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Abstract 25 

The high aerosol concentrations (AC) over eastern China have attracted attention from 26 

both science and society. Based on the simulations of a chemical transport model using 27 

a fixed emissions level, the possible role of the previous autumn North Atlantic 28 

Oscillation (NAO) combined with the simultaneous El Niño-South Oscillation (ENSO) 29 

on the boreal winter AC over eastern China is investigated. We find that the NAO only 30 

manifests its negative impacts on the AC during its negative phase over central China, 31 

and a significant positive influence on the distribution of AC is observed over south 32 

China only during the warm events of ENSO. The impact of the previous NAO on the 33 

AC occurs via an anomalous sea surface temperature tripole pattern by which a 34 

teleconnection wave train is induced that results in anomalous convergence over central 35 

China. In contrast, the occurrence of ENSO events may induce an anomalous shift in 36 

the western Pacific subtropical high and result in anomalous southwesterlies over south 37 

China. The anomalous circulations associated with a negative NAO and El Niño are not 38 

favorable for the transport of AC and correspond to worsening air conditions over 39 

central and south China. The results highlight that the combined effects of tropical and 40 

extratropical systems play considerable role in affecting the boreal winter AC over 41 

eastern China. 42 

  43 
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1. Introduction 44 

Atmospheric particles (i.e., aerosols) are the key pollutants that exhibit an 45 

important adverse impact on human health, environmental pollution, global climate 46 

change, and atmospheric visibility (IPCC, 2013). Aerosol particles may alter the 47 

precipitation rates and optical properties of clouds (Hansen et al., 1997), impacting the 48 

radiation balance of the entire Earth-atmosphere system via absorbing and scattering 49 

solar radiation (Jiang et al., 2017; Yue and Unger, 2017). A better understanding of 50 

aerosol variations is therefore important and useful for scientific and social endeavors. 51 

The meteorology parameters, i.e., atmospheric temperature (Aw and Kleeman, 52 

2003; Liao et al., 2015), boundary layer (Kleeman, 2008; Yang et al., 2016), wind (Zhu 53 

et al., 2012; Yang et al., 2014, 2017; Feng et al., 2017), and humidity (Ding and Liu, 54 

2014), show a non-negligible impact on the regional aerosol concentrations (AC) via 55 

affecting the deposition and transportation processions. Moreover, the intraseasonal and 56 

interannual variations in climatic phenomena could affect both the spatial and temporal 57 

accumulation and distribution of AC due to the associated variations in the circulation 58 

and rainfall anomalies. For example, the monsoon onset could affect the seasonal 59 

variations in regional AC (Tan et al., 1998; Chen and Yang, 2008). The interannual 60 

variation of AC over East Asia is connected with the interannual variation of East Asian 61 

winter monsoon (Jeong and Park, 2016; Lou et al., 2016, 2018; Mao et al., 2017) and 62 

summer monsoon (EASM; Zhang et al., 2010; Zhu et al., 2012). The seasonal evolution 63 

of the El Niño-South Oscillation (ENSO) impacts the seasonal variations of AC over 64 

northern and southern China (Liu et al., 2013; Feng et al., 2016a, 2017). The AC 65 
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variation in the US is influenced by the Pacific Decadal Oscillation (Singh and 66 

Palazoglu, 2012). These findings suggest that the role of climate systems in impacting 67 

the regional air quality cannot be ignored. 68 

The North Atlantic Oscillation (NAO), reflecting large scale fluctuations in 69 

pressure between the subpolar low and subtropical high, is one of the most determinant 70 

and influential climate variability modes in the extratropical Atlantic Ocean, (e.g., 71 

Hurrell, 1995; Gong et al., 2001; Visbeck et al., 2001). A negative (positive) polarity of 72 

the NAO is reflected by positive (negative) pressure anomalies over the high latitudes 73 

of the North Atlantic and negative (positive) pressure anomalies over the central North 74 

Atlantic. Both the positive and negative phases of NAO are accompanied with large 75 

scale modulations in the location and intensity of the North Atlantic jet stream and 76 

storm track (Gong et al., 2001; Li and Wang, 2003). The surface layer wind would vary 77 

associated with changes in the jet stream because of the NAO’s quasi-barotropic 78 

characteristic, resulting in varied Ekman heat transport and basin-wide variations in the 79 

underlying sea surface temperatures (SST; Marshall et al., 2001; Wu et al., 2009; Wu 80 

and Wu, 2018). 81 

The NAO massively impacts the temperature and precipitation patterns over the 82 

US and central Europe, i.e., a wet and warm winter in Europe, and mild and wet winter 83 

conditions would be expected accompanied with a positive NAO phase. Moreover, the 84 

NAO exhibits significant cross-seasonal impacts on the downstream regional climate. 85 

