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Highlights  20 

 Nitrogen-containing organics (NOCs) were highly internally mixed with photochemically 21 

produced secondary oxidized organics 22 

 NOCs could be well predicted by the variations of these oxidized organics and ammonium 23 

 Higher relative humidity and NOx may facilitate the conversion of these oxidized organics 24 

to NOCs 25 



 

3 
 

Abstract 26 

Nitrogen-containing organic compounds (NOCs) substantially contribute to light-27 

absorbing organic aerosols, although the atmospheric processes responsible for the secondary 28 

formation of these compounds are poorly understood. In this study, seasonal atmospheric 29 

processing of NOCs was investigated by single-particle mass spectrometry in urban Guangzhou 30 

from 2013-2014. The relative abundance of NOCs is found to be strongly enhanced when 31 

internally mixed with the photochemically produced secondary oxidized organics (i.e., formate, 32 

acetate, pyruvate, methylglyoxal, glyoxylate, oxalate, malonate, and succinate) and ammonium. 33 

Besides, both the hourly detected particle number and relative abundance of NOCs are highly 34 

correlated with those of secondary oxidized organics and ammonium. It is therefore 35 

hypothesized that secondary formation of NOCs most likely links to the oxidized organics and 36 

ammonium. Results from both multiple linear regression analysis and positive matrix 37 

factorization analysis further show that the relative abundance of NOCs could be well predicted 38 

(R2 > 0.7, p < 0.01) by the oxidized organics and ammonium.  39 

Interestingly, the relative abundance of NOCs is inversely correlated with ammonium, 40 

whereas their number fractions are positively correlated. This result suggests that although the 41 

formation of NOCs does require the involvement of NH3/NH
+ 

4 , the relative amount of 42 

ammonium may have a negative effect. Higher humidity and NOx likely facilitate the 43 

conversion of oxidized organics to NOCs. Due to the relatively high oxidized organics and 44 

NH3/NH
+ 

4 , the relative contributions of NOCs in summer and autumn were higher than those in 45 

spring and winter. To the best of our knowledge, this is the first direct field observation study 46 



 

4 
 

reporting a close association between NOCs and both oxidized organics and ammonium. These 47 

findings have substantial implications for the role of ammonium in the atmosphere, particularly 48 

in models that predict the evolution and deposition of NOCs. 49 

 50 

Keywords: nitrogen-containing organic compounds, individual particles, oxidized organics, 51 

ammonium, mixing state, single-particle mass spectrometry 52 
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53 

1 Introduction 54 

Organic aerosols that strongly absorb solar radiation are referred to as brown carbon 55 

(BrC). BrC has a comparable level of light absorption in the spectral range of near-ultraviolet 56 

(UV) light as black carbon (Andreae and Gelencser, 2006; Feng et al., 2013; Yan et al., 57 

2018). Nitrogen-containing organic compounds (NOCs) substantially contribute to the pool 58 

of BrC (Mohr et al., 2013; Li et al., 2019), and have a significant effect on atmospheric 59 

chemistry, human health and climate forcing (Kanakidou et al., 2005; Shrivastava et al., 60 

2017; De Gouw and Jimenez, 2009). The particulate organic nitrogen accounts for a large 61 

fraction of total airborne nitrogen (~30%), although the proportion exhibits a high variability 62 

temporally and spatially, and therefore has an influence on both regional and global N 63 

deposition (Neff et al., 2002; Shi et al., 2010; Cape et al., 2011). However, the sources, 64 

evolution, and optical properties of NOCs remain unclear and contribute significantly to 65 

uncertainties in the estimation of their impacts on the environment and climate (Laskin et al., 66 

2015). 67 

NOCs are ubiquitous components of atmospheric aerosols, cloud water and rainwater 68 

(Altieri et al., 2009; Desyaterik et al., 2013; Laskin et al., 2015), spanning a wide range of 69 

molecular weights, structures and light absorption properties (Lin et al., 2016). Emissions of 70 

primary NOCs have been attributed to biomass burning, coal combustion, vehicle emissions, 71 

biogenic production and soil dust (Laskin et al., 2009; Desyaterik et al., 2013; Sun et al., 72 

