

1 Anthropogenic aerosol forcing under the Shared Socioeconomic Pathways

2 Marianne T. Lund^{*1}, Gunnar Myhre¹, Bjørn H. Samset¹

3 1 CICERO Center for International Climate Research, Oslo, Norway

4 *Corresponding author: Marianne T. Lund, m.t.lund@cicero.oslo.no

5

6 Abstract

7 Emissions of anthropogenic aerosols are expected to change drastically over the coming decades,
8 with potentially significant climate implications. Using the most recent generation of harmonized
9 emission scenarios, the Shared Socioeconomic Pathways (SSPs) as input to a global chemistry
10 transport and radiative transfer model, we provide estimates of the projected future global and
11 regional burdens and radiative forcing of anthropogenic aerosols under three contrasting pathways
12 for air pollution levels: SSP1-1.9, SSP2-4.5 and SSP3-7.0. We find that the broader range of future
13 air pollution emission trajectories spanned by the SSPs compared to previous scenarios translates
14 into total aerosol forcing estimates in 2100 relative to 1750 ranging from -0.04 W m^{-2} in SSP1-1.9
15 to -0.51 W m^{-2} in SSP3-7.0. Compared to our 1750-2015 estimate of -0.55 W m^{-2} , this shows that
16 depending on the success of air pollution policies and socioeconomic development over the
17 coming decades, aerosol radiative forcing may weaken by nearly 95% or remain close to the pre-
18 industrial to present-day level. In all three scenarios there is a positive forcing in 2100 relative to
19 2015, from 0.51 W m^{-2} in SSP1-1.9 to 0.04 W m^{-2} in SSP3-7.0. Results also demonstrate significant
20 differences across regions and scenarios, especially in South Asia and Africa. While rapid
21 weakening of the negative aerosol forcing following effective air quality policies will unmask
22 more of the greenhouse gas-induced global warming, slow progress on mitigating air pollution
23 will significantly enhance the atmospheric aerosol levels and risk to human health in these regions.
24 In either case, the resulting impacts on regional and global climate can be significant.

25

26 1 Introduction

27 Understanding the contribution of aerosols and other short-lived climate forcers to the total
28 anthropogenic radiative forcing (RF) is becoming increasingly important considering the
29 ambitious goals of the Paris Agreement. Under scenarios compliant with keeping global warming
30 below 1.5°C , global greenhouse gas emissions must generally be reduced to net zero by the middle
31 of the century, placing added focus on the evolution and relative importance of emissions of other
32 climate-relevant substances for the net future climate impact (IPCC, 2018). Additionally, aerosols
33 play a key role in shaping regional climate and environment, by modulating clouds, circulation
34 and precipitation and air quality. In South and East Asia, currently the largest emission source
35 regions, air pollution is one of the major health risks, estimated to have been responsible for 1.2
36 million deaths in 2017 in India alone (Balakrishnan et al., 2019). In the same region, aerosols may
37 have masked up to 1°C of surface warming (Samset, 2018), and the sensitivity of the regional
38 climate to reductions in aerosol emissions has been found to be high (Samset et al., 2018a).

39 Several long-term scenarios for air pollutant emissions exist. Among the most recent examples are
40 the Representative Concentration Pathways (RCPs) (Granier et al., 2011). The RCPs formed the
41 basis for the Coupled Model Intercomparison Project Phase 5 (CMIP5) and have been used in a
42 number of studies to estimate the potential impact of future changes in aerosols on air quality and
43 health (e.g., Li et al., 2016; Partanen et al., 2018; Silva et al., 2016), radiative forcing and
44 temperature (e.g., Chalmers et al., 2012; Shindell et al., 2013; Szopa et al., 2013; Westervelt et al.,
45 2015) and precipitation and other climate variables (Nazarenko et al., 2015; Pendergrass et al.,
46 2015; Rotstayn et al., 2014).

47 The RCPs were developed to span a range of climate forcing levels and were not associated with
48 specific socio-economic narratives. The RCPs generally reflect the assumption that air quality
49 regulations will be successfully implemented globally (Rao et al., 2017). As a result, emissions of
50 aerosols and aerosol precursors are projected to decline rapidly in all scenarios, even under high
51 forcing and greenhouse gas emission levels. However, despite efforts to control pollutant
52 emissions, ambient air quality continues to be a major concern in many parts of the world. Global
53 emissions of black and organic carbon (BC, OC) have increased rapidly over recent decades
54 (Hoesly et al., 2018). Global emissions of sulfur dioxide (SO₂) have declined, driven by legislation
55 in Europe and North America, the collapse of the former Soviet Union and, more recently, air
56 quality policies in China (Li et al., 2017; Zheng et al., 2018). However, in other regions of the
57 world, most notably South Asia, SO₂ emissions continue to be high and are increasing. The aerosol
58 and precursor emissions in the RCPs are generated following the assumption that economic growth
59 leads to decreased emissions, i.e., following the so-called environmental Kuznets curve. The real-
60 world representativeness of this relationship has, however, been questioned (Amann et al., 2013;
61 Ru et al., 2018). Combined with the slow observed progress on alleviating air pollution, the
62 question of whether previous projections of future emissions are too optimistic in terms of
63 pollution control arises. More recent scenario development has included alternative assumptions
64 to better understand the mechanisms and interlinkages with reference scenarios and climate policy
65 co-benefits (Chuwah et al., 2013; Rao et al., 2013; Rogelj et al., 2014). These provide a wider
66 range of possible developments but are still largely independent of underlying narratives.

67 To provide a framework for combining future climate scenarios with socioeconomic development,
68 the Shared Socioeconomic Pathways (SSPs) (O'Neill et al., 2014) were produced. The SSPs
69 provide five narratives for plausible future evolution of society and natural systems in the absence
70 of climate change and combine these with seven different climate forcing targets using integrated
71 assessment modeling, building a matrix of emission scenarios with socioeconomic conditions on
72 one axis and climate change on the other. Associated narratives for air pollution emissions have
73 been developed, representing three levels of pollution control (strong, medium and weak) based
74 on characteristics of control targets, rate of implementation of effective policies and technological
75 progress (Rao et al., 2017). These pollution storylines are then matched with SSP baseline marker
76 and climate mitigation narratives. In SSP1 and SSP5, the combination of strong pollution control,
77 high level of development and increasing health and environmental concerns result in reduced air

78 pollution emission levels in the medium to long term. A similar, but slower development is seen
79 under medium control and medium challenges to societal development (SSP2), whereas with weak
80 control and greater inequality in SSP3 and SSP4 progress is slowed and regionally fragmented.
81 The numerous drivers influencing future development results in a broad range in projected
82 emissions, between baseline marker scenarios and for a given SSP depending on the climate
83 mitigation targets, generally with the highest emissions in SSP3, followed by SSP4, and the lowest
84 in SSP1 or SSP5 (Rao et al., 2017).

85 Here we use three of the SSP scenarios as input to a global chemical transport model and offline
86 radiative transfer calculations (Sect. 2) in order to quantify the future evolution of aerosols under
87 strong, medium and weak air pollution control. We present results for both global and regional
88 developments in aerosol loadings and radiative forcing (Sec. 3) and discuss implications of the
89 findings in the context of previous generation emission scenarios and outlooks for more detailed
90 studies of the wider climate implications of potential air quality policies (Sect. 4). Conclusions are
91 given in Sect.5.

92

93 2 Method

94 Atmospheric concentrations of aerosols are simulated with the OsloCTM3 (Søvde et al., 2012).
95 The OsloCTM3 is a global, offline chemistry-transport model driven by meteorological forecast
96 data from the European Center for Medium Range Weather Forecast (ECMWF) OpenIFS model.
97 Here the model is run in a $2.25^\circ \times 2.25^\circ$ horizontal resolution, with 60 vertical levels (the uppermost
98 centered at 0.1 hPa). The present-day aerosol distributions simulated by the OsloCTM3 were
99 recently documented and evaluated by Lund et al. (2018). We refer to the same paper for detailed
100 descriptions about the aerosol modules and treatment of scavenging and transport in the
101 OsloCTM3. All simulations are performed with meteorological data for 2010. Lund et al. (2018)
102 investigated the impact of meteorology on the simulated aerosol abundances using data for two
103 years with opposite El Niño–Southern Oscillation (ENSO) index. Differences in global burden of
104 up to 10% for some aerosol species were found, with occasional larger values in localized regions
105 over the tropical Pacific and Atlantic Oceans.

