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Response to comments of referee #1  

  

General comments  

Chen et al. describe the use of a numerical framework for emulation and sensitivity analysis of 

a regional air quality model in the development of air quality mitigation strategies for the 

megacity Delhi. They find that a combination of reduction in traffic emissions within the city, 

combined with simultaneous reductions in all emission sources in the surrounding region 

would lead to a reduction of PM2.5, while avoiding an increase in ozone. The reduction of 

traffic emissions from Delhi alone would increase peak ozone in Delhi due to the high 

emissions of NOx from traffic, with the resultant reduction in ozone due to changes in the O3-

NOx titration effect. 

These results are certainly plausible, and consistent with previous work. The potential for ozone 

to increase when high local NOx emissions are decreased has been well understood for decades, 

as has the transboundary nature of ozone and the corresponding need to control precursor 

emissions over large spatial scales in order to achieve reductions in ozone. The authors 

themselves also cite previous work showing that a large fraction of the PM2.5 in Delhi 

originates outside of the city. I would generally regard the results presented by Chen et al. as 

unremarkable, and not of sufficient scientific novelty to warrant publication in Atmospheric 

Chemistry and Physics. The most novel aspect of the study as I see it is the use of a statistical 

model emulator, combined with a technique called "global sensitivity analysis" to rapidly 

discover and evaluate effective emission mitigation options with a minimal amount of 

computational expense. The paper would potentially have merit if it had more of a technical 

focus on the methodology. Unfortunately, the methods are not described or evaluated well 

enough in the present version of the manuscript for me to be able to recommend publication. 

In order to be recommendable for publication, the manuscript needs major revisions focusing 

on better description and evaluation of the methods for model emulation and sensitivity 

analysis. I give suggestions for improving the manuscript in my specific comments, below. 

Many thanks to the reviewer for the comments and suggestions.  

The chemical relationship between O3 and NOx has been well understood for decades, however, 

the reduction of O3 pollution is still a troublesome issue for mitigation strategy. For example, 

recently in China, increase of O3 is attracting increasing concern from the Chinese government 
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and public, despite considerable achievements in controlling PM2.5 pollution, as described in 

the introduction. Only a handful of studies foresee the potential of O3 increase in Delhi under 

the current mitigation strategy focusing on PM2.5 and provide solutions for it. This work 

provides a quantified map for mitigating PM2.5 pollution and tackling O3 increase for Delhi, 

to avoid the O3 side-effect that China is now facing. Our results could greatly benefit air 

pollution mitigation with respect to both PM2.5 and O3 in Delhi. In addition, as the reviewer 

mentioned, this work demonstrates a combined approach with WRF-Chem and statistical 

methods to rapidly discover and evaluate effective emission mitigation options.  

We agree with the reviewer that more details regarding the methodology can improve this work. 

We have therefore improved the manuscript accordingly. Please find point-by-point responses 

below. 

 

 

 

Specific comments: 

The introduction is concise and well written, but since the novelty of the paper is in its 

methodological advances, it needs an expanded discussion of model emulation and global 

sensitivity analysis. 

Thanks for the comments and suggestions. We have improved the manuscript by adding a 

clearer introduction to these approaches. 

 

1) Line 134: WRF-Chem is an online model, which is capable of calculating its own 

meteorology. Please describe how the model is "driven" by the ECMWF meteorological data. 

Are they used as boundary conditions? Is some kind of nudging or data assimilation used? 

We have added more description about how the model is driven by ECMWF meteorological 

data, as shown below. 

“The ECMWF reanalysis dataset (ERA-Interim) assimilates observations with a number of 

nearly 107 per day (Dee et al., 2011), and is used for grid nudging, initial and boundary 

conditions for WRF-Chem with horizontal and temporal resolutions of 0.75o × 0.75o and 6 

hours, respectively.” 
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2) Line 181: The reference given here (Iooss and Lemaitre, 2015) appears to use "global 

sensitivity analysis" as an umbrella term to describe a range of techniques. The authors should 

be more specific about what kind of global sensitivity analysis they describe in this manuscript.  