2017; Mace et al., 2003; Rastogi et al., 2011; Wang et al., 2017). Secondary NOCs, such as 73 
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organic nitrates and nitroaromatic compounds, are believed to be mainly formed in the gas-74 

phase by interaction between volatile organic compounds and oxidations (e.g., NOx, ·OH), 75 

followed by condensation to aerosols (Ziemann and Atkinson, 2012; Seinfeld and Pandis, 76 

2006). Recently, another type of secondary NOCs, or heterocyclic NOCs, formed by 77 

reactions involving mixtures of atmospheric aldehydes (e.g., methylglyoxal/glyoxal) and 78 

ammonium/amines are of particular interest (e.g., Hawkins et al., 2016; De Haan et al., 2017; 79 

De Haan et al., 2011). A significant portion of heterocyclic NOCs may also be derived from 80 

the heterogeneous ageing of secondary organic aerosol (SOA) with NH3/NH
+ 

4  (Liu et al., 81 

2015; Laskin et al., 2015). Huang et al. (2017) proposed that even trace levels of ammonia 82 

may be sufficient to form heterocyclic NOCs via this pathway. However, these pathways 83 

have not been confirmed with ambient data and the relative contribution of heterocyclic 84 

NOCs is still uncertain, although they are likely to be minor (at a level of several ng m–3) in 85 

abundance (Teich et al., 2016). 86 

The secondary formation of NOCs is especially prevalent in environments experiencing 87 

high anthropogenic emissions (Yu et al., 2017; Ho et al., 2015), although further studies are 88 

required to establish the formation mechanisms comprehensively. A major obstacle is that 89 

organic and inorganic matrix effects have a profound impact on the chemistry of organic 90 

compounds in bulk aqueous particles and particles undergoing drying (El-Sayed et al., 2015; 91 

Lee et al., 2013). While real-time characterization studies remain a challenge due to the 92 

extremely complex chemical nature of NOCs, establishing this data along with the co-93 

variation of NOCs with other chemical components would help to identify the sources and 94 
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evolution of NOCs. Using single-particle aerosol time-of-flight mass spectrometry, Wang et 95 

al. (2010) observed that the widespread occurrence of NOCs closely correlated with particle 96 

acidity in the atmosphere of Shanghai (China). In addition, real-time measurements of the 97 

atmosphere in New York (US) by aerosol mass spectrometry indicated a definite link 98 

between the age of organic species and the N/C ratio (Sun et al., 2011). Further in-depth 99 

studies are required to identify the role of formation conditions (e.g., relative humidity (RH) 100 

and pH) for secondary NOCs (Nguyen et al., 2012; Sedehi et al., 2013; Ortiz-Montalvo et 101 

al., 2014). In the present study, the mixing state of individual particles was investigated, 102 

involving NOCs, oxidized organics, and ammonium, based on on-line seasonal observations 103 

using a single particle aerosol mass spectrometry (SPAMS). Our findings show that the 104 

formation of NOCs is significantly linked to oxidized organics and NH
+ 

4 , which has 105 

important environmental implications for assessing the impact and fate of these compounds. 106 

 107 

2 Methods 108 

2.1 Field measurements 109 

Sampling was done at the Guangzhou Institute of Geochemistry, a representative urban 110 

site in Guangzhou (China), a megacity in the Pearl River Delta (PRD) region. The size and 111 

chemical composition of individual particles were obtained by the SPAMS (Hexin 112 

Analytical Instrument Co., Ltd., China) in real-time (Li et al., 2011). The sampling inlet for 113 

aerosol characterization was situated 40 meters above the ground level. A brief description 114 

of the performance of the SPAMS and other instruments can be found in the Supporting 115 
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Information. The sampling periods covered four seasons, including spring (21/02 to 11/04 116 

2014), summer (13/06 to 16/07 2013), autumn (26/09 to 19/10 2013), and winter (15/12 to 117 

