Compared to the present day, NEE increases by 0.03 ± 0.03 Pg C yr-1 (-17.4±19.6 %) 361 

in RCP2.6 (Fig. 5d) but decreases by 0.14 ± 0.04 Pg C yr-1 (94.4±24.9 %) in RCP8.5 362 

(Fig. 5e), suggesting that land carbon sink is slightly weakened in the former but 363 

strengthened in the latter. Their differences exhibit widespread positive values in China 364 

with high centers in the East (Fig. 5f).  365 

 366 

The changes in carbon fluxes follow the variations in atmospheric composition and 367 

climate (Fig. 6 and Figs. S8-S11). By the global warming of 1.5°C, a dominant fraction 368 

of GPP enhancement in China is attributed to CO2 fertilization (Fig. 6a). For the RCP2.6 369 

scenario, CO2 alone contributes 0.83 Pg C yr-1 (77%) to ∆GPP, with the highest 370 

enhancement of 0.8 g C m-2 day-1 over the southeast coast (Fig. S8a). For RCP8.5, CO2 371 

fertilization increases GPP by 0.95 Pg C yr-1, even higher than the total ∆GPP of 0.82 372 

Pg C yr-1. The larger CO2-induced ∆GPP in RCP8.5 is due to the higher CO2 373 

concentrations (454 ppm) than RCP2.6 (442 ppm) at the same 1.5°C warming (Fig. 3a). 374 

The 12 ppm differences in CO2 concentrations lead to a change of 0.12 Pg C yr-1 (1.7%) 375 
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in GPP. This sensitivity of GPP to CO2, 0.14% ppm-1, falls within the range of 0.05-382 

0.21% ppm−1 as predicted by 10 terrestrial models (Piao et al., 2013) and that of 0.01-383 

0.32% ppm−1 as observed from multiple free-air CO2 enrichment (FACE) sites 384 

(Ainsworth and Long, 2005). The higher ∆GPP in RCP2.6 instead yields a weakened 385 

NEE (more positive) due to the CO2 effects (Fig. 6b). The stabilization of CO2 386 

concentrations in this scenario (Fig. 3a) results in a stabilized GPP after the year 2040 387 

(Fig. S7a). Meanwhile, the 55-year (from 2005 to 2060) carbon accumulation enhances 388 

soil carbon storage by 10.5±1.3 Pg C and promotes soil respiration to 0.71±0.19 Pg C 389 

yr-1. The stabilized GPP while enhanced soil respiration (NEE = Reco – GPP, Reco 390 

includes both soil and plant respiration) together lead to a weakened carbon sink (less 391 

negative NEE) by 1.5°C warming period (Fig. 7b). In contrast, soil carbon storage 392 

increases only 5.2±0.5 Pg C in RCP8.5 due to relatively short time period (from 2005 393 

to 2031) for carbon accumulation, leading to lower soil respiration of 0.41±0.15 Pg C 394 

yr-1 in the fast warming pathway. The continuous increase of GPP and lower soil 395 

respiration jointly strengthen the land carbon sink (more negative NEE) in China by 0.1 396 

Pg C yr-1 under RCP8.5 scenario (Fig. 6a). 397 

 398 

Ozone (O3) damages plant photosynthesis and the land carbon sink (Sitch et al., 399 

2007;Yue and Unger, 2018). In the present day, O3 decreases GPP by 6.7±2.6% 400 

(uncertainties ranging from low to high damaging sensitivities) in China (Fig. 7d), 401 

because of the direct inhibition of photosynthesis by 6±2.4% (Fig. 7a) and the 402 

consequent reduction of 1.8±0.8% in leaf area index (LAI, Fig. 7g). For 1.5°C global 403 

warming, this weakening effect shows opposite tendencies in the two RCP scenarios, 404 

with a reduced GPP loss of 4.7±2.0% in RCP2.6 (Fig. 7e) but an increased loss of 405 