For example, it is reported that variation in boreal spring NAO influenced the 86 

subsequent intensity of the EASM from 1979-2006 (Wu et al., 2009). The linkage 87 
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between the EASM and NAO has been further explored but on the interdecadal scale 88 

(Wu and Lin, 2012; Wu et al., 2012; Zuo et al., 2013), and it is suggested that the 89 

preceding spring NAO dominated the relationship of the NAO-EASM more than the 90 

simultaneous summer NAO, similar result is seen in Zheng et al. (2016). Xu et al. (2013) 91 

presented that the previous boreal summer NAO significantly influenced the following 92 

September rainfall over central China. These studies highlight the important role of the 93 

NAO signal on the climate in East Asia, especially the cross-seasonal impacts, which 94 

are beneficial for seasonal forecasting. 95 

In addition to the influence of the extratropics, the impact originating from the 96 

tropics is another important driver of the climate anomalies in China. As the most 97 

dominant interannual variability of the tropical air-sea coupled system, the El Niño-98 

Southern Oscillation (ENSO) exhibits profound influences on the weather and climate 99 

around the world (e.g., Ropelewski and Halpert, 1987; Harrison and Larkin, 1998). The 100 

occurrence of ENSO phenomenon displays significant effects in impacting the global 101 

and regional oceanic and atmospheric anomalous patterns (e.g., Rasmusson and 102 

Carpenter, 1982; Trenberth, 1997). The seasonal climate variation in China is closely 103 

linked with the evolution of ENSO events. For example, increased rainfall is expected 104 

to be found over the Huai-he and Yangtze River valley, whereas less rainfall is seen 105 

over northern and southern China during the decaying summer of an El Niño event 106 

(Zhang et al., 1996, 1999; Ye and Wu, 2018). During the developing autumn of an El 107 

Niño event, enhanced rainfall would be expected over southern China due to the 108 

associated anomalous shift in the western Pacific subtropical high (WPSH). However, 109 
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without significant influence during the developing summer (Feng et al., 2016b). 110 

During the mature winter, both the warm and cold events show significant impacts on 111 

the temperature and rainfall anomalies over eastern China (Weng et al., 2009; Wu et al., 112 

2011; Wu and Zhang, 2015; Li et al., 2019; Zhang et al., 2019a, 2019b). 113 

As shown above, both the NAO and ENSO significantly impact the climate over 114 

China. China now suffering from relatively high aerosol loading, and this is commonly 115 

ascribed to the increased emissions connected with the speedy economic growth. 116 

However, as discussed above that the role of meteorological conditions in affecting the 117 

AC cannot be ignored. Accordingly, it is of interest to explore the possible impacts of 118 

the NAO and ENSO on the distributions of AC over China. The possible impacts of the 119 

NAO on the aerosol has been discussed by Moulin et al. (1997) and Jerez et al. (2013); 120 

however, they concentrated on its influences on the North Atlantic Ocean and Europe, 121 

respectively. Feng et al. (2016a) indicated the potential effects of El Niño on the AC 122 

over China, but with a focus on the seasonal evolution. Therefore, does the NAO exhibit 123 

significant impacts on the AC, and how the combination of the NAO and ENSO affect 124 

the distribution of AC over China, as both of them show important modulation of the 125 

climate over China. 126 

The above discussions provide the main motivation of the present work. The 127 

conditions in boreal winter are discussed in the present work, as this time is 128 

corresponding to the heat supply season and the AC over China peak during this season. 129 

The coordinated role of the previous autumn (September to November, SON) NAO and 130 

the simultaneous ENSO is compared to that of the NAO alone, and also as well as the 131 
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involved physical mechanisms. The rest of this paper is arranged as follows. Model, 132 

datasets, and methodology employed are presented in Section 2. The possible impacts 133 

of the NAO and ENSO on the AC are explored in Section 3. Section 4 discusses the 134 

involved physical mechanism. Section 5 provides the discussion and conclusions. 135 

2. Datasets, simulations, and methodology 136 

2.1 Datasets 137 

The input background meteorological variables of the GEOS-Chem model show 138 

high degree of uniformity with the current widely used reanalyses (e.g., Zhu et al., 2012; 139 

Yang et al., 2014). Here, the SLP in the National Centers for Environmental 140 

Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis 141 

(Kalnay et al., 1996) with a 2.5° latitude × 2.5° longitude resolution, and the UK 142 

Meteorological Office Hadley Centre’s sea ice and SST datasets (HadISST; Rayner et 143 

al., 2003) with a 1° latitude × 1° longitude resolution are used to verify the reliability 144 

of the Goddard Earth Observing System, Version 4 (GEOS-4). 145 

2.2 GEOS-Chem simulations 146 

The influences of the NAO on the simulated AC over China are examined using a 147 

three-dimensional tropospheric chemistry model, i.e., GEOS-Chem (version 8.02.01; 148 

Bey et al., 2001). The model is driven by assimilated meteorological fields from the 149 

