

1 **Observational evidence of particle hygroscopic growth in**
2 **the UTLS over the Tibetan Plateau**

3

4 **Qianshan He^{1,2}, Jianzhong Ma³, Xiangdong Zheng³, Xiaolu Yan³, Holger**
5 **Vömel⁴, Frank G. Wienhold⁵, Wei Gao^{1,2}, Dongwei Liu^{1,2}, Guangming Shi⁶,**
6 **Tiantao Cheng⁷**

7 ¹Shanghai Meteorological Service, Shanghai, China

8 ²Shanghai Key Laboratory of Meteorology and Health, Shanghai, China

9 ³State Key Laboratory of Severe Weather & CMA Key Laboratory of Atmospheric
10 Chemistry, Chinese Academy of Meteorological Sciences, Beijing, China

11 ⁴Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, CO,
12 USA

13 ⁵ETH Zurich, Institute for Atmospheric and Climate Science (IAC), CH-8092 Zurich,
14 Switzerland.

15 ⁶Chongqing Institute of Green and Intelligent Technology, Chinese Academy of
16 Sciences, Chongqing, China

17 ⁷Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences,
18 Fudan University, Shanghai, China

19 Correspondence to: Jianzhong Ma (majz@cma.gov.cn)

20

21 **Key Points:**

22 1. Balloon-borne measurements show an enhanced aerosol layer consisting dominantly
23 of fine particles in the UTLS over the Tibetan Plateau.

24 2. Water vapor is important in determining the size, and therefore radiative properties,
25 of the particles.

26 **Abstract**

27 We measured the vertical profiles of backscatter ratio (BSR) using the balloon-
28 borne, lightweight Compact Optical Backscatter AeroSoL Detector (COBALD)
29 instruments above Linzhi, located in the southeastern Tibetan Plateau, in the summer
30 of 2014. An enhanced aerosol layer in the upper troposphere/lower stratosphere (UTLS),
31 with BSR (455 nm)>1.1 and BSR (940 nm)>1.4, was observed. The Color Index (CI)
32 of the enhanced aerosol layer, defined as the ratio of aerosol backscatter ratios (ABSR)

1 at wavelengths of 940 nm and 455 nm, varied from 4 to 8, indicating the prevalence of
2 fine particles with mode radius less than 0.1 μm . We find that except for the very small
3 particles (mode radius smaller than 0.04 μm) at low relative humidity (RHi < 40%), the
4 relatively large particles in the aerosol layer were generally very hydrophilic as their
5 size increased dramatically with relative humidity. This result indicates that water vapor
6 can play a very important role in increasing the size of fine particles in the UTLS over
7 the Tibetan Plateau. Our observations provide observation-based evidence supporting
8 that aerosol particle hygroscopic growth is an important factor influencing the
9 radiative properties of the Asian Tropopause Aerosol Layer (ATAL) during the Asian
10 summer monsoon.

11 **Keywords:** ATAL, hygroscopic growth, COBALD, Tibetan Plateau

12

13 1. Introduction

14 The Asian Tropopause Aerosol Layer (ATAL) extends over a large area within the
15 Asian summer monsoon circulation and may significantly influence ozone, cirrus
16 clouds and global climate by chemical, micro-physical and radiative processes
17 [Gettelman et al., 2011; Vernier et al., 2011; Fadnavis et al., 2013; Thomason and
18 Vernier, 2013; Vernier et al., 2015]. Particles in the ATAL are likely to be lifted to the
19 lower stratosphere by the large-scale upward circulation within the south Asian
20 anticyclone [Park et al., 2007], and then influence the aerosol amount in the global
21 stratosphere significantly. Solomon et al. [2011] found that the radiative forcing of
22 increased aerosols in the global stratosphere from 2000 to 2010 is $-0.1\text{W}\cdot\text{m}^{-2}$, which
23 weakened the global warming effect from increasing greenhouse gas concentrations. In
24 addition to the elevated concentration of aerosols found in the ATAL as mentioned
25 above, the concentrations of tropospheric trace gases (i.e., water vapor, CO, CH_4 and
26 HCN) are higher within the Asian summer monsoon anticyclone than in surrounding
27 regions, while the stratospheric trace gases (i.e., O_3 , HNO_3 and HCl) are lower [Park et
28 al., 2004; Randel et al., 2010]. Actually, the elevated aerosol concentration near the
29 tropopause over the Tibetan Plateau has also been observed by lidar and balloon borne

1 measurements [Kim et al., 2003; Tobo et al., 2007; He et al., 2014]. Li [2005] showed
2 that the aerosol plume is detectable in the anticyclone around the altitude of 150 hPa
3 over the Tibetan Plateau through satellite observations and model study.