The reviewer is right that there are many different ways to perform global sensitivity analysis, 

such as brute force, Sobol method, Fourier Amplitude Sensitivity Test (FAST), random-based-

design FAST and extended FAST (eFAST). The sections 1.1 and 2.2 of a recent open-accessible 

work (Ryan et al., 2018) introduce and summarize well the application and theories/equations 

of different methods for global sensitivity analysis. In this study, we use the eFAST method to 

perform global sensitivity analysis. The eFAST method, first developed by Saltelli et al. (1999), 

is more efficient than the other method mentioned above and has been widely used in diverse 

areas of science (Carslaw et al., 2013;Koehler and Owen, 1996;Queipo et al., 

2005;Vanuytrecht and Willems, 2014;vu et al., 2015).  

We have rewritten the section 2.3 of our manuscript, added the description and equation for 

calculating global sensitivity indices, and provided more details about eFAST method for 

perform the sensitivity indices calculation. Detailed modification of section 2.3 will be shown 

in the point-4, combining with the responses to the points 2-4. 

 

3) Line 185: The paper by Saltelli et al. (1999) is behind a paywall. Simply giving a reference 

to this study is not enough to describe the method they employ. The authors must also give a 

summary of how this works and how it is specifically employed in their study. 

In this study, we use the eFAST method to perform global sensitivity analysis (GSA). The eFAST 

method, first developed by Saltelli et al. (1999), is more efficient than the other methods 

mentioned above and has been widely used in diverse areas of science, as stated above.  

A detailed introduction to the theory and equations of the eFAST method is given in an open-

accessible methodological study (Ryan et al., 2018). We have extensively modified section 2.3 

of our manuscript to provide a simple introduction to the approaches adopted, and refer to 

Ryan et al. (2018) and other previous studies for further details.   
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Description of global sensitivity analysis in the section 2.2 of Ryan et al. (2018): 

“A common way of conducting global sensitivity analysis for each point in 

the output space of the simulator – where the output consists of, for example, 

a spatial map or a time series – is to compute the first-order sensitivity 

indices (SIs) using variance-based decomposition; this apportions the 

variance in simulator output (a scalar) to different sources of variation in 

the different model inputs. Assuming the input variables are independent of 

one another – which they are for this study – the first-order SI, 

corresponding to the ith input variable (i = 1, 2, ..., p) and the jth point in the 

output space, is given by the equation (R1).  

𝑆𝐼𝑖,𝑗 =
Var[E(𝑌𝑗 | 𝑋𝑖)]

Var(𝑌𝑗)
×100                                (R1) 

where Xi is the ith column of the n×p matrix X (i.e. a matrix with n rows and 

p columns) which stores the n samples of p-dimensional inputs, and Yj is the 

jth column of the n×m matrix which stores the corresponding n sets of m-

dimensional outputs. We multiply by 100 so that the SI is given as a 

percentage. The notation given by Var(•) and E(•) denotes the mathematical 

operations that compute the variance and expectation. The simplest way of 

computing SIi,j is by brute force, but this is also the most computationally 

intensive.” 

Source from: the section 2.2 of Ryan et al., (2018) 

 

 

Description of eFAST method in the section 2.2.2 of Ryan et al. (2018): 

“The eFAST method is an alternative and more efficient way of estimating 

the terms in Eq. (R1). A multi-dimensional Fourier transformation of the 

simulator f, allows a variance-based decomposition that samples the input 

space along a curve defined by the equation (R2). 
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𝑥𝑖(𝑠) = 𝐺𝑖(sin (𝜔𝑖s))                                  (R2) 

where x =(x1, ..., xp) refers to a general point in the input space that has 

been sampled, s ∈ R is a variable over the range (-∞, ∞), Gi is the ith 

transformation function, and 𝜔𝑖  is the ith  user-specified frequency 

corresponding to each input. Varying s allows a multi-dimensional 

exploration of the input space due to the xi(s) being simultaneously varied. 

