Cover Letter

Style Definition

[... [63]

[... [62]

[... [61]

[... [60]

[... [59]

[... [58]

[... [57]

[... [56]

[... [55]]

[... [54]

[... [53]

[... [52]

[... [51]]

[... [50]]

[... [49]]

[... [48]

[... [47]]

[... [46]

[... [45]

[... [44]

[... [43]]

[... [42]

[... [41]

[... [40]

[... [39]

[... [38]

[... [37]

[... [36]

[... [35]

[... [34]

[... [33]

[... [32]

[... [31]

[... [30]

[... [29]

[... [28]

[... [27]]

[... [26]

[... [25]]

[... [24]]

[... [23]]

[... [22]]

[... [21]

[... [20]]

[... [19]

[... [18]

[... [17]

[... [16]

[... [15]]

[... [14]]

[... [13]

[... [12]

[... [11]]

[... [10]

[... [9]]

[... [8]

[...[7]]

[... [6]]

[... [5]]

[... [4]]

[... [3]]

[...[2]]

[...[1]]

2 Dear Editor,

1

We are truly grateful to the reviewers' critical comments and comprehensive suggestions on our 3 manuscript. Based on these comments and suggestions, we have made significant modifications on 4 5 the original manuscript. The whole manuscript has been carefully checked and a lot of paragraphs have been added or rewritten to better the structure. The sections of abstract, 6 7 discussion, and conclusions are all rewritten. All changes made in the text are marked with red 8 color in the revised manuscript. The point-to-point responses to the reviewers' comments are listed as below. We hope the revised manuscript is now suitable for publication in Atmospheric Chemistry 9 and Physics. Thank you for your consideration. 10 11

1

12

13 Best wishes

14

15 Sincerely yours

- 16
- 17 Prof. Kun Luo (corresponding author)
- 18 State Key Laboratory of Clean Energy Utilization,
- 19 Zhejiang University, Hangzhou 310027, P. R. China
- 20 E-mail: zjulk@zju.edu.cn; Tel/Fax: 86-571-87951764
- 21
- 22
- 23
- 24

25

Replies to reviewers' comments point by point

27

26

Referee #1

1. While this is an interesting case study, the motivation of the paper is not clear to me. Specifically, 28 29 the authors did not say whether [a] they want to study how surface ozone responded to the tropical 30 cyclone during their study period or [b] if they are interested in understanding whether emergency 31 control measures put in place for the G20 meeting helped reduce ozone levels or not? If their objective 32 is [a], this study lacks novelty because it is now well understood that clear-sky stagnant conditions 33 favor photochemical ozone formation and cloudy-skies suppress it. Thus, ozone variations reported and modeled before, during, and after the cyclone are expected and there is no new knowledge gained 34 35 here. If their objective is [b], the model experimental design is not appropriate. The authors did not modify their emission input to reflect emission control measures in their model simulations and no 36 sensitivity experiment was performed to understand what would have happened in the absence of 37 38 emergency emission control measures?

Reply: Thank you for this valuable comment. Accordingly, we have highlighted the motivation of the 39 present study by rewriting the introduction with two additional paragraphs. The main objective of the 40 41 present study is to understand the unique response of ozone increase to emission control measures 42 during the 2016 G20 Summit in Hangzhou, while other pollutants had been significantly reduced (Li et al. 2019; Wu et al. 2019; Ji et al. 2018; Zheng et al. 2019). The title of the manuscript is also 43 44 changed as "Spatial-temporal Variations and Process Analysis of O3 Pollution in Hangzhou during the G20 Summit" to reflect this motivation. For this purpose, a regional air quality model, within the 45 46 framework of the Model Inter-Comparison Study for ASIA phase III (Li et al., 2019), is used to investigate the spatial-temporal variations of ozone pollution in Hangzhou during the G20 Summit. 47 48 Process analysis is conducted to understand the chemical and physical factors that contribute to the local O₃ abundance. It is worth noting that the base emission input has been modified to reflect 49 50 emission control measures in our model simulations. Sensitivity experiments are not performed as

51 previous surface observations (Li et al. 2019; Wu et al. 2019; Ji et al. 2018; Zheng et al. 2019) have 52 suggested that the control measures took no immediate effect on local ozone formation, but 53 significantly reduced other pollutants. The added two paragraphs are attached as below.

54 "Hangzhou, the capital of Zhejiang Province, is located in the center of the Yangtze River Delta 55 which is one of the most developed areas in China. Resultant from local emissions (Wu et al. 2014, 56 Hu et al. 2015) and transboundary transport of aerosol and trace gases transport (Liu et al. 2015; Ni 57 et al. 2018; Zhang et al. 2018), air pollution in Hangzhou has become serious in the recent years. In 58 2016, Hangzhou city would host the 2016 G20 (Group of Twenty Finance Ministers and Central Bank 59 Governors) summit during September 4-6. To improve air quality for this event, 14-day temporarily 60 strict air pollution alleviation measures had been taken to reduce air pollutant emissions in Hangzhou and surrounding areas from August 24 to September 6, 2016. The emission control scheme includes 61 62 a coal-fired power plant capacity 50% reduction since August 24, followed by an "odd-even" on-road 63 vehicle restriction since August 28, and further emergent VOC reduction from industrial sectors since September 1 to 6 (Ji et al. 2018; Li et al. 2019; Wu et al. 2019). These short-term measures provide a 64 valuable opportunity to investigate the response of air quality to the emission reduction, understand 65 66 the formation mechanisms of air pollution, and explore effective policies for long-term air pollution 67 control in the local or regional scale.

The effects of emission control on air pollutants during this G20 Summit have been investigated 68 69 by several studies using field observations and numerical models. It is demonstrated that almost all 70 major air pollutants including SO₂, NO_x (Li et al. 2019; Wu et al. 2019), fine particles (Ji et al. 2018; Li et al. 2019; Yu et al. 2018; Wu et al. 2019), and VOCs (Zheng et al. 2019) have been significantly 71 72 reduced during the 14-day control period, except O3. Su et al. (2017) monitored the vertical profiles 73 of ozone concentration in the lower troposphere of Hangzhou during the control period by using an 74 ozone lidar. It was found that the ozone concentrations peaked near the top of the planetary boundary 75 layer, and the temporary measures took no immediate effect on ozone pollution. Wu et al. (2019) 76 investigated the variation of air pollution in Hangzhou and its surrounding areas during the G20

summit by using monitoring data from five sites, and reported that the air quality had been greatly improved by the implementation of the emission control. However, the average O₃ concentration was increased by 19% compared to the same periods of the five preceding years. This unique response of ozone pollution to control measures is not well understood, and of great research interest for better control of ozone pollution in the future.

To this end, a regional air quality model, within the framework of the Model Inter-Comparison Study for ASIA phase III (Li et al., 2019), is used to investigate the spatial-temporal characteristics of ozone pollution in Hangzhou during the G20 Summit in the present work. Process analysis is conducted to understand the chemical and physical factors that contribute to O₃ abundance. It is found that the serious ozone pollution happened, mainly resultant from the local photochemical reactions which are not under good control by the emission reduction measures."

88

2. There was no analysis of whether or not the observations at 96 sites violated the ozone standardduring the G20 meeting?

91 *Reply*: Following the reviewer's suggestion, the observations at 96 sites are analyzed. Fig. 3c shows 92 that during the 14-day emission control period of G20 summit, 52% of the observed ozone samples 93 from the 96 sites are above the China's national level-II standard (160µg/m³). This result confirms 94 that regional ozone pollution appears in the YRD region during the study period. Relevant statement 95 has been added into the revised manuscript (Line 309-312), and attached as below.

96 "This phenomenon is consistent with the satellite-derived tropospheric O₃ distribution in the area
97 (Su et al. 2017), and is also supported by the observed ozone data from the 96 sites in the YRD region
98 as shown in Fig. 3c. During the 14-day emission control period of G20 summit, 52% of the observed
99 ozone samples from the 96 sites are above the China's national level-II standard (160µg/m³),
100 suggesting that regional ozone pollution appears in the YRD region during the study period."

4

101

102 3. The choice of Hangzhou as the analysis site is also not clear. Authors say that they selected the site 103 based on evaluation but no evaluation metric was presented to justify their decision to focus on 104 Hangzhou. Why not use all the observations from 96 sites in your analysis to get a regional picture? 105 Reply: We have added two paragraphs (lines 84-122 see reply to the first comment) in the introduction 106 to indicate why Hangzhou is chosen as the focus. Basically, the main objective of the present study 107 is to understand the unique response of ozone increase to emission control measures while other 108 pollutants had been significantly reduced (Li et al. 2019; Wu et al. 2019; Ji et al. 2018; Zheng et al. 109 2019) during the 2016 G20 Summit which was held in Hangzhou. Observations from 96 sites are also 110 analyzed to give a regional picture (Fig. 3c), together with the model results, as attached below.

111 "This phenomenon is consistent with the satellite-derived tropospheric O₃ distribution in the area 112 (Su et al. 2017), and is also supported by the observed ozone data from the 96 sites in the YRD region 113 as shown in Fig. 3c. During the 14-day emission control period of G20 summit, 52% of the observed 114 ozone samples from the 96 sites are above the China's national level-II standard (160µg/m³), 115 suggesting that regional ozone pollution appears in the YRD region during the study period."

116

117 In addition to these major concerns, below are some other specific concerns that the

118 authors might find useful in their revision.

Section 2:3: Can you be a little more specific about the IPR here? Did you save the tendency
 terms before and after the call to each process is made in the code? For example, did you save
 ozone concentrations before and after the call the chemistry solver and used the difference in the
 process analysis?

Reply: Yes, you are right. The IPR analysis is integrated into the WRF-Chem model and all the tendency terms are saved before and after the call to each process. The difference is then used for quantitative analysis of each process. For more details, please refer to the study of Jfffries and Tonnesen (Atmospheric Environment, 1994, 28(18): 2991-3003) and the user guide of WRF-Chem.

Following the reviewer's suggestion, we have added relevant description on the IPR analysis in lines 128 174-183. The description is also attached as below. 129 "To understand the underlying mechanism of O3 formation, individual physical and chemical 130 processes of O₃ formation are investigated by using the integrated process rate (IPR) analysis in the 131 WRF-Chem model (Jfffries and Tonnesen, 1994). The IPR analysis differentiates changes in pollutant 132 concentrations from individual atmospheric process which quantitatively elucidates the contributions 133 of each process, mainly including advection, diffusion, emission, deposition, clouds process, aerosol 134 and gaseous chemistry. The IPR analysis has been widely applied and demonstrated to be an effective 135 tool for investigating the relative importance of individual processes and interpreting O₃ 136 concentrations (Goncalves et al., 2009; Tang et al., 2017; Shu et al., 2016). In the present work, we 137 consider gas chemistry, vertical diffusion, horizontal and vertical advections as the main atmospheric 138 processes for O₃ formation. Other processes, such as cloud process and horizontal diffusion, play 139 minor roles and are thus not considered." 140

141 2) Table S1: For some reason, the equations did not appear correctly in the Table. Please correct.

- 142 Reply: Revised as suggested.
- 143

127

- 144 3) Section 2.4: Are the observations from air quality monitoring network quality controlled or did 145 you apply any quality control procedure to the measurements before using those for evaluation? 146 *Reply*: The quality of all the observations from air quality monitoring network has been controlled by 147 the data provider.
- 148
- 149 4) Line 255: Change "supply raw material" to "transport ozone precursors"
- 150 Reply: Revised as suggested.
- 151
- 152 5) Figure 8 shows that horizontal advection contributes much larger to the ozone increase on most

153	of the days but in the abstract the authors say "vertical diffusion and chemical production" are the
154	main drivers. I did not understand how the authors concluded this in the abstract.

Reply: Sorry for the confusion. Although horizontal advection contributes much larger to the ozone increase on most of the days, the contribution of vertical advection is also larger. The effects of these two processes have been cancelled out during several circulations. As a result, photochemical production and vertical diffusion from the upper-air background ozone are the main drivers for the local ozone. To be clear, we have modified the relevant statements in the abstract and conclusions, as attached below.

161 "Interesting horizontal and vertical advection circulations of O_3 are observed during several short 162 periods, and the effects of these processes are nearly cancelled out. As a result, the ozone pollution is 163 mainly attributed to the local photochemical reactions which are not obviously influenced by the 164 emission reduction measures. The ratio of reduction of Volatile Organic Compounds (VOCs) to that 165 of NO_x is a critical parameter that needs to be carefully considered for future alleviation of ozone 166 formation. In addition, the vertical diffusion from the upper-air background O_3 also plays an important 167 role in shaping the surface ozone concentration."

168 "Horizontal and vertical advection circulations are captured in Hangzhou, with horizontal 169 advection the source and vertical advection the sink of the surface O₃ in Hangzhou. Consequently, 170 the serious ozone pollution is mainly resultant from the local photochemical reactions which are not 171 under good control by the emission reduction measures. As the surface O₃ formation in Hangzhou is 172 dominant by the VOCs-limited regime, the significant reduction of NOx compared to that of VOCs is 173 unfavorable to chemical generation of O₃. The ratio of reduction of VOCs to that of NO_x based on the 174 O3-NOx-VOCs sensitivity analysis is a critical parameter for reduction of ozone formation from 175 photochemical reactions. In addition, it is found that the vertical diffusion from the upper-air notable 176 background O₃ also plays an important role in shaping the surface ozone concentration when the 177 photochemical reactions are weak."

178

Referee #2

180 1. The authors mentioned emergency emission control measures. Were emissions perturbated to 181 represent these measures? How did emission control measures contribute to the ozone episode? 182 Reply: Yes, emissions are perturbated to represent these measures. We have added two paragraphs 183 (please refer to the reply to the first comment of Referee #1) to introduce the background of 184 emergency emission control measures and the effects on pollutant emissions during the G20 summit. 185 Previous studies have demonstrated that almost all major air pollutants including SO₂, NO_x (Li et al. 2019; Wu et al. 2019), fine particles (Ji et al. 2018; Li et al. 2019; Yu et al. 2018; Wu et al. 2019), 186 187 and VOCs (Zheng et al. 2019) have been significantly reduced during the 14-day control period, 188 except O3. It was found that the temporary measures took no immediate effect on ozone pollution (Su 189 et al. 2017), or even the average O₃ concentration was increased by 19% compared to the same periods 190 of the five preceding years (Wu et al. 2019). This unique response of ozone pollution to control 191 measures is not well understood, and of great research interest for better control of ozone pollution in 192 the future, which motives the present work. To obtain the quantitative effect of emission control 193 measures on the ozone episode, scenario simulations and sensitivity analysis are required, which is 194 beyond the scope of the current work. However, the modification of the emission inventory to reflect 195 the control measures has been emphasized in the revised manuscript (line 169-171), as attached below. 196 "However, it is worth noting that these base inventories have been modified in the simulation to 197 reflect the realistic emissions according to the control measures taken in the period presented in the 198 introduction."

199

The authors claimed that this study revealed notable background O₃ concentrations, but it is very
 confusing how this conclusion was drawn. How much does it contribute to O₃ levels in the YRD?
 Reply: Thank you for pointing out this issue. The background O₃ means the O₃ that vertically
 distributes within the planetary boundary layer. High ozone concentrations, temporarily during most
 day time of the emission control period and spatially from the surface to the top of the planetary

boundary layer, are observed in Hangzhou and even the whole YRD region. This can be seen from
Figs. 5, 7, and 8 in the revised manuscript. The background O₃ essentially influences the surface O₃
concentration through vertical diffusion. Its quantitative contribution to the surface O₃ level in
Hangzhou is different from day to day, as demonstrated in Figs 8 and 9.

209

210 3. It is not convincing that current categorization of process analysis can provide any useful 211 information. Concluding photochemistry dominated O₃ generation does not provide any indications 212 for O₃ pollution control. Which precursor or process are important? More in-depth analyses are 213 needed.