25/12 2013). The total measured particle numbers and mean values for meteorological data 118 

and gaseous pollutants, are outlined for each season in Table S1 and were described in a 119 

previous publication (Zhang et al., 2019). 120 

 121 

2.2 SPAMS data analysis 122 

Fragments of NOCs were identified according to the detection of ion peaks at m/z -26 123 

[CN]- or m/z -42 [CNO]-, generally due to the presence of C-N bonds (Silva and Prather, 124 

2000; Zawadowicz et al., 2017; Pagels et al., 2013). Laboratory produced C-N bonds 125 

compounds from bulk solution-phase reactions between the representative oxidized organics 126 

(i.e., methylglyoxal) and ammonium sulfate was used to confirm the generation of ion peaks 127 

at m/z -26 [CN]- and/or m/z -42 [CNO]- using SPAMS (Fig. S1). Thus, the NOCs herein may 128 

refer to complex nitrated organics such as organic nitrates, nitro-aromatics, nitrogen 129 

heterocycles, and polyphenols. Unfortunately, how well [CN]- / [CNO]- ions could represent 130 

NOCs cannot be quantified, although they were the most commonly reported NOCs peaks 131 

by single-particle mass spectrometry (Silva and Prather, 2000; Zawadowicz et al., 2017; 132 

Pagels et al., 2013). In the present study, [CN]- / [CNO]- ions are among the major peaks 133 

detected by the SPAMS (Fig. 1). A rough estimate from the peak area ratio of [CN]- / [CNO]- 134 

ions and the most likely NOCs fragments (i.e., various amines, and an entire series of 135 

nitrogen-containing cluster ions CnN
-, n = 1, 2, 3, …) (Silva and Prather, 2000) shows that 136 
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[CN]- / [CNO]- ions may represent more than 90% of these NOCs peaks. The number 137 

fractions (Nfs) of particles that contained NOCs ranged from 56-59% across all four seasons 138 

(Table S1). The number of detected NOC-containing particles as a function of their vacuum 139 

aerodynamic diameter (dva) is shown in Fig. S2. Most of the detected NOC-containing 140 

particles had a dva in a range of 300-1200 nm. 141 

A representative mass spectrum for NOC-containing particles is shown in Fig. 1. 142 

Dominant peaks in the mass spectrum were m/z 39 [K]+, m/z 23 [Na]+, nitrate (m/z -62 [NO3]
- 143 

or m/z -46 [NO2]
-), sulfate (m/z -97 [HSO4]

-), organics (m/z 27 [C2H3]
+, m/z 63 [C5H3]

+, m/z 144 

-42 [CNO]-, m/z -26 [CN]-), ammonium (m/z 18 [NH4]
+) and carbon ion clusters (C

+/- 

n , n = 1, 145 

2, 3,…). NOC-containing particles were internally mixed with various oxidized organics, 146 

represented as formate at m/z -45 [HCO2]
-, acetate at m/z -59 [CH3CO2]

-, methylglyoxal at 147 

m/z -71 [C3H3O2]
-, glyoxylate at m/z -73 [C2HO3]

-, pyruvate at m/z -87 [C3H3O3]
-, malonate 148 

at m/z -103 [C3H3O4]
- and succinate at m/z -117 [C4H5O4]

- (Zhang et al., 2017; Zauscher et 149 

al., 2013; Lee et al., 2003). These oxidized organics showed their pronounced diurnal trends 150 

with afternoon maximum and were highly correlated (r = 0.72 - 0.94, p < 0.01) with each 151 

other. Therefore, they were primarily attributed to secondary oxidized organics from 152 

photochemical oxidation of various volatile organic compounds (VOCs) (Paulot et al., 2011; 153 

Zhao et al., 2012; Ho et al., 2011), and the details can be found in our previous publication 154 

(Zhang et al., 2019). More information on the seasonal variation range of the Nfs of oxidized 155 

organics, ammonium and NOCs is presented in Fig. S3. 156 
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Hourly mean Nfs and relative peak areas were applied herein to indicate the variations 157 

of aerosol compositions in individual particles. Even though advances have been made in 158 

the quantification of specific chemical species for individual particles based on their 159 

respective peak area information, it is still quite a challenge for SPAMS to provide 160 

quantitative information on aerosol components mainly due to matrix effects, incomplete 161 

ionization and so forth (Qin et al., 2006; Jeong et al., 2011; Healy et al., 2013; Zhou et al., 162 