Depending on the simulator, we typically require n=1000–10,000 samples 

from the input space. After applying the simulator f, the resulting scalar 

output – denoted generally by y – produces different periodic functions 

based on different 𝜔𝑖. If the output y is sensitive to changes in the ith input 

factor, the periodic function of y corresponding to frequency 𝜔𝑖 will have 

a high amplitude.” 

Source from: the section 2.2.2 of Ryan et al., (2018) 

 

Please refer to the section 2.2.2 of Ryan et al. (2018) for more specific details about the theory 

and equations of eFAST method. In order not to replicate many mathematic equations in Ryan 

et al. (2018), in this study, we have rephrased the section 2.3 to summarize the advantage of 

global sensitivity analysis compared with the widely used ‘one-at-a-time’ sensitivity analysis 

and to simply describe how we perform GSA with non-mathematic language. The detailed 

modifications of section 2.3 are shown in the point-4, combining with the responses to the 

points 2-4.  

 

4) Line 188: Similarly, "Gaussian process emulation" is not sufficiently well described in the 

manuscript. A summary of how this technique works and how it is applied must be included. 

To perform global sensitivity analysis and generate response surfaces, which describe 

relationships between the inputs and outputs of models, usually requires thousands of model 

runs. This is not feasible for a computationally expensive model like WRF-Chem. Therefore, in 

our study a Gaussian process (GP) emulator, trained by a few model runs, is used as a 

surrogate of WRF-Chem model. Mathematically, an emulator is a statistical model that mimics 



6 

 

the input-output relationship of a simulator, i.e., the expensive WRF-Chem model in this study. 

The most common form of an emulator is a GP emulator since it has attractive mathematical 

properties that allow an analytical derivation of the mean and variance of the emulated output 

(Ryan et al., 2018). As summarized in Ryan et al. (2018):  

“More formally, a GP is an extension of the multivariate 

Gaussian distribution to infinitely many variables 

(Rasmussen and Williams, 2006). The multivariate 

Gaussian distribution is specified by a mean vector and 

covariance matrix. A GP has a mean function which is 

typically given by 𝑚(𝑥) = E(f(x))  and covariance 

function given by 𝑐(𝑥, 𝑥′) = 𝑐𝑜𝑣(𝑓(𝑥), 𝑓(𝑥′))”. 

Source from: Ryan et al., (2018)  

Where x and x’ are two different input-matrix.  

 

Detailed theory of GP emulation is introduced in an open-accessible methodological study 

(Ryan et al., 2018), and equations and the R code for generating GP emulator are also given 

in Ryan et al. (2018). In our manuscript, we have substantially revised the section 2.3 to 

summarize the GP emulator with non-mathematical language, and to describe its advantages 

and how we use it. The revised section 2.3 is shown below, please also find detailed changes 

in the revise-tracked file. 

 

Revised section 2.3 of this study: 

“2.3 Global Sensitivity Analysis of Urban Air Pollution  

We perform global sensitivity analysis (GSA) (Iooss and Lemaître, 2015) to quantify the 

sensitivity of modelled outputs (PM2.5 and O3 for this study) to changes in the model inputs, 

which for this study are emissions from the different emission sectors. One-at-a-time sensitivity 

analysis is a common way of calculating model sensitivity and involves varying a single model 
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input while the other inputs are fixed at nominal values, e.g., Wild (2007). While one-at-a-time 

approach is relatively easy to implement, it assumes that the model response to different inputs 

is independent and this can lead to biased results (Saltelli et al., 1999;Pisoni et al., 

2018;Carslaw et al., 2013). GSA overcomes the problems of the one-at-a-time approach by 

averaging over the other inputs rather than fixing them at specific values. This allows 

calculation of first-order sensitivity indices (SIs) for each variable, corresponding to the ith 

input variable and the jth output point, is given by the Eq. 1 (Ryan et al., 2018).  