106

107 Simulations with SSP air pollution emissions from fossil fuel, biofuel and biomass combustion are
108 performed for the years 2015, 2020, 2030, 2050 and 2100, keeping the meteorology fixed. Nine
109 emissions scenarios have been gridded and harmonized with the Community Emission Data
110 System (CEDS) historical emissions (Gidden et al., 2019) and are available via Earth System Grid
111 Federation (ESGF) by the Integrated Assessment Modeling Consortium (IAMC). Here, we use the
112 IMAGE (van Vuuren et al., 2017) SSP1-1.9, MESSAGE-GLOBIOM (Fricko et al., 2017) SSP2-
113 4.5 and AIM (Fujimori et al., 2017) SSP3-7.0 scenarios. SSP1-1.9 represents a pathway with
114 strong air pollution control, low climate forcing level and low mitigation and adaptation challenges,
115 while weak air pollution control, high climate forcing and high mitigation and adaptation
116 challenges characterizes SSP3-7.0. SSP2-4.5 is an intermediate pathway. Air pollution emissions

117 in the remaining scenarios largely fall in the range between SSP1-1.9 and SSP3-7.0. Each
118 simulation is run for 18 months, discarding the first six as spin-up. Natural emission sources (soil,
119 ocean, biogenic organic compounds from vegetation) are kept at the present-day level and the data
120 sets described in Lund et al. (2018). See Sect. 4 Discussion for comments on the potential
121 implications of this choice.

122 Using the same model setup as in the present study, Lund et al. (2018) recently calculated the
123 historical (1750-2014) evolution of aerosols following the Community Emission Data System
124 (CEDS) inventory (Hoesly et al., 2018). The future projections from the present study are
125 combined with this historical time series. Furthermore, whereas Lund et al. (2018) only assessed
126 the direct aerosol RF, we here include an estimate of the radiative forcing due to aerosol-cloud
127 interactions.

128 We calculate the instantaneous top-of-the atmosphere radiative forcing due to aerosol-radiation
129 interactions (RFari) (Myhre et al., 2013b) using offline radiative transfer calculations with a multi-
130 stream model using the discrete ordinate method (Stamnes et al., 1988). The same model has been
131 used in earlier studies of RFari (Bian et al., 2017; Myhre et al., 2013a) with some small recent
132 updates to aerosol optical properties (Lund et al., 2018). The radiative forcing of aerosol-cloud
133 interactions (RFaci) (earlier denoted the cloud albedo effect or Twomey effect) is calculated using
134 the same radiative transfer model. To account for the change in cloud droplet concentration
135 resulting from anthropogenic aerosols, which alter the cloud effective radius and thus the optical
136 properties of the clouds, the approach from Quaas et al. (2006) is used. This method has also been
137 applied in earlier studies (Bian et al., 2017).

138

139 3 Results

140 In the following, we first document the future global emissions and abundances of aerosols,
141 according to our three chosen SSP scenarios. We then show the resulting regional aerosol burden
142 levels, and finally global and regional radiative forcing.

143 Figure 1a-d shows annual global emissions (fossil fuel, biofuel and biomass burning) of BC, OC,
144 SO₂ and nitrogen oxides (NOx) from 1950 to 2100 in the CEDS inventory and the SSPs used in
145 the present analysis. For comparison, we also include the RCP2.6 (van Vuuren et al., 2007),
146 RCP4.5 (Smith & Wigley, 2006) and RCP8.5 (Riahi et al., 2007) 2015-2100 emissions. Total
147 emissions excluding biomass burning are shown in Fig. S1. For all four species, the temporal
148 evolution and difference between scenarios have similar characteristics. In SSP1-1.9, emissions
149 are projected to decline from 2015. This decline is particularly rapid for BC and SO₂, with
150 emissions falling to around 25% of their 2015 levels already by 2040. For NOx and OC, emissions
151 are projected to go down by around 80% by the end of the century. Apart from SO₂, SSP3-7.0 sees
152 an increase in emissions by towards the mid-21st century (by 10-20% above 2015 levels), followed
153 by a decline back to, or slightly below the present-day by 2100. Emissions in SSP2-4.5 follow an
154 intermediate pathway; a decline throughout the century, but less steep and with a higher end-of-

155 century levels than SSP1-1.9. As a result of the relatively similar underlying assumptions about
156 the level of air pollution mitigation, the RCPs display much smaller spread and emissions fall
157 throughout the century. All three RCPs generally lie between SSP1-1.9 and SSP2-4.5. There is
158 also a decline in biomass burning emissions in SSP1-1.9 and SSP2-4.5, where emissions are
159 around 30%-40% lower in 2100 compared to 2015. Rao et al. (2017) note that changes in biomass
160 burning emissions are not necessarily driven by air pollution policies but can be linked to
161 assumptions about the land-use sector in the respective integrated assessment models.

162 The rapidly decreasing anthropogenic emissions in SSP1-1.9 result in global total burdens (Fig.
163 1e-h) of BC, primary organic aerosol (POA) and sulfate that are 30%, 45% and 60%, respectively,
164 of the present-day level by 2100. Under this pathway, biomass burning sources become relatively
165 more important over the century: fossil fuel and biofuel emissions constitute 70% of the total BC
166 burden in 2015, but only 36% by 2100. Similar end-of-century changes are found under SSP2-4.5,
167 but in this case the decline mainly occurs after 2050. In SSP3-7.0, the global aerosol burdens
168 increase toward the mid-century followed by a small or negligible change to 2100 compared to
169 2015. The global burden of nitrate is twice as high in 2100 compared to 2015 in SSP3-7.0. This is
170 due to the combination of increased global ammonia (NH_3) emissions (not shown here, see Gidden
171 et al. (2019)), which are 30% higher by 2100, a small net change in NO_x emissions and a decrease
172 in SO_2 emissions, resulting in less competition for available ammonia by sulfate aerosols. The
173 potentially more important role of nitrate aerosols under certain emission pathways has been
174 documented in previous studies as well (Bauer et al., 2007; Bellouin et al., 2011). In SSP1-1.9 and
175 SSP2-4.5, there is negligible net change in NH_3 emissions over the century, while NO_x emissions
176 decline, resulting in a lower burden also of nitrate. Figure 1i-j shows the simulated anthropogenic
177 global-mean aerosol optical depth (AOD) and absorption aerosol optical depth (AAOD)
178 (calculated as the difference between each year and the 1750 value, with meteorology and hence
179 contribution from natural aerosols constant). The anthropogenic AOD falls from 0.026 in 2015 to
180 0.0005 in 2100 in SSP1-1.9 and 0.006 in SSP2-4.5. These changes correspond to a reduction of
181 the total AOD of 20% (15%) in 2100 in SSP1-1.9 (SSP2-4.5) from the present-day level of 0.13.
182 In SSP3-7.0, the anthropogenic AOD increases by 12% to 2050 before returning approximately to
183 its present-day value. Similar magnitude decreases in anthropogenic AAOD are found. The decline
184 in anthropogenic AOD is stronger than implied by the burden changes. We note that the sulfate
185 and nitrate burdens include also smaller contributions from natural (ocean and vegetation) sources
186 that remain constant to 2100. In SSP1-1.9 we find a small, negative AAOD value in 2100. This
187 results from emissions on BC and OC being lower in 2100 than in 1750. The stronger decline in
188 anthropogenic AAOD relative to AOD in SSP1-1.9 is reflected in the total (anthropogenic and
189 natural aerosols) Single Scattering Albedo (SSA) (Fig. 1k) which increases to above pre-1970s
190 levels by mid-century and is notably higher than in SSP3-7.0 by the end of the century. As the
191 mechanisms that link aerosol emissions to climate impacts are markedly different for scattering
192 and absorbing aerosols (Ocko et al., 2014; Samset et al., 2016; Smith et al., 2018), this reduction
193 highlights a need for regional studies of aerosol impacts that go beyond the total top-of-atmosphere
194 effective radiative forcing.