2016). Despite this, the variation of relative peak area should be a good indicator for the 163 

investigation of atmospheric processing of various species in individual particles (Wang et 164 

al., 2010; Zauscher et al., 2013; Sullivan and Prather, 2007; Zhang et al., 2014).  165 

 166 

3 Results and Discussion 167 

3.1 Evidence for the formation of NOCs from oxidized organics and ammonium 168 

Figure 2 shows the seasonal variations in Nfs of the oxidized organics and ammonium, 169 

which were internally mixed with NOCs. On average, more than 90% of the oxidized 170 

organics and 65% of ammonium (except spring) were found to be internally mixed with 171 

NOCs (Fig. S4). Regarding that the Nfs of NOCs relative to all the measured particles was 172 

~60%, it could be concluded that NOCs were enhanced with the presence of oxidized 173 

organics and ammonium, with the enhancement associated with oxidized organics being the 174 

most pronounced.  175 

A strong correlation between both the Nfs and relative peak areas (RPAs) of NOCs and 176 

oxidized organics further demonstrates their close associations, as shown in Fig. 3. 177 
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Compared with the oxidized organics, the Nfs of ammonium-containing particles internally 178 

mixed with NOCs varied within a broader range (~40-90%). However, there is still an 179 

enhancement mixing of NOCs with ammonium. A positive correlation (R2 = 0.50, p < 0.01) 180 

is observed between the hourly detected number of NOCs and ammonium. It is worth noting 181 

that a negative correlation (R2 = 0.55, p < 0.01) is obtained between the hourly average RPAs 182 

of NOCs and ammonium (Fig. 3).  183 

Based on both the enhancement of NOCs and the high correlations with oxidized 184 

organics and ammonium, it is hypothesized that interactions between oxidized organics and 185 

ammonium contributed to the observed NOCs. The formation of NOCs from ammonium 186 

and carbonyls has been confirmed in several laboratory studies (Sareen et al., 2010; Shapiro 187 

et al., 2009; Noziere et al., 2009; Kampf et al., 2016; Galloway et al., 2009). Secondary 188 

organic aerosols (SOA) produced from a large group of biogenic and anthropogenic VOCs 189 

can be further aged by NH3/NH
+ 

4  to generate NOCs (Nguyen et al., 2012; Bones et al., 2010; 190 

Updyke et al., 2012; Liu et al., 2015; Huang et al., 2017). In a chamber study, the formation 191 

of NOCs is enhanced in an NH3-rich environment (Chu et al., 2016). While such chemical 192 

mechanisms might be complicated, the initial steps generally involve reactions forming 193 

imines and amines, which can further react with carbonyl SOA compounds to form more 194 

complex products (e.g., oligomers/BrC) (Laskin et al., 2015).  195 

To verify this hypothesis, multiple linear regression analysis is performed to test how 196 

well the RPAs of NOCs could be predicted by the oxidized organics and ammonium. As 197 

expected, there is a close association (R2 = 0.71, p < 0.01) between the predicted RPAs and 198 
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the observed values of NOCs (Fig. 4), which supports this hypothesis. A noticeable 199 

improvement in R2 implies that a model that uses both oxidized organics and ammonium to 200 

predict RPAs of NOCs is substantially better than one that uses only one predictor (either 201 

oxidized organics or ammonium in Fig. 3). The result indicates that interactions involving 202 

oxidized organics and ammonium could explain over half of the observed variations in 203 