214 Reply: The IPR analysis differentiates changes in pollutant concentrations from individual 215 atmospheric process which quantitatively elucidates the contributions of each process, mainly 216 including advection, diffusion, emission, deposition, clouds process, aerosol and gaseous chemistry. 217 It has been widely applied and demonstrated to be an effective tool for investigating the relative 218 importance of individual processes and interpreting O₃ concentrations (Goncalves et al., 2009; Tang 219 et al., 2017; Shu et al., 2016). In the present work, to understand the underlying mechanism of O_3 220 formation, individual physical and chemical processes of O₃ formation are investigated by using the 221 IPR. The gas chemistry, vertical diffusion, horizontal and vertical advections are considered as the 222 main atmospheric processes for O₃ formation. Other processes, such as cloud process and horizontal 223 diffusion, play minor roles and are thus not considered.

Through the IPR analysis, interesting horizontal and vertical advection circulations of O₃ are observed during several short periods, and the effects of these processes are nearly cancelled out. As a result, the ozone pollution is mainly attributed to the local photochemical reactions which are not obviously influenced by the emission reduction measures. In addition, the vertical diffusion from the upper-air background O₃ also plays an important role in shaping the surface ozone concentration. Following the reviewer's suggestion, the discussion section has been rewritten and some more
 in-depth discussions on the precursors of ozone formation have been added into the revised
 manuscript, as attached below.

232 "Chemical generation of O₃ is the net effect of photochemical generation and titration 233 consumption. VOC oxidation (Jenkin et al., 1997; Sillman, 1999) in photochemical reactions provides 234 critical oxidants (i.e., RO₂) that efficiently convert NO to NO₂, resulting in further accumulation of 235 O₃ (Wang et al., 2017). The chemical generation of O3 is controlled by NO_x and VOCs depending on 236 which substance is lack in the reactions. As a consequence, there are two sensitivity regimes of O_3 237 production, namely, the NOx-limited and VOC-limited regimes. Previous studies have shown that the 238 sensitivity pattern of surface O₃ formation in Hangzhou is dominant by the VOCs-limited regime 239 (Yan et al. 2016; Li et al., 2017; Su et al., 2017). In this regime, if the regional reduction of VOCs is 240 much higher than that of NO_x , the O_3 concentration can be reduced, otherwise if the regional reduction 241 of VOCs is much less than that of NOx, the inhibitory effect of NOx on O3 generation will be 242 weakened, and the O₃ concentration will increase remarkably (Wang et al. 2015). According to the 243 studies of Su et al. (2017), Zheng et al. (2019), and Wu et al. (2019), it can be deduced that NO_x has 244 been significantly reduced by about 60%, at least two times of the reduction of VOCs in Hangzhou. 245 The influence of stringent emission control measures on VOCs is not as immediate and effect as that 246 on NOx, which is associated with the fact that there was a large amount of biogenic VOC emission in 247 Hangzhou and surrounding regions (Liu et al. 2018; Wu et al. 2020). In fact, the average temperature 248 during the study period is as high as around 31°C (Fig. 4c), which facilitates the biogenic VOC 249 emissions and photochemical reactions. As a result, the photochemical generation of O3 was not under 250 control and high concentration of ozone appeared. However, it is worth noting that after the emergent 251 VOCs control measures had been implemented in the area during the third stage, the net generation 252 rate of O_3 gradually reduces since September 2, 2016, leading to a period of relatively low ozone 253 concentration together with other meteorological effects. These discussions implicate that to alleviate 254 ozone pollution, the ratio of reduction of VOCs to that of NOx is the key parameter based on the O3-

255	NO _x -VOCs sensitivity analysis. As the biogenic VOCs are important sources of the total VOCs in the
256	YRD region, it is necessary to balance the reduction of NO_x to make the ratio within effective regime
257	in the future."
258	
259	Minor comments:
260	1) Fig. 1a does not show domain 1.
261	Reply: Domain 1 has been marked in Fig. 1a.
262	
263	2) Line 119: it is confusing if assimilation of meteorological variables were used or not, how
264	Reply: Assimilation of meteorological variables are not used in this study. To avoid confusion,
265	"assimilated" has been corrected as "mapped" in Line 145.
266	
267	3) Line 143: In June, July, and August, biomass burning emissions are important in east China, why
268	do you ignore it?
269	Reply: Biomass burning emissions have already been included in the emission inventory we used
270	(2016 Multiresolution Emission Inventory for China (MEIC, $0.25^{\circ} \times 0.25^{\circ}$;
271	http://www.meicmodel.org/)). Thus, their effect has been considered.
272	
273	
274	
275	
276	
277	
278	
279	

280	Elucidating the ozone pollution Spatial-temporal Variations and	
281	Process Analysis of O ₃ Pollution in Vangtze River Delta	Formatted: Font: 20 pt, Font color: Auto
000	Hangzhou during the 2016 C20 muniture MCS tota	Formatted: Font: 20 pt, Font color: Auto
202	region mangznou during the 2010 O20 summe for Mics-Asia	Formatted: Font: 20 pt, Font color: Auto
283	<mark>⊞Summit</mark>	Formatted: Font: 20 pt, Font color: Auto
284		Formatted: Font: (Asian) Batang, Font color: Auto
		Formatted: Snap to grid
285	<u>By</u>	Formatted: Font: (Asian) Batang, 14 pt, Font color: Auto
286	Zhi-zhen Ni ¹ , Kun Luo ^{1*} , Yang Gao ² , Xiang Gao ¹ , Fei Jiang ³ , Cheng Huang ⁴ , Jian-ren Fan ¹ ,	Formatted: Font: (Asian) Batang, 12 pt, Font color: Auto
287	Joshua S. Fu ⁵ Chang-hong Chen ⁴	Formatted: Font: (Default) Times New Roman, (Asian) Batang, 12 pt, Font color: Auto
288	¹ State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 🔨	Formatted: Font: (Asian) Batang, 12 pt, Font color: Auto
289	310027, China	Formatted: Font color: Auto
290	² Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of	Formatted: Space Before: 0 pt, After: 0 pt
291	China, Qingdao 266100, China	
292	³ International Institute for Earth System Science, Nanjing University, Nanjing, China	
293	⁴ Shanghai Academy of Environmental Sciences, Shanghai 200233, China	Formatted: Font: (Asian) 等线. Font color: Auto
294	⁵ Civil & Environmental Engineering the University of Tennessee Nevland UK	Formatted: Line spacing: 1.5 lines
295 296		
297		
298	Submitted to	
299		
300		
301	Atmospheric Chemistry and Physics	
302		
303		
304		
305		
306		
307		
508		
309		Formatted: Font: (Asian) 等线, Font color: Auto
810	*Correspondence to: ziulk@ziu.edu.enziulk@ziu.edu.er	Formatted: Justified, Line spacing: 1.5 lines
	Correspondence to: zjunk@zju.eau.cn	Formatted: Font: (Asian) 等线, Font color: Auto
	12	

Abstract

311

312	To elucidate the factors governingSerious urban ozone (O3) pollution was observed during the
313	campaign of 2016 G20 summit in 2016 Hangzhou, China, while other pollutants had been
314	significantly reduced by the short-term emission control measures. To understand the underlying
315	mechanism, the Weather Research Forecast with Chemistry (WRF-Chem) model wasis used to
316	simulateinvestigate the spatial and temporal O3 evolution in the Yangtze River Delta (YRD)
317	regionvariations in Hangzhou from 24 August 24 to 06 September 2016. 6, 2016. The model is first
318	successfully evaluated and validated for local and regional meteorological and chemical parameters
319	by using the ground and upper-air level observed data. High ozone concentrations, temporarily during
320	most day time of the emission control period and spatially from the surface to the top of the planetary
321	boundary layer, are captured in Hangzhou and even the whole YRD region. Various atmospheric
322	processes wereare further analyzed to determine the influential factors of local ozone formation
323	through the integrated process rate method. The results indicated Interesting horizontal and vertical
324	advection circulations of O3 are observed during several short periods, and the effects of these
325	processes are nearly cancelled out. As a result, the ozone pollution is mainly attributed to the local
326	photochemical reactions which are not obviously influenced by the emission reduction measures. The
327	ratio of reduction of Volatile Organic Compounds (VOCs) to that both of NOx is a critical parameter
328	that needs to be carefully considered for future alleviation of ozone formation. In addition, the vertical
329	diffusion and from the enhanced process of local chemical generation accounted for upper-air
330	background O3 also plays an important role in shaping the increase of surface O3020ne concentration
331	in Hangzhou. Local chemical generation was found to positively correlated with O3-concentrations,
332	with correlation coefficient of 0.77. In accordance with the tropical weather cycle, subsidence air and
333	stagnant weather were induced. Dynamic circulations of O3 through advection were associated with
334	the urban heat island effect. All these factors intensified ozone pollution in Hangzhou, particularly
335	on 25 August 2016 (O ₃ -8h: 98 ppb). These findings These results provide insight into urban O ₃

Formatted: Font: (Asian) 等线, 18 pt, Font color: Auto

Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线

Formatted: Font: (Asian) 等线

1	Formatted: Font: (Asian) 等线
1	Formatted: Font: (Asian) 等线
1	Formatted: Font: (Asian) 等线

-{	Formatted: Font: (Asian) PMingLiU
-{	Formatted: Font: (Asian) PMingLiU
-{	Formatted: Font: (Asian) PMingLiU
1	Formatted: Font: (Asian) PMingLiU

Formatted: Font: (Asian) PMingLiU

Formatted: Font: (Asian) 等线 Formatted: Font: (Asian) 等线, Font color: Auto

50	formation and dispersion during tropical cyclone events, in Hangzhou, and support the Model		Formatted: Font: (Asian) 寺线
37	Intercomparison Study Asia Phase III (MICS-Asia Phase III),		Formatted: Font: (Asian) 等线, 10 pt, Font color: Auto
38	Keywords: Ozone, Tropical cyclone pollution, WRF-Chem, Spatial-temporal variation, Process		Formatted: Font: (Asian) 等线, Font color: Auto
		$\overline{}$	Formatted: Font: (Asian) 等线
39	analysis, Air quality	\sim	Formatted: Font: (Asian) 等线
40			Formatted: Font: (Asian) Times New Roman, Font color: Auto
1			
2			
3			
4			
15			
46	۸		Formatted: Font: (Asian) 等线, Font color: Auto
17 18	•		Formatted: Justified, Line spacing: single
9			
50			
51			
2			
3			
4			
5			
6			
7			
8			
9			
50			
51	•		Formatted: Font: (Asian) 等线, Font color: Auto
2			

363 1. Introduction

864 Tropospheric ozone (O₃) is generated by a series of photochemical reactions involving volatile* organic compounds (VOCs), nitrogen oxide (NOx), and carbon monoxide (CO) (Wang et al., 2006). 365 366 As a primary component of photochemical smog, ground-level O3 pollution exhibits imposes 867 detrimental effects on human health (Ha et al., 2014; Kheirbek et al., 2013) and the ecosystem (Landry et al., 2013; Teixeira et al., 2011). The contribution of outdoor air pollution sources to premature B68 369 mortality may increase globally in the coming decades (Lelieveld et al., 2015). However, O3 pollution 370 is a challenging problem worldwide, O₃ levels in cities in the United States and Europe are increasing 871 more than those in the rural areas of these regions, where peak values gradually decreased during 872 1990-2010 (Paoletti et al., 2014). Nagashima et al., (2017) reported that long-term (1980-2005) 373 trends of increase in surface O3, over Japan may be primarily attributed to the continental transport 374 that have contributed to photochemical O₂ production. Urban O₂ pollution events earhave also be 375 observed in developing countries, such as Thailand (Zhang and Kim Oanh, 2002) and India 376 (Calfapietra et al., 2016).

877 Air quality has been deteriorating in China as urbanization and motorization have progressed. 878 Many field monitoring and modeling studies have investigated the photochemical characteristics of 379 near-surface O3 pollution (Tang et al., 2009, 2012; Wang et al., 2013, 2014), the photochemistry of 380 O3 and its precursors (Xie et al., 2014), the interactions of between O3 withand PM2.5 (Shi et al., 2015), 381 and the urban O₃ formation (Tie et al., 2013), InIt is clear that in addition to anthropogenic emissions 382 of O₃ precursors, uncontrollable physical and chemical processes involved in meteorological 383 phenomena eritically significantly, modulate changes in O₃, concentration (Xue et al., 2014). In the 384 Yangtze River Delta (YRD) region of China, high O3, concentrations are associated with pollutant 385 transport and diffusion from surrounding areashave been observed (Gao et al., 2016; Jiang et al., 386 2012). Synoptic patterns related to tropical cyclones may be conducive toone reason for such high O₃ 387 concentrations (Huang et al., 2005). Jiang et al. (2015) reported that enhanced stratosphere-388 troposphere exchange (STE) driven by a tropical cyclone abruptly increased O₃ concentrations (21-

/	Formatted	[[64]]
/	Formatted	[[65]]
	Formatted	[[66]]
	Formatted	[[67]]
	Formatted	[[68]
	Formatted	[[69]
	Formatted	
	Formatted	
	Formatted	
$\ $	Formatted	[73]
$\parallel \mid$	Formatted	[74]
[]]	Formatted	[75]
///	Formatted	
$\parallel \mid$	Formatted	
$\ \ $	Formatted	[7]
'///	Formatted	[[78]
$\parallel \mid \mid$	Formatted	[79]
//	Formatted	[[80]
///	Formatted	[[81]]
1/	Formatted	[82]
1	Formatted	[83]
	Formatted	[84]
	Formatted	[[85]]
$\ $	Formatted	[[86]]
	Formatted	[[87]]
$\parallel \mid$	Formatted	[88]
	Formatted	[89]
$\parallel \mid$	Formatted	[90]
$\parallel \mid$	Formatted	[[91]]
	Formatted	[92]
1/	Formatted	[93]
	Formatted	[94]
/	Formatted	[[95]]
	Formatted	[96]
/	Formatted	[97]
	Formatted	[98]
-	Formatted	[99]
_	Formatted	[[100]]
-	Formatted	[[101]]
-	Formatted	[[102]]
	Formatted	[[103]]
~	Formatted	[[104]]
	Formatted	[[105]]
	Formatted	[[106]]
_	Formatted	[107]
~	Formatted	[[108]
1	Formatted	
	Formatted	[110]
-	Formatted	
	<u></u>	

389	42 ppb) in the southeast of China during June 12-14, 2014. STE, which has been highlighted as a
390	significantanother contributor to near-surface O3 concentrations under certain conditions (Lin et al.,
391	2012, 2015). Because relevant data are limited However, the complex dynamics in atmospheric
392	processes related to O3 formation are so difficult to evaluate, and the main processes that account for
393	high O3-concentrations are challenging to identify, that the O3 pollution characteristics and underlying
394	causes have not been sufficiently investigated in China, especially in relation to extreme
395	meteorological conditions. The lack of relevant data may influence urban pollution prevention
396	effortsyet been well understood.
397	Hangzhou, the capital of Zhejiang Province, is located in the center of the Yangtze River Delta
398	which is one of the most developed areas in China. Resultant from local emissions (Wu et al. 2014,
399	Hu et al. 2015) and transboundary transport of aerosol and trace gases transport (Liu et al. 2015; Ni
400	et al. 2018; Zhang et al. 2018), air pollution in Hangzhou has become serious in the recent years. In
401	2016, Hangzhou city would host the 2016 G20 (Group of Twenty Finance Ministers and Central Bank
402	Governors) summit during September 4-6. To improve air quality for this event, 14-day temporarily
403	strict air pollution alleviation measures had been taken to reduce air pollutant emissions in Hangzhou
404	and surrounding areas from August 24 to September 6, 2016. The emission control scheme includes
405	a coal-fired power plant capacity 50% reduction since August 24, followed by an "odd-even" on-road
406	vehicle restriction since August 28, and further emergent VOC reduction from industrial sectors since
407	September 1 to 6 (Ji et al. 2018; Li et al. 2019; Wu et al. 2019). In this studyThese short-term
408	measures provide a valuable opportunity to investigate the response of air quality to the emission
409	reduction, understand the formation mechanisms of air pollution, and explore effective policies for
410	long-term air pollution control in the local or regional scale.
411	The effects of emission control on air pollutants during this G20 Summit have been investigated
412	by several studies using field observations and numerical models. It is demonstrated that almost all
413	major air pollutants including SO ₂ , NO _x (Li et al. 2019; Wu et al. 2019), fine particles (Ji et al. 2018;
414	Li et al. 2019; Yu et al. 2018; Wu et al. 2019), and VOCs (Zheng et al. 2019) have been significantly

Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto

Formatted: Font: (Asian) 等线, Font color: Auto

415	reduced during the 14-day control period, except O3. Su et al. (2017) monitored the vertical profiles
416	of ozone concentration in the lower troposphere of Hangzhou during the control period by using an
417	ozone lidar. It was found that the ozone concentrations peaked near the top of the planetary boundary
418	layer, and the temporary measures took no immediate effect on ozone pollution. Wu et al. (2019)
419	investigated the variation of air pollution in Hangzhou and its surrounding areas during the G20
420	summit by using monitoring data from five sites, and reported that the air quality had been greatly
421	improved by the implementation of the emission control. However, the average O ₃ concentration was
422	increased by 19% compared to the same periods of the five preceding years. This unique response of
423	ozone pollution to control measures is not well understood, and of great research interest for better
424	control of ozone pollution in the future.
425	To this end, a regional air quality model, within the framework of the Model Inter-Comparison
426	Study for ASIA phase III (MICS-ASIA III) (Li et al., 2019), wasis used to elucidate investigate the
427	spatial-temporal characteristics of ozone pollution in Hangzhou during the G20 Summit in the present
428	work. Process analysis is conducted to understand the chemical and physical factors that
429	contributed contribute to O3 abundance during the G20 (Group of Twenty) summit. The summit was
430	held in Hangzhou, China, and the focus of the summit was. It is found that the sustainable and healthy
431	development of serious ozone pollution happened, mainly resultant from the world economy.
432	Emergency local photochemical reactions which are not under good control by the emission
433	controlreduction measures (e.g., industrial stoppages, limitations of vehicle movement) were
434	implemented over an area with a diameter of approximately 600 km to improve the air quality from
435	24 August to 06 September 2016. Because of severe concerns regarding O3-concentrations and the
436	summer cyclonic weather pattern, the aforementioned pollution control event attracted wide policy-
437	related interest, The rest of this paper is organized as follows. Section 2 outlines the methodology and
438	configuration of the model system. Section 3 describespresents the synoptic weather conditions as
439	well as individual O ₃ formation model evaluation, the spatial-temporal characteristics of ozone
1	

Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Indent: First line: 0.85 cm Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Font: (Asian) 等线, Font color: Auto

Formatted: Font: (Asian) 等线, Font color: Auto

Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

Formatted: Font: (Asian) 等线, Font color: Auto

Formatted: Font: (Asian) 等线, Font color: Auto

441	of O3 pollution. Finally, section 5 presents a summary of the findings is made.
442	2. Methodology
443	2.1. Regional chemistry modeling system
444	To investigate the interactions among emissions, meteorological phenomena, and chemical
445	phenomena, the Weather Research Forecast with Chemistry model (WRF-Chem) wasis used to
446	simulate temporal and spatial changes in O3-concentration.the present study. The WRF-Chem is a
447	regional online-coupled air quality model that <u>can</u> simultaneously simulatessimulates air quality
448	components and meteorological components by using identical transport schemes, grid structures,
449	and physical schemes (Grell et al., 2005). Two model domains wereare designed in this study (Fig.
450	1a):; an outer domain (horizontal resolution: 30 km) covering East China (20.0°N-44.5°N, 99.0°E-
451	126.5°E) and an inner domain (horizontal resolution: 6 km) covering the YRD region (27.6°N-
452	32.7°N, 116.9°E–122.4°E)., as shown in Fig.1, The "Lambert conformal conic" projection wasis
453	applied with the domain center at 34°N, 111°E. There is a total of 31 vertical layers are used with
454	the model top at 50 hPa. The simulation period wasis from 17 August to 066 September 2016, and
455	simulations of the first-week weresimulation is used to spin up the model. Hourly model outputs for
456	24 August to 06 September wereare used in the analysis. Additional The gas mechanism CBMZ
457	(Chemical Bond Mechanism Version Z) (Zaveri and Peters, 1999) is used for model simulations. For
458	additional details regarding the configuration of the WRF-Chem model are described in ourmodel
459	parameterization schemes, please refer to a previous study (Ni et al., 2018).

pollution, and the analysis of related atmospheric processes. Section 4 discusses the underlying causes

440

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: First line: 0 ch

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

Formatted: Font: (Asian) 等线, Font color: Auto

Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

172	simulation	reculte	the	relevant	data	are	available	at	https://www.acom.ucar.edu/wrf
T/2	Simulation	results,	the	relevant	uata	are	available	at	https://www.acom.ucar.cuu/wrr-

Formatted · For	t. (Asian) 笙线	Font color: Auto
rormaticu. ron	$d_1 (Tistall) \rightarrow zx_1$. Font color. Auto

T / 2	simulation results, the relevant data are available at <u>mips.//www.acoin.ucai.cou/wir-</u>	
473	chem/mozart.shtml.).	Formatted: Font: (Asian) 等线, Font color: Auto
474	2.2. Emissions	Formatted: Default Paragraph Font, Font color: Auto
475	The 2016 Multiresolution Emission Inventory for China (MEIC, $0.25^{\circ} \times 0.25^{\circ}$	Formatted: Font color: Auto
476	http://www.meicmodel.org/http://www.meicmodel.org/) wasis used for the outer domain (Fig. 1a)	
477	with a spatial resolution of 30 km (Li et al., 2017), including species of SO2, NOX, CO, NH3, PM2.5,	
478	and VOCs from the power, industrial, residential, transportation, and agricultural sectors. Inventories	
479	of finer anthropogenic emissions for the YRD region (Fig. 1b) over the year of 2014 were compiled	
480	based on the bottom-up method by Shanghai Academy of Environmental Sciences, are used for the	
481	inner domain (Fig. 1b), These inventories have been well documented in detail in-previous studies	
482	(Huang et al., 2011; Li et al., 2011; Liu et al., 2018), Thus, only brief discussions of these inventories	
483	are presented herein, The fine emission inventories include major sectors such as large point sources,	
484	industrial sources, mobile sources, and residential sources. The anthropogenic emissions over the	
485	YRD region are mainly located over the industrial and urban areas along the Yangtze River as well	
486	as over Hangzhou Bay, In this study, the emission inventories for the two domains wereare projected	
487	into horizontal and vertical grids as hourly emissions, with temporal and vertical profiles obtained	
488	from Wang et al. (2011). VOCs emissions wereare categorized into modeled species, according to	
489	von Schneidemesser et al. (2016). In addition, biogenic emissions wereare generated offline using the	
490	Model of Emission of Gases and Aerosols from Nature (MEGAN) (Guenther et al., 2006). Dust	
491	emissions wereare calculated online from surface features and meteorological fields by using the Air	
492	Force Weather Agency and Atmospheric and Environmental Research scheme (Jones et al., 2011).	
493	Other emissions (i.e., such as those from biomass burning, aviation, and sailing ships)75 accounting	
494	for very small fractions fraction during this period, were are therefore not considered here. However,	
495	it is worth noting that these base inventories have been modified in this study the simulation to reflect	
496	the realistic emissions according to the control measures taken in the period presented in the	
497	introduction,	
1		

498 2.3. Atmospheric processes analysis

517

518

519

520

521

522

523

499 To understand the mechanism underlying mechanism of O3 formation, individual physical and 500 chemical processes of O3 formation were are investigated by using the integrated process rate (IPR) 501 analysis in the WRF-Chem model- (Jfffries and Tonnesen, 1994). The IPR analysis differentiates 502 changes in pollutant concentrations from individual atmospheric process which quantitatively 503 elucidates the contributions of each process, mainly including advection, diffusion, emission, 504 deposition, clouds process, aerosol and gaseous chemistry. The IPR analysis has been widely applied; 505 this method has been proven and demonstrated to be an effective tool for demonstratinginvestigating the relative importance of individual processes and for interpreting O3 concentrations (Goncalves et 506 507 al., 2009; Tang et al., 2017; Shu et al., 2016). TheIn the present study investigated atmospheric 508 processes involved in O3 formation, including work, we consider gas chemistry, vertical diffusion, 509 and horizontal and vertical advection, advections as the main atmospheric processes for O₃ formation. 510 Other processes (i.e., such as cloud processes process and horizontal diffusion) that either, play minor 511 roles or result in the formation of a sink (i.e., dry and wet deposition) wereand are thus not considered 512 in this study. 513 2.4. Evaluation methodmetrics 514 To increase the confidence in interpretations of model results, model outputs should first be 515 evaluated based on observations. Accordingly, in this study, the model results derived from domain 2 516 wereare compared with hourly surface observational data obtained from 96 air quality monitoring

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: First line: 0 ch

 Formatted: Font: (Asian) 等线

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

sites in the YRD region (blue dots, Fig. 1b). These data were downloaded from http://www.pm25.in.

The air pollutants assessed were O3 and NO2. Model performance was evaluated using statistical

measures, namely mean fractional bias (MFB), mean fractional error (MFE), and correlation

eoefficient (R), following the recommendation of the US Environmental Protection Agency (US EPA;

2007). The formula used in this evaluation is presented in Table S1. Additionally, the meteorological

parameters were evaluated based on observational data - including temperature at 2 m (T2), relative

humidity at 2 m (RH2), and 10 m wind speed (WS10) and direction (WD10)-from the

524	Meteorological Assimilation Data Ingest System 1b) in this study. These observational data are
525	downloaded from http://www.pm25.in, and O3 as well as its precursor NO2 are evaluated, in terms of
526	statistical measures, namely the mean fractional bias (MFB), the mean fractional error (MFE), and
527	the correlation coefficient (R), following the recommendation of the US Environmental Protection
528	Agency (US EPA, 2007). Additionally, the meteorological parameters are evaluated based on the
529	observational data, including temperature at 2 m (T2), relative humidity at 2 m (RH2), 10 m wind
530	speed (WS10) and direction (WD10), from the Meteorological Assimilation Data Ingest System

531 Table 1. Discrete statistical indicators used in the model evaluation

Metrics	Definition	Range
Mean Fractional Bias (MFB)	$MFB = \frac{2}{N} \sum_{i=1}^{N} \frac{S_i - O_i}{S_i + O_i} \times 100\%$	<u>-200% to 200%</u>
Mean Fractional Error (MFE)	$MFE = \frac{2}{N} \sum_{i=1}^{N} \frac{ S_i - O_i }{S_i + O_i} \times 100\%$	<u>0 to 200%</u>
Correlation Coefficient (r)	$r = \frac{\sum_{i=1}^{N} (S_i - \overline{S})(O_i - \overline{O})}{\sqrt{\sum_{i=1}^{N} (S_i - \overline{S})^2 \sum_{i=1}^{N} (O_i - \overline{O})^2}}$	<u>0 to 1</u>
Mean Bias (MB)	$MB = \frac{1}{N} \sum_{i=1}^{N} (S_i - O_i)$	$-\infty$ to $+\infty$
Gross Error (GE)	$GE = \frac{1}{N} \sum_{i=1}^{N} \left S_i - O_i \right $	0 to $+\infty$
Root Mean Square Error (RMSE)	$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (S_i - O_i)^2}$	0 to $+\infty$

<u>N is the number of samples. S_i and O_i are values of simulations and observations at time or location *i*, respectively.</u>

532	
533	(https://madis.noaa.gov). Following the study of Zhang et al. (2014), commonly used mean bias (MB),
534	gross error (GE), and root mean square error (RMSE) were are calculated as the statistical indicators;
535	corresponding equations are denoted. All used statistical indicators are summarized in Table SH1.
536	TheBesides the above evaluation of single-point based time series results, the vertical spatial+
537	distribution of modeled O3 in Hangzhou wasis also evaluated based on by comparisons with observed
538	differential absorption LiDAR (DIAL) data (Su et al. 2017). In the DIAL technique, the mean gas
539	concentration over a certain range interval is determined by analyzing the LiDAR backscatter signals
	22

X	Formatted: Font color: Auto
A	Formatted: Normal, Justified, Indent: First line: 0 ch
2-1	Formatted: Default Paragraph Font, Font color: Auto
1	Formatted: Default Paragraph Font, Font color: Auto
1	Formatted: Default Paragraph Font, Font color: Auto
1	Formatted: Default Paragraph Font, Font color: Auto
	Formatted: Font color: Auto
(Formatted: First line: 0 ch
	Formatted: Font: (Asian) 等线, Font color: Auto
	Formatted: Font: (Asian) 等线, Font color: Auto
\square	Formatted: Font: (Asian) 等线
///	Formatted: Font: (Asian) 等线, Font color: Auto
- \Y	Formatted: Font: (Asian) 等线, Font color: Auto
Y	Formatted: Font: (Asian) 等线, Font color: Auto

for laser wavelengths tuned "on" (μ_{pn}) and "off" (λ_{pft}) in a molecular absorption peak of the gas under
investigation (Browell et al., 1998). The DIAL technique can be used to measure O₃ concentrations
above or near a specific location (Browell, 1989). In our DIAL datasets, the vertical height available
was from 0.3 km to 3 km due to the limitations of the signal-to-noise ratio and detection range.

Formatted: Font: (Asian) 等线 Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Font: (Asian) 等线 Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Font: (Asian) 等线 Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Font: (Asian) 等线, Font color: Auto

544 **3. Results**

545 3.1. Model performance evaluation

simulated air pollutant concentrations agreedagree well with the observations. The spatial distributions of MFB and MFE for O_3 and NO_2 at the 96 observational sites over the YRD region are

illustrated in Fig. 2. The results reflected reasonable performance, with MFB and MFE for most of

559

560

561

572

Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) PMingLiU
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线

Formatted: Font: (Asian) 等线, 10.5 pt, Bold, Font color:

Formatted: Font: (Asian) 等线, 10.5 pt, Font color: Auto

Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Font: (Asian) 等线, Font color: Auto

Formatted: Font: (Asian) 等线, Font color: Auto

Formatted: Font: (Asian) 等线, Font color: Auto

Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Font: (Asian) 等线, Font color: Auto

Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Font: (Asian) 等线, Font color: Auto

Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Font: (Asian) 等线, Font color: Auto

Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Font: (Asian) 等线, 10.5 pt, Bold, Font color:

Formatted: Indent: First line: 0 ch, Tab stops: Not at 1 cm

Auto

Auto

25

observations (observation (Fig. 3c, d), Fig. S1c,d in the supporting information). Other model

.

\$73 evaluations with satellite retrievals during this period can been seen in our previous study (Ni et al.,

Formatted: Font: (Asian) 等线, Font color: Auto

580

(WD10).

Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Font: (Asian) PMingLiU Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Font: (Asian) 等线 Formatted: Font: (Asian) 等线

581	Following After, the above overall evaluation of the greaterpresent model in the whole, YRD	_	Formatted	[113]
582	region, the site of Hangzhou waswill be focused on for further analysis, and WRF-Chem simulations			
583	of the site's air quality and meteorological conditions were assessed. The time series of hourly			
584	simulated and observed air pollutants (O3, Fig. 3a4a; NO2, Fig. 3b4b) and meteorological factors (T2,			
585	Fig. 3e4c; RH2, Fig. 3d4d; WS10, Fig. 3e4e; and WD10, Fig. 3f)4f) at Hangzhou are presented in J			
586	Fig. 3. All4. It is found that all modeled data wereare statistically significantly correlated with the			
587	observed data at the 95% level. Overall, WRF-Chem well represented the observed diurnal variations.			
588	For example, the The MFB and MFE for both O3 and NO2 were near the benchmarks in particular of			
589	O3-levels (MFB/MFE: 4%/21%), and wereare well below the benchmarks (MFB/MFE: 15%/35%;			
590	US EPA ₃ 2007)			
591	For evaluation of) and the observed diurnal variations are well reproduced. For meteorological-		Formatted: Indent: First line: 0 ch	
592	parameters, Emery et al. (2001) proposed benchmarks, including 2 m air temperature (MB-< ± 0.5°		Formatted	([114])
593	<u>C, GE</u> $\leq 2.0^{\circ}$ C), 10 m wind speed (MB ≤ 0.5 m/s, RMSE ≤ 2.0 m/s) and 10 m wind direction			
594	(MB $\leq \pm 10^{\circ}$, GE $\leq 30^{\circ}$). McNally (2009) suggested a relaxed benchmark for 2 m temperature			
595	(MB $\leq \pm 1.0^{\circ}$ C). In this study, the 10 m wind speed and wind direction (Fig. 3e, f) results were are			
596	well within the proposed limits.benchmarks, The GE of 2 m air temperature (1.9°C; Fig. 3c) also			
597	satisfiedsatisfies the criteria; however, but the MB wasis slightly higher (-1.6°C), and a slightly high			
598	temperature bias was) which has also been noted in a previous study (Zhang et al., 2014). Overall,			
599	favorable performance was noted for These comparisons further demonstrate that the present model			
600	is able to correctly predict the simulation time series of both meteorological parameters and air			
601	pollutants of O ₃ and NO ₂ in comparison with observationsHangzhou,			
I				

Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) PMingLiU
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) PMingLiU
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) PMingLiU
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) PMingLiU
Formattad: Font: (Asian) 笙线 Font color: Auto

618 <u>3.2. Spatial-temporal variations of O₃ pollution</u>

619	To discuss spatial-temporal characteristics of O3 pollution in Hangzhou, the whole emission*	Formatted: First line: 0 ch
620	control period can be divided into three stages according to the reduction intensity of the measures.	
621	August 24-27, 2016 is the first stage (S1) during which industrial and construction emission controls	Formatted: Font: (Asian) 等线, Font color: Auto
622	were implemented. During the second stage (S2, August 28-31), traffic restrictions were further added.	
623	September 1-6 2016 is the third stage (S3) with the emergent VOCs control further implemented.	
624	Figs. 4(a) and 4(b) in the above section also present the temporal evolution of O_3 and its precursor	
625	$\underline{NO_2}$ in Hangzhou city during the emission control period of G20 summit. It is evident that the $\underline{NO_2}$	
626	has been significantly reduced by the emission control measures and the concentration is well below	
627	the national level-II standard of 200 μ g/m ³ . However, the concentration of O ₃ keeps high levels for	
628	the whole 14 days, with 7 days of MDA8 are above and 4 days are close to the national level-II	
629	standard (GB-3095–2012) of $160\mu g/m^3$. This serious O_3 pollution indicates that the emission control	
630	measures seem to make no obvious effect on ozone, which is consistent with the previous observations.	Formatted: Font: (Asian) 等线, Font color: Auto
631	Diurnal O3-variations were mainly observed within the planetary boundary layer (approximately <2	Formatted: Font: (Asian) 等线, Font color: Auto
632	km). Notably, the model captured a nocturnal O3-rich mass, which exhibited an n-shaped distribution	
633	in the upper air (approximately 1 km) on 25 August 2016. (Su et al. 2017; Wu et al. 2019). The diurnal	
634	variation of O ₃ is similar for the	Formatted: Font: (Asian) 等线, Font color: Auto
1		

636 <u>Fig. 3.26</u>, Synoptic weather system

637

638

639

640

r 1 1

941	of Hangzhou <u>ony</u>
542	
543	8:00 of each day. However, the variation magnitude in Stage 2 is obviously lower than those of other
544	stages, which will be further discussed later.
545	Fig. 5 also clearly shows this diurnal variation of O_3 in the ground level. However, nocturnal O_3 -
646	rich mass is observed during certain periods in the upper air (approximately 1 km), such as August
647	25, August 31, and September 3, which makes an n-shaped distribution pattern of the O3 in the upper

648 <u>air. This kind of spatial distribution of ozone will promote vertical exchange of O₃ in the area. In</u>

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) 等线, Font color: Auto

 Formatted: Font: (Asian) PMingLiU

 Formatted: Font: (Asian) 等线, Font color: Auto

Formatted: Font: (Asian) 等线 Formatted: Font: (Asian) 等线, Font color: Auto approximately <2 km), suggesting the ozone pollution is not a local but a regional phenomenon in

the whole low-level (from surface to close to the PBL height) region.

652 Considering the synoptic circulation is closely related to regional O3 abundance, four-653 representative surface weather charts obtained from the Korea Meteorological Administration were 654 used to track the tropical cyclone (are presented in Fig. 5).6. In the early stage of the tropical cyclone 655 during 24 and 25 August 2016 (Fig. 5a), strong and uniform high-pressure fields covered vast regions 656 of southeastern China. A, and a tropical cyclone moved northeastward over the East China Sea- (Fig. 657 6a). In the middle stage (Fig. 5b6b), the tropical cyclone approached the YRD region, bringing strong 658 north wind fields to this area. TheAs a result, the long narrow rain band arrived in Hangzhou (red 659 triangle) on 27 August 2016. In the later stage (Fig. 5e6c), the cyclone continuously moved toward 660 Japan and eventually hit the land. The, and the tropical high in the YRD region recovered gradually. 661 Finally, the cyclone faded, and a rainstorm appeared over most of the YRD region. This rainstorm continued from approximately 02 through 07 September 2016 (Fig. 5d, for clarity, only the data for 662 663 06 September are presented (Fig. 6d).

Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线, Font color: Auto, Not Superscript/ Subscript
Formatted: Indent: First line: 0.85 cm, Tab stops: Not at 0.99 cm
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto

Formatted: Font: (Asian) 等线, Font color: Auto

664 **3.3. O₃ pollution episode**

665	In Fig. 6, The typical hourly vertical and horizontal O ₂ distributions and wind fields in the YRD*
666	region are further presented in Fig.7. The wind fields are also included for three representative
667	episodes according to the movement of the tropical cyclone.better understanding, For stagnation days
668	with weak wind fields (i.e., 25 August and 02 September)and strong radiation before or after the
669	tropical cyclone, meteorological conditions wereare unfavorable for pollutant dispersion. As a result,
670	O_3 pollution wasis more regional and intense, with an hourly peak O_3 concentration of 250 μ g-m ⁻³
671	below the high layer (2 km) around Hangzhou (Fig. 6a,e). As the eyelone approached (on 27 August),
672	a large belt of O ₃ -rich mass (>160 µg m ⁼³)/m ³ appeared in the upwind direction and moved toward
673	Hangzhou under a prevailing north wind field (Fig. 6b). Transboundary pollutant transport played a
674	eritical role-within the planetary boundary layer in the whole YRD region, as shown in Figs. 7a and

Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto

Formatted: Font: (Asian) 等线, Font color: Auto

Formatted: Font: (Asian) 等线, Font color: Auto

Formatted: Font: (Asian) 等线, Font color: Auto

Formatted: Font: (Asian) 等线, Font color: Auto

33

684	reactions dominate the ozone formation and accumulation. This phenomenon is consistent with the
685	satellite-derived tropospheric O ₃ distribution in the area (Su et al. 2017), and is also supported by the
686	observed ozone data from the 96 sites in the YRD region as shown in Fig. 3c. During the 14-day
687	emission control period of G20 summit, 52% of the observed ozone samples from the 96 sites are
688	above the China's national level-II standard (160µg/m ³), suggesting that regional ozone pollution
689	appears in the YRD region during the study period. As the cyclone approached on 27 August, a large
690	belt of O3 mass appeared in the upwind direction and moved toward Hangzhou under a prevailing
691	north wind field (Fig. 7b). Regional pollutant transport may play an important role under this
692	condition. However, because of the rain and cooling effects from the cyclone, the ozone concentration
693	is relatively low in the whole YRD region.

Formatted: Font color: Auto Formatted: Font color: Auto

Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) PMingLiU
Formatted: Font: (Asian) Times New Roman, Font color: Auto
Formatted: First line: 0 ch
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto

time. This is also the reason for the lower magnitude of diurnal variation in Stage 2.

1	Formatted:	Font:	(Asian)	等线	Font	color.	Auto
	I VI matture.	r one.	vi ioiun		1 Ont	color.	1140

Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) PMingLiU
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) PMingLiU
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) PMingLiU
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) PMingLiU
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) PMingLiU
Formatted: Font: (Asian) PMingLiU
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) PMingLiU
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) Times New Roman, Font color: Auto
Formatted: Font: (Asian) 等线 Font color: Auto

August 27-30, 2016, suggesting that complicated variable meteorological conditions happened in the

-{	Formatted: Font: (Asian) 等线, Font color: Auto
-	Formatted: Font: (Asian) 等线
Ľ	Formatted: Font: (Asian) 等线
Y	Formatted: Font: (Asian) 等线, Font color: Auto
Ľ	Formatted: Font: (Asian) PMingLiU
Y	Formatted: Font: (Asian) 等线
-(Formatted: Font: (Asian) 等线
1	Formatted: Font: (Asian) 等线, Font color: Auto
-	Formatted: Font: (Asian) 等线

Fig. 10. Simulated hourly downward short wave flux at ground surface in Hangzhou (W m⁻²) during August 24 to
 September 6, 2016.

which the strongest northwest cold winds (Fig. 4e) occurred and made the net advections of O_3

747 negligible. Similar to Fig. 8, dynamic O₃ circulations are observed for the periods of August 24-26,

August 31 to September 2, and September 5-6. Particularly, the circular direction is reverse during

749 September 5-6 and the net gas chemistry is to consume ozone due to weak solar radiation in the days

750 <u>as shown in Fig. 10.</u>

743

751 In addition, the variation trend of the daytime mean values associated withproduction rate of gas*

752 chemistry and observed O3-8h concentration wereis consistent (Fig. with the observed MDA8

Formatted: Indent: First line: 0.85 cm Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Font: (Asian) 等线, Font color: Auto

753	concentration and the local chemical generation has large positive correlation (Pearson's $r = 0.77$)	
754	with the observed MDA8 concentrations (Fig. 8b), indicating). This indicates a trade-off effect among	_
755	vertical diffusion-and, horizontal advection, and vertical advection. High O3 concentrations (i.e., 25	
756	August 2016 O ₃ -8hMDA8; 98 ppb) wereare always accompanied by strong radiation and prolific	\square
757	generation of gas chemicals. Local chemical generation was found to have large positive correlation	Ø,
758	(Pearson's r = 0.77) with O ₃ -concentrations. Secondly, chemical reactions. It is also interesting to find	
759	that vertical diffusion may have partially compensated compensate for gas chemistry when the	<
760	chemical reaction rate wasis relatively low or negative. For example, on 26 and 27 during August 26-	
761	27 and 05 and 06 September 2016, most of 5-6, the vertical diffusion rates were greater are higher than	\sim
762	the chemical production rates. The low O3 episode on these periods mainly resulted may result from	\square
763	local chemical consumption. Finally, advection processes were essential and integral to air circulation:	
764	horizontal advection exerted remarkably positive effects on surface O3-concentrations in Hangzhou,	
765	and vertical advection exerted dispersion effects.	
766	4. Discussion	
767	The above results demonstrate that high ozone concentrations are observed, temporarily during	

768 most day time of the emission control period of G20 summit, and spatially in Hangzhou and even the 769 whole YRD region, from the surface to the top of the planetary boundary layer. Strong horizontal and 770 vertical advections appear, but they form circulations due to special meteorological conditions so that 771 the effects of them almost cancel each other out. As a result, the serious ozone pollution in Hangzhou is mainly resultant from the local photochemical reactions. When the photochemical reactions are 772 773 weak, the vertical diffusion from the upper-air notable background O₃ further compensates for the 774 local surface ozone concentration. Therefore, it is of great importance to understand why the strict 775 emission control measures make no obvious effect on the local photochemical reactions of ozone 776 generation.

<u>Chemical generation of O₃ is the net effect of photochemical generation and titration</u>
 <u>consumption. VOC oxidation (Jenkin et al., 1997; Sillman, 1999) in photochemical reactions provides</u>

Formatted: Font: (Asian) 等线, Font color: Auto
- Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
- Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Justified, Line spacing: Double

Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Font: (Asian) 等线 Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Font: (Asian) PMingLiU

779	critical oxidants (i.e., RO2) that efficiently convert NO to NO2, resulting in further accumulation of
780	O3 (Wang et al., 2017). This study revealed notable background O3 concentrations in the upper-air
781	layer in the YRD region. Peripheral downdrafts in large-scale cyclone circulation can transport an
782	O3-rich mass in the upper troposphere or lower stratosphere downward to the surface (Tang et al.,
783	2011; Hsu and Prather, 2014). This type of O3 intrusion during this period was reported in southeast
784	China (Ni et al., The chemical generation of O3 is controlled by NOx and VOCs depending on which
785	substance is lack in the reactions. As a consequence, there are two sensitivity regimes of O_3
786	production, namely, the NOx-limited and VOC-limited regimes. Previous studies have shown that the
787	sensitivity pattern of surface O3 formation in Hangzhou is dominant by the VOCs-limited regime
788	(Yan et al. 2016; Li et al., 2017; Su et al., 2017). In this regime, if the regional reduction of VOCs is
789	much higher than that of NO_{x} , the O_3 concentration can be reduced, otherwise if the regional reduction
790	of VOCs is much less than that of NO_{x} , the inhibitory effect of NO_{x} on O_{3} generation will be
791	weakened, and the O3 concentration will increase remarkably (Wang et al. 2015). According to the
792	studies of Su et al. (2017), Zheng et al. (2019), and Wu et al. (2019), it can be deduced that NOx has
793	been significantly reduced by about 60%, at least two times of the reduction of VOCs in Hangzhou.
794	The influence of stringent emission control measures on VOCs is not as immediate and effect as that
795	on NO _x , which is associated with the fact that there was a large amount of biogenic VOC emission in
796	Hangzhou and surrounding regions (Liu et al. 2018; Wu et al. 2020). In fact, the average temperature
797	during the study period is as high as around 31°C (Fig. 4c), which facilitates the biogenic VOC
798	emissions and photochemical reactions. As a result, the photochemical generation of O ₃ was not under
799	control and high concentration of ozone appeared. However, it is worth noting that after the emergent
800	VOCs control measures had been implemented in the area during the third stage, the net generation
801	rate of O3 gradually reduces since September 2, 2016, leading to a period of relatively low ozone
802	concentration together with other meteorological effects. These discussions implicate that to alleviate
803	ozone pollution, the ratio of reduction of VOCs to that of NO_x is the key parameter based on the O_{3-}
804	NO _x -VOCs sensitivity analysis. As the biogenic VOCs are important sources of the total VOCs in the

Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) PMingLiU
Formatted: Font: (Asian) 等线, Font color: Auto

805 <u>YRD region, it is necessary to balance the reduction of NO_x to make the ratio within effective regime</u>
 806 in the future.

807 <u>2019</u>-Based on our results, we inferred that a considerably high background O₃ concentration
 808 in the upper air markedly contributed to surface O₃-pollution; this inference agreed (hemispheric
 809 background) with the findings of studies conducted in Europe (Wilson et al., 2012) and the United
 810 States (Lin et al., 2012, 2015).

811 We demonstrated that local chemical generation in Hangzhou was enhanced during episodes of 812 high O3- concentrations before and after the tropical cyclone that occurred during the study period. 813 Chemical generation of Og is the net effect of photochemical generation and titration consumption. VOC. oxidation (Jenkin et al., 1997; Sillman, 1999) in photochemical reactions provides critical 814 815 oxidants (i.e., RO2) that efficiently convert NO to NO2, resulting in further accumulation of O3 (Wang 816 et al., 2017). In the present study, downward shortwave flux at the ground level (Fig. S3) was more intense on days with high O3 concentrations than on those with low O3 concentrations. This strong 817 818 solar radiation strengthened O3 photochemical generation. In addition to the stagnant weather 819 conditions, air subsidence in peripheral circulations of tropical cyclones helps to trap heat and 820 pollutants at the surface (Jiang et al., 2015; Shu et al., 2016). Furthermore, a tropical system with 821 ealm, hot dry weather favors the development of an urban heat island, which causes thermal 822 eirculations as well as the convergence of the surrounding O3 and its precursors (Lai and Cheng, 823 2009). The increased temperature also accelerates the photochemical reactions (Narumi et al., 2009; 824 Walcek et al., 1995). In the present study, these enhanced photochemistry processes dominated O₃ 825 chemical generation, resulting in high O₃-concentrations. This result was consistent with the results 826 of a previous field study (Su et al., 2017). Low-level O3 episodes (i.e., 06 September) in Hangzhou 827 were accompanied by a rain band in the YRD region. Rain band related cumulus clouds blocked 828 solar radiation, thereby weakening O3_photochemical generation. Consequently, titration 829 consumption dominated the chemical generation process, resulting in low or negative O3-chemical 830 production.