GEOS-4 of the NASA Global Modeling and Assimilation Office, with a 2° latitude × 150 

2.5° longitude resolution, and 30 hybrid vertical levels. This model contains a detailed 151 

coupled treatment of tropospheric ozone-NOx-hydrocarbon chemistry, as well as 152 
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aerosols and their precursors, containing nitrate, black carbon, sulfate, sea salt, 153 

ammonium, mineral dust, dust aerosols, and organic carbon (Bey et al., 2001; Liao et 154 

al., 2007). The aerosol dry and wet depositions follow Wesely (1989) and Liu et al. 155 

(2001), with details in Wang et al. (1998). According to Liao et al. (2007), the AC were 156 

defined as PM2.5 as follows, 157 

[𝑃𝑀2.5] = 1.37 × [𝑆𝑂4
2−] + 1.29 × [𝑁𝑂3

−] + [𝑃𝑂𝐴] + [𝐵𝐶] + [𝑆𝑂𝐴]   (1) 158 

SO4
2−, NO3

−, POA, BC, and SOA are the aerosols particles of sulfate, nitrate, primary 159 

organic aerosol, black carbon, and second organic aerosol, respectively. The sea salt 160 

aerosols and mineral dust are not considered for that measurements indicate that they 161 

are not the major aerosol species in the eastern China during winter (Xuan et al., 2000; 162 

Duan et al., 2006). 163 

The anthropogenic emissions in the GEOS-Chem and experiment design are 164 

similar to Zhu et al. (2012), in which the biomass burning emissions and anthropogenic 165 

emissions are fixed at year 2005 level in the simulation. That is the observed variations 166 

in the distributions of AC as seen below was due to the variations in meteorological 167 

conditions associated with climate events. Due to the longevity of the GEOS-4 datasets, 168 

the period 1986-2006 is focused on. GEOS-Chem is a well-recognized atmospheric 169 

chemistry model and is widely utilized due to its capability to well characterize the 170 

seasonal, interannual, and decadal variations of pollutant aerosols in the East Asia and 171 

beyond (e.g., Zhu et al., 2012; Yang et al., 2014, 2016; Feng et al., 2017). The well 172 

performance and wide application of GEOS-Chem provide confidence for employing 173 
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the model to investigate the coordinated impacts of NAO and El Niño on the AC over 174 

eastern China. 175 

2.3 NAO index and Niño3 index 176 

The NAO index (NAOI) is employed to quantify the variations in the NAO phase 177 

(Hurrel et al., 1995; Gong and Wang, 2001). The definition of the NAOI follows Li and 178 

Wang (2003) and is calculated as the zonal mean SLP difference between 35°N (i.e., 179 

refers to the mid-latitude center) and 65°N (i.e., refers to the high latitude center) from 180 

80°W to 30°E over the North Atlantic by 181 

NAOI = �̂�35°𝑁 − �̂�65°𝑁                         (2) 182 

where P is the monthly mean SLP averaged from 80°W to 30°E, �̂� is the normalized 183 

value of P, and the subscripts indicate latitudes. For a given month m in year n, the 184 

normalization �̂� is defined as follows 185 

�̂�𝑛,𝑚 =
𝑃𝑛,𝑚
′

𝑆𝑃
                              (3) 186 

where 𝑃𝑛,𝑚
′   is the monthly pressure anomaly of 𝑃𝑛,𝑚 , departure from period 1986-187 

2006, and 𝑆𝑃 is the total standard deviation of the monthly anomaly 𝑃𝑛,𝑚
′ ,  188 

𝑆𝑃 = √
1

12×21
∑ ∑ 𝑃𝑗,𝑖

′212
𝑗=1

2006
𝑖=1986                        (4) 189 

The monthly NAOI is calculated based on the monthly mean SLP from both the 190 

NCEP/NCAR and GEOS-4 assimilated meteorological dataset for 1986-2006. The 191 

boreal autumn NAOI is defined as the average of the monthly NAOI during September, 192 

October, and November (Fig. 1). The series of NAOI show strong interannual variations, 193 
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and the two series based on GEOS-4 and NCEP/NCAR are closely correlated with each 194 

other with a significant coefficient of 0.98, implying the GEOS-4 dataset could capture 195 

the variation in the NAO. 196 

El Niño events were defined as standardized 3-month running mean Niño3 index 197 

(areal mean SST averaged over 150°-90°W, 5°N-5°S) above 0.5°C and persisting for at 198 

least 6 months. The skin temperature (i.e., SST over ocean and surface air temperature 199 

on land) was employed to obtain the Niño3 index for that SST is not available in the 200 

GEOS-4 meteorological dataset. The boreal winter Niño3 index is calculated as the 201 

average of the monthly Niño3 during December, January, and February, i.e., winter 202 

1997 is for the December 1997 and January and February 1998. The boreal winter 203 