NOCs in the atmosphere of Guangzhou. A fraction of the unaccounted NOCs could be due 204 

to primary emissions and other formation pathways. This hypothesis could also be supported 205 

by a similar pattern of diurnal variation observed for NOCs and oxidized organics (Fig. S5), 206 

although there is a slight lag for the NOCs. Such a diurnal pattern is similar to those observed 207 

in Beijing and Uintah (Yuan et al., 2016; Zhang et al., 2015). Notably, such a diurnal pattern 208 

of secondary NOCs is adequately modelled when the production of NOCs via carbonyls and 209 

ammonium is included (Woo et al., 2013). In addition to possible photo-bleaching (Zhao et 210 

al., 2015), the lower contribution of NOCs during the daytime may be partly explained by 211 

the lower RH, as discussed in section 3.2. 212 

Interestingly, the relationship between NOCs and ammonium is distinctly different from 213 

the relationship between NOCs and oxidized organics (Fig. 3). This implies that the 214 

controlling factors on the formation of NOCs from ammonium are different from oxidized 215 

organics. On the one hand, the positive correlation between the detected numbers reflects 216 

that the formation of NOCs does require the participant of NH3/NH
+ 

4 , consistent with the 217 

enhancement of NOCs in ammonium-containing particles (Fig. 2) discussed above. On the 218 

other hand, the negative correlation between the RPAs signifies that the formation of NOCs 219 
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is most probably influenced by the relative amount of ammonium in individual particles. 220 

Such influence could also be supported by our data, both from filter samples and individual 221 

particle analysis. There is a negative correlation between concentrations of WSON and NH222 

+ 

4  for the filter samples (Fig. S6). It can be seen from Fig. S7 that lower RPAs of ammonium 223 

correspond to higher Nfs of ammonium that internally mixed with NOCs. Such an inverse 224 

correlation could also serve as evidence to explain the influence of the relative amount of 225 

ammonium on the formation of NOCs.  226 

The influence of relative ammonium amount on the formation of NOCs is also 227 

theoretically possible since the formation of NOCs may be affected by particle acidity 228 

(Miyazaki et al., 2014; Nguyen et al., 2012), which is substantially affected by the abundance 229 

of ammonium. Consistently, higher relative acidity was observed for the internally mixed 230 

ammonium and NOCs particles, compared to ammonium-containing particles without NOCs 231 

(Fig. S6) and thus may influence the formation of NOCs (Fig. S7).  Particle acidity could 232 

also play a significant role in the gas-to-particle partitioning of aldehydes (Herrmann et al., 233 

2015; Liggio et al., 2005; Gen et al., 2018; De Haan et al., 2018; Kroll et al., 2005), 234 

precursors for the formation of oxidized organics. However, the higher relative acidity might 235 

also be a result of NOCs formation. A model simulation shows that after including the 236 

chemistry of SOA ageing with NH3, an increase in aerosol acidity would be expected due to 237 

the reduction in ammonium (Zhu et al., 2018). It is also noted that the particle acidity is 238 

roughly estimated by the relative abundance of ammonium, nitrate, and sulfate in individual 239 

particles (Denkenberger et al., 2007), and thus may not be representative of actual aerosol 240 
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acidity or pH (Guo et al., 2015; Hennigan et al., 2015; Murphy et al., 2017). In addition, 241 

ammonia in the gas phase is also efficient at producing NOCs (Nguyen et al., 2012), which 242 

may play an intricate role in the distribution of ammonium and NOCs in the particulate phase. 243 

The formation of ammonium and NOCs would compete for ammonia, which may also 244 

potentially result in the negative correlation between the RPAs of NOCs and ammonium. 245 

Unfortunately, such a role remains unclear since the variations of ammonia were not 246 

available in the present study. 247 

  248 

3.2 Factors contributing to the NOCs resolved by positive matrix factorization (PMF) 249 

analysis 250 

Figure 5 presents the PMF factor profiles obtained from the PMF model analysis 251 

(detailed information is provided in the SI) (Norris et al., 2009) and their diurnal variations. 252 

Around 75% of NOCs could be well explained by two factors, with 33% of the PMF resolved 253 

NOCs mainly associated with ammonium and carbonaceous ion peaks (ammonium factor), 254 

while 59% were mainly associated with oxidized organics (oxidized organics factor). The 255 

explained fraction of NOCs by the ammonium and oxidized organic factors is consistent 256 

with the linear regression analysis. Furthermore, PMF analysis provided information on the 257 

factor contribution and diurnal variations, which may help explain the seasonal variations 258 

and processes of NOCs. The ammonium factor showed a diurnal variation pattern peaking 259 

during the early morning, which is consistent with the diurnal variation in RH (Zhang et al., 260 