4 Sources and formation mechanism of aerosols in the UTLS, especially over the tropics,
5 have been studied over the past decades. New particle formation events can occur at
6 very low temperatures accompanied by the outflow of convective systems, as observed
7 in the West African Monsoon [Frey et al., 2011].. Both condensation and coagulation
8 contribute to the particle growth, even though these two processes are triggered by
9 different mechanisms. Model studies have shown that coagulation is more important
10 than nucleation in the control of the number concentration of fine particles (with
11 diameter larger than 10 nm) in the UTLS [English et al., 2011; Pierce and Adams, 2009;
12 Timmreck et al., 2010]. Compared with coagulation, the effect of condensation on
13 particle growth is less documented in previous studies. Weigel et al. [2011] found that
14 supersaturated gases, which can nucleate to form neutral and charged molecular clusters,
15 also condense onto pre-existing aerosol particles. Earlier studies focusing on polar
16 stratospheric clouds (PSCs) over the winter poles demonstrated that stratospheric
17 aqueous H_2SO_4 aerosol can absorb a large amount of gaseous HNO_3 and H_2O at
18 temperatures (about 200K) between the nitric acid trihydrate (NAT) and ice frost points
19 [Carslaw et al., 1994; Tabazadeh et al., 1994], leading to a steep increase in particle
20 volume.. These aerosols and PSCs are composed either of supercooled ternary solution
21 (STS) droplets ($\text{HNO}_3 \cdot \text{H}_2\text{O} \cdot \text{H}_2\text{SO}_4$), ice particles or solid hydrates (most likely NAT)
22 and can grow to larger particles that are easy to sediment [Voigt et al., 2008; Engel,
23 2013]. However, unlike the studies about PSCs, the growth mechanism of the particles
24 in the ATAL is still vague due to the lack of sufficient observations.

25 In-depth investigations on the aerosol size distribution, chemical composition and
26 growth process are needed for a better understanding of the characteristics and
27 formation mechanism of ATAL. It is difficult to obtain much more information merely
28 by means of remote sensing measurements, such as satellite and lidar, because those
29 sensors are not sensitive to ultra-fine particles. In such case, balloon and/or air borne *in*
30 *situ* measurement provide an additional and even better tool for exploring the ATAL.

1 Using a balloon-borne optical particle counter at Lhasa, China, Tobo et al. (2007)
2 measured the vertical profiles of aerosols and found occurrences of relatively high
3 number concentrations of sub-micron size aerosols near the tropopause region during
4 the Asian summer monsoon period. They considered that the enhanced aerosol layer in
5 the UTLS connected closely with the transportation of water vapor from the Asian
6 summer monsoon. An increased amount of water vapor was found in the UTLS within
7 the Asian summer monsoon anticyclone (Bian et al., 2012; Li et al., 2017). A series of
8 balloon borne activities between 2014 and 2017 over India and Saudi Arabia during the
9 Balloon Measurements of the Asian Tropopause Aerosol Layer (BATAL) campaigns
10 revealed that the ATAL is composed of mostly small ($r < 0.25 \mu\text{m}$) liquid (~80%–95%)
11 aerosols with the dominant composition of nitrate (Vernier et al., 2017). New particle
12 formation and growth of particles by accretion of additional low volatility materials
13 (e.g., H_2SO_4) tend to be an irreversible but slow progress due to limited amount of
14 condensable gases, In contrast, hygroscopic growth of particles is a dynamic and
15 typically reversible process, and may affect the size of particles and its variation in the
16 ATAL more remarkably in a relatively short time since sufficient amount of water
17 vapor can be frequently lofted to the UTLS via deep convection during the Asian
18 monsoon [Fu et al., 2006].