Niño3 indices based on the GEOS-4 and HadISST are significantly correlated with each 204 

other, (Fig. 1), with a coefficient of 0.99. The high correlations among the indices 205 

further indicate the reliability of the model data. 206 

3. Influences of the NAO and El Niño on the AC over China 207 

3.1 Climatological Characteristics of the AC 208 

The spatial distribution of the standard deviation of boreal winter AC is shown in 209 

Fig. 2. Eastern China (105°E eastward, 35°N southward) shows high loading of 210 

aerosols in both the column and surface layer concentrations (figure not shown). Further, 211 

the variance of winter AC over eastern China is most pronounced compared to other 212 

regions during this season (Fig. 2a, b). As an evident monsoonal region, eastern Asia is 213 

influenced by winter monsoon, i.e., a strong Aleutian low is seen in the north Pacific, 214 
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and the Asian continent is controlled by the Siberian high during boreal winter. The 215 

strong pressure gradient between the Siberian high and Aleutian low results in strong 216 

northwesterlies prevailing over eastern China (Fig. 2c). 217 

3.2 Relationships between the AC & NAO and El Niño 218 

The spatial distribution between the surface AC and previous autumn NAOI and 219 

simultaneous winter Niño3 index are presented in Fig. 3. Positive correlations are seen 220 

over south (30°N south) and northwest China in the correlations with the Niño3 index, 221 

indicating that a warm ENSO event would associate with high AC over south and 222 

northwest China. In contrast, negative correlations over south and central China are 223 

observed in the correlations with autumn NAO, implying a positive NAO phase is 224 

linked with less AC over these regions, thus favoring better air conditions. The analysis 225 

suggests that the ENSO and NAO show opposite effects on AC over south China, i.e., 226 

the NAO displays a negative impact and the ENSO displays a positive impact. However, 227 

the relationship between the autumn NAOI and winter Niño3 index is insignificant with 228 

a correlation of -0.08 during period 1986-2006. 229 

The above relationships are further examined in their positive and negative phases, 230 

as strong asymmetry was reported in the climatic impacts of the NAO (Xu et al., 2013; 231 

Zhang et al., 2015) and ENSO (Cai and Cowan, 2009; Karior et al., 2013; Feng et al., 232 

2016b). The asymmetric influences of the NAO and ENSO on AC are obvious in the 233 

spatial distributions of the linear correlation coefficients (Fig. 4). During the El Niño 234 

events, south China is impacted by significant positive correlations, in contrast, a non-235 
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significant correlation is observed over this region during the La Niña events. This point 236 

implies the significant relationships between the ENSO and AC over south China are 237 

mainly connected with warm events, i.e., El Niño. The negative correlations between 238 

the NAO and AC mainly occurred in the negative phase of the NAO, and the significant 239 

correlations are mainly located in central China (lie from 28°N to 40°N). Thus, the 240 

ENSO affects the distribution of AC in south China, but the impact is manifested during 241 

warm events. Similarly, the effect of the NAO on the distribution of AC over central 242 

China is only apparent during its negative phase. 243 

The results suggest that if the occurrence of a negative polarity of NAO overlaps 244 

with an El Niño event, the combined effects of the two may further worsen the AC over 245 

eastern China. In contrast, a solo occurrence of a negative NAO event is associated with 246 

above-normal AC over central China. The statistic significant impacts of the negative 247 

NAO and El Niño events on the AC could be further established by case study. Two 248 

cases, i.e., the co-occurrence of an El Niño event and a negative NAO, and a solo 249 

negative NAO event, were chosen to further explore the effect of the NAO and El Niño 250 

on the AC over China. From 1986-2006, there are two years (1997 and 2002) with 251 

equivalent negative values of autumn NAOI (-1.507 in 1997, and -1.510 in 2002). 252 

Winter 1997 corresponds with the strongest El Niño in the past 120 years and winter 253 

2002 corresponds with a neutral ENSO event. Consequently, the anomalous distribution 254 

of AC during these two years are discussed in the context of comparing the combined 255 

and solo effects of a negative NAO and El Niño in impacting the distribution of AC 256 

over eastern China. 257 
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3.3 Influences of the NAO & El Niño vs. the NAO on the AC 258 

Figure 5 presents the layer and column AC anomalies simulated for the winters of 259 

1997 and 2002 departure from the climatological mean. Under the combined influence 260 

of a negative NAO and El Niño (1997), positive aerosol concentration anomalies are 261 

observed over eastern China (Fig. 5a, c). In addition, simulated enhanced AC were 262 

observed over central China in winter 2002 under the impacts of a negative NAO (Fig. 263 

5b, d). These characteristics are also apparent in the vertical distribution (Fig. 6), which 264 

shows the zonal mean anomalies averaged over eastern China (105°–120°E). For winter 265 