7.9±3.0% in RCP8.5 (Fig. 7f). These impacts are predominantly driven by the 406 

variations of surface O3 concentrations in the two scenarios, as predicted O3 at 1.5°C 407 

warming decreases by 15.2% in the low emission pathway but increases by 15.7% in 408 

the high emission pathway (Fig. 3b). Consequently, changes in O3 help increase GPP 409 

by 0.1±0.03 Pg C yr-1 in RCP2.6 but decrease GPP by 0.14±0.04 Pg C yr-1 in RCP8.5 410 

for the same 1.5°C warming. Following the benefits to GPP, the lower O3 decreases 411 
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NEE (strengthens the sink) by 0.06±0.02 Pg C yr-1 in RCP2.6, offsetting more than half 422 

of the negative effect (weakens the sink) from CO2 (Fig. 6b). For RCP8.5, O3 impacts 423 

make limited contributions to ∆NEE.  424 

 425 

Changes in meteorology account for the rest of the perturbations in the carbon fluxes. 426 

At the global warming of 1.5°C, temperature in China increases by 0.90°C for RCP2.6 427 

and 0.91°C for RCP8.5 (Figs. S12a-S12b) compared to present-day climate. The spatial 428 

pattern of these changes is very similar without significant differences (Fig. S12c), 429 

leading to almost identical GPP responses (Figs. S8d and S9d). Generally, higher 430 

temperature is not beneficial for plant photosynthesis at low latitudes (Piao et al., 2013), 431 

where regional summer climate is already warmer than the optimal temperature 432 

threshold for leaf photosynthesis (Corlett, 2011). As a result, warming leads to negative 433 

changes in GPP over the East. Surface specific humidity exhibits widespread 434 

enhancement in eastern China (Figs. S13a-S13b). Air humidity may rise in a warmer 435 

climate because the corresponding enhancement of saturation pressure allow 436 

atmosphere to hold more water vapor. On average, surface specific humidity increases 437 

by 0.34 g kg-1 in RCP2.6 and 0.31 g kg-1 in RCP8.5, leading to a promotion of GPP by 438 

0.14 Pg C yr-1 in the former and a similar value of 0.12 Pg C yr-1 in the latter (Figs. S8e 439 

and S9e). Precipitation increases by 0.14 mm day-1 (4.6%) over eastern China in 440 

RCP2.6 but decreases by 0.03 mm day-1 (1.2%) in RCP8.5 (Figs. S12d-S12e), leading 441 

to higher soil moisture in eastern China for RCP2.6 (Figs. S13d-S13e). Nevertheless, 442 

most of vegetation in eastern China is not water stressed, leaving moderate GPP 443 

responses to soil moisture changes in both RCP scenarios (Figs. S8f and S9f). 444 

 445 

For the RCP2.6 scenario, the net effect of climate change causes an increase of 0.15 Pg 446 

C yr-1 in GPP with a range from -0.54 to 0.62 Pg C yr-1 (Fig. 6a). Such large variability 447 

in ∆GPP is related to the uncertainties in meteorology from different climate models. 448 

For RCP8.5, climate-induced GPP change is only 0.04 Pg C yr-1 with a range from -0.6 449 

to 0.26 Pg C yr-1. The discrepancy of ∆GPP for the two pathways is mainly caused by 450 

the different radiation impacts, which enhance GPP by 0.2 Pg C yr-1 in RCP2.6 but only 451 
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0.11 Pg C yr-1 in RCP8.5 (Fig. 6a). Photosynthetically active radiation (PAR) is higher 463 

by 2.8 W m-2 in RCP2.6 than in RCP8.5 (Fig. 3c). The distinct changes in radiation are 464 

related to aerosol radiative effects, because global analyses also show radiation 465 

enhancement in regions (e.g., U.S. and Europe) with aerosol removal (Fig. S14). The 466 

lower AOD in RCP2.6 helps increase solar insolation at surface by reducing light 467 

extinction (Yu et al., 2006), and promote precipitation with weaker aerosol semi-direct 468 

and indirect effects (Lohmann and Feichter, 2005). Although lower aerosols in RCP2.6 469 

slightly decrease diffuse radiation (Fig. 3d), which is more efficient in increasing 470 

photosynthesis (Mercado et al., 2009;Yue and Unger, 2018), the overall enhancement 471 

in total radiation helps boost GPP. Climate-induced ΔNEE is -0.02 Pg C yr-1 472 

(strengthened sink) for both pathways (Fig. 6b), resulting from comparable responses 473 

of NEE to changes in radiation (R=0.82), temperature (R=0.71), air humidity (R=0.91), 474 

and soil moisture (R=0.73) between the two pathways (Figs. S10 and S11).  475 

 476 

3.4 Impacts on allowable carbon budget 477 

For a warming target of 1.5°C, our analyses suggest that a simultaneous reduction of 478 