2019). This factor contributed to ~80% (Fig. S8) of the PMF resolved NOCs during spring 261 
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with the highest RH (Table S1), whereas the oxidized organics factor dominated (> 80%) in 262 

summer and fall. In winter, these two factors similarly contributed (~40%). Variation of the 263 

ammonium factor may reflect a potential role of aqueous pathways in the formation of NOCs, 264 

particularly during spring. Differently, the oxidized organics factor showed a pattern of 265 

diurnal variation, increasing from morning hours and peaking overnight, which may 266 

correspond to the photochemical production of oxidized organics and followed interactions 267 

with condensed ammonium. This pathway may explain the slightly late peaking of NOCs 268 

compared to oxidized organics, as ammonium condensation is favorable overnight (Hu et al., 269 

2008). While there were similarities in the fractions of oxidized organics in the oxalate factor 270 

and the oxidized organics factor, they only contributed to 8% of the PMF resolved NOCs in 271 

the oxalate factor, which contained ~80% of the PMF resolved oxalate. As previously 272 

discussed, these oxidized organics are also precursors for the formation of oxalate (Zhang et 273 

al., 2019). Therefore, the PMF results suggest that there are two competitive pathways for 274 

the evolution of these oxidized organics. Some oxidized organics formed from 275 

photochemical activities were further oxidized to oxalate, resulting in a diurnal pattern of 276 

variation with concentration peaks during the afternoon (Fig. 5), while others interact with 277 

NH3/NH
+ 

4  to form NOCs, peaking during the nighttime. However, the controlling factors for 278 

these pathways could not be determined in the present study. The unexplained NOCs (~25%) 279 

might be linked to the primary emissions, such as biomass burning (Desyaterik et al., 2013). 280 

It could be partly supported by the presence of potassium and various carbon ion clusters (C281 

+/- 

n , n = 1, 2, 3, …) in the mass spectrum of NOC-containing particles (Fig. 1). 282 
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 283 

3.3 Seasonal variations in the observed NOCs 284 

There is an evident seasonal variation of NOCs, with higher relative contributions 285 

during summer and autumn (Figs. 3 and 4), mainly due to the variations in oxidized organics 286 

and NH3/NH
+ 

4 . In this region, a more considerable contribution from secondary oxidized 287 

organics is typically observed during summer and autumn (Zhou et al., 2014; Yuan et al., 288 

2018). The seasonal maximum NH3 concentrations have also been reported during the 289 

warmer seasons, corresponding to the peak emissions from agricultural activities and high 290 

temperatures, while the low NH3 concentrations observed in colder seasons may be 291 

attributed to gas-to-particle conversion (Pan et al., 2018; Zheng et al., 2012). Such seasonal 292 

variation in NOCs is also obtained in a model simulation, showing that the conversion of 293 

NH3 into NOCs would result in a significantly higher reduction of gas-phase NH3 during 294 

summer (67%) than winter (31%), due to the higher NH3 and SOA concentrations present in 295 

the summer (Zhu et al., 2018). More primary NOCs may also be present during summer and 296 

autumn in the present study, due to the additional biomass burning activities in these seasons 297 

(Chen et al., 2018; Zhang et al., 2013). 298 

The seasonal variations of NOCs can be adequately explained by the variations in 299 

concentrations of oxidized organics and ammonium (Fig. 4), although the hourly variations 300 

during each season are not well explained, as indicated by the lower R2 values (Table S2). 301 

The correlation coefficients (R2) range from 0.24 to 0.57 for inter-seasonal variations. 302 

During spring, NOCs exhibits a limited dependence on oxidized organics (Figs. 3a and 3b), 303 
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while during summer, the hourly detected number of NOCs shows a limited dependence on 304 

ammonium (Fig. 3d). These seasonal dependences of NOCs are consistent with the PMF 305 

results, showing that the ammonium factor explained ~80% of the predicted NOCs during 306 

spring, while the oxidized organics factor dominantly contributed to the predicted NOCs 307 

during warmer seasons (Fig. S8). A detailed discussion of this issue is provided in the SI. 308 