SIi,j =
Var[E(yj | xi)]

Var(yj)
×100%                                (1) 

where xi is the ith element of the input; and yj is the jth element of the output. The ‘E(•)’ and 

‘Var(•)’ denote the mathematical function that calculate the expectation and variance, 

respectively. The simplest way of computing SIi,j is by brute force, but this is also the most 

computationally intensive (Ryan et al., 2018). 

The extended Fourier Amplitude Sensitivity Test (eFAST), first developed by Saltelli et 

al. (1999), is a commonly used approach to perform GSA and calculate SIs and is adopted in 

this study because of its high efficiency. A basic overview and detailed equations of the eFAST 

method are given in the section 2.2.2 of Ryan et al. (2018). A challenge to using eFAST is that 

it typically requires thousands of model runs. To overcome this, we employ a computationally 

cheaper surrogate model in place of our expensive simulation model WRF-Chem. A surrogate 

model is a simple model (usually statistical) which can map the inputs to the outputs of the 

simulation model with sufficiently good accuracy given the same inputs. In this study, we 

choose a type of surrogate model called a Gaussian process emulator, which works like a 

function for multi-dimensional interpolation and has been used extensively in many areas of 

applied science (Carslaw et al., 2013;Koehler and Owen, 1996;Queipo et al., 2005;Vanuytrecht 
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and Willems, 2014;vu et al., 2015;Degroote et al., 2012) and uncertainty assessment of 

atmospheric models (Lee et al., 2016;Lee et al., 2012;Lee et al., 2011). Gaussian process 

emulators typically require a relatively small number of runs of the computational-expensive 

model to generate; this is in contrast to other surrogate modelling approaches, such as neural 

networks, which typically require thousands of model runs to train them. For a basic overview 

of a Gaussian process emulator see O’Hagan (2006), detailed introduction and equations are 

also given in the section 2.3 of Ryan et al. (2018). Before using the emulator in place of the 

WRF-Chem model to carry out the thousands of model runs required for GSA, we train the 

emulator using a relatively small number of WRF-Chem model runs. Following previous 

studies (Carslaw et al., 2013;Lee et al., 2016), a Maximin Latin hypercube space-filling design 

is employed to select the designs of training runs for WRF-Chem. Latin hypercube sampling 

is a statistical method for generating a near-random sample of parameter values from 

a multidimensional distribution (Shields and Zhang, 2016). Here, we search through 100,000 

Latin hypercube random designs to find the optimal one where the parameter space is filled 

most effectively. This ensures that the sets of inputs chosen cover as large a fraction of the 

input space as possible. Full details (including R codes) of how to generate the Gaussian 

process emulator, eFAST method and GSA can be found in Ryan et al. (2018).” 

 

5) Lines 209-210: "10,000 random samples" are performed to check that the emulator "can 

fully represent the results of WRF-Chem". Does this mean that the authors performed 10,000 

runs of WRF-Chem, and compared them with 10,000 runs of the emulator? Or did they do 

something else? What do each of the points in Fig. 3 actually represent? This is not clear at all. 

The authors seem to be relying on this analysis to show that the emulation "provides a good 

representation of the model", but in my opinion this has not been shown at all. Much more 

detail is needed here.  

The "10,000 random samples" refers to selection of 10,000 samples from the spatial grid cells 

and temporal duration of the model run and rebuilding emulators at these points using all but 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Multidimensional_distribution
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one of the WRF-Chem model training runs, and then comparing these against results from the 

model run that was omitted in ‘leave-one-out’ cross-validation. This provides an independent 

check of how well Gaussian process emulator can represent the results of WRF-Chem. And, 

thanks to reviewer’s suggestion in the last comment, the further validation with the base and 

regional joint reduction cases also demonstrate good agreement between the emulator and 

WRF-Chem model (see response to the last comment). We have modified the corresponding 

context in the last part of section 2.3 to make this clearer, as shown below. 