CO2 and air pollution emissions enhances the efficiency of land carbon uptake 479 

compared to a pathway without air pollution emission control. The increased light 480 

availability from aerosol removal and decreased surface O3 jointly promote GPP in 481 

China by 0.3 Pg C yr-1, equivalent to 36% of the CO2 fertilization. In contrast, air 482 

pollution results in a net GPP inhibition of 0.03 Pg C yr-1 under the high emission 483 

pathway, suggesting a detrimental environment for plant health. Compared to RCP8.5, 484 

the timing of 1.5°C warming is delayed by 30 years in RCP2.6, leading to weaker 485 

carbon sink in the latter. However, even with the longer period of accumulation, the 486 

total carbon loss by O3 damage is smaller by 3-16% in RCP2.6 relative to RCP8.5 at 487 

the same warming level (Fig. 8a).  488 

 489 

The slow warming increases the allowable cumulative anthropogenic carbon emissions. 490 

Assuming China’s carbon emission fraction of 27% of the world (the level at year 2017) 491 

(Le Quere et al., 2018), the total national emissions allowed are 80.4 Pg C in RCP2.6 492 
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and 71.9 Pg C in RCP8.5 from the year 2010 to the 1.5°C warming, following the global 498 

emission rates defined for these scenarios. The ensemble simulations show that 499 

ecosystems in China help mitigate 8.5±1.1 Pg C in RCP2.6 and 4.5±0.6 Pg C in RCP8.5 500 

(Fig. 8b). Sensitivity experiments with either reduced CO2 (but retain high pollution) 501 

or reduced pollution (but retain high CO2) reveal land carbon uptakes of 7.3±0.9 Pg C 502 

and 5.0±0.6 Pg C, respectively. These values are both lower than that in RCP2.6, 503 

suggesting that simultaneous control of carbon and air pollution emissions can 504 

maximize the mitigation potential of ecosystems. The higher ecosystem assimilation 505 

rate in a low emission pathway (10.6±1.4% in RCP2.6 vs. 6.3±0.8% in RCP8.5) over 506 

China, which is not considered in CMIP5 models, further buffers the pace to the global 507 

warming of 1.5°C.  508 

 509 

4 Discussion and conclusions 510 

Projection of future ecosystem productivity is subject to uncertainties in climate forcing 511 

and biophysical responses. The multi-model ensemble is a good approach to reduce the 512 

uncertainty in climate (Flato et al., 2013). In this study, we employ daily meteorology 513 

from 7 CMIP5 models. A comparison with more CMIP5 models is performed (not 514 

shown) and confirms that the changes in meteorology from the 7 selected climate 515 

models are robust and representative of future projections. As for ecosystem responses, 516 

future projections generally showed increasing GPP in China (Mu et al., 2008;Ji et al., 517 

2008;Ju et al., 2007), however, climate change alone usually reduces productivity by 518 

inducing hot and drought weather conditions. In contrast, the YIBs simulations reveal 519 

a net positive effect of climate change on GPP though with large uncertainties (Fig. 6a). 520 

Such discrepancies are related to structural uncertainties across different vegetation 521 

models. Evaluations suggest that biophysical responses to environmental forcings in 522 

the YIBs model are generally reasonable as compared to the TRENDY ensemble (Fig. 523 

4). 524 

 525 

The YIBs simulations do not consider nitrogen cycle and its limitation on carbon uptake. 526 

Inter-model comparisons show that models without nutrient constraints tend to 527 
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overestimate GPP responses to CO2 fertilization (Smith et al., 2016). As a result, the 529 

difference of CO2 contributions in RCP scenarios would be smaller than predicted (Fig. 530 

6a), suggesting that GPP enhancement in RCP2.6 might be even higher than RCP8.5 if 531 

nitrogen cycle is included. In contrast, nitrogen deposition in RCP2.6 would be much 532 

smaller than that in RCP8.5 due to emission control (Fig. S5), leading to lower nitrogen 533 

supply for ecosystem in the former scenario. Consequently, plant photosynthesis is 534 

confronted with stronger nutrient limit in RCP2.6 than that in RCP8.5, resulting in 535 

lower CO2 fertilization efficiency in the former scenario. The net effect of nitrogen 536 

cycle on land carbon cycle is very uncertain (Zaehle et al., 2014;Huntzinger et al., 537 