 309 

3.4 Influence of RH and NOx 310 

The influence of RH on RPAs of NOCs and peak ratios of NOCs/oxidized organics are 311 

shown in Fig. 6. While NOCs do not show a clear dependence on RH, the ratio of NOCs to 312 

the oxidized organics shows an apparent increase towards higher RH. This finding is 313 

consistent with the observations reported by Xu et al. (2017), in which the N/C ratio 314 

significantly increases as a function of RH in the atmosphere of Beijing. Besides, the diurnal 315 

variations of NOCs with peaks values around 20:00 are also similar to those reported by Xu 316 

et al. (2017). The peak ratios of NOCs/oxidized organics are more obviously enhanced when 317 

RH is higher than 40%. These findings imply that aqueous-phase processing likely plays a 318 

substantial role in the formation of NOCs. Significant changes in RH, such as during the 319 

evaporation of water droplets, have been reported to facilitate the formation of NOCs via 320 

NH3/NH
+ 

4  and SOA (Nguyen et al., 2012). In addition, an increase in RH would improve 321 

the uptake of NH3 and the formation of NH
+ 

4 , which also contributes to the enhancement of 322 

NOCs. However, the relatively weak correlation (R2 = 0.27, p < 0.01) between the peak 323 
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ratios and RH, reflect the complex influence of RH on the formation of NOCs (Xu et al., 324 

2017; Woo et al., 2013).  325 

One may expect that NOCs are formed through the interactions between NOx and 326 

oxidized organics in the gas phase, followed by condensation (Fry et al., 2014; Ziemann and 327 

Atkinson, 2012; Seinfeld and Pandis, 2006). Similar to that observed for RH, while NOCs 328 

do not show a clear dependence on NOx (Fig. 6c, R2 = 0.02–0.13), the ratio of NOCs to the 329 

oxidized organics shows a clear increasing trend towards higher NOx (Fig. 6d, R2 = 0.18, p 330 

< 0.01). This indicates that NOx may play a certain role in the conversion of oxidized 331 

organics to NOCs, and yet it cannot be quantified in the present study. It is also noted that 332 

low correlation coefficients between NOx and NOCs might not indicate a limited 333 

contribution of NOx to the formation of NOCs. NOx affects the formation of NOCs in 334 

various ways (e.g., peroxy radical chemistry in VOCs oxidation mechanisms and formation 335 

of nitrate radicals) (Xu et al., 2015; Zhang et al., 2018), and thus may not linearly contribute 336 

to the formation of NOCs.  337 

 338 

3.5 Atmospheric implications and limitation 339 

In this study, we showed that in an urban megacity area, secondary NOCs were 340 

significantly contributed by the heterogeneous ageing of oxidized organics with NH3/NH
+ 

4 , 341 

providing valuable insight into SOA aging mechanisms. In particular, the effects of NH3/NH342 

+ 

4  on SOA or BrC formation remain relatively poorly understood. In the PRD region, it has 343 

been shown that oxygenated organic aerosols (OOA) account for more than 40% of the total 344 
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organic mass (He et al., 2011), with high concentrations of available gaseous carbonyls (Li 345 

et al., 2014). Therefore, it is expected that over half of all water-soluble NOCs in this region 346 

might link to secondary processing (Yu et al., 2017). Furthermore, secondary sources have 347 

been found to contribute significantly to NOCs related BrC in Nanjing, China (Chen et al., 348 

2018). The results presented herein also suggest that the production of NOCs might be 349 

adequately estimated by their correlation with secondary oxidized organics and ammonium. 350 