 

“We perform ‘leave-one-out’ cross-validation (O’Hagan and West, 2009;Wang et al., 2011) 

with 10,000 random samples to check that the Gaussian process emulator can fully represent 

the results of WRF-Chem.” 

Changed to: 

“ The accuracy of the emulator as a surrogate of WRF-Chem model is evaluated using a ‘leave-

one-out’ cross-validation (Bastos and O’Hagan, 2009). This involves training the emulator 

using 19 out of the 20 sets of inputs/outputs from the WRF-Chem model runs and then 

evaluating the emulator against the 20th simulation. This process is carried out for each of the 

20 sets of inputs/outputs. Given that the output space is multi-dimensional (i.e. modelled O3 

and PM2.5 varied spatially and in time), the validation of the emulator by comparing 10,000 

(random-samples varied spatially and in time) of emulator output values against the 

corresponding output values of the WRF-Chem model. The emulator validation plot is shown 

in Fig. 3. Modelled and emulated O3 and PM2.5 lie very close to the 1:1 line with R2 values of 

more than 95% as shown in Fig. 3, indicating that the emulation provides an accurate 

representation of the input-output relationship of the WRF-Chem model.” 

 

6) Line 256: NOx appears to be significantly underestimated by WRF-Chem during the middle 

of the day, when peak ozone concentrations are also modelled. Given the central role of NOx 

as an ozone precursor, it appears that the modelled peak ozone is being well simulated for the 

wrong reasons. There is likely a compensating error in some other aspect of the model. The 
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authors should provide some discussion about how these errors in WRF-Chem would 

propagate into their emulator and affect the global sensitivity analysis.  

Thank you for pointing this out. The choice of y-axis range in Fig. S4 was not fully appropriate 

and makes NOx looks significantly underestimated by WRF-Chem during the middle of the day 

when peak ozone occurs. We have changed the y-axis range to [0 200], more in line with 

convention, as shown below. Instead of a “remarkable underestimation”, the NOx is actually 

underestimated by only ~30%. The daytime variation of NOx (Fig. S4) is directly opposite in 

pattern to that of boundary layer height (red dashed line in Fig. 4a) between 9 am and 6 pm, 

suggesting that this underestimation in NOx is closely associated with the variation in 

boundary layer behavior, a substantial uncertainty in the simulation for which no 

observational verification is available.      

The reviewer is right that the good simulation of peak O3 when NOx is underestimated 

highlights an uncertainty within the model. This uncertainty would propagate into the emulator 

and affect the global sensitivity analysis, because emulator learns from the WRF-Chem model 

and reproduces whatever the model outputs. We have added discussion about this influence in 

the sections 3.4 and 3.5, as shown below. 

In the section 3.4 of revised version: 

“NOx, mainly originating from traffic emissions, is underestimated by ~30% during the O3 

peak period (Fig. S4). This uncertainty can propagate into the Gaussian process emulator and 

could lead to underestimation of the influence of traffic on peak O3, but is not expected to 

change the nature of our conclusions about the predominance of regional transport and local 

traffic emissions.” 

In the section 3.5 of revised version: 

“We note that our model may underestimate the influence of traffic emissions on O3 to some 

extent as described above (section 3.4), suggesting that the ozone increase could be stronger 

than we predict. To prevent the side-effect of increasing O3 by controls on traffic emissions…” 
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Original Figure S4.  Diurnal patterns of NOx concentration from WRF-Chem model and 

observational results at AIR site. The results are averaged during 02-15 May 2015. Note 

that ‘ECMWF’ indicates the model results driven by ECMWF reanalysis data. 

 

 

 
Revised Figure S4.  Diurnal patterns of NOx concentration from WRF-Chem model and 

observational results at AIR site. The results are averaged during 02-15 May 2015. Note 

that ‘ECMWF’ indicates the model results driven by ECMWF reanalysis data. 

 

7) Line 267: "We remove these sources". From what? WRF-Chem itself, or the emulator? 