195 The global-mean time series hide significant spatiotemporal differences in aerosol trends. Figure
196 2 shows the time series of the BC and sulfate burdens, the two dominant species, averaged across

197 9 regions: North America (NAM), Europe (EUR), Russia (RBU), East Asia (EAS), South Asia
198 (SAS), South East Asia (SEA), North Africa and the Middle East (NAF_MDE), South Africa (SAF)
199 and South America (SAM). The well-known geographical shift in historical emission is clearly
200 reflected, where the largest aerosols loadings were located over North America, Europe and Russia
201 in the 1970s and 80s, but later peaking over Asia. In the coming decades, South and East Asia will
202 continue to experience the highest aerosol loadings under SSP2-4.5 and SSP3-7.0. Towards the
203 end of the century North Africa and the Middle East are projected to experience levels similar to
204 those in South and East Asia. Africa south of the Sahara is presently the third largest BC emission
205 source region (Fig. S2). Under SSP3-7.0, anthropogenic (fossil and biofuel) emissions are
206 projected to increase strongly over the century and the region surpasses East Asia as the largest
207 source in 2100, although levels stay below current emission levels in China. Figure 2 shows that a
208 slightly decreasing BC burden is projected over the region in all three SSPs. In this case, the
209 increase in fossil fuel emissions is offset by a decrease in biomass burning emissions, which
210 constitute a significant fraction of the total BC source here. Despite lower emissions in the latter
211 region, BC burdens in SAF and NAF_MDE are of the same order of magnitude. One reason for
212 this is likely differing scavenging pathways, where aerosols are more effectively removed, and the
213 atmospheric residence time is shorter, further south. Moreover, we note that the regionally
214 averaged burden does not directly link to regional emissions, as they are also influenced by long-
215 range transport. Using multi-model data from the Hemispheric Transport of Air Pollution (HTAP2)
216 experiments, studies have demonstrated that while for most receptor regions, within-region
217 emissions dominates, there are the important contribution from long-range transport from e.g.,
218 Asia to aerosols over North America, Middle East and Russia (e.g., Liang et al., 2018; Stjern et al.,
219 2016; Tan et al., 2018). Hence, the projected emission changes in this region can have far reaching
220 impacts.

221 The radiative forcing of anthropogenic aerosols relative to 1750 is shown for the period 1950 to
222 2100 in Fig. 3, for RF_{Ari}, RF_{aci}, and the total aerosol RF (RF_{total}), separately. Results from the
223 present study are complimented by results based on simulations from Lund et al. (2018) (see
224 Methods) for the historical period. We calculate a net aerosol-induced RF in 2015, relative to 1750,
225 of -0.55 W m^{-2} , whereof -0.14 W m^{-2} is due to aerosol-radiation interactions, as also shown in
226 Lund et al. (2018), and -0.42 W m^{-2} due to aerosol-cloud interactions. Due to the rapid emission
227 reductions projected over the next couple of decades, the RF is less than half in magnitude to its
228 present-day value in SSP1-1.9 already by 2030, continuing to weaken at a slower rate after. In
229 2100 (relative to 1750), the RF_{total} is -0.04 W m^{-2} in SSP1-1.9 and -0.20 W m^{-2} in SSP2-4.5. With
230 emissions following SSP3-7.0, the temporal evolution of RF is nearly flat through the 21st century
231 and is -0.51 W m^{-2} in 2100, only 8% lower in magnitude than in 2015. Even with weak air pollution
232 control (SSP3-7.0) end-of-the-century emissions are slightly lower than the present-day level.
233 Hence, looking only at the period 2015-2100, we estimate a positive aerosol forcing in all three
234 scenarios considered. The RF_{total} in 2100 relative to 2015 is 0.51 W m^{-2} , 0.35 W m^{-2} and 0.04 W
235 m^{-2} in SSP1-1.9, SSP2-4.5 and SSP3-7.0, respectively. The estimates presented here do not account
236 for the rapid adjustments (or semi-direct effects) associated with BC. Using data from several
237 global models, Stjern et al. (2017) found that the rapid adjustments by clouds offset a significant
238 fraction of the aerosols' positive RF_{Ari}, reducing the net BC climate impact. In contrast, a recent
239 study by Allen et al. (2019) found positive cloud rapid adjustment. The latter finding would imply

240 a much stronger non-cloud negative rapid adjustment than presented in Smith et al. (2018) and
241 methodological differences hence clearly need to be better resolved in order to understand the
242 contrasting results.

243 Few modeling-based estimates for comparison with our results exist so far. In a recent study,
244 Fiedler et al. (2019b) used a simple plume parameterization of optical properties and cloud effects
245 of anthropogenic aerosols and scaled the present-day aerosol optical depth by the SSP emissions
246 to derive estimates of future forcing. An effective radiative forcing (ERF) (comparable to our
247 RF_{total}) in the mid-2090s relative to 1850 ranging from -0.15 W m^{-2} for SSP1-1.9 to -0.54 W m^{-2}
248 for SSP3-7.0 was calculated. This is in reasonable agreement with the estimates derived in the
249 present analysis, although we find a weaker forcing in SSP1-1.9. Using two idealized scenarios to
250 span a broader range of emissions than represented in the RCPs, Partanen et al. (2018) also
251 estimated a broad range in aerosol ERF, from -0.02 W m^{-2} to -0.82 W m^{-2} , in 2100 (relative to
252 1850). The latter is significantly stronger than our SSP3-7.0 estimate. While not directly
253 comparable due to differing emission inventories and methodologies, these studies reinforce our
254 finding that weak air pollution control over the 21st century result in sustained strong negative
255 aerosol forcing.

256 The spatiotemporal differences in trend documented above translates into effects on global and
257 regional RF. In Fig. 4 we therefore show the change in RF_{total} over four time periods, 1750-2015,
258 1750-1990, 1990-2015 and 2015-2030 (for each SSP). Figure S3 show the corresponding results
259 for RF_{ari} and RF_{aci} separately. Whereas the impact of anthropogenic aerosols is a negative RF_{total}
260 everywhere except over the high-albedo deserts and snow-covered regions when taken over the
261 entire historical period 1750-2015, a positive RF is seen over North America, Europe and Russia
262 after the 1990-2015 period, driven by decreased SO_2 emissions (and somewhat offset by a
263 simultaneous decline in BC emissions). This positive RF is largely driven by aerosol-radiation
264 interactions. Over South and East Asia, Africa and most of South America the RF_{total} remains
265 negative, although a significant fraction of the total impact since pre-industrial has already been
266 realized before 1990. This weaker negative forcing is due to a combination of increasing BC
267 emissions and a leveling off in SO_2 emissions in China in the CEDS inventory (Hosely et al. 2018).
268 Globally, the combined effect is an increase in global-mean RF_{total} over the 1990-2015 period of
269 $+0.09 \text{ W m}^{-2}$. Using the ECLIPSE emission inventory, Myhre et al. (2017) estimated an increase
270 in the multi-model RF due to combined changes in aerosols and ozone from 1990 to 2015 of $+0.17$
271 W m^{-2} , with about two-thirds of this from aerosols, i.e., similar to our results using the CEDS/SSP
272 emissions.

273 Distinct regional differences are seen also during the period 2015-2030 under the different SSPs.
274 With emissions following SSP1-1.9, we estimate a positive global-mean RF_{total} of 0.33 W m^{-2} ,
275 more than three times the RF_{total} over the 1990-2015 period. In contrast to the 1900-2015 period,
276 the strongest RF now comes from aerosol-cloud interactions, as emissions over continental
277 northern hemisphere regions are low to begin with. The RF_{total} is especially large over South and
278 East Asia, and of opposite sign from what the region has experienced during the past decades.
279 Smaller positive global mean RF_{total} of 0.08 W m^{-2} is estimated also under SSP2-4.5 and SSP3-
280 7.0 during this period. In contrast to SSP1-1.9, the RF remains negative over India under SSP2-
281 4.5 and SSP3-7.0 where a continued increase in emissions of SO_2 is projected over the next decades.