1997, increased AC cover the whole eastern China, with maximum values 266 

approximately 30°N, where the effects of the NAO and El Niño overlap (Figs. 4a, d). 267 

The combined effects of the anomalies show a consistent distribution in the vertical 268 

levels (Fig. 6). In contrast, evident increased AC anomalies are seen in central China, 269 

with the maximum at approximately 32°N during winter 2002. 270 

The consistent results between the correlations and anomalies during the two cases 271 

highlight the role of the negative NAO and El Niño events in determining the 272 

distribution of AC over eastern China. The NAO shows a significant influence on the 273 

central China AC that are only apparent during its negative phase, and the ENSO 274 

impacts the AC over south China mainly during warm events. 275 

4. Mechanisms of the effects of the NAO and El Niño on the AC 276 

4.1 Role of circulation transport 277 
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The corresponding reverse role of the NAO and El Niño in impacting the 278 

distribution of AC is mainly derived from their contrasting effects on circulation. Figure 279 

7 shows the SLP and surface wind anomalies during the autumns of 1997 and 2002, 280 

presenting an anomalously weak autumn NAO pattern. The negative phase of the NAO 281 

displays as an anomalous SLP dipole structure between the middle latitude North 282 

Atlantic Ocean and Arctic, i.e., with positive SLP anomalies at the Arctic over the 283 

Atlantic sector, and anomalous negative SLP at middle latitude. Although the locations 284 

of the anomalous pressure centers in the two negative NAO events show difference, the 285 

anomalous SLP amplitude in the two events are similar, i.e., with greater negative SLP 286 

anomalies at mid-latitudes, indicating that the pressure gradient of the two NAO 287 

negative events is similar. The oscillation in the SLP is connected with anomalies in the 288 

surface wind across the North Atlantic, i.e., associated with an anomalous cyclonic 289 

centered approximately 45°N and anti-cyclonic circulation anomalies around Iceland. 290 

During boreal winter and spring, an anomalous NAO could result in a tripole SST 291 

anomalous pattern in the North Atlantic Ocean (Watanabe et al., 1999). A similar SST 292 

tripole pattern is observed during boreal autumn, with warm SST anomalies at high and 293 

low latitudes, and negative SST anomalies at middle latitudes in the North Atlantic 294 

sector (Fig. 8a, c). Note that the negative SST anomalies during 1997 displays an east-295 

west direction but originated from a northwest-southeast direction during 2002 due to 296 

the different locations of anomalous SLP (Fig. 7). 297 

The North Atlantic anomalous SST tripole pattern is due to the feedback between 298 

wind-SST, i.e., the anomalous anti-cyclonic (cyclonic) circulation weaken (strengthens) 299 
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the prevailing westerlies, which would result in decreased (increased) loss of heat and 300 

warmer (cooler) anomalies in Ekman heat transport (Xie, 2004; Wu et al., 2009), and 301 

is connected to warmer (cooler) local SST. Due to the short memory of the atmosphere, 302 

the cross-seasonal influences of the NAO on the AC should be preserved in the 303 

boundary layer forcing such as SST (Charney and Shukla, 1981). This anomalous 304 

tripole SST pattern could persist to the following winter (Fig. 8b, d), as the anomalous 305 

tripole SST pattern during winter and autumn show high consistencies in both 1997 and 306 

2002, with significant spatial correlation coefficients of 0.32 and 0.51 between the 307 

autumn and winter tripole SST patterns for 1997 and 2002, respectively. 308 

Figure 9 shows the anomalous divergence at the upper troposphere. The 309 

occurrence of a negative NAO phase is accompanied by an anomalous teleconnection 310 

wave train over northern Eurasia (AEA) in the upper troposphere during boreal summer 311 

(Li and Ruan, 2018). This anomalous teleconnection pattern is also observed during 312 

boreal winter, with a shift in the precise locations. Under the influence of the anomalous 313 

downstream teleconnection, north China is influenced by convergence anomalies, with 314 

the center positioned over central China (Fig. 9). The anomalous convergence is clearly 315 

seen in both the upper and lower troposphere, accompanied by anomalous easterlies or 316 

southeasterlies over central China (Fig. 10). The direction of the anomalous wind is 317 

opposite to the climatological winds, which would weaken the climatological wind and 318 

is unfavorable for the transport of aerosol concentration, leading to increased AC over 319 

central China, as displayed in Fig. 5. 320 
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For the winter 1997, corresponding to the El Niño’s mature phase, south China 321 

was influenced by an evident anomalous divergence at the lower troposphere, 322 

indicating anomalous anticyclonic circulation over the coastal regions (Fig. 10a). 323 

Anomalous southwesterlies prevailed in south China, implying weakened northerlies. 324 

That is the anomalous meteorological conditions are unfavorable for aerosols transport 325 

in the region and would result in a worsen air quality. In contrast, for the winter 2002, 326 

south China was controlled by an anomalous divergence for that the main body of the 327 