19 As part of the project Tibetan Ozone, Aerosol and Radiation (TOAR) [see More
20 Information on ACP Special Issue, available at: http://www.atmos-chem-phys.net/special_issue331.html], vertical profiles of aerosols over the southeastern
21 Tibetan Plateau were measured in June and July of 2014. In this paper, we present the
22 results from balloon borne radiosonde measurements, and investigate the effect of
23 hygroscopic growth on the observed sizes and optical properties of fine particles in the
24 UTLS over the Tibetan Plateau.

26

27 **2. Experiment**

28 The field experiment was carried out at the Linzhi Meteorological Bureau (29.67°
29 N, 94.33° E; 2992 m above sea level), located in the southeastern Tibetan Plateau, from
30 June 6 to July 31, 2014. During the field campaign, seven balloon sondes were launched,

1 with each sounding taking place at about 16:00 UTC on June 18 (case 1), June 24 (case
2 2), July 6 (case 3), July 15 (case 4), July 21 (case 5), July 25 (case 6) and July 30 (case
3 7), respectively. The balloon sonde payload was composed of a Compact Optical
4 Backscatter AeroSoL Detector (COBALD) instrument, iMet and RS92 radiosondes,
5 and a cryogenic frost-point hygrometer (CFH). The payload was lifted by a 1600 g latex
6 balloon, which ascended at a rate of $5\text{-}7 \text{ m s}^{-1}$. Data were obtained from the launching
7 point until an altitude between 30 km to 35 km where the balloon generally burst. In
8 this study, only the ascent data are analyzed.

9 **2.1 COBALD particle backscatter sonde**

10 The lightweight COBALD, developed by Prof. Thomas Peter's group at ETH
11 Zurich, uses two high power light emitting diodes (LEDs) operating at 455nm (blue)
12 and 940nm (infrared) with a silicon detector averaging the light scattered back from
13 molecules or aerosols at angles centered near 173° for typically one-second time
14 periods [Rosen and Kjome, 1991; Wienhold, 2012; Cirisan et al., 2014]. COBALD
15 measurements are only carried out at local nighttime as daylight saturates the sensitive
16 detector. Before flight, the signal from each backscatter sonde is compared with a
17 dedicated set of four standard backscatter sondes maintained in Laramie. The
18 repeatability of the relative calibration between backscatter sondes is about $\pm 1\%$. The
19 absolute calibration is believed accurate to better than $\pm 3\%$. Since naturally occurring
20 aerosol backscatter ratios may be quite low, especially in the blue channel, it is
21 important to consider potential sources of error and uncertainty in the absolute values
22 derived from the basic measurements themselves. In the blue channel, a conservative
23 adjustment procedure has been made in the range of 0 to 4% to eliminate nonphysical
24 average values occurring in the troposphere [Rosen et al., 1997].

25 Backscatter ratios (BSR) at two wavelengths are retrieved from COBALD
26 measurement, which is defined as,

27
$$BSR = \frac{\beta_a + \beta_m}{\beta_m} = \frac{N_a \cdot \sigma_a + N_m \cdot \sigma_m}{N_m \cdot \sigma_m} \quad (1)$$

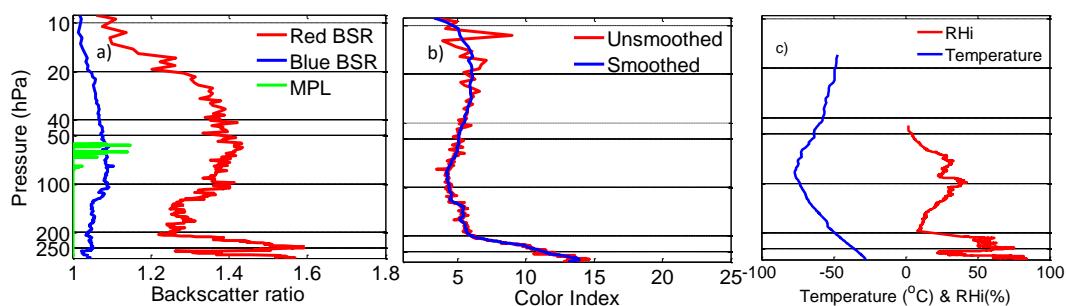
28 where β denotes backscatter coefficient, N the number concentration, and σ the
29 backscatter cross section. The subscripts a and m indicate contributions from aerosol