282 In all SSPs, the RFtotal over China switches from negative in the past decades to positive over the
283 2015-2030 period. Recent studies suggest that Chinese SO₂ emissions have declined even more
284 than captured by the CEDS until 2014, indicating that this pattern of forcing may already have
285 been partly realized (Li et al., 2017; Zheng et al., 2018). In contrast, emissions of India are
286 projected to increase, at least initially. The potential implications of this feature are discussed in a
287 separate paper (Samset et al., 2019). Weak RF is found over the African continent in the SSP2-4.5
288 and SSP3-7.0 scenarios. However, as shown in Figure 2, aerosols will continue to affect local
289 climate and air quality in this region.

290

291 4 Discussion

292 Under a given scenario, emissions of all species generally follow the same global trend, although
293 the rate of change differs between regions. However, over the recent years, emissions of SO₂ have
294 declined, whereas BC emissions have increased (Hoesly et al., 2018). Considering a hypothetical
295 and simplified case where the mainly industrial, and perhaps easier to mitigate, SO₂ emissions
296 begin to decline rapidly also in other high emitting regions, whereas the mainly residential, more
297 challenging, BC sources remain largely unchecked, the aerosol forcing may follow a different path
298 than estimated here. As an illustrative example, we calculate the contribution to RFari in 2020 and
299 2050 (relative to 1750) from individual components under SSP1-1.9 and SSP3-7.0 (Table S1).
300 Taking the sum of the sulfate forcing from SSP1-1.9 and the remaining components from SSP3-
301 7.0, the total RFari is -0.018 W m⁻² in 2020, i.e., significantly weaker than when all emissions
302 follow SSP1-1.9, and 0.15 W m⁻² in 2050. Continuing along the recent emission development of
303 declining SO₂ emissions and increasing BC could imply a different development in the total
304 aerosol effect relative to pre-industrial than shown by the three scenarios here, at least towards the
305 mid-century. We emphasize that these numbers are meant to be illustrative and note that significant
306 uncertainties surround the climate impact of both BC and the co-emitted organic aerosols. As noted
307 above, our estimates do not account for the rapid adjustments which might reduce the global
308 surface temperature response to BC perturbations. Additionally, the role of absorption by so-called
309 brown carbon remains an important uncertainty (Samset et al., 2018b). Previous work has also
310 pointed to the possibility of substantial increases in radiative forcing by nitrate over the 21st
311 century (Bauer et al., 2007; Bellouin et al., 2011; Shindell et al., 2013), and a notable increase in
312 nitrate burden is also estimated in the present study when emissions follow SSP3-7.0. This
313 translates into a nitrate RF that is almost a factor 2 stronger in 2100 than in 2020 and constitutes a
314 correspondingly larger fraction of the RFtotal in this scenario (Table S1)

315 We present projected future aerosol RF based on single-model simulations. Aerosols, however,
316 remain one of the most uncertain drivers of climate change, with significant model spread resulting
317 from several factors, including differences in the simulated aerosol distributions, optical properties
318 and cloud fields. Myhre et al. (2013a) calculated a present-day aerosol RFari (relative to 1850)
319 varying from -0.016 W m⁻² to -0.58 W m⁻² between 16 global models participating in the AeroCom
320 Phase II experiment. Prescribing the distribution of anthropogenic aerosols, optical properties and
321 effect on cloud droplet number concentration in six Earth System Models, Fiedler et al. (2019a)

322 find a model spread in aerosol ERF of -0.4 W m^{-2} to -0.9 W m^{-2} . Among the important
323 consequences of high aerosol forcing uncertainty is the challenge it poses for estimating climate
324 sensitivity. While in a scenario with declining aerosol emissions, combined with an increase in
325 greenhouse gases, the uncertainty in the total anthropogenic forcing can be expected to decrease
326 substantially even without scientific progress (Myhre et al., 2015), the high emission SSP3-7.0
327 pathway suggest that aerosols may continue to be a confounding factor for constraining climate
328 sensitivity.

329 While the scope of the present analysis is limited to radiative forcing, the calculated spread in end-
330 of-century forcing under the SSPs will translate into a wide range of possible climate impacts. A
331 number of studies have examined the future aerosol-induced radiative forcing and climate impacts
332 using the RCP projections; see e.g., Westervelt et al. (2015) for a summary of papers published
333 until 2013. While the magnitude of both present-day and future estimates differs between studies,
334 the general characteristic is a significant weakening of the aerosol RF until 2100 in all scenarios.
335 Other studies have investigated the potential for this rapid decline to drive near-term warming
336 (Chalmers et al., 2012; Gillett & Von Salzen, 2013). However, while Chalmers et al. (2012) find
337 a higher near-term warming in RCP2.6 than in RCP4.5 despite lower greenhouse gas forcing in
338 the former, suggesting an important impact of falling aerosol emissions, Gillett and Von Salzen
339 (2013) find no evidence that aerosol emissions reductions drive a particularly rapid near-term
340 warming in this scenario. This points to the importance of inter-model differences in the response
341 to aerosol perturbations. Under SSP1-1.9, aerosol emissions are projected to decline even more
342 rapidly than in RCP2.6 over the coming couple of decades (Fig. 1). If in fact associated with a
343 rapid warming, this development could further hinder the realization of the already ambitious
344 temperature goals of the Paris agreement and this feature hence needs to be better quantified.
345 Previous work also demonstrate effects of falling aerosol emissions also other climate variables
346 such as mean and extreme precipitation (Navarro et al., 2017; Pendergrass et al., 2015) and
347 atmospheric dynamics (Rotstain et al., 2014). The numerous and significant impacts of aerosols
348 underline the need to encompass the full range of projected emissions, regionally and globally, in
349 future assessment, in particular in light of the crucial role of aerosols in shaping regional climate,
350 regional assessments are needed to capture the impact of different trends.

351 It is well-established that future changes in aerosols will critically affect local air quality. Silva et
352 al. (2016) found avoided premature mortality in 2100 of between -2.39 and -1.31 million deaths
353 per year for the four RCP. Partanen et al. (2018) estimated almost 80% fewer PM2.5-induced
354 deaths per year in 2100 under RCP4.5 compared to 2010. In contrast, an idealized high aerosol
355 scenario resulted in 17% increase in premature mortality by 2030. These numbers where estimated
356 using present-day population density. Under all SSPs, considerable increases in population density
357 is projected in Africa, the Middle East and South Asia (Jones & O'Neill, 2016) – regions that are
358 also identified as hotspots for exposure and vulnerability to multi-sector climate risk (Byers et al.,
359 2018). In the present study, we estimate an increase in the average surface concentration of
360 anthropogenic aerosols (i.e., BC, POA, sulfate and fine mode nitrate) of 17% and 25% by 2100

361 under SSP3-7.0 in South Asia and North Africa plus the Middle East, respectively. Air pollution
362 issues are not limited to developing countries. While all scenarios project reductions in surface
363 aerosol concentrations in Europe, North America and Russia, there are substantial differences in
364 the magnitude, from 35-20% lower by 2100 in SSP3-7.0 to around 70% lower in SSP1-1.9,
365 highlighting the potential for further air quality improvements globally.

366 Our estimates of RFaci exclude contributions from cloud lifetime changes. The estimates of cloud
367 lifetime effect are generally lower in recent studies than in early work, but still give non-negligible
368 contribution to the aerosol forcing (Storelvmo, 2017). Our study does not account for potential
369 impacts of climate change on circulation, precipitation or chemistry, which can affect the lifetime
370 and transport pathways, as well as emissions, of the aerosols. For instance, Bellouin et al. (2011)
371 found increasing atmospheric residence times over the 21st century as wet deposition rates
372 decreased. Including both changing climate and emissions, Pommier et al. (2018) suggested that
373 concentrations of particulate matter (PM_{2.5}) will increase by up to 6.5% over the Indo-Gangetic
374 Plain to 2050, driven by increases in dust, particulate organic matter and secondary inorganic
375 aerosols through changes in precipitation, biogenic emissions and wind speed. Hence, by keeping
376 natural sources of emissions fixed at present-day levels, our results may underestimate the future
377 aerosols loads. Moreover, a recent review of climate feedbacks on aerosol distributions suggests
378 that in regions where anthropogenic aerosol loadings decrease, the impacts of climate on the
379 variability of natural aerosols increase (Tegen & Schepanski, 2018). Changing climatic conditions
380 may also affect the radiative forcing through changing cloud distributions and surface albedo.
381 While our approach clearly disentangles and assesses the changes in aerosols resulting from
382 changes in anthropogenic emissions, representation and knowledge of feedback processes are
383 important for understanding the full role of future aerosols in the climate system.