The effectiveness of correlation-based estimations needs to be examined in other regions 351 

before being generally applied in other environments. However, this approach may provide 352 

valuable insights into investigations of NOCs using atmospheric observations. In contrast, it 353 

has previously been reported that a positive correlation exists between WSON and 354 

ammonium (Li et al., 2012), indicating similar anthropogenic sources. This divergence could 355 

be mainly attributed to varying contributions of primary sources and secondary processes to 356 

the observed NOCs. Possible future reductions in anthropogenic emissions of ammonia may 357 

reduce particle NOCs. Understanding the complex interplay between inorganic and organic 358 

nitrogen is an essential part of assessing global nitrogen cycling. 359 

Moise et al. (2015) proposed that with high concentrations of reduced nitrogen 360 

compounds, high photochemical activity, and frequent changes in humidity, BrC formed via 361 

NH3/NH
+ 

4  and SOA may become a dominant contributor to aerosol absorption, specifically 362 

in agricultural and forested areas. However, this study suggests that even in typical urban 363 

areas, BrC formation via NH3/NH
+ 

4  and SOA should not be neglected. In particular, SOA 364 

was found to account for 44 – 71% of the organic mass in megacities across China (Huang 365 
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et al., 2014), with NH3 concentrations in urban areas comparable with those from agricultural 366 

sites and 2- or 3-fold those of forested areas in China (Pan et al., 2018). Additionally, the 367 

acidic nature of particles in these regions would also be favorable for the formation of NOCs 368 

(Guo et al., 2017; Jia et al., 2018). Considering the formation of NOCs from the uptake of 369 

NH3 onto SOA particles, Zhu et al. (2018) suggested that this mechanism could have a 370 

significant impact on the atmospheric concentrations of NH3/NH
+ 

4  and NO
- 

3.  371 

 372 

5 Conclusions 373 

This study investigated the processes contributing to the seasonal formation of NOCs, 374 

involving ammonium and oxidized organics in urban Guangzhou, using single-particle mass 375 

spectrometry. This is the first study to provide direct field observation results to confirm that 376 

the variation of NOCs correlate well and are strongly enhanced internal mixing with 377 

secondary oxidized organics. These findings highlight the possible formation pathway of 378 

NOCs through the ageing of secondary oxidized organics by NH3/NH
+ 

4  in ambient urban 379 

environments. A clear pattern of seasonal variation in NOCs was observed, with higher 380 

relative contributions in summer and autumn as compared to spring and winter. This 381 

seasonal variation was well predicted by multiple linear regression model analysis, using the 382 

relative abundance of oxidized organics and ammonium as model inputs. More than 50% of 383 

NOCs could be explained by the interaction between oxidized organics and ammonium. The 384 

production of NOCs through such processes was facilitated by increased humidity and NOx. 385 

These results extend our understanding of the mixing state and atmospheric processing of 386 
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particulate NOCs, as well as having substantial implications for the accuracy of models 387 

predicting the formation, fate, and impacts of NOCs in the atmosphere. 388 
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Figure captions 755 

Figure 1. Representative mass spectrum for NOC-containing particles. The ion 756 

peaks corresponding to NOCs and oxidized organics are highlighted with red bars. 757 

Figure 2. The variation in hourly mean Nfs of the oxidized organics and 758 

ammonium that internally mixed with NOCs. Box and whisker plot shows lower, 759 

median, and upper lines, denoting the 25th, 50th, and 75th percentiles, respectively; the 760 

lower and upper edges denote the 10th and 90th percentiles, respectively.  761 

Figure 3. Correlation analysis of (a, c) the RPAs and (b, d) the number of 762 

detected NOCs, with the oxidized organics and ammonium in different seasons. 763 

Significant (p < 0.01) correlations were obtained for both the total observed data and 764 

the seasonally separated data. RPA is defined as the fractional peak area of each m/z 765 

relative to the sum of peak areas in the mass spectrum and is applied to represent the 766 

relative amount of a species on a particle (Jeong et al., 2011; Healy et al., 2013). 767 

Figure 4. Comparison between the measured and predicted RPAs for NOCs. 768 

Figure 5. (left) PMF-resolved 3-factor source profiles (percentage of total species) 769 

and (right) their diurnal variations (arbitrary unit). 770 

Figure 6. The dependence of NOCs and the ratio of NOCs to the oxidized organics 771 

on RH and NOx.  772 
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