Formatted: Font color: Auto

Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) PMingLiU
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) 等线
Formatted: Font: (Asian) 等线, Font color: Auto
Formatted: Font: (Asian) PMingLiU
Formatted: Font: (Asian) 等线, Font color: Auto

831	5. Conclusions	Formatted: Font color: Auto
832	Changes in O3-concentrations in Hangzhou-To understand the unique response of ozone to short-	
833	term emission control measures during the G20 summit were well represented in Hangzhou, the	Formatted: Font: (Asian) 等线, Font color: Auto
834	spatial-temporal characteristics and process analysis of O ₃ pollution are investigated by using the	Formatted: Font: (Asian) PMingLiU
		Formatted: Font: (Asian) PMingLiU
835	WRF-Chem model. Statistical evaluations of meteorological and chemical parameters	Formatted: Font: (Asian) 等线, Font color: Auto
		Formatted: Font: (Asian) PMingLiU
836	suggestedsuggest that the model system results satisfactorily matchedis able to reasonably predict the	Formatted: Font: (Asian) 等线, Font color: Auto
027	shearrad data far both the ground and unner air levels in MICS ASIA Aria III. The model results	Formatted: Font: (Asian) 等线
03/	observed data for both the ground and upper-air levels in MICS-ASIA Asia III. The model results	Formatted: Font: (Asian) 等线
838	revealed that the O3High ozone concentrations are observed, temporarily during most day time of the	Formatted: Font: (Asian) PMingLiU
839	emission control period of G20 summit, and spatially in Hangzhou were highly related to a tropical	Formatted: Font: (Asian) PMingLiU
840	eyclone over the East China Sea. Throughout the simulation period, large-scale air massand even the	
841	whole YRD region, from the surface to the top of the planetary boundary layer. Horizontal and	
842	vertical advection, circulations and energy transportare captured in Hangzhou, with horizontal	Formatted: Font: (Asian) PMingLiU
843	advection the source and vertical advection the sink of the surface O3 in Hangzhou. Consequently,	
844	the serious ozone pollution is mainly resultant from the local photochemical reactions which are not	
845	under good control by the tropical cyclone probably caused the highemission reduction measures. As	Formatted: Font: (Asian) PMingLiU
846	the surface O ₃ formation in Hangzhou is dominant by the VOCs-limited regime, the significant	
847	reduction of NO _x compared to that of VOCs is unfavorable to chemical generation of O ₃ . The ratio	
848	of reduction of VOCs to that of NOx based on the O3-NOx-VOCs sensitivity analysis is a critical	
849	parameter for reduction of ozone formation from photochemical reactions. In addition, it is found that	
850	the vertical diffusion from the upper-air O3-rich mass in the horizontal and vertical scales of the YRD	Formatted: Font: (Asian) PMingLiU
851	region; this phenomenon engendered a negativenotable background O3 also plays an important role	Formatted: Font: (Asian) PMingLiU
052	in chaning the surface even concentration. As the transical evelope enpresented, bringing with it a	Formatted: Font: (Asian) 等线, Font color: Auto
0.52	in snaping the sufface ozone concentration. As the tropical cyclone approached, orniging with it a	Formatted: Font: (Asian) 等线, Font color: Auto
853	prevailing north wind component, Hangzhou was affected by pollutant transport from North China.	
854	After or before the tropical cyclone, peripheral downdraft or air subsidence produced stable and calm	
855	weather, with high pressure and temperature andwhen the photochemical reactions are weak-wind,	Formatted: Font: (Asian) PMingLiU
856	and the urban heat island effect was aggravated. The combination of these conditions enhanced the	

857	chemical generation process, resulting in a marked increase in surface O ₃ concentrations. Our study	
858	provides scientific insight into urban O3 formation and dispersion under conditions where short-term	
859	emission reduction measures had been applied in East China during a tropical cyclone event	
860	Author contribution	
861	Zhizhen Ni: Data curation, Investigation, Writing - original draft. Kun Luo: Methodology, Resources,	
862	Writing - review & editing, Supervision. Yang Gao: Formal analysis, Methodology, Writing - review	
863	& editing. Xiang Gao: Data curation, Resources. Fei Jiang: Methodology, Writing - review &	
864	editing. Cheng Huang: Data curation, Formal analysis. Jianren Fan: Resources,	
865	Supervision. Joshua Fu: Writing - review & editing. Changhong Chen: Formal analysis.	
866	• • • • • • • • • • • • • • • • • • •	 Formatted: Font: (Asian) 等线, Font color: Custe Color(RGB(34,34,34)), Condensed by 0.05 pt, P Clear (White)
867	Acknowledgments	Formatted: First line: 0 ch
0.00	This much must for a sight more stable and if for the form the Minister of Fusier more that	Formatted: Font color: Auto
808	I his work was innancially supported by special funds from the Ministry of Environmental	 Formatted: Font: (Asian) 等线, Not Bold, Font c
869	Protection of China (No. 201409008-4) and the Zhejiang Provincial Key Science and Technology	Formatted: Font: (Asian) 等线, Font color: Auto
870	Project for Social Development (No. 2014C03025). We would like to thank the US National Oceanic	
871	and Atmospheric Administration for its technical support in WRF-Chem modeling. High-resolution	Formatted: Default Paragraph Font
872	emission inventories were provided by the Institute of Environmental Science, Shanghai, China, and	
873	the official documents of emission control policies were obtained from the Hangzhou Environmental	
874	Monitoring Center,	 Formatted: Default Paragraph Font, Font color: A

d: Font: (Asian) 等线, Font color: Custom iB(34,34,34)), Condensed by 0.05 pt, Pattern: nite) d: First line: 0 ch d: Font color: Auto d: Font: (Asian) 等线, Not Bold, Font color: Auto

d: Default Paragraph Font, Font color: Auto

875 **Reference**

876	Competing interests	
877	The authors declare that they have no conflict of interest.	
878	References	
879	Browell, E.V., Ismail, S., Grant, W.B.: Differential absorption lidar (DIAL) measurements from air and space, Appl.	\mathbf{k}
880	Phys. B Lasers Opt, 67, 399-410, https://doi.org/10.1007/s003400050523, 1998.	$\langle \rangle$
881	Browell, E. V.: Differential Absorption Lidar Sensing of Ozone, Proc. IEEE, 77, 419-432,	
882	https://doi.org/10.1109/5.24128, 1989	
883	Brown, J.F., Loveland, T.R., Merchant, J.W., Reed, B.C., Ohlen, D.O.: Using Multisource Data in Global Land-	
884	Cover Characterization - Concepts, Requirements, and Methods, Photogramm. Eng. Remote Sensing, 59,	
885	977–987, 1993.	
886	Calfapietra, C., Morani, A., Sgrigna, G., Di Giovanni, S., Muzzini, V., Pallozzi, E., Guidolotti, G., Nowak, D., Fares,	
887	S.: Removal of Ozone by Urban and Peri-Urban Forests: Evidence from Laboratory, Field, and Modeling	
888	Approaches, J. Environ. Qual, 45, 224, https://doi.org/10.2134/jeq2015.01.0061, 2016.	
889	Cheng, W.L., Lai, L.W., Den, W., Wu, M.T., Hsueh, C.A., Lin, P.L., Pai, C.L., Yan, Y.L.: The relationship between	
890	typhoons' peripheral circulation and ground-level ozone concentrations in central Taiwan, Environ. Monit.	
891	Assess, 186, 791-804, https://doi.org/10.1007/s10661-013-3417-7, 2014.	
892	Emery, C., Tai, E., Yarwood, G.: Enhanced meteorological modeling and performance evaluation for two Texas	
893	episodes, International Corp (Ed.), Report to the Texas Natural Resources Conservation Commission, p.b.E	
894	(2001) [Novato, CA.], 2001	
895	Emmons, L.K., Walters, S., Hess, P.G., Lamarque, JF., Pfister, G.G., Fillmore, D., Granier, C., Guenther, A.,	
896	Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S.L., Kloster, S.:	
897	Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4),	
898	Geosci. Model Dev., 3, 43-67, https://doi.org/10.5194/gmd-3-43-2010, 2010.	
899	Friedl, M, McIver, D, Hodges, J. C, Zhang, X, Muchoney, D., Strahler, A, Woodcock, C, Gopal, S.,	
900	Schneider, A., Cooper, A., Baccini, A., Gao, F. and Schaaf, C.: Global land cover mapping from MODIS:	
901	algorithms and early results, Remote Sens. Environ., 83(12), 287-302, https://doi.org/10.1016/S0034-	
902	4257(02)00078-0, 2002.	

Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Justified Formatted

903	Gao, J., Zhu, B., Xiao, H., Kang, H., Hou, X., Shao, P.: A case study of surface ozone source apportionment during	
904	a high concentration episode, under frequent shifting wind conditions over the Yangtze River Delta, China,	
905	Sci. Total Environ, 544, 853-863, https://doi.org/10.1016/j.scitotenv.2015.12.039, 2016.	
906	Gonçalves, M., Jiménez-Guerrero, P., Baldasano J.M.: Contribution of atmospheric processes affecting the	
907	dynamics of air pollution in South-Western Europe during a typical summertime photochemical episode,	
908	Atmos. Chem. Phys, 9, 849-864, https://doi.org/10.5194/acp-9-849-2009, 2009.	
909	Grell, G.A., Peckham, S.E., Schmitz, R., McKeen, S.A., Frost, G., Skamarock, W.C., Eder, B. Fully coupled "online"	
910	chemistry within the WRF model, Atmos. Environ., 39, 6957–6975,	
911	https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.	
912	Grell, G., Baklanov, A.: Integrated modeling for forecasting weather and air quality: A call for fully coupled	
913	approaches, Atmos. Environ., 45, 6845–6851, https://doi.org/10.1016/j.atmosenv.2011.01.017, 2011.	
914	Haiwei Li, Dongfang Wang, Long Cui, Yuan Gao, Juntao Huo, Xinning Wang, Zhuozhi Zhang, Yan Tan, Yu Huang,	
915	Junji Cao, Judith C. Chow, Shun-cheng Lee, Qingyan Fu. Characteristics of atmospheric PM2.5 composition	
916	during the implementation of stringent pollution control measures in shanghai for the 2016 G20 summit.	
917	Science of the Total Environment 648 (2019) 1121?1129	
918	Ha, S., Hu, H., Roussos-Ross, D., Haidong, K., Roth, J., Xu, X.: The effects of air pollution on adverse birth	Formatted: Font: (Asian) 等线, Font color: Auto
919	outcomes, Environ. Res., 134, 198-204, https://doi.org/10.1016/j.envres.2014.08.002, 2014.	Formatted: Justified
920	Hsu, J., Prather, M.J.: Is the residual vertical velocity a good proxy for stratosphere-troposphere exchange of ozone?,	
921	Geophys. Res. Lett., 41, 9024–9032, https://doi.org/10.1002/2014GL061994, 2014.	Formatted: Font: (Asian) 等线, Font color: Auto
922	Huang, J.P., Fung, J.C.H., Lau, A.K.H., Qin, Y.: Numerical simulation and process analysis of typhoon-related ozone	Formatted: Font: (Asian) 等线, Font color: Auto
923	episodes in Hong Kong, J. Geophys. Res. D Atmos., 110, 1–17, https://doi.org/10.1029/2004JD004914, 2005.	Formatted: Justified
924	Huang, C., Chen, C. H., Li, L., Cheng, Z., Wang, H. L., Huang, H. Y., Streets, D. G., Wang, Y. J., Zhang, G. F. and	
925	Chen, Y. R.: Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta	
926	region, China, Atmos. Chem. Phys., https://doi.org/10.5194/acp-11-4105-2011, 2011.	
927	Huan Yu, Wei Dai, Lili Ren, Dan Liu, Xintian Yan, Hang Xiao, Jun He, Honghui Xu. The Effect of Emission Control	
928	on the Submicron Particulate Matter Size Distribution in Hangzhou during the 2016 G20 Summit. Aerosol	
929	and Air Quality Research, 18: 2038–2046, 2018.	
930	Hung, C.H., LouoC, K.: Relationships between Ambient Ozone Concentration Changes in Southwestern Taiwan	Formatted: Font: (Asian) 等线, Font color: Auto

and Invasion Tracks of Tropical Typhoons, Adv. Meteorol., https://doi.org/10.1155/2015/402976, 2015.

Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Justified

932	Hu S.W., Wu, X.F., Luo K., Gao, X. and Fan, J.R. (2015). Source apportionment of air pollution in Hangzhou city		
933	based on CMAQ. Energy Eng. 7: 40-44.		
934	Jenkin, M. E., Saunders, S. M. and Pilling, M. J.: The tropospheric degradation of volatile organic compounds: A	Fo	rmatted: Font: (Asian) 等线, Font color: Auto
935	protocol for mechanism development, Atmos. Environ., 31(1), 81-104, https://doi.org/10.1016/S1352-	Fo	rmatted: Justified
936	2310(96)00105-7, 1997.		
937	Jfffries H. E., Tonnesen S.: A comparison of two photochemical reaction mechanisms using mass balance and		
938	process analysis, Atmospheric Environment, 28(18), 2991-3003, 1994.		
939	Jiang, F., Zhou, P., Liu, Q., Wang, T., Zhuang, B., Wang, X.: Modeling tropospheric ozone formation over East	Fo	rmatted: Font: (Asian) 等线, Font color: Auto
940	China in springtime, J. Atmos. Chem., 69, 303-319, https://doi.org/10.1007/s10874-012-9244-3, 2012.	Fo	rmatted: Justified
941	Jiang, Y.C., Zhao, T.L., Liu, J., Xu, X.D., Tan, C.H., Cheng, X.H., Bi, X.Y., Gan, J.B., You, J.F., Zhao, S.Z.: Why		
942	does surface ozone peak before a typhoon landing in southeast China?, Atmos. Chem. Phys., 15, 13331-13338,		
943	https://doi.org/10.5194/acp-15-13331-2015, 2015.		
944	Ji, Y., Qin, X., Wang, B., Xu, J., Shen, J., Chen, J., Huang, K., Deng, C., Yan, R., Xu, K. and Zhang, T. (2018).		
945	Counteractive effects of regional transport and emission control on the formation of fine particles: A case		
946	study during the Hangzhou G20 summit, Atmos. Chem. Phys. 18: 13581-13600.	Fo	rmatted: Font: (Asian) 等线, Font color: Auto
947	Jones, S.L., Creighton, G.A., Kuchera, E.L., Rentschler, S.A.: Adapting WRF-CHEM GOCART for Fine-Scale Dust	Fo	rmatted: Font: (Asian) 等线, Font color: Auto
a · -			rmatted: Justified
948	Forecasting, in: AGU Fall Meeting Abstracts, p. 6., 2011.	Fo	
948 949	Forecasting, in: AGU Fall Meeting Abstracts, p. 6., 2011. Kai Wu, Ping Kang, Xin Tie, Shan Gu, Xiaoling Zhang, Xiaohang Wen, Lingkai Kong, Sihui Wang, Yuzi Chen,	Fo	
948 949 950	Forecasting, in: AGU Fall Meeting Abstracts, p. 6., 2011. <u>Kai Wu, Ping Kang, Xin Tie, Shan Gu, Xiaoling Zhang, Xiaohang Wen, Lingkai Kong, Sihui Wang, Yuzi Chen,</u> <u>Weihao Pan, Zhanshan Wang. Evolution and Assessment of the Atmospheric Composition in Hangzhou and</u>	Fo	
948 949 950 951	 Forecasting, in: AGU Fall Meeting Abstracts, p. 6., 2011. <u>Kai Wu, Ping Kang, Xin Tie, Shan Gu, Xiaoling Zhang, Xiaohang Wen, Lingkai Kong, Sihui Wang, Yuzi Chen,</u> <u>Weihao Pan, Zhanshan Wang. Evolution and Assessment of the Atmospheric Composition in Hangzhou and</u> <u>its Surrounding Areas during the G20 Summit. Aerosol and Air Quality Research, 19: 2757–2769, 2019</u> 	01	
 948 949 950 951 952 	 Forecasting, in: AGU Fall Meeting Abstracts, p. 6., 2011. Kai Wu, Ping Kang, Xin Tie, Shan Gu, Xiaoling Zhang, Xiaohang Wen, Lingkai Kong, Sihui Wang, Yuzi Chen, Weihao Pan, Zhanshan Wang. Evolution and Assessment of the Atmospheric Composition in Hangzhou and its Surrounding Areas during the G20 Summit. Aerosol and Air Quality Research, 19: 2757–2769, 2019 Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, 	Fo	rmatted: Font: (Asian) 等线, Font color: Auto
 948 949 950 951 952 953 	 Forecasting, in: AGU Fall Meeting Abstracts, p. 6., 2011. Kai Wu, Ping Kang, Xin Tie, Shan Gu, Xiaoling Zhang, Xiaohang Wen, Lingkai Kong, Sihui Wang, Yuzi Chen, Weihao Pan, Zhanshan Wang. Evolution and Assessment of the Atmospheric Composition in Hangzhou and its Surrounding Areas during the G20 Summit. Aerosol and Air Quality Research, 19: 2757–2769, 2019 Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, 	Fo Fo	rmatted: Font: (Asian) 等线, Font color: Auto rmatted: Justified
 948 949 950 951 952 953 954 	 Forecasting, in: AGU Fall Meeting Abstracts, p. 6., 2011. Kai Wu, Ping Kang, Xin Tie, Shan Gu, Xiaoling Zhang, Xiaohang Wen, Lingkai Kong, Sihui Wang, Yuzi Chen, Weihao Pan, Zhanshan Wang. Evolution and Assessment of the Atmospheric Composition in Hangzhou and its Surrounding Areas during the G20 Summit. Aerosol and Air Quality Research, 19: 2757–2769, 2019 Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph: The NCEP/NCAR 40-Year Reanalysis Project, Bull. Amer. Meteor. 	Fo Fo	rmatted: Font: (Asian) 等线, Font color: Auto rmatted: Justified
 948 949 950 951 952 953 954 955 	 Forecasting, in: AGU Fall Meeting Abstracts, p. 6., 2011. Kai Wu, Ping Kang, Xin Tie, Shan Gu, Xiaoling Zhang, Xiaohang Wen, Lingkai Kong, Sihui Wang, Yuzi Chen, Weihao Pan, Zhanshan Wang. Evolution and Assessment of the Atmospheric Composition in Hangzhou and its Surrounding Areas during the G20 Summit. Aerosol and Air Quality Research, 19: 2757–2769, 2019 Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph: The NCEP/NCAR 40-Year Reanalysis Project, Bull. Amer. Meteor. Soc., 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996. 	Fo Fo	r matted: Font: (Asian) 等线, Font color: Auto rmatted: Justified
 948 949 950 951 952 953 954 955 956 	 Forecasting, in: AGU Fall Meeting Abstracts, p. 6., 2011. Kai Wu, Ping Kang, Xin Tie, Shan Gu, Xiaoling Zhang, Xiaohang Wen, Lingkai Kong, Sihui Wang, Yuzi Chen, Weihao Pan, Zhanshan Wang. Evolution and Assessment of the Atmospheric Composition in Hangzhou and its Surrounding Areas during the G20 Summit. Aerosol and Air Quality Research, 19: 2757–2769, 2019 Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph: The NCEP/NCAR 40-Year Reanalysis Project, Bull. Amer. Meteor. Soc., 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996. Kheirbek, I., Wheeler, K., Walters, S., Kass, D., Matte, T.: PM2.5 and ozone health impacts and disparities in New 	Fo Fo	r matted: Font: (Asian) 等线, Font color: Auto r matted: Justified
 948 949 950 951 952 953 954 955 956 957 	 Forecasting, in: AGU Fall Meeting Abstracts, p. 6., 2011. Kai Wu, Ping Kang, Xin Tie, Shan Gu, Xiaoling Zhang, Xiaohang Wen, Lingkai Kong, Sihui Wang, Yuzi Chen, Weihao Pan, Zhanshan Wang. Evolution and Assessment of the Atmospheric Composition in Hangzhou and its Surrounding Areas during the G20 Summit. Aerosol and Air Quality Research, 19: 2757–2769, 2019 Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph: The NCEP/NCAR 40-Year Reanalysis Project, Bull. Amer. Meteor. Soc., 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996. Kheirbek, I., Wheeler, K., Walters, S., Kass, D., Matte, T.: PM2.5 and ozone health impacts and disparities in New York City: Sensitivity to spatial and temporal resolution, Air Qual. Atmos. Heal., 6, 473–486, 	Fo	r matted: Font: (Asian) 等线, Font color: Auto r matted: Justified
 948 949 950 951 952 953 954 955 956 957 958 	 Forecasting, in: AGU Fall Meeting Abstracts, p. 6., 2011. Kai Wu, Ping Kang, Xin Tie, Shan Gu, Xiaoling Zhang, Xiaohang Wen, Lingkai Kong, Sihui Wang, Yuzi Chen, Weihao Pan, Zhanshan Wang. Evolution and Assessment of the Atmospheric Composition in Hangzhou and its Surrounding Areas during the G20 Summit. Aerosol and Air Quality Research, 19: 2757–2769, 2019 Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph: The NCEP/NCAR 40-Year Reanalysis Project, Bull. Amer. Meteor. Soc., 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996. Kheirbek, I., Wheeler, K., Walters, S., Kass, D., Matte, T.: PM2.5 and ozone health impacts and disparities in New York City: Sensitivity to spatial and temporal resolution, Air Qual. Atmos. Heal., 6, 473–486, https://doi.org/10.1007/s11869-012-0185-4, 2013. 	Fo	rmatted: Font: (Asian) 等线, Font color: Auto rmatted: Justified
 948 949 950 951 952 953 954 955 956 957 958 959 	 Forecasting, in: AGU Fall Meeting Abstracts, p. 6., 2011. Kai Wu, Ping Kang, Xin Tie, Shan Gu, Xiaoling Zhang, Xiaohang Wen, Lingkai Kong, Sihui Wang, Yuzi Chen, Weihao Pan, Zhanshan Wang. Evolution and Assessment of the Atmospheric Composition in Hangzhou and its Surrounding Areas during the G20 Summit. Aerosol and Air Quality Research, 19: 2757–2769, 2019 Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph: The NCEP/NCAR 40-Year Reanalysis Project, Bull. Amer. Meteor. Soc., 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996. Kheirbek, I., Wheeler, K., Walters, S., Kass, D., Matte, T.: PM2.5 and ozone health impacts and disparities in New York City: Sensitivity to spatial and temporal resolution, Air Qual. Atmos. Heal., 6, 473–486, https://doi.org/10.1007/s11869-012-0185-4, 2013. Knote, C., Tuccella, P., Curci, G., Emmons, L., Orlando, J.J., Madronich, S., Baró, R., Jiménez-Guerrero, P., 	Fo	rmatted: Font: (Asian) 等线, Font color: Auto rmatted: Justified
 948 949 950 951 952 953 954 955 956 957 958 959 960 	 Forecasting, in: AGU Fall Meeting Abstracts, p. 6., 2011. Kai Wu, Ping Kang, Xin Tie, Shan Gu, Xiaoling Zhang, Xiaohang Wen, Lingkai Kong, Sihui Wang, Yuzi Chen, Weihao Pan, Zhanshan Wang, Evolution and Assessment of the Atmospheric Composition in Hangzhou and its Surrounding Areas during the G20 Summit. Aerosol and Air Quality Research, 19: 2757–2769, 2019 Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph: The NCEP/NCAR 40-Year Reanalysis Project, Bull. Amer. Meteor. Soc., 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996. Kheirbek, I., Wheeler, K., Walters, S., Kass, D., Matte, T.: PM2.5 and ozone health impacts and disparities in New York City: Sensitivity to spatial and temporal resolution, Air Qual. Atmos. Heal., 6, 473–486, https://doi.org/10.1007/s11869-012-0185-4, 2013. Knote, C., Tuccella, P., Curci, G., Emmons, L., Orlando, J.J., Madronich, S., Baró, R., Jiménez-Guerrero, P., Luecken, D., Hogrefe, C., Forkel, R., Werhahn, J., Hirtl, M., Pérez, J.L., San José, R., Giordano, L., Brunner, 	Fo	rmatted: Font: (Asian) 等线, Font color: Auto rmatted: Justified
 948 949 950 951 952 953 954 955 956 957 958 959 960 961 	 Forecasting, in: AGU Fall Meeting Abstracts, p. 6., 2011. Kai Wu, Ping Kang, Xin Tie, Shan Gu, Xiaoling Zhang, Xiaohang Wen, Lingkai Kong, Sihui Wang, Yuzi Chen, Weihao Pan, Zhanshan Wang. Evolution and Assessment of the Atmospheric Composition in Hangzhou and its Surrounding Areas during the G20 Summit. Aerosol and Air Quality Research, 19: 2757–2769, 2019 Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph: The NCEP/NCAR 40-Year Reanalysis Project, Bull. Amer. Meteor. Soc., 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996. Kheirbek, I., Wheeler, K., Walters, S., Kass, D., Matte, T.: PM2.5 and ozone health impacts and disparities in New York City: Sensitivity to spatial and temporal resolution, Air Qual. Atmos. Heal., 6, 473–486, https://doi.org/10.1007/s11869-012-0185-4, 2013. Knote, C., Tuccella, P., Curci, G., Emmons, L., Orlando, J.J., Madronich, S., Baró, R., Jiménez-Guerrero, P., Luecken, D., Hogrefe, C., Forkel, R., Werhahn, J., Hirtl, M., Pérez, J.L., San José, R., Giordano, L., Brunner, D., Yahya, K., Zhang, Y.: Influence of the choice of gas-phase mechanism on predictions of key gaseous 	Fo	rmatted: Font: (Asian) 等线, Font color: Auto rmatted: Justified