384

385 5 Conclusions

386 Using a global chemistry transport model and radiative transfer modeling, we have estimated the
387 projected future loading and radiative forcing of anthropogenic aerosols under the most recent
388 generation of scenarios, the Shared Socioeconomic Pathways. These new air pollution scenarios
389 link varying degrees of air pollution control to the socioeconomic narratives underlying the SSPs
390 and climate forcing targets, spanning a much broader range of plausible future emission
391 trajectories than previous scenarios. Here we have used three scenarios: SSP3-7.0 (weak air
392 pollution control, high mitigation and adaptation challenges), SSP2-4.5 (medium pollution control,
393 medium mitigation and adaptation challenges) and SSP1-1.9 (strong pollution control, low
394 mitigation and adaptation challenges). In all three scenarios, we estimate a positive aerosol forcing
395 over the period 2015-2100, although with very different timing and magnitude depending on
396 stringency of air pollution control. The end-of-century aerosol forcing relative to 2015 is 0.51 W
397 m⁻² with emissions following SSP1-1.9, 0.35 W m⁻² in SSP2-4.5 and 0.04 W m⁻² in SSP3-7.0.
398 While effective air pollution control and socioeconomic development following SSP1-1.9 results
399 in a rapid weakening of the aerosol RF compared to the pre-industrial to present-day level already
400 by 2030, there is little change in the global mean aerosol forcing over the 21st century in a

401 regionally fragmented world with slower mitigation progress (SSP3-7.0). Significant
402 spatiotemporal differences in trends are also highlighted. Most notably, under weak air pollution
403 control, aerosol loadings in East and South Asia temporarily increase from present levels but start
404 to decline after 2050 and return to current levels of slightly below by 2100. North Africa and the
405 Middle East reaches the levels of South Asia by the end of the century and there is no declining
406 trend this century. The present analysis is limited to the documentation of radiative forcing and
407 aerosol loads. Under both rapidly declining and sustained high emissions, aerosols will play an
408 important role in shaping and affect regional and global climate.

409

410 Code availability

411 Oslo CTM3 is stored in a SVN repository at the University of Oslo central subversion system
412 and is available upon request. Please contact m.t.lund@cicero.oslo.no. In this paper, we use the
413 official version 1.0, Oslo CTM3 v1.0.

414

415 Data availability

416 The gridded SSP anthropogenic emission data are published within the ESGF system <https://esgf-node.llnl.gov/search/input4mips/> (last access: December 2018). Model output and post-processing
417 routines are available upon request from Marianne T. Lund (m.t.lund@cicero.oslo.no).
418

419

420 Author contributions

421 MTL performed the Oslo CTM3 experiments and led the analysis and writing. GM performed the
422 radiative transfer modeling and BHS contributed with graphics production. All authors contributed
423 during the writing of the paper.
424
425

426 Acknowledgements

427 The authors acknowledge funding from the Norwegian Research Council through grants 248834
428 (QUISARC) and 240372 (AC/BC). We also acknowledge the Research Council of Norway's
429 programme for supercomputing (NOTUR).
430

431 Competing interests

432 The authors declare that they have no conflict of interest.
433

434

435 References

436 Allen R. J., Amiri-Farahani A., Lamarque J.-F., Smith C., Shindell D., Hassan T. &
437 Chung C. E.: Observationally constrained aerosol–cloud semi-direct effects, *npj Climate and*
438 *Atmospheric Science*. 2(1), 16, 10.1038/s41612-019-0073-9, 2019.

439 Amann M., Klimont Z. & Wagner F.: Regional and Global Emissions of Air Pollutants:
 440 Recent Trends and Future Scenarios, Annual Review of Environment and Resources. 38(1), 31-
 441 55, 10.1146/annurev-environ-052912-173303, 2013.

442 Balakrishnan K., Dey S., Gupta T., Dhaliwal R. S., Brauer M., Cohen A. J., Stanaway J.
 443 D., Beig G., Joshi T. K., Aggarwal A. N., Sabde Y., Sadhu H., Frostad J., Causey K., Godwin
 444 W., Shukla D. K., Kumar G. A., Varghese C. M., Muraleedharan P., Agrawal A., Anjana R. M.,
 445 Bhansali A., Bhardwaj D., Burkart K., Cercy K., Chakma J. K., Chowdhury S., Christopher D.
 446 J., Dutta E., Furtado M., Ghosh S., Ghoshal A. G., Glenn S. D., Guleria R., Gupta R., Jeemon P.,
 447 Kant R., Kant S., Kaur T., Koul P. A., Krish V., Krishna B., Larson S. L., Madhipatla K.,
 448 Mahesh P. A., Mohan V., Mukhopadhyay S., Mutreja P., Naik N., Nair S., Nguyen G., Odell C.
 449 M., Pandian J. D., Prabhakaran D., Prabhakaran P., Roy A., Salvi S., Sambandam S., Saraf D.,
 450 Sharma M., Shrivastava A., Singh V., Tandon N., Thomas N. J., Torre A., Xavier D., Yadav G.,
 451 Singh S., Shekhar C., Vos T., Dandona R., Reddy K. S., Lim S. S., Murray C. J. L., Venkatesh S.,
 452 & Dandona L.: The impact of air pollution on deaths, disease burden, and life expectancy across
 453 the states of India: the Global Burden of Disease Study 2017, The Lancet Planetary Health. 3(1),
 454 e26-e39, [https://doi.org/10.1016/S2542-5196\(18\)30261-4](https://doi.org/10.1016/S2542-5196(18)30261-4), 2019.

455 Bauer S. E., Koch D., Unger N., Metzger S. M., Shindell D. T. & Streets D. G.: Nitrate
 456 aerosols today and in 2030: a global simulation including aerosols and tropospheric ozone,
 457 Atmospheric Chemistry and Physics. 7(19), 5043-5059, 2007.

458 Bellouin N., Rae J., Jones A., Johnson C., Haywood J. & Boucher O.: Aerosol forcing in
 459 the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role
 460 of ammonium nitrate, Journal of Geophysical Research-Atmospheres. 116, D20206,
 461 10.1029/2011jd016074, 2011.

462 Bian H., Chin M., Hauglustaine D. A., Schulz M., Myhre G., Bauer S. E., Lund M. T.,
 463 Karydis V. A., Kucsma T. L., Pan X., Pozzer A., Skeie R. B., Steenrod S. D., Sudo K., Tsigaridis
 464 K., Tsimpidi A. P. & Tsyro S. G.: Investigation of global particulate nitrate from the AeroCom
 465 Phase III experiment, Atmos. Chem. Phys. 2017(17), 12911-12940, <https://doi.org/10.5194/acp-17-12911-2017>, 2017.

466 Byers E., Gidden M., Leclère D., Balkovic J., Burek P., Ebi K., Greve P., Grey D.,
 467 Havlik P., Hillers A., Johnson N., Kahil T., Krey V., Langan S., Nakicenovic N., Novak R.,
 468 Obersteiner M., Pachauri S., Palazzo A., Parkinson S., Rao N. D., Rogelj J., Satoh Y., Wada Y.,
 469 Willaarts B. & Riahi K.: Global exposure and vulnerability to multi-sector development and
 470 climate change hotspots, Environmental Research Letters. 13(5), 055012, 10.1088/1748-
 471 9326/aabf45, 2018.

472 Chalmers N., Highwood E. J., Hawkins E., Sutton R. & Wilcox L. J.: Aerosol
 473 contribution to the rapid warming of near-term climate under RCP 2.6, Geophysical Research
 474 Letters. 39(18), doi:10.1029/2012GL052848, 2012.

475 Chuwah C., van Noije T., van Vuuren D. P., Hazeleger W., Strunk A., Deetman S.,
 476 Beltran A. M. & van Vliet J.: Implications of alternative assumptions regarding future air
 477 pollution control in scenarios similar to the Representative Concentration Pathways,
 478 Atmospheric Environment. 79, 787-801, <https://doi.org/10.1016/j.atmosenv.2013.07.008>, 2013.