WPSH shifts to the south of south China (Fig. 10b). The anomalous circulation was 328 

favorable for the emission of pollutant. Moreover, an evident anomalous divergence 329 

was observed in south China in the winters of 1997 and 2002 at the upper troposphere; 330 

however, the corresponding distribution of AC over this region is different. This 331 

highlights the role of El Niño in impacting the circulation anomalies over south China, 332 

as mentioned above. The occurrence of El Niño events would be accompanied by a 333 

northwest shift of the WPSH during boreal winter and enhanced southwesterlies over 334 

south China (Weng et al., 2009). Besides, column AC are mainly contributed by 335 

concentrations at lower troposphere, suggesting that the lower troposphere circulation 336 

may play a vital role in impacting the AC over south China. 337 

4.2 Role of wet deposit 338 

In addition to the contribution of the circulation anomalies to the distribution of 339 

AC, changes in wet deposit also could affect distribution of AC. Figure 11 presents the 340 

simulated wet deposit anomalies during the winters of 1997 and 2002. Negative 341 

anomalies occurred over eastern China during the winter of 1997, favorable for 342 
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increased AC. This suggests the wet deposit plays a positive role in the enhanced AC 343 

during winter 1997. Positive anomalies were observed over central China in the 2002 344 

winter, inconsistent with the AC anomalies. The anomalous wet deposit during winter 345 

of 1997 is paralleling to the AC anomalies over eastern China; however, not consistent 346 

with that for the winter of 2002. This suggests that role of wet deposit in impacting the 347 

AC over eastern China exists uncertainties, showing strong regional dependence. The 348 

impact of wet deposit on the AC was examined by a sensitive experiment by turning 349 

off the wet deposition (Fig. 11c-d). A similar anomalous AC distribution was observed 350 

as those shown in Fig. 5, confirming that the role of wet deposit in impacting the 351 

distribution of AC is not as important as the circulation. 352 

5. Summary and Discussion 353 

Using the simulations of GEOS-Chem model with fixed emissions, the 354 

coordinated impacts of the previous autumn NAO and simultaneous ENSO on the 355 

boreal winter AC over eastern China are investigated. The results present that both the 356 

NAO and ENSO show asymmetry impacts on the boreal winter AC over eastern China, 357 

i.e., the NAO manifests negative impacts over central China during its negative phase 358 

and the ENSO positively impacts the AC over south China significantly during its warm 359 

events. Consequently, the possible impacts of two cases were investigated to ascertain 360 

the role of the NAO and ENSO on the distribution of AC over China. The winter 1997 361 

had a co-occurrence of a negative NAO and an El Niño events, and winter 2002 362 

corresponds to a negative NAO phase and neutral ENSO. For the winter 1997, obvious 363 

enhanced AC were observed over eastern China, with a maximum approximately 30°N, 364 
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where the impacts of the NAO and El Niño overlap. For the winter 2002, there were 365 

generally increased AC over central China. These results suggest that the co-occurrence 366 

of a negative NAO and El Niño would worsen the air conditions over eastern China, 367 

and a solo negative NAO is associated with increased AC over central China. 368 

The cross-seasonal impacts of the preceding autumn NAO on the following winter 369 

AC over China can be explained by the coupled air-sea bridge theory (Li and Ruan, 370 

2018). The preceding negative NAO exhibits significant influences on the winds due to 371 

the adjustment of the wind to the anomalous SLP. The associated anomalous wind could 372 

affect the underlying regional SST, resulting in an anomalous SST tripole pattern over 373 

the North Atlantic. Since the North Atlantic SST exhibit strong persistence, this 374 

anomalous SST pattern could persist to the subsequent winter and inducing an 375 

anomalous AEA teleconnection wave train in the upper troposphere, with anomalous 376 

convergence over central China. Thus, central China is controlled by anomalous 377 

southeasterlies or easterlies, which weaken the climatological northwesterlies and 378 

induce increased AC over central China. In contrast, the occurrence of El Niño is linked 379 

to warm SST anomalies over tropical eastern Pacific, by which the Rossby wave 380 

activity would be altered (Wang et al., 2001; Feng and Li, 2011). A northwest shift of 381 

the WPSH is seen during the winter of an El Niño event, associated with southwesterlies 382 

anomalies over south China during the winter of 1997, indicating a weakening in the 383 

climatological wind and leading to enhanced AC over south China. Therefore, the high 384 

level of AC over eastern China during the winter 1997 results from the combined role 385 
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of the NAO and El Niño, and the high concentrations over central China in the winter 386 

of 2002 are attributed to the NAO. 387 

The possible reason for the asymmetric influence of the NAO on the AC was 388 

further explored. When the autumn NAO is in the positive polarity, for example, two 389 

positive cases of 1986 and 1992, the associated underlying SST anomalies (figure not 390 

shown), particularly the tripole SST pattern, are not as evident as those shown in the 391 

negative NAO. This result may provide a possible explanation for the asymmetric 392 

relationship existed in the different phases of the NAO and AC, and implies the 393 

complexity of the atmosphere-ocean feedback in the North Atlantic. This merits further 394 

exploration related to why the linkage between the NAO and underlying SST is 395 

nonlinear, and what process is responsible for their nonlinear relationship. 396 

As noted above, the influence of the NAO on the AC only manifests during its 397 

negative phase, and the impact of the ENSO is only significant during its warm events. 398 