962	pollutants during the AQMEII phase-2 intercomparison, Atmos. Environ., 115, 553-568,	
963	https://doi.org/10.1016/j.atmosenv.2014.11.066, 2015.	
964	Lai, L. W. and Cheng, W. L.: Air quality influenced by urban heat island coupled with synoptic weather patterns,	
965	Sci. Total Environ., 407(8), 2724–2733, https://doi.org/10.1016/j.scitotenv.2008.12.002, 2009.	
966	Landry, J.S., Neilson, E.T., Kurz, W.A., Percy, K.E.: The impact of tropospheric ozone on landscape-level	
967	merchantable biomass and ecosystem carbon in Canadian forests, Eur. J. For. Res., 132, 71-81,	
968	https://doi.org/10.1007/s10342-012-0656-z, 2013.	
969	Lelieveld, J., Evans, J.S., Fnais, M., Giannadaki, D., Pozzer, A.: The contribution of outdoor air pollution sources	
970	to premature mortality on a global scale, Nature, 525, 367–71, https://doi.org/10.1038/nature15371, 2015.	
971	Li, J., Nagashima, T., Kong, L., Ge, B., Yamaji, K., Fu, J. S., Wang, X., Fan, Q., Itahashi, S., Lee, HJ., Kim, C*	Formatted: Font: (Asian) 等线, Font color: Auto
972	H., Lin, CY., Zhang, M., Tao, Z., Kajino, M., Liao, H., Li, M., Woo, JH., Kurokawa, JI., Wu, O., Akimoto,	Formatted: Justified
973	H., Carmichael, G. R., and Wang, Z.: Model evaluation and inter-comparison of surface-level ozone and	
974	relevant species in East Asia in the context of MICS-Asia phase III Part I: overview. Atmos. Chem. Phys.	
975	Discuss. https://doi.org/10.5194/acp-2018-1283. in review. 2019.	
976	Li K Chen L Ving F White S L Jang C Wu X Gao X Hong S Shen L Azzi M and Cen K (2017)	
077	Meteorological and chamical impacts on organ formation: A case study in Hangthen, China Atmas Bas	
	Meteorological and chemical impacts on ozone formation. A case study in Hangzhou, China, <u>Aunos, Res.</u>	Formatted: Font' (Asian) 姜线
079		Formatted: Font: (Asian) 等线, Font color: Auto
978	<u>196: 40–52.</u>	Formatted: Font: (Asian) 等线, Font color: Auto
978 979	<u>196: 40–52.</u> Li, L., Chen, C. H., Fu, J. S., Huang, C., Streets, D. G., Huang, H. Y., Zhang, G. F., Wang, Y. J., Jang, C. J., Wang,	Formatted: Justified
978 979 979 980	 <u>196: 40–52.</u> <u>Li, L., Chen, C. H., Fu, J. S., Huang, C., Streets, D. G., Huang, H. Y., Zhang, G. F., Wang, Y. J., Jang, C. J., Wang, H. L., Chen, Y. R. and Fu, J. M.: Air quality and emissions in the Yangtze River Delta, China, Atmos. Chem.</u> 	Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Justified Formatted: Font: (Asian) 等线, Font color: Auto
978 979 980 981	 196: 40–52. Li, L., Chen, C. H., Fu, J. S., Huang, C., Streets, D. G., Huang, H. Y., Zhang, G. F., Wang, Y. J., Jang, C. J., Wang, H. L., Chen, Y. R. and Fu, J. M.: Air quality and emissions in the Yangtze River Delta, China, Atmos. Chem. Phys., https://doi.org/10.5194/acp-11-1621-2011, 2011. 	Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Justified Formatted: Font: (Asian) 等线, Font color: Auto
978 979 980 981 982	 196: 40–52. Li, L., Chen, C. H., Fu, J. S., Huang, C., Streets, D. G., Huang, H. Y., Zhang, G. F., Wang, Y. J., Jang, C. J., Wang, H. L., Chen, Y. R. and Fu, J. M.: Air quality and emissions in the Yangtze River Delta, China, Atmos. Chem. Phys., https://doi.org/10.5194/acp-11-1621-2011, 2011. Li, M., Song, Y., Huang, X., Li, J., Mao, Y., Zhu, T., Cai, X. and Liu, B.: Improving mesoscale modeling using 	Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Justified Formatted: Font: (Asian) 等线, Font color: Auto
978 979 980 981 982 983	 196: 40–52. Li, L., Chen, C. H., Fu, J. S., Huang, C., Streets, D. G., Huang, H. Y., Zhang, G. F., Wang, Y. J., Jang, C. J., Wang, H. L., Chen, Y. R. and Fu, J. M.: Air quality and emissions in the Yangtze River Delta, China, Atmos. Chem. Phys., https://doi.org/10.5194/acp-11-1621-2011, 2011. Li, M., Song, Y., Huang, X., Li, J., Mao, Y., Zhu, T., Cai, X. and Liu, B.: Improving mesoscale modeling using satellite-derived land surface parameters in the Pearl River Delta region, China, J. Geophys. Res. Atmos., 	Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Justified Formatted: Font: (Asian) 等线, Font color: Auto
977 978 979 980 981 982 983 984	 196: 40–52. Li, L., Chen, C. H., Fu, J. S., Huang, C., Streets, D. G., Huang, H. Y., Zhang, G. F., Wang, Y. J., Jang, C. J., Wang, H. L., Chen, Y. R. and Fu, J. M.: Air quality and emissions in the Yangtze River Delta, China, Atmos. Chem. Phys., https://doi.org/10.5194/acp-11-1621-2011, 2011. Li, M., Song, Y., Huang, X., Li, J., Mao, Y., Zhu, T., Cai, X. and Liu, B.: Improving mesoscale modeling using satellite-derived land surface parameters in the Pearl River Delta region, China, J. Geophys. Res. Atmos., 119(11), 6325–6346, https://doi.org/10.1002/2014JD021871, 2014. 	Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Justified Formatted: Font: (Asian) 等线, Font color: Auto
977 978 979 980 981 982 983 984 984	 196: 40–52. Li, L., Chen, C. H., Fu, J. S., Huang, C., Streets, D. G., Huang, H. Y., Zhang, G. F., Wang, Y. J., Jang, C. J., Wang, H. L., Chen, Y. R. and Fu, J. M.: Air quality and emissions in the Yangtze River Delta, China, Atmos. Chem. Phys., https://doi.org/10.5194/acp-11-1621-2011, 2011. Li, M., Song, Y., Huang, X., Li, J., Mao, Y., Zhu, T., Cai, X. and Liu, B.: Improving mesoscale modeling using satellite-derived land surface parameters in the Pearl River Delta region, China, J. Geophys. Res. Atmos., 119(11), 6325–6346, https://doi.org/10.1002/2014JD021871, 2014. Li, M., Zhang, Q., Kurokawa, JI., Woo, JH., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D.G., Carmichael, G.R., 	Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Justified Formatted: Font: (Asian) 等线, Font color: Auto
977 978 979 980 981 982 983 984 985 986	 196: 40–52. Li, L., Chen, C. H., Fu, J. S., Huang, C., Streets, D. G., Huang, H. Y., Zhang, G. F., Wang, Y. J., Jang, C. J., Wang, H. L., Chen, Y. R. and Fu, J. M.: Air quality and emissions in the Yangtze River Delta, China, Atmos. Chem. Phys., https://doi.org/10.5194/acp-11-1621-2011, 2011. Li, M., Song, Y., Huang, X., Li, J., Mao, Y., Zhu, T., Cai, X. and Liu, B.: Improving mesoscale modeling using satellite-derived land surface parameters in the Pearl River Delta region, China, J. Geophys. Res. Atmos., 119(11), 6325–6346, https://doi.org/10.1002/2014JD021871, 2014. Li, M., Zhang, Q., Kurokawa, JI., Woo, JH., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D.G., Carmichael, G.R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., Zheng, B.: MIX: a mosaic Asian 	Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Justified Formatted: Font: (Asian) 等线, Font color: Auto
977 978 979 980 981 982 983 984 985 986 986	 196: 40–52. Li, L., Chen, C. H., Fu, J. S., Huang, C., Streets, D. G., Huang, H. Y., Zhang, G. F., Wang, Y. J., Jang, C. J., Wang, H. L., Chen, Y. R. and Fu, J. M.: Air quality and emissions in the Yangtze River Delta, China, Atmos. Chem. Phys., https://doi.org/10.5194/acp-11-1621-2011, 2011. Li, M., Song, Y., Huang, X., Li, J., Mao, Y., Zhu, T., Cai, X. and Liu, B.: Improving mesoscale modeling using satellite-derived land surface parameters in the Pearl River Delta region, China, J. Geophys. Res. Atmos., 119(11), 6325–6346, https://doi.org/10.1002/2014JD021871, 2014. Li, M., Zhang, Q., Kurokawa, JI., Woo, JH., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D.G., Carmichael, G.R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and 	Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Justified Formatted: Font: (Asian) 等线, Font color: Auto
977 978 979 980 981 982 983 984 985 986 987 988	 196: 40–52. Li, L., Chen, C. H., Fu, J. S., Huang, C., Streets, D. G., Huang, H. Y., Zhang, G. F., Wang, Y. J., Jang, C. J., Wang, H. L., Chen, Y. R. and Fu, J. M.: Air quality and emissions in the Yangtze River Delta, China, Atmos. Chem. Phys., https://doi.org/10.5194/acp-11-1621-2011, 2011. Li, M., Song, Y., Huang, X., Li, J., Mao, Y., Zhu, T., Cai, X. and Liu, B.: Improving mesoscale modeling using satellite-derived land surface parameters in the Pearl River Delta region, China, J. Geophys. Res. Atmos., 119(11), 6325–6346, https://doi.org/10.1002/2014JD021871, 2014. Li, M., Zhang, Q., Kurokawa, JI., Woo, JH., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D.G., Carmichael, G.R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017. 	Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Justified Formatted: Font: (Asian) 等线, Font color: Auto
977 978 979 980 981 982 983 984 985 986 987 988 988 989	 196: 40–52. Li, L., Chen, C. H., Fu, J. S., Huang, C., Streets, D. G., Huang, H. Y., Zhang, G. F., Wang, Y. J., Jang, C. J., Wang, H. L., Chen, Y. R. and Fu, J. M.: Air quality and emissions in the Yangtze River Delta, China, Atmos. Chem. Phys., https://doi.org/10.5194/acp-11-1621-2011, 2011. Li, M., Song, Y., Huang, X., Li, J., Mao, Y., Zhu, T., Cai, X. and Liu, B.: Improving mesoscale modeling using satellite-derived land surface parameters in the Pearl River Delta region, China, J. Geophys. Res. Atmos., 119(11), 6325–6346, https://doi.org/10.1002/2014JD021871, 2014. Li, M., Zhang, Q., Kurokawa, JI., Woo, JH., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D.G., Carmichael, G.R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017. Lin, M., Fiore, A.M., Cooper, O.R., Horowitz, L.W., Langford, A.O., Levy, H., Johnson, B.J., Naik, V., Oltmans, 	Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Justified Formatted: Font: (Asian) 等线, Font color: Auto
977 978 979 980 981 982 983 984 985 984 985 986 987 988 989 989	 196: 40–52. Li, L., Chen, C. H., Fu, J. S., Huang, C., Streets, D. G., Huang, H. Y., Zhang, G. F., Wang, Y. J., Jang, C. J., Wang, H. L., Chen, Y. R. and Fu, J. M.: Air quality and emissions in the Yangtze River Delta, China, Atmos. Chem. Phys., https://doi.org/10.5194/acp-11-1621-2011, 2011. Li, M., Song, Y., Huang, X., Li, J., Mao, Y., Zhu, T., Cai, X. and Liu, B.: Improving mesoscale modeling using satellite-derived land surface parameters in the Pearl River Delta region, China, J. Geophys. Res. Atmos., 119(11), 6325–6346, https://doi.org/10.1002/2014JD021871, 2014. Li, M., Zhang, Q., Kurokawa, JI., Woo, JH., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D.G., Carmichael, G.R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017. Lin, M., Fiore, A.M., Cooper, O.R., Horowitz, L.W., Langford, A.O., Levy, H., Johnson, B.J., Naik, V., Oltmans, S.J., Senff, C.J.: Springtime high surface ozone events over the western United States: Quantifying the role of 	Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Justified Formatted: Font: (Asian) 等线, Font color: Auto
977 978 979 980 981 982 983 984 985 986 987 988 987 988 989 990 991	 196: 40–52. Li, L., Chen, C. H., Fu, J. S., Huang, C., Streets, D. G., Huang, H. Y., Zhang, G. F., Wang, Y. J., Jang, C. J., Wang, H. L., Chen, Y. R. and Fu, J. M.: Air quality and emissions in the Yangtze River Delta, China, Atmos. Chem. Phys., https://doi.org/10.5194/acp-11-1621-2011, 2011. Li, M., Song, Y., Huang, X., Li, J., Mao, Y., Zhu, T., Cai, X. and Liu, B.: Improving mesoscale modeling using satellite-derived land surface parameters in the Pearl River Delta region, China, J. Geophys. Res. Atmos., 119(11), 6325–6346, https://doi.org/10.1002/2014JD021871, 2014. Li, M., Zhang, Q., Kurokawa, JL., Woo, JH., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D.G., Carmichael, G.R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017. Lin, M., Fiore, A.M., Cooper, O.R., Horowitz, L.W., Langford, A.O., Levy, H., Johnson, B.J., Naik, V., Oltmans, S.J., Senff, C.J.: Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions, J. Geophys. Res. Atmos., 117, https://doi.org/10.1029/2012JD018151, 2012. 	Formatted: Font: (Asian) 等线, Font color: Auto Formatted: Justified Formatted: Font: (Asian) 等线, Font color: Auto

992	Lin, M., Fiore, A.M., Horowitz, L.W., Langford, A.O., Oltmans, S.J., Tarasick, D., Rieder, H.E.: Climate variability	
993	modulates western US ozone air quality in spring via deep stratospheric intrusions, Nat. Commun., 6, 7105,	
994	https://doi.org/10.1038/ncomms8105, 2015.	
995	Liu, H., Ma, W., Qian, J., Cai, J., Ye, X., Li, J. and Wang, X. (2015). Effect of urbanization on the urban meteorology	
996	and air pollution in Hangzhou. J. Meteorol <u>z Res. 29: 950–965.</u>	Formatted: Font: (Asian) 等线
997	Liu.,Y., Li, L., An, J., Huang, L., Yan, R., Huang, C., Wang, H., Wang, Q., Wang, M. and Zhang, W.: Estimation of	Formatted: Justified
998	biogenic VOC emissions and its impact on ozone formation over the Yangtze River Delta region, China, Atmos.	Formatted: Font: (Asian) 等线, Font color: Auto
999	Environ., https://doi.org/10.1016/j.atmosenv.2018.05.027, 2018.	
1000	McNally DE: 12 km MM5 performance goals, Presentation to the Ad-hov Meteorology Group, 2009.	
1001	Monks, P.S., Archibald, A.T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K.S.,	
1002	Mills, G.E., Stevenson, D.S., Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O.,	
1003	Williams, M.L.: Tropospheric ozone and its precursors from the urban to the global scale from air quality to	
1004	short-lived climate forcer, Atmos. Chem. Phys., 15, 8889-8973, https://doi.org/10.5194/acp-15-8889-2015,	
1005	2015.	
1006	Nagashima, T., Sudo, K., Akimoto, H., Kurokawa, J., Ohara, T., 2017. Long-term change in the source contribution	
1007	to surface ozone over Japan. Atmos. Chem. Phys. 17, 8231-8246, https://doi.org/10.5194/acp-17-8231-2017	
1008	Narumi, D., Kondo, A. and Shimoda, Y.: The effect of the increase in urban temperature on the concentration of	
1009	photochemical oxidants Atmos. Environ., 43(14), 2348-2359,	Formatted: Font: (Asian) 等线, Font color: Auto
1010	https://doi.org/10.1016/j.atmosenv.2009.01.028, 2009.	
1011	Ni, Z. zhen, Luo, K., Zhang, J. xi, Feng, R., Zheng, H. xin, Zhu, H. ran, Wang, J. fan, Fan, J. ren, Gao, X. and Cen,	Formatted: Font: (Asian) 等线, Font color: Auto
1012	K. fa: Assessment of winter air pollution episodes using long-range transport modeling in Hangzhou, China,	Formatted: Justified
1013	during World Internet Conference, 2015, in Environmental Pollution, vol. 236, pp. 550-561., 2018.	
1014	Ni, Z. zhen, Luo, K., Gao, X., Gao, Y., Fan, J. ren, Fu, Joshua S. Cen, C.,: Exploring the stratospheric source of	
1015	ozone pollution over China during the 2016 Group of Twenty summit, 2019, Atmospheric Pollution Research,	
1016	https://doi.org/10.1016/j.apr.2019.02.010	
1017	Paoletti, E., De Marco, A., Beddows, D.C.S., Harrison, R.M., Manning, W.J.: Ozone levels in European and USA	
1018	cities are increasing more than at rural sites, while peak values are decreasing, Environ. Pollut., 192, 295-299,	
1019	https://doi.org/10.1016/j.envpol.2014.04.040, 2014.	
1		

1020	Shanshan Zheng, Xiaofeng Xu, Yunjiang Zhang, Lingrui Wang, Yifan Yang, Shiguang Jin, Xiaoxiao Yang,	
1021	Characteristics and sources of VOCs in urban and suburban environments in Shanghai, China, during the 2016	
1022	G20 summit. Atmospheric Pollution Research 10 (2019) 1766?1779	
1023	Shi, C., Wang, S., Liu, R., Zhou, R., Li, D., Wang, W., Li, Z., Cheng, T., Zhou, B.: A study of aerosol optical	Formatted: Font: (Asian) 等线, Font color: Auto
1024	properties during ozone pollution episodes in 2013 over Shanghai, China, Atmos. Res., 153, 235-249,	Formatted: Justified
1025	https://doi.org/10.1016/j.atmosres.2014.09.002, 2015.	
1026	Shu, L., Xie, M., Wang, T., Chen, P., Han, Y., Li, S., Zhuang, B., Li, M., Gao, D.: Integrated studies of a regional	
1027	ozone pollution synthetically affected by subtropical high and typhoon system in the Yangtze River Delta	
1028	region, China, Atmos. Chem. Phys. Discuss., 0, 1-32, https://doi.org/10.5194/acp-2016-581, 2016.	
1029	Sillman, S.: The relation between ozone, $NO(x)$ and hydrocarbons in urban and polluted rural environments, Atmos.	
1030	Environ., 33(12), 1821–1845, https://doi.org/10.1016/S1352-2310(98)00345-8, 1999.	
1031	Stauffer, D.R., Seaman, N.L., Binkowski, F.S.: Use of Four-Dimensional Data Assimilation in a Limited-Area	
1032	Mesoscale Model Part II: Effects of Data Assimilation within the Planetary Boundary Layer, Mon. Weather	
1033	Rev., https://doi.org/10.1175/1520-0493(1991)119<0734:UOFDDA>2.0.CO;2, 1991.	
1034	Su, W., Liu, C., Hu, Q., Fan, G., Xie, Z., Huang, X., Zhang, T., Chen, Z., Dong, Y., Ji, X., Liu, H., Wang, Z., Liu, J.:	
1035	Characterization of ozone in the lower troposphere during the 2016 G20 conference in Hangzhou, Sci. Rep.,	
1036	7, 17368, https://doi.org/10.1038/s41598-017-17646-x, 2017.	
1037	Tang, G., Li, X., Wang, Y., Xin, J., Ren, X.: Surface ozone trend details and interpretations in Beijing, 2001 - 2006,	
1038	Atmos. Chem. Phys., 8813-8823, https://doi.org/10.5194/acpd-9-8159-2009, 2009.	
1039	Tang, G., Wang, Y., Li, X., Ji, D., Hsu, S., Gao, X.: Spatial-temporal variations in surface ozone in Northern China	
1040	as observed during 2009-2010 and possible implications for future air quality control strategies, Atmos. Chem.	
1041	Phys., 12, 2757–2776, https://doi.org/10.5194/acp-12-2757-2012, 2012.	
1042	Tang, G., Zhu, X., Xin, J., Hu, B., Song, T., Sun, Y., Wang, L., Cheng, M., Li, X., Wang, Y., Zhang, J., Chao, N.,	
1043	Kong, L., Li, X.: Modelling study of boundary-layer ozone over northern China - Part I: Ozone budget in	
1044	summer, Atmos. Res., 187, 128–137, https://doi.org/10.1016/j.atmosres.2016.10.017, 2017a.	
1045	Tang, Q., Prather, M.J., Hsu, J.: Stratosphere-troposphere exchange ozone flux related to deep convection, Geophyse	Formatted: Font: (Asian) 等线, Font color: Auto
1046	ResLett., 38, https://doi.org/10.1029/2010GL046039, 2011.	
1047	"Teixeira, E., Fischer, G., van Velthuizen, H., van Dingenen, R., Dentener, F., Mills, G., Walter, C., Ewert, F.: Limited	Formatted: Font: (Asian) 等线, Font color: Auto
1048	potential of crop management for mitigating surface ozone impacts on global food supply, Atmos. Environ.,	Formatted: Justified
1049	45, 2569–2576, https://doi.org/10.1016/j.atmosenv.2011.02.002, 2011.	
1		