479 Fiedler S., Kinne S., Huang W. T. K., Räisänen P., O'Donnell D., Bellouin N., Stier P.,
 480 Merikanto J., van Noije T., Makkonen R. & Lohmann U.: Anthropogenic aerosol forcing –
 481 insights from multiple estimates from aerosol-climate models with reduced complexity, Atmos.
 482 Chem. Phys. 19(10), 6821-6841, 10.5194/acp-19-6821-2019, 2019a.

484 Fiedler S., Stevens B., Gidden M., Smith S. J., Riahi K. & van Vuuren D.: First forcing
485 estimates from the future CMIP6 scenarios of anthropogenic aerosol optical properties and an
486 associated Twomey effect, *Geosci. Model Dev.* 12(3), 989-1007, 10.5194/gmd-12-989-2019,
487 2019b.

488 Fricko O., Havlik P., Rogelj J., Klimont Z., Gusti M., Johnson N., Kolp P., Strubegger
489 M., Valin H., Amann M., Ermolieva T., Forsell N., Herrero M., Heyes C., Kindermann G., Krey
490 V., McCollum D. L., Obersteiner M., Pachauri S., Rao S., Schmid E., Schoepp W. & Riahi K.:
491 The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road
492 scenario for the 21st century, *Global Environmental Change*. 42, 251-267,
493 <https://doi.org/10.1016/j.gloenvcha.2016.06.004>, 2017.

494 Fujimori S., Hasegawa T., Masui T., Takahashi K., Herran D. S., Dai H., Hijioka Y. &
495 Kainuma M.: SSP3: AIM implementation of Shared Socioeconomic Pathways, *Global*
496 *Environmental Change*. 42, 268-283, <https://doi.org/10.1016/j.gloenvcha.2016.06.009>, 2017.

497 Gidden M. J., Riahi K., Smith S. J., Fujimori S., Luderer G., Kriegler E., van Vuuren D.
498 P., van den Berg M., Feng L., Klein D., Calvin K., Doelman J. C., Frank S., Fricko O., Harmsen
499 M., Hasegawa T., Havlik P., Hilaire J., Hoesly R., Horing J., Popp A., Stehfest E. & Takahashi
500 K.: Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a
501 dataset of harmonized emissions trajectories through the end of the century, *Geosci. Model Dev.*
502 12(4), 1443-1475, 10.5194/gmd-12-1443-2019, 2019.

503 Gillett N. P. & Von Salzen K.: The role of reduced aerosol precursor emissions in driving
504 near-term warming, *Environmental Research Letters*. 8(3), 034008, 10.1088/1748-
505 9326/8/3/034008, 2013.

506 Granier C., Bessagnet B., Bond T., D'Angiola A., Denier van der Gon H., Frost G. J.,
507 Heil A., Kaiser J. W., Kinne S., Klimont Z., Kloster S., Lamarque J.-F., Liousse C., Masui T.,
508 Meleux F., Mieville A., Ohara T., Raut J.-C., Riahi K., Schultz M. G., Smith S. J., Thompson A.,
509 van Aardenne J., van der Werf G. R. & van Vuuren D. P.: Evolution of anthropogenic and
510 biomass burning emissions of air pollutants at global and regional scales during the 1980–2010
511 period, *Climatic Change*. 109(1), 163, 10.1007/s10584-011-0154-1, 2011.

512 Hoesly R. M., Smith S. J., Feng L., Klimont Z., Janssens-Maenhout G., Pitkanen T.,
513 Seibert J. J., Vu L., Andres R. J., Bolt R. M., Bond T. C., Dawidowski L., Kholod N., Kurokawa
514 J. I., Li M., Liu L., Lu Z., Moura M. C. P., O'Rourke P. R. & Zhang Q.: Historical (1750–2014)
515 anthropogenic emissions of reactive gases and aerosols from the Community Emission Data
516 System (CEDS), *Geosci. Model Dev.* 2018(11), 369-408, <https://doi.org/10.5194/gmd-11-369-2018>, 2018.

517 IPCC: Summary for Policymakers. In: *Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty* [V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (eds.)]. World Meteorological Organization, Geneva, Switzerland, 32 pp., 2018.

518 Jones B. & O'Neill B. C.: Spatially explicit global population scenarios consistent with
519 the Shared Socioeconomic Pathways, *Environmental Research Letters*. 11(8), 084003,
520 10.1088/1748-9326/11/8/084003, 2016.

529 Li C., McLinden C., Fioletov V., Krotkov N., Carn S., Joiner J., Streets D., He H., Ren
530 X., Li Z. & Dickerson R. R.: India Is Overtaking China as the World's Largest Emitter of
531 Anthropogenic Sulfur Dioxide, *Scientific Reports*. 7(1), 14304, 10.1038/s41598-017-14639-8,
532 2017.

533 Li K., Liao H., Zhu J. & Moch J. M.: Implications of RCP emissions on future PM2.5 air
534 quality and direct radiative forcing over China, *Journal of Geophysical Research: Atmospheres*.
535 121(21), 12,985-913,008, doi:10.1002/2016JD025623, 2016.

536 Liang C. K., West J. J., Silva R. A., Bian H., Chin M., Davila Y., Dentener F. J., Emmons
537 L., Flemming J., Folberth G., Henze D., Im U., Jonson J. E., Keating T. J., Kucsera T., Lenzen
538 A., Lin M., Lund M. T., Pan X., Park R. J., Pierce R. B., Sekiya T., Sudo K. & Takemura T.:
539 HTAP2 multi-model estimates of premature human mortality due to intercontinental transport of
540 air pollution and emission sectors, *Atmos. Chem. Phys.* 18(14), 10497-10520, 10.5194/acp-18-
541 10497-2018, 2018.

542 Lund M. T., Myhre G., Haslerud A. S., Skeie R. B., Griesfeller J., Platt S. M., Kumar R.,
543 Myhre C. L. & Schulz M.: Concentrations and radiative forcing of anthropogenic aerosols from
544 1750 to 2014 simulated with the Oslo CTM3 and CEDS emission inventory, *Geosci. Model Dev.*
545 11(12), 4909-4931, 10.5194/gmd-11-4909-2018, 2018.

546 Myhre G., Samset B. H., Schulz M., Balkanski Y., Bauer S., Berntsen T. K., Bian H.,
547 Bellouin N., Chin M., Diehl T., Easter R. C., Feichter J., Ghan S. J., Hauglustaine D., Iversen T.,
548 Kinne S., Kirkevåg A., Lamarque J. F., Lin G., Liu X., Lund M. T., Luo G., Ma X., van Noije T.,
549 Penner J. E., Rasch P. J., Ruiz A., Seland Ø., Skeie R. B., Stier P., Takemura T., Tsigaridis K.,
550 Wang P., Wang Z., Xu L., Yu H., Yu F., Yoon J. H., Zhang K., Zhang H. & Zhou C.: Radiative
551 forcing of the direct aerosol effect from AeroCom Phase II simulations, *Atmos. Chem. Phys.*
552 13(4), 1853-1877, 10.5194/acp-13-1853-2013, 2013a.

553 Myhre G., Shindell D., Bréon F.-M., Collins W., Fuglestvedt J., Huang J., Koch D.,
554 Lamarque J.-F., Lee D., Mendoza B., Nakajima T., Robock A., Stephens G., Takemura T. &
555 Zhang H.: Anthropogenic and natural radiative forcing. In: *Climate Change 2013: The Physical*
556 *Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the*
557 *Intergovernmental Panel on Climate Change* [Stocker, T.F., D., Qin, G.-K. Plattner, M. Tignor,
558 S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds). Cambridge
559 University Press, Cambridge, United Kingdom and New York, NY, USA 2013b.

560 Myhre G., Boucher O., Bréon F.-M., Forster P. & Shindell D.: Declining uncertainty in
561 transient climate response as CO₂ forcing dominates future climate change, *Nature Geoscience*.
562 8, 181, 10.1038/ngeo2371

563 <https://www.nature.com/articles/ngeo2371#supplementary-information>, 2015.