However, the relationship between the previous autumn and following winter ENSO is 399 

insignificant, thus it is of interest to establish the nonlinear relationship among them 400 

and investigate why there is strong asymmetry in the relationships. Zhang et al. (2015, 401 

2019) explored the complex linkage between the boreal winter NAO and ENSO with 402 

the former lagged for one month, indicating that the nonlinear relationship of the NAO 403 

and ENSO is modulated by the interdecadal variation in the Atlantic Multi-Decadal 404 

Oscillation. In addition, Wu et al. (2009) have illustrated the coordinated impacts of the 405 

NAO and ENSO in modulating the interannual variation of the EASM; however, it has 406 

not been shown to determine the AC yet. Therefore, it is of interest to further explore 407 
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whether the NAO and ENSO affect the AC over China in other seasons, as well as the 408 

process involved. Furthermore, the present work is based on model simulations and due 409 

to the limitations of the model simulations, only the interannual variations are 410 

considered. As both NAO and ENSO show strong interdecadal variations, for a longer 411 

period, i.e., 1850-2017 (figure not shown), the NAO during period 1986-2006 is 412 

generally located in the positive phase, whereas in the negative phase during period 413 

1955-1970, therefore, it is important to determine the interdecadal modulation of the 414 

NAO on the distribution of AC. 415 

Moreover, the role of rainfall in influencing the AC shows uncertainties, i.e., a 416 

positive effect over south China but not for central China. This result is similar with 417 

that of Wu (2014), showing the impact of wet deposit on the AC shows regional and 418 

seasonal dependence. This is may due to the fact that the climatological winter rainfall 419 

over central China is much less than that over south China (figure not shown). In 420 

addition, the meteorological backgrounds of south China and central China are different, 421 

baroclinic over central China and barotropic over south China (Fig. 9 vs. 10), indicating 422 

the importance of climatology background in impacting the spatial distribution of AC. 423 

In addition, both the NAO and ENSO show significant correlations with AC over 424 

northwest China (Fig. 4); however, the interannual variation (Fig. 2) and anomalies (Fig. 425 

5) in AC over those regions are relatively small. Therefore, the AC variation over those 426 

regions are not discussed. 427 

Finally, the role of NAO and El Niño on the AC during boreal winter was 428 

investigated based on GEOS-Chem simulations. The coordinated role of the NAO and 429 
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El Niño in affecting the distribution of AC over eastern China is highlighted by 430 

comparing this effect with the solo role of the NAO. The result indicates that the 431 

influence of meteorological factors impacting AC is complicated. Future work will 432 

investigate the combined role of tropical and extratropical signals on seasonal AC to 433 

better understand the variation across seasons and to determine the possible 434 

contribution of natural variability to the current aerosol loading over China. 435 

  436 
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Figure Captions: 687 

Figure 1. (a) The time series of the Niño3 index based on the GEOS-4 input skin 688 

temperature data for 1986-2006 (°C). (b) is similar to (a) but is based on the 689 

HadISST. (c) The time series of the NAO index based on the GEOS-4 input sea 690 

level pressure. (d) is similar to (c) but is based on the NCEP/NCAR reanalysis. 691 

Figure 2. The standard deviation of the simulated (a) surface layer PM2.5 concentrations 692 

(μg·m-3) and (b) column burdens of PM2.5 (mg·m-2) during boreal winter averaged 693 

from 1986 to 2006. (c) The horizontal distribution of boreal winter climatological 694 

mean wind at 850 hPa (m·s-1), shaded indicates the Tibetan Plateau. 695 

Figure 3. (a) The spatial distribution of the correlation coefficients between surface 696 

layer PM2.5 concentrations and the Niño3 index. (b) As in (a), but for the 697 

correlations with the NAOI. Color shading indicates a significant correlation at the 698 

0.1 level (0.37 is the critical value for significance at the 0.1 level). 699 

Figure 4. Spatial distribution of the correlation coefficients between (a) positive and (b) 700 

negative Niño3 index values and surface-layer PM2.5 concentrations. (c)-(d) as in 701 

(a)-(b), but for the NAOI. Color shading indicates a significant correlation, (0.35 702 

and 0.45 are the critical value for significance at the 0.2 and 0.1 level, respectively). 703 