2017;Xiao et al., 2015).  538 

 539 

For a warming target of 1.5°C, our analyses suggest that an associated reduction of CO2 540 

and pollution emissions brings more benefits to ecosystems in China than a pathway 541 

without emission control. The slow changes of temperature and other environmental 542 

variables due to slow growth of CO2 are helpful for plant adaptation and limit biome 543 

shift (Warszawski et al., 2013), and the lower O3 and higher solar radiation from aerosol 544 

removal increase plant photosynthesis. Consequently, China’s ecosystems mitigate 545 

10.6±1.4% of national emissions in the stabilized pathway, more efficient than the 546 

fraction of 6.3±0.8% in the transient pathway, leaving more allowable carbon budget 547 

for economic development and upgrade.  548 

  549 
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 760 

 761 

Figure 1. Evaluation of surface O3 with site-level observations. Simulations are ensemble (a) mean 762 

and (d) daily maximum 8-hour average (MDA8) O3 for the period of 2005-2015 from 12 ACCMIP 763 

models. Observations (b and e) are the average during 2015-2018 from 1580 sites operated by 764 

Ministry of Ecology and Environment, China. The correlation coefficients (r), relative biases (b), 765 

and number of sites (n, excluding data-missing sites) are shown in the scatter plots (c and f). The 766 

blue points in the scatter plots represent sites located within the box regions in eastern China as 767 

shown in (a). The dashed line represents the 1:1 ratio. The red line is the linear regression between 768 

simulations and observations.  769 

 770 

  771 

 
(a)  Simulated summer  mean O3

 20oN

30oN

40oN

50oN
 

 75oE 90oE 105oE 120oE 135oE

 

       10 20 30 40 50 60 70

 
(b)  Observed  summer  mean O3

 75oE 90oE 105oE 120oE 135oE

 

       10 20 30 40 50 60 70

(c)   mean O3

10 30 50 70
Observations

10

30

50

70

Si
m

ul
at

io
ns

r =  0.80
b =  25.0%
n = 1561

 
(d)  Simulated summer  MDA8 O3

 20oN

30oN

40oN

50oN
 

 75oE 90oE 105oE 120oE 135oE

 

       20 30 40 50 60 70 80

 
(e)  Observed  summer  MDA8 O3

 75oE 90oE 105oE 120oE 135oE

 

       20 30 40 50 60 70 80

(f)   MDA8 O3

10 37 63 90
Observations

10

37

63

90

Si
m

ul
at

io
ns

r =  0.78
b =  10.0%
n = 1561



24 
 

 772 

Figure 2. Evaluation of radiation fluxes with site-level observations. Simulations are surface (a) 773 

total shortwave radiation (W m-2) and (d) diffuse radiation derived with method M01 (Table S4) for 774 

the period of 2005-2015 from an ensemble of 7 CMIP5 climate models. Observations (b and e) are 775 

the average during 2009-2011 from 106 sites operated by the Climate Data Center, Chinese 776 

Meteorological Administration. The correlation coefficients (r), relative biases (b), and number of 777 

sites (n, excluding data-missing sites) are shown in the scatter plots (c and f). The blue points in the 778 

scatter plots represent sites located within the box regions in eastern China as shown in (a). The 779 

dashed line represents the 1:1 ratio. The red line is the linear regression between simulations and 780 

observations.  781 
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 784 

 785 

 786 
 787 

Figure 3. Changes in atmospheric compositions and radiation. Results shown are 788 

projected future (a) global CO2 concentrations, and (b) surface O3 concentrations, (c) 789 

total Photosynthetically Active Radiation (PAR), and (d) diffuse PAR at growth season 790 

in China. The average (a) CO2 concentrations at the global warming of 1.5°C are 442 791 

ppm for RCP2.6 scenario (blue, 2050-2070) and 454 ppm for RCP8.5 scenario (red, 792 

2021-2041). The (b) O3 concentrations are averaged over east of 110ºE in China from 793 

12 ACCMIP models for RCP2.6 (blue) and RCP8.5 (red) scenarios. Each dot represents 794 

the value averaged for May to September from a chemistry model. The (c-d) PAR 795 

values are averaged over China from 7 CMIP5 models for RCP2.6 (blue) and RCP8.5 796 