564 Myhre G., Aas W., Cherian R., Collins W., Faluvegi G., Flanner M., Forster P.,
565 Hodnebrog Ø., Klimont Z., Lund M. T., Mülmenstädt J., Lund Myhre C., Olivé D., Prather M.,
566 Quaas J., Samset B. H., Schnell J. L., Schulz M., Shindell D., Skeie R. B., Takemura T. & Tsyro
567 S.: Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic
568 emission changes during the period 1990–2015, *Atmos. Chem. Phys.* 17(4), 2709-2720,
569 10.5194/acp-17-2709-2017, 2017.

570 Navarro J. C. A., Ekman A. M. L., Pausata F. S. R., Lewinschal A., Varma V., Seland Ø.,
571 Gauss M., Iversen T., Kirkevåg A., Riipinen I. & Hansson H. C.: Future Response of
572 Temperature and Precipitation to Reduced Aerosol Emissions as Compared with Increased
573 Greenhouse Gas Concentrations, *Journal of Climate*. 30(3), 939-954, 10.1175/jcli-d-16-0466.1,
574 2017.

575 Nazarenko L., Schmidt G. A., Miller R. L., Tausnev N., Kelley M., Ruedy R., Russell G.
 576 L., Aleinov I., Bauer M., Bauer S., Bleck R., Canuto V., Cheng Y., Clune T. L., Del Genio A.
 577 D., Faluvegi G., Hansen J. E., Healy R. J., Kiang N. Y., Koch D., Lacis A. A., LeGrande A. N.,
 578 Lerner J., Lo K. K., Menon S., Oinas V., Perlitz J., Puma M. J., Rind D., Romanou A., Sato
 579 M., Shindell D. T., Sun S., Tsigaridis K., Unger N., Voulgarakis A., Yao M.-S. & Zhang J.:
 580 Future climate change under RCP emission scenarios with GISS ModelE2, *Journal of Advances*
 581 in Modeling Earth Systems.

582 7(1), 244-267, doi:10.1002/2014MS000403, 2015.

583 O'Neill B. C., Kriegler E., Riahi K., Ebi K. L., Hallegatte S., Carter T. R., Mathur R. &
 584 van Vuuren D. P.: A new scenario framework for climate change research: the concept of shared
 585 socioeconomic pathways, *Climatic Change*. 122(3), 387-400, 10.1007/s10584-013-0905-2, 2014.

586 Ocko I. B., Ramaswamy V. & Ming Y.: Contrasting Climate Responses to the Scattering
 587 and Absorbing Features of Anthropogenic Aerosol Forcings, *Journal of Climate*. 27(14), 5329-
 588 5345, 10.1175/jcli-d-13-00401.1, 2014.

589 Partanen A.-I., Landry J.-S. & Matthews H. D.: Climate and health implications of future
 590 aerosol emission scenarios, *Environmental Research Letters*. 13(2), 024028, 10.1088/1748-
 591 9326/aaa511, 2018.

592 Pendergrass A. G., Lehner F., Sanderson B. M. & Xu Y.: Does extreme precipitation
 593 intensity depend on the emissions scenario?, *Geophysical Research Letters*. 42(20), 8767-8774,
 doi:10.1002/2015GL065854, 2015.

594 Pommier M., Fagerli H., Gauss M., Simpson D., Sharma S., Sinha V., Ghude S. D.,
 595 Landgren O., Nyiri A. & Wind P.: Impact of regional climate change and future emission
 596 scenarios on surface O₃ and PM_{2.5} over India, *Atmos. Chem. Phys.* 18(1), 103-127,
 597 10.5194/acp-18-103-2018, 2018.

598 Quaas J., Boucher O. & Lohmann U.: Constraining the total aerosol indirect effect in the
 599 LMDZ and ECHAM4 GCMs using MODIS satellite data, *Atmos. Chem. Phys.* 6(4), 947-955,
 600 10.5194/acp-6-947-2006, 2006.

601 Rao S., Pachauri S., Dentener F., Kinney P., Klimont Z., Riahi K. & Schoepp W.: Better
 602 air for better health: Forging synergies in policies for energy access, climate change and air
 603 pollution, *Global Environmental Change*. 23(5), 1122-1130,
 604 <https://doi.org/10.1016/j.gloenvcha.2013.05.003>, 2013.

605 Rao S., Klimont Z., Smith S. J., Van Dingenen R., Dentener F., Bouwman L., Riahi K.,
 606 Amann M., Bodirsky B. L., van Vuuren D. P., Aleluia Reis L., Calvin K., Drouet L., Fricko O.,
 607 Fujimori S., Gernaat D., Havlik P., Harmsen M., Hasegawa T., Heyes C., Hilaire J., Luderer G.,
 608 Masui T., Stehfest E., Strefler J., van der Sluis S. & Tavoni M.: Future air pollution in the Shared
 609 Socio-economic Pathways, *Global Environmental Change*. 42, 346-358,
 610 <https://doi.org/10.1016/j.gloenvcha.2016.05.012>, 2017.

611 Riahi K., Grübler A. & Nakicenovic N.: Scenarios of long-term socio-economic and
 612 environmental development under climate stabilization, *Technological Forecasting and Social*
 613 *Change*. 74(7), 887-935, <https://doi.org/10.1016/j.techfore.2006.05.026>, 2007.

614 Rogelj J., Rao S., McCollum D. L., Pachauri S., Klimont Z., Krey V. & Riahi K.: Air-
 615 pollution emission ranges consistent with the representative concentration pathways, *Nature*
 616 *Climate Change*. 4, 446, 10.1038/nclimate2178

617 <https://www.nature.com/articles/nclimate2178#supplementary-information>, 2014.

618 Rotstain L. D., Plymin E. L., Collier M. A., Boucher O., Dufresne J.-L., Luo J.-J., Salzen
 619 K. v., Jeffrey S. J., Foujols M.-A., Ming Y. & Horowitz L. W.: Declining Aerosols in CMIP5

620 Projections: Effects on Atmospheric Temperature Structure and Midlatitude Jets, *Journal of*
621 *Climate*. 27(18), 6960-6977, 10.1175/jcli-d-14-00258.1, 2014.

622 Ru M., Shindell D. T., Seltzer K. M., Tao S. & Zhong Q.: The long-term relationship
623 between emissions and economic growth for SO₂, CO₂, and BC, *Environmental Research*
624 *Letters*. 13(12), 124021, 10.1088/1748-9326/aaece2, 2018.

625 Samset B. H., Myhre G., Forster P. M., Hodnebrog Ø., Andrews T., Faluvegi G.,
626 Fläschner D., Kasoar M., Kharin V., Kirkevåg A., Lamarque J.-F., Olivié D., Richardson T.,
627 Shindell D., Shine K. P., Takemura T. & Voulgarakis A.: Fast and slow precipitation responses
628 to individual climate forcers: A PDRMIP multimodel study, *Geophysical Research Letters*.
629 43(6), 2782-2791, 10.1002/2016gl068064, 2016.

630 Samset B. H.: How cleaner air changes the climate, *Science*. 360(6385), 148-150,
631 10.1126/science.aat1723, 2018.

632 Samset B. H., Sand M., Smith C. J., Bauer S. E., Forster P. M., Fuglestvedt J. S., Osprey
633 S. & Schleussner C.-F.: Climate Impacts From a Removal of Anthropogenic Aerosol Emissions,
634 *Geophysical Research Letters*. 45(2), 1020-1029, doi:10.1002/2017GL076079, 2018a.

635 Samset B. H., Stjern C. W., Andrews E., Kahn R. A., Myhre G., Schulz M. & Schuster G.
636 L.: Aerosol Absorption: Progress Towards Global and Regional Constraints, *Current Climate
637 Change Reports*, 10.1007/s40641-018-0091-4, 2018b.

638 Samset B. H., Lund M. T., Bollasina M., Wilcox L. & Myhre G.: Rapidly emerging
639 patterns of Asian aerosol forcing, *Nature Geoscience* 12, 582-584, 2019.

640 Shindell D. T., Lamarque J. F., Schulz M., Flanner M., Jiao C., Chin M., Young P. J., Lee
641 Y. H., Rotstayn L., Mahowald N., Milly G., Faluvegi G., Balkanski Y., Collins W. J., Conley A.
642 J., Dalsoren S., Easter R., Ghan S., Horowitz L., Liu X., Myhre G., Nagashima T., Naik V.,
643 Rumbold S. T., Skeie R., Sudo K., Szopa S., Takemura T., Voulgarakis A., Yoon J. H. & Lo F.:
644 Radiative forcing in the ACCMIP historical and future climate simulations, *Atmos. Chem. Phys.*
645 13(6), 2939-2974, 10.5194/acp-13-2939-2013, 2013.