We have revised the statement, as shown below. 

“We turn off these sources in the WRF-Chem simulation”. 

 

8) Lines 311-312 and Fig. 5b: It should be pointed out somewhere in the discussion that the 

overwhelming dominance of traffic NOx emissions on ozone in Delhi is actually through anti-

correlation. Presenting the sensitivity indices of "TRA" and "NCR" together on the same plot 

is potentially quite misleading unless the authors make it clear that their respective influences 

have opposite sign.  
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The reviewer is right that “overwhelming dominance of traffic NOx emissions on ozone in 

Delhi is actually through anti-correlation.”. Although we have already explained this anti-

correlation relationship in section 3.4: 

“Traffic contributes ~75% of total NOx emission in Delhi (Fig. 6b), and the shallow PBL 

during the night traps the NOx. This removes O3 through chemical reaction”.  

This may not be clear enough. We have added description at the beginning of this section to 

make this point clearer, as shown below. Thanks for pointing this out.  

“The variation of O3 in Delhi City Region is overwhelmingly dominated by local traffic 

emissions with a sensitivity index higher than 80% at night-time (Fig. 5b), where O3 and traffic 

emissions are anti-correlated.” 

 

9) Section 3.5: This is a nice example of the potential power and utility of the methodology. 

Figure 7d is an especially clear illustration of the emissions control trajectory which is required 

to prevent an increase in ozone in Delhi despite reducing local NOx emissions. As mentioned 

in my general comments, this general approach to emission control (reducing ozone by 

focusing on regional-scale emissions) is consistent with current understanding of ozone 

chemistry, so this result by itself is rather unremarkable. What is really interesting here is the 

ability to rapidly discover an optimal emission mitigation pathway, and quantify its effects. 

What is missing here though, is a verification that the same combined emission controls for 

TRA and NCR would result in the same reductions in PM and ozone when employed in the 

full WRF-Chem model. It would only take one WRF-Chem run to verify this result. In my 

opinion this extra run is necessary for the authors to be able to show that their approach really 

is capable of what they claim. 

This is a good point. This one extra WRF-Chem simulation makes the verification of emulator 

more solid and evident. We have performed the extra simulation as suggested. In addition, we 

also compare the base case (without change of emissions) WRF-Chem results against the 

emulator results. Noting that the base case is not part of the training cases for emulator, see a 

list of training cases in Table S2; therefore, this comparison also provides an independent 

validation for the GP emulator. The results of WRF-Chem and emulator show almost the same 

reductions in the joint control case. As shown in the figure below, the emulator does reproduce 
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the WRF-Chem simulation nicely, with an uncertainty (normalized mean error) of less than 5% 

and R2 higher than 0.95 for both PM2.5 and O3. Thanks for the suggestion, we have added this 

extra validation in the section 3.5, as shown below. 

“We test this by performing an additional run with WRF-Chem using emission reductions of 

50% and 30% for sectors of local traffic and the surrounding NCR region, respectively. We 

compare the WRF-Chem results of the additional run and the base case (without change of 

emissions) against the corresponding results from Gaussian process emulator (Fig. S8). We 

find that the PM2.5 and O3 results from the model runs lie within 5% of those estimated with 

the emulator and with R2 higher than 95%, demonstrating the high quality of the emulation 

approach adopted here and underlining its deeper value for identifying mitigation approaches” 

 

 

Newly added Figure S8. Extra validation of Gaussian process emulator results in the 

mitigation strategy according to Fig. 7. The accuracy of the emulator for reproducing 
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current conditions of PM2.5 (a) and O3 (b), i.e. base case without changing emissions. The 

accuracy of the emulator for reproducing regional joint coordination conditions of PM2.5 (c) 

and O3 (d), i.e. NCR joint control case with local traffic emissions reduced by 50% and 

regional emissions reduced by 30%. All the results are averaged over Delhi City Region, 

with hourly resolution during the simulation period.  
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