(red) scenarios. Diffuse PAR is calculated using hourly total PAR and solar zenith angle 797 

based on the parameterization M01. Each dot represents the value averaged for May to 798 

September from a climate model. For each selected year in (b-d), a period of 11 years 799 

(5 years before and 5 years after) is used to derive the decadal mean values. 800 
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 804 

 805 

 806 

Figure 4. Historical carbon fluxes in China. Results shown are simulated (a) gross 807 

primary productivity (GPP) and (b) net ecosystem exchange (NEE) during historical 808 

period (1901-2016) using YIBs model (blue), and the comparison with predictions of 809 

14 terrestrial models from TRENDY project (red). The bold lines are ensemble means 810 

with red shadings for inter-vegetation-model uncertainties and blue shadings for inter-811 

climate-model uncertainties. All YIBs simulations are driven with daily meteorology 812 

from CMIP5 models. All TRENDY simulations are driven with CRUNCEP 813 

meteorology. The black line in (a) represents benchmark results of 1980-2011 from 814 

Jung et al. (2009). The black point with error bar in (b) represents the synthesis of 815 

ground- and model-based estimate of NEE in China by Piao et al. (2009). 816 
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 821 

 822 

 823 

Figure 5. Changes in carbon fluxes by global warming of 1.5ºC. Results shown are 824 

simulated (top) GPP and (bottom) NEE over China between the period of global 825 

warming of 1.5ºC and present day (1995-2015) under (left) RCP2.6 scenario, (middle) 826 

RCP8.5 scenario, and (right) their differences. The period of global warming of 1.5 ºC 827 

is set to 2050-2070 for RCP2.6 and 2021-2041 for RCP8.5. Simulations are performed 828 

using YIBs vegetation model driven with daily meteorology from 7 CMIP5 models. 829 

The O3 damaging effect is included with predicted ensemble O3 concentrations from 12 830 

ACCMIP models. For each grid, significant changes at p<0.05 are marked with dots. 831 

The total changes (Pg C yr-1) over China are shown in each panel.  832 
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 834 

Figure 6. Attribution of changes in GPP and NEE to individual driving factors. Results 835 

shown are the predicted GPP changes in China between the period of global warming 836 

of 1.5ºC and present day (1995-2015) caused by all (ALL) or individual driving factors, 837 

including CO2 fertilization, O3 damaging, and meteorological changes (MET). The 838 

perturbations by meteorology is a combination of those by temperature (T), radiation 839 

(RAD), specific humidity (Q), and soil moisture (SOILM). The contrast is shown 840 

between the scenarios of RCP2.6 (blue, 2050-2070) and RCP8.5 (red, 2021-2041). The 841 

error bars indicate uncertainties of YIBs simulations using different future meteorology 842 

from 7 CMIP5 models.  843 
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 848 
Figure 7. Damaging effects of O3 to photosynthesis and plant growth. Results shown are ensemble 849 

mean changes in (top) offline GPP, (middle) online GPP, and (bottom) leaf area index (LAI) caused 850 

by O3 at (left) present day (1995-2015) and 1.5°C warming under (middle) RCP.6 (2050-2070) and 851 

(right) RCP8.5 (2021-2041) scenarios. The simulations are performed with YIBs vegetation model 852 

driven with meteorology from 7 CMIP5 models and hourly ozone derived from 12 ACCMIP models. 853 

The damaging effect is averaged for high and low O3 sensitivities. For each grid, significant changes 854 

at p<0.05 are marked with dots. The mean changes over China are shown in each panel. 855 
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 857 

 858 

Figure 8. Accumulated carbon budget in China by 1.5ºC global warming. The top panel 859 

shows the total carbon loss of ecosystems caused by O3 damaging effects at different 860 

warming thresholds for two emission pathways. The bottom panel shows the 861 

accumulated net carbon sink by ecosystems in China at the 1.5ºC global warming. The 862 

two solid lines represent emissions of CO2 and pollutants from the same scenario, either 863 

RCP2.6 (blue) or RCP8.5 (red). The dashed lines represent sensitivity experiments with 864 

inconsistent CO2 and pollutants, with the blue (red) line driven with CO2 from RCP2.6 865 

(RCP8.5) but air pollution from RCP8.5 (RCP2.6). The warming of 1.0 ºC is the year 866 

2010 for both RCP2.6 and RCP8.5 scenarios.  867 
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