Figure 5. The spatial distribution of the simulated anomalous (left panel) surface layer 704 

PM2.5 concentrations (μg·m-3) and (right panel) column burdens of PM2.5 (mg·m-705 

2) during the boreal winters of 1997 (upper) and 2002 (below). 706 

Figure 6. The pressure–latitude distribution of zonally averaged PM2.5 anomalies over 707 

105°–120°E during the winters of (a)1997 and 2002 (μg·m-3). 708 
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Figure 7. The horizontal distribution of surface wind (m·s-1) and surface level pressure 709 

(hPa) based on the assimilated meteorological data during the autumns of (a) 1997 710 

and (b) 2002. 711 

Figure 8. The horizontal distribution of skin temperature anomalies (°C) based on the 712 

assimilated meteorological data during the (a) autumn and (b) winter of 1997. (c)-713 

(d) As in (a)-(b), but during 2002. 714 

Figure 9. Horizontal distribution of the divergence (10-5s–1) at 300 hPa during the 715 

winters of (a) 1997 and (b) 2002. The crosses denote the centers of action of the 716 

AEA pattern. 717 

Figure 10. Horizontal distribution of 850 hPa wind anomalies (vectors; m·s–1) and 718 

divergence (shading; 10-5s–1) at 700 hPa during the winters of (a) 1997 and (b) 719 

2002. 720 

Figure 11. The spatial distribution of the vertically integrated wet deposition flux 721 

anomalies during the winters of (a) 1997 and (b) 2002. (c)-(d), As in (a)-(b), but 722 

for the anomalous distribution of aerosol concentrations when the wet deposit is 723 

turned off. 724 
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 726 

Figure 1. (a) The time series of the Niño3 index based on the GEOS-4 input skin 727 

temperature data for 1986-2006 (°C). (b) is similar to (a) but is based on the HadISST. 728 

(c) The time series of the NAO index based on the GEOS-4 input sea level pressure. (d) 729 

is similar to (c) but is based on the NCEP/NCAR reanalysis. 730 
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 732 

Figure 2. The standard deviation of the simulated (a) surface layer PM2.5 concentrations 733 

(μg·m-3) and (b) column burdens of PM2.5 (mg·m-2) during boreal winter averaged from 734 

1986 to 2006. (c) The horizontal distribution of boreal winter climatological mean wind 735 

at 850 hPa (m·s-1), shaded indicates the Tibetan Plateau. 736 
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 738 

Figure 3. (a) The spatial distribution of the correlation coefficients between surface 739 

layer PM2.5 concentrations and the Niño3 index. (b) As in (a), but for the correlations 740 

with the NAOI. Color shading indicates a significant correlation at the 0.1 level (0.37 741 

is the critical value for significance at the 0.1 level). 742 
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 744 

Figure 4. Spatial distribution of the correlation coefficients between (a) positive and (b) 745 

negative Niño3 index values and surface-layer PM2.5 concentrations. (c)-(d) as in (a)-746 

(b), but for the NAOI. Color shading indicates a significant correlation, (0.35 and 0.45 747 

are the critical value for significance at the 0.2 and 0.1 level, respectively). 748 
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 750 

Figure 5. The spatial distribution of the simulated (left panel) anomalous surface layer 751 

PM2.5 concentrations (μg·m-3) and (right panel) column burdens of PM2.5 (mg·m-2) 752 

during the boreal winters of 1997 (upper) and 2002 (below). 753 
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 755 

Figure 6. The pressure–latitude distribution of zonally averaged PM2.5 anomalies over 756 

105°–120°E during the winters of (a)1997 and 2002 (μg·m-3). 757 
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 759 

Figure 7. The horizontal distribution of surface wind (m·s-1) and surface level pressure 760 

(hPa) based on the assimilated meteorological data during the autumns of (a) 1997 and 761 

(b) 2002. 762 
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 764 

Figure 8. The horizontal distribution of skin temperature anomalies (°C) based on the 765 

assimilated meteorological data during the (a) autumn and (b) winter of 1997. (c)-(d) 766 

As in (a)-(b), but during 2002. 767 
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 769 

Figure 9. Horizontal distribution of the divergence (10-5s–1) at 300 hPa during the 770 

winters of (a) 1997 and (b) 2002. The crosses denote the centers of action of the AEA 771 

pattern. 772 
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 774 

Figure 10. Horizontal distribution of 850 hPa wind anomalies (vectors; m·s–1) and 775 

divergence (shading; 10-5s–1) at 700 hPa during the winters of (a) 1997 and (b) 2002. 776 
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 778 

Figure 11. The spatial distribution of the vertically integrated wet deposition flux 779 

anomalies during the winters of (a) 1997 and (b) 2002. (c)-(d), As in (a)-(b), but for the 780 

anomalous distribution of aerosol concentrations when the wet deposit is turned off. 781 