	Tie, X., Geng, F., Guenther, A., Cao, J., Greenberg, J., Zhang, R., Apel, E., Li, G., Weinheimer, A., Chen, J., Cai,	1050
	C.: Megacity impacts on regional ozone formation: Observations and WRF-Chem modeling for the MIRAGE-	1051
	Shanghai field campaign, Atmos. Chem. Phys., 13, 5655-5669, https://doi.org/10.5194/acp-13-5655-2013,	1052
	2013.	1053
	USEPA: Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals	1054
	for Ozone, PM2.5 and Regional Haze, EPA-454/B-07e002. USEPA, 2007	1055
	von Schneidemesser, E., Coates, J., Denier van der Gon, H.A.C., Visschedijk, A.J.H., Butler, T.M.: Variation of the	1056
	NMVOC speciation in the solvent sector and the sensitivity of modelled tropospheric ozone, Atmos. Environ.,	1057
	135, 59-72, https://doi.org/10.1016/j.atmosenv.2016.03.057, 2016.	1058
	Walcek, C. J., Yuan, HH., Walcek, C. J. and Yuan, HH.: Calculated Influence of Temperature-Related Factors	1059
	on Ozone Formation Rates in the Lower Troposphere, J. Appl. Meteorol., 34(5), 1056-1069,	1060
	https://doi.org/10.1175/1520-0450(1995)034<1056:CIOTRF>2.0.CO;2, 1995.	1061
Formatted: For	Wang, S., Xing, J., Chatani, S., Hao, J., Klimont, Z., Cofala, J., Amann, M.: Verification of anthropogenic emissions	1062
Formatted: Jus	of China by satellite and ground observations, Atmos. Environ., 45, 6347-6358,	1063
	https://doi.org/10.1016/j.atmosenv.2011.08.054, 2011.	1064
	Wang, T.J., Lam, K.S., Xie, M., Wang, X.M., Carmichael, G., Li, Y.S.: Integrated studies of a photochemical smog	1065
	episode in Hong Kong and regional transport in the Pearl River Delta of China, Tellus, Ser. B Chem. Phys.	1066
	Meteorol., 58, 31-40, https://doi.org/10.1111/j.1600-0889.2005.00172.x, 2006.	1067
	Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L. and Zhang, L.: Ozone pollution in China: A review of	1068
	concentrations, meteorological influences, chemical precursors, and effects, Sci. Total Environ., 575, 1582-	1069
	1596, https://doi.org/10.1016/j.scitotenv.2016.10.081, 2017.	1070
	Wang, Y., Hu, B., Tang, G., Ji, D., Zhang, H., Bai, J., Wang, X., Wang, Y.: Characteristics of ozone and its precursors	1071
	in Northern China: A comparative study of three sites, Atmos. Res., 132-133, 450-459,	1072
	https://doi.org/10.1016/j.atmosres.2013.04.005, 2013.	1073
	Wang, Y.H., Hu, B., Ji, D.S., Liu, Z.R., Tang, G.Q., Xin, J.Y., Zhang, H.X., Song, T., Wang, L.L., Gao, W.K., Wang,	1074
	X.K., Wang, Y.S.: Ozone weekend effects in the Beijing-Tianjin-Hebei metropolitan area, China, Atmos.	1075
	Chem. Phys., 14, 2419-2429, https://doi.org/10.5194/acp-14-2419-2014, 2014.	1076
	Wilson, R.C., Fleming, Z.L., Monks, P.S., Clain, G., Henne, S., Konovalov, I.B., Szopa, S., Menut, L.: Have primary	1077
	emission reduction measures reduced ozone across Europe? An analysis of European rural background ozone	1078
	t rends 1996-2005, Wu, K., Yang, X., Chen, D., Gu, S., Lu, Y., Jiang, Q., Wang, K., Ou, Y., Qian, Y., Shao, P.	1079
		1

ormatted: Font: (Asian) 等线, Font color: Auto ormatted: Justified

1080	and Lu, S. (2020). Estimation of biogenic VOC emissions and their corresponding impact on ozone and	
1081	secondary organic aerosol formation in China. Atmos. Res. 231: 104656.	
1082	Wu, L., Shen, J.D., Feng, Y.C., Bi, X.H., Jiao, L. and Liu, S.X. (2014). Source apportionment of particulate matters	
1083	in different size bins during hazy and non-hazy episodes in Hangzhou City. Res. Environ. Sci. 27: 373-381.	
1084	Atmos. Chem. Phys., 12, 437–454, https://doi.org/10.5194/acp-12-437-2012, 2012.	Formatted: Font: (Asian) 等线, Font color: Auto
1085	Xie, M., Zhu, K., Wang, T., Yang, H., Zhuang, B., Li, S., Li, M., Zhu, X., Ouyang, Y.: Application of photochemical	Formatted: Font: (Asian) 等线, Font color: Auto
1086	indicators to evaluate ozone nonlinear chemistry and pollution control countermeasure in China, Atmos.	Formatted: Justified
1087	Environ., 99, 466–473, https://doi.org/10.1016/j.atmosenv.2014.10.013, 2014.	
1088	Xue, L.K., Wang, T., Gao, J., Ding, A.J., Zhou, X.H., Blake, D.R., Wang, X.F., Saunders, S.M., Fan, S.J., Zuo, H.C.,	
1089	Zhang, Q.Z., Wang, W.X.: Ground-level ozone in four Chinese cities: Precursors, regional transport and	
1090	heterogeneous processes, Atmos. Chem. Phys., 14, 13175-13188, https://doi.org/10.5194/acp-14-13175-2014,	
1091	2014.	
1092	Yan, R.S., Li, L., An, J.Y., Lu, Q., Wang, S., Zhu, Y., Jang, C.J. and Fu, J.S. (2016). Establishment and application	
1093	of nonlinear response surface model of ozone in the Yangtze river delta region during summertime. Acta Sci.	
1094	Circumstant. 36: 1383–1392.	
1095	Zhang, B.N., Kim Oanh, N.T.: Photochemical smog pollution in the Bangkok Metropolitan Region of Thailand in	Formatted: Font: (Asian) 等线, Font color: Auto
1096	relation to O3 precursor concentrations and meteorological conditions, Atmos. Environ., 36, 4211-4222,	Formatted: Justified
1097	https://doi.org/10.1016/S1352-2310(02)00348-5, 2002.	
1098	Zhang, G., Xu, H., Qi, B., Du, R., Gui, K., Wang, H., Jiang, W., Liang, L. and Xu, W. (2018). Characterization of	
1099	atmospheric trace gases and particulate matter in Hangzhou, China. Atmos. Chem. Phys. 18: 1705–1728.	
1100	Zhang, H., Chen, G., Hu, J., Chen, S.H., Wiedinmyer, C., Kleeman, M., Ying, Q.: Evaluation of a seven-year air	Formatted: Justified
1101	quality simulation using the Weather Research and Forecasting (WRF)/Community Multiscale Air Quality	Formatted: Font: (Asian) 等线, Font color: Auto
1102	(CMAQ) models in the eastern United States, Sci. Total Environ., 473-474, 275-285,	
1103	https://doi.org/10.1016/j.scitotenv.2013.11.121, 2014.	
1104	Zhi-zhen Ni, Kun Luo, Jun-xi Zhang, Rui Feng, He-xin Zheng, Hao-ran Zhu, Jing-fan Wang, Jian-ren Fan, Xiang-	Formatted: Justified, Indent: Left: 0 cm, Hanging: 0.85 cm
1105	Gao, Ke-fa Cen. Assessment of winter air pollution episodes using long-range transport modeling in Hangzhou,	
1106	China, during World Internet Conference, 2015. Environmental Pollution 236 (2018) 550-561	Formatted: Font: (Asian) 等线, Font color: Auto
1		

Page 1: [1] Style Definition	kun luo	3/15/2020 1:24:00 PM
定量线		
Page 1: [2] Style Definition	kun luo	3/15/2020 1:24:00 PM
orange3		
Page 1: [3] Style Definition	kun luo	3/15/2020 1:24:00 PM
背景对象: Font color: Black		
Page 1: [4] Style Definition	kun luo	3/15/2020 1:24:00 PM
yellow3		
Page 1: [5] Style Definition	kun luo	3/15/2020 1:24:00 PM
普通(网站)1: Font color: Black		
Page 1: [6] Style Definition	kun luo	3/15/2020 1:24:00 PM
框架内容: Font color: Black		
Page 1: [7] Style Definition	kun luo	3/15/2020 1:24:00 PM
表格内容: Font color: Black		
Page 1: [8] Style Definition	kun luo	3/15/2020 1:24:00 PM
大标题 1		
Page 1: [9] Style Definition	kun luo	3/15/2020 1:24:00 PM
lightblue3		
Page 1: [10] Style Definition	kun luo	3/15/2020 1:24:00 PM
预格式化的文本: Font color: Black		
Page 1: [11] Style Definition	kun luo	3/15/2020 1:24:00 PM
插图: Font color: Black, Don't suppre	ss line numbers	
Page 1: [12] Style Definition	kun luo	3/15/2020 1:24:00 PM
表格: Font color: Black, Don't suppre	ss line numbers	
Page 1: [13] Style Definition	kun luo	3/15/2020 1:24:00 PM
seetang3		
Page 1: [14] Style Definition	kun luo	3/15/2020 1:24:00 PM
blue2		
Page 1: [15] Style Definition	kun luo	3/15/2020 1:24:00 PM
orange2		
Page 1: [16] Style Definition	kun luo	3/15/2020 1:24:00 PM
无填充的对象		
Page 1: [17] Style Definition	kun luo	3/15/2020 1:24:00 PM
sun2		
Page 1: [18] Style Definition	kun luo	3/15/2020 1:24:00 PM
grayl		

Page 1: [19] Style Definition	kun luo	3/15/2020 1:24:00 PM	
默认~LT~Hintergrund: Font color: Black			
Page 1: [20] Style Definition	kun luo	3/15/2020 1:24:00 PM	
gray3			
Page 1: [21] Style Definition	kun luo	3/15/2020 1:24:00 PM	
yellow2			
Page 1: [22] Style Definition	kun luo	3/15/2020 1:24:00 PM	
bw1			
Page 1: [23] Style Definition	kun luo	3/15/2020 1:24:00 PM	
sun3			
Page 1: [24] Style Definition	kun luo	3/15/2020 1:24:00 PM	
备注			
Page 1: [25] Style Definition	kun luo	3/15/2020 1:24:00 PM	
默认~LT~Gliederung 9			
Page 1: [26] Style Definition	kun luo	3/15/2020 1:24:00 PM	
turquoise2			
Page 1: [27] Style Definition	kun luo	3/15/2020 1:24:00 PM	
bw2			
Page 1: [28] Style Definition	kun luo	3/15/2020 1:24:00 PM	
默认~LT~Hintergrundobjekte: Font col	or: Black		
Page 1: [29] Style Definition	kun luo	3/15/2020 1:24:00 PM	
turquoise1			
Page 1: [30] Style Definition	kun luo	3/15/2020 1:24:00 PM	
大纲 8			
Page 1: [31] Style Definition	kun luo	3/15/2020 1:24:00 PM	
yellow1			
Page 1: [32] Style Definition	kun luo	3/15/2020 1:24:00 PM	
大纲 9			
Page 1: [33] Style Definition	kun luo	3/15/2020 1:24:00 PM	
sun1			
Page 1: [34] Style Definition	kun luo	3/15/2020 1:24:00 PM	
大纲 3			
Page 1: [35] Style Definition	kun luo	3/15/2020 1:24:00 PM	
默认~LT~Gliederung 4			
Page 1: [36] Style Definition	kun luo	3/15/2020 1:24:00 PM	
大纲 1			

Page 1: [37] Style Definition	kun luo	3/15/2020 1:24:00 PM
默认~LT~Titel		
Page 1: [38] Style Definition	kun luo	3/15/2020 1:24:00 PM
green3		
Page 1: [39] Style Definition	kun luo	3/15/2020 1:24:00 PM
Fig.: Font color: Black, Don't supp	press line numbers	
Page 1: [40] Style Definition	kun luo	3/15/2020 1:24:00 PM
表格标题: Font color: Black		
Page 1: [41] Style Definition	kun luo	3/15/2020 1:24:00 PM
bw3		
Page 1: [42] Style Definition	kun luo	3/15/2020 1:24:00 PM
默认~LT~Gliederung 1		
Page 1: [43] Style Definition	kun luo	3/15/2020 1:24:00 PM
默认~LT~Gliederung 6		
Page 1: [44] Style Definition	kun luo	3/15/2020 1:24:00 PM
索引: Font color: Black, Don't sup	press line numbers	
Page 1: [45] Style Definition	kun luo	3/15/2020 1:24:00 PM
大纲 7		
Page 1: [46] Style Definition	kun luo	3/15/2020 1:24:00 PM
无填充且无边框的对象		
Page 1: [47] Style Definition	kun luo	3/15/2020 1:24:00 PM
gray2		
Page 1: [48] Style Definition	kun luo	3/15/2020 1:24:00 PM
文本		
Page 1: [49] Style Definition	kun luo	3/15/2020 1:24:00 PM
blue3		
Page 1: [50] Style Definition	kun luo	3/15/2020 1:24:00 PM
arttitle: Font color: Black		
Page 1: [51] Style Definition	kun luo	3/15/2020 1:24:00 PM
默认~LT~Gliederung 2		
Page 1: [52] Style Definition	kun luo	3/15/2020 1:24:00 PM
orangel		
Page 1: [53] Style Definition	kun luo	3/15/2020 1:24:00 PM
大标题 2		
Page 1: [54] Style Definition	kun luo	3/15/2020 1:24:00 PM

默认~LT~Untertitel

Page 1: [55] Style Definition	kun luo	3/15/2020 1:24:00 PM
大纲 6		
Page 1: [56] Style Definition	kun luo	3/15/2020 1:24:00 PM
Revision: Font color: Black		
Page 1: [57] Style Definition	kun luo	3/15/2020 1:24:00 PM
默认~LT~Gliederung 7		
Page 1: [58] Style Definition	kun luo	3/15/2020 1:24:00 PM
seetang2		
Page 1: [59] Style Definition	kun luo	3/15/2020 1:24:00 PM
green2		
Page 1: [60] Style Definition	kun luo	3/15/2020 1:24:00 PM
列表标题: Font color: Black		
Page 1: [61] Style Definition	kun luo	3/15/2020 1:24:00 PM
earth1		
Page 1: [62] Style Definition	kun luo	3/15/2020 1:24:00 PM
Normal (Web): Font color: Black		
Page 1: [63] Style Definition	kun luo	3/15/2020 1:24:00 PM
标题 11: Font color: Black		
Page 15: [64] Formatted	kun luo	3/15/2020 1:24:00 PM
Justified		
Page 15: [65] Formatted	kun luo	3/15/2020 1:24:00 PM
First line: 0 ch		
Page 15: [66] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线		
Page 15: [67] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [68] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线		
Page 15: [69] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [70] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [71] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Not Bold, Font cold	or: Auto	
Page 15: [72] Formatted	kun luo	3/15/2020 1:24:00 PM

Page 15: [73] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [74] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线		
Page 15: [75] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [76] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线		
Page 15: [77] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [78] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线		
Page 15: [79] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [80] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线		
Page 15: [81] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [82] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [83] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [84] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [85] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线		
Page 15: [86] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [87] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线		
Page 15: [88] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [89] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [90] Formatted	kun luo	3/15/2020 1:24:00 PM

Font: (Asian) 等线, Font color: Auto		
Page 15: [91] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线		
Page 15: [92] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [93] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [94] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线		
Page 15: [95] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [96] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线		
Page 15: [97] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [98] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [99] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线		
Page 15: [100] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [101] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [102] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线		
Page 15: [103] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [104] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线		
Page 15: [105] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [106] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [107] Formatted	kun luo	3/15/2020 1:24:00 PM

Page 15: [108] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线		
Page 15: [109] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 15: [110] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线		
Page 15: [111] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM

Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM

Default Paragraph Font, Font color: Auto

Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 20: [112] Formatted	kun luo	3/15/2020 1:24:00 PM
Default Paragraph Font, Font color: Aut	0	
Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM

Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM

Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [113] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM

Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM

Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM
Font: (Asian) 等线, Font color: Auto		
Page 27: [114] Formatted	kun luo	3/15/2020 1:24:00 PM