646 Silva R. A., West J. J., Lamarque J. F., Shindell D. T., Collins W. J., Dalsoren S.,
647 Faluvegi G., Folberth G., Horowitz L. W., Nagashima T., Naik V., Rumbold S. T., Sudo K.,
648 Takemura T., Bergmann D., Cameron-Smith P., Cionni I., Doherty R. M., Eyring V., Josse B.,
649 MacKenzie I. A., Plummer D., Righi M., Stevenson D. S., Strode S., Szopa S. & Zengast G.: The
650 effect of future ambient air pollution on human premature mortality to 2100 using output from
651 the ACCMIP model ensemble, *Atmos. Chem. Phys.* 16(15), 9847-9862, 10.5194/acp-16-9847-
652 2016, 2016.

653 Smith C. J., Kramer R. J., Myhre G., Forster P. M., Soden B. J., Andrews T., Boucher O.,
654 Faluvegi G., Fläschner D., Hodnebrog Ø., Kasoar M., Kharin V., Kirkevåg A., Lamarque J.-F.,
655 Mülmenstädt J., Olivié D., Richardson T., Samset B. H., Shindell D., Stier P., Takemura T.,
656 Voulgarakis A. & Watson-Parris D.: Understanding Rapid Adjustments to Diverse Forcing
657 Agents, *Geophysical Research Letters*. 45(21), 12,023-012,031, 10.1029/2018gl079826, 2018.

658 Smith S. J. & Wigley T. M. L.: Multi-Gas Forcing Stabilization with Minicam, *The
659 Energy Journal*. 27, 373-391, 2006.

660 Stamnes K., Tsay S. C., Wiscombe W. & Jayaweera K.: Numerically stable algorithm for
661 discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,
662 *Appl. Opt.* 27(12), 2502-2509, 10.1364/AO.27.002502, 1988.

663 Stjern C. W., Samset B. H., Myhre G., Bian H., Chin M., Davila Y., Dentener F.,
664 Emmons L., Flemming J., Haslerud A. S., Henze D., Jonson J. E., Kucsma T., Lund M. T.,
665 Schulz M., Sudo K., Takemura T. & Tilmes S.: Global and regional radiative forcing from 20 %

666 reductions in BC, OC and SO₄ – an HTAP2 multi-model study, *Atmos. Chem. Phys.* 16(21),
667 13579-13599, 10.5194/acp-16-13579-2016, 2016.

668 Stjern C. W., Samset B. H., Myhre G., Forster P. M., Hodnebrog Ø., Andrews T.,
669 Boucher O., Faluvegi G., Iversen T., Kasoar M., Kharin V., Kirkevåg A., Lamarque J.-F., Olivie
670 D., Richardson T., Shawki D., Shindell D., Smith C. J., Takemura T. & Voulgarakis A.: Rapid
671 Adjustments Cause Weak Surface Temperature Response to Increased Black Carbon
672 Concentrations, *Journal of Geophysical Research: Atmospheres*. 122(21), 11,462-411,481,
673 10.1002/2017JD027326, 2017.

674 Storelvmo T.: Aerosol Effects on Climate via Mixed-Phase and Ice Clouds, *Annual
675 Review of Earth and Planetary Sciences*. 45(1), 199-222, 10.1146/annurev-earth-060115-
676 012240, 2017.

677 Szopa S., Balkanski Y., Schulz M., Bekki S., Cugnet D., Fortems-Cheiney A., Turquety
678 S., Cozic A., Déandres C., Hauglustaine D., Idelkadi A., Lathière J., Lefevre F., Marchand M.,
679 Vuolo R., Yan N. & Dufresne J.-L.: Aerosol and ozone changes as forcing for climate evolution
680 between 1850 and 2100, *Climate Dynamics*. 40(9), 2223-2250, 10.1007/s00382-012-1408-y,
681 2013.

682 Søvde O. A., Prather M. J., Isaksen I. S. A., Berntsen T. K., Stordal F., Zhu X., Holmes
683 C. D. & Hsu J.: The chemical transport model Oslo CTM3, *Geosci. Model Dev.* 5(6), 1441-
684 1469, 10.5194/gmd-5-1441-2012, 2012.

685 Tan J., Fu J. S., Dentener F., Sun J., Emmons L., Tilmes S., Flemming J., Takemura T.,
686 Bian H., Zhu Q., Yang C. E. & Keating T.: Source contributions to sulfur and nitrogen
687 deposition – an HTAP II multi-model study on hemispheric transport, *Atmos. Chem. Phys.*
688 18(16), 12223-12240, 10.5194/acp-18-12223-2018, 2018.

689 Tegen I. & Schepanski K.: Climate Feedback on Aerosol Emission and Atmospheric
690 Concentrations, *Current Climate Change Reports*. 4(1), 1-10, 10.1007/s40641-018-0086-1, 2018.

691 van Vuuren D. P., den Elzen M. G. J., Lucas P. L., Eickhout B., Strengers B. J., van
692 Ruijven B., Wonink S. & van Houdt R.: Stabilizing greenhouse gas concentrations at low levels:
693 an assessment of reduction strategies and costs, *Climatic Change*. 81(2), 119-159,
694 10.1007/s10584-006-9172-9, 2007.

695 van Vuuren D. P., Stehfest E., Gernaat D. E. H. J., Doelman J. C., van den Berg M.,
696 Harmsen M., de Boer H. S., Bouwman L. F., Daioglou V., Edelenbosch O. Y., Girod B., Kram
697 T., Lassaletta L., Lucas P. L., van Meijl H., Müller C., van Ruijven B. J., van der Sluis S. &
698 Tabeau A.: Energy, land-use and greenhouse gas emissions trajectories under a green growth
699 paradigm, *Global Environmental Change*. 42, 237-250,
700 <https://doi.org/10.1016/j.gloenvcha.2016.05.008>, 2017.

701 Westervelt D. M., Horowitz L. W., Naik V., Golaz J. C. & Mauzerall D. L.: Radiative
702 forcing and climate response to projected 21st century aerosol decreases, *Atmos. Chem. Phys.*
703 15(22), 12681-12703, 10.5194/acp-15-12681-2015, 2015.

704 Zheng B., Tong D., Li M., Liu F., Hong C., Geng G., Li H., Li X., Peng L., Qi J., Yan L.,
705 Zhang Y., Zhao H., Zheng Y., He K. & Zhang Q.: Trends in China's anthropogenic emissions
706 since 2010 as the consequence of clean air actions, *Atmos. Chem. Phys.* 18(19), 14095-14111,
707 10.5194/acp-18-14095-2018, 2018.

708

709

710

711

712 Figures

713

714 *Figure 1. Left: Annual global emissions (fossil fuel, biofuel and biomass burning) of BC, OC, SO₂ and NO_x*
 715 *over the period 1950 to 2100 from the CEDS historical inventory and SSP1-1.9, SSP2-4.5 and SSP3-7.0*
 716 *(solid colored lines). Emissions from RCP2.6, RCP4.5 and RCP8.5 (dashed lines) are added for*
 717 *comparison. Middle: Modeled total global burdens of BC, POA, sulfate and fine mode nitrate. Right:*
 718 *Anthropogenic AOD and AAOD, and total (anthropogenic and natural) SSA at 550nm.*

719

720

721

722

723 *Figure 2: Regionally averaged burdens of BC and sulfate aerosols from 1900 to 2100 using CEDS*
 724 *historical emissions and SSP1-1.9, SSP2-4.5 and SSP3-7.0.*

725

726

727

728 *Figure 3: Radiative forcing of anthropogenic aerosol 1950-2100 relative to 1750: a) total aerosol RF*
 729 *(RF_{total}), b) aerosol-radiation interactions (RF_{ari}) and c) aerosol-cloud interactions (RF_{aci}).*

730

731

732

733

734 *Figure 4: Total aerosol RF over four time periods: 1750–1990, 1990–2015, 1750–2015, and 2015–2030 for*

735 each of the three SSP scenarios considered here.

736