1 particles and air molecules, respectively. The backscatter cross section for air molecules
2 can be calculated from Rayleigh scattering theory and the number concentration for air
3 molecules is derived from atmospheric pressure and temperature measured by the
4 radiosonde. The backscattering cross section for aerosol particles can be calculated
5 from Mie scattering theory for a specified effective radius. The aerosol backscatter ratio
6 (ABSR) is defined as,

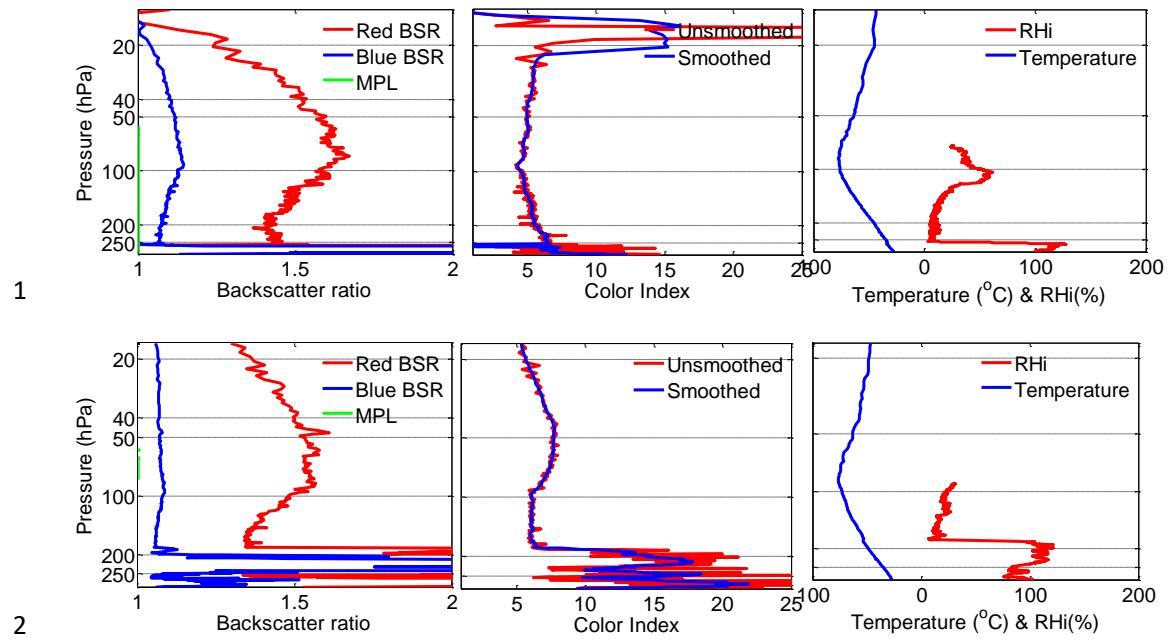
7
$$ABSR = \frac{\beta_a}{\beta_m} = BSR - 1 \quad (2)$$

8 The ABSR values at two wavelengths are used to calculate the Color Index [CI,
9 Rosen et al., 1997], which is defined as the ABSR at 940 nm divided by the ABSR at
10 455 nm. The CI is proportional to the ratio of the backscatter cross sections at 940 and
11 455 nm, and hence it can provide an estimate of the particle size. Assuming an index
12 of refraction of 1.45 with 75% sulfate and a typical lognormal size distribution of the
13 stratospheric aerosols [Rosen and Kjome, 1991], the backscatter cross sections σ_a at the
14 wavelengths used by COBALD are calculated by Mie theory, and further the CI as a
15 function of the mean radius of total aerosol particles is derived. Because no information
16 on standard deviation of the lognormal distribution is available, the possible lower and
17 upper limits of the standard deviation are assumed to be 1.8 and 2.2 [Deshler et al.,
18 2003]. By comparing the observed CI with the calculated one for different standard
19 deviations, the range of possible mean radius can be obtained, and the number
20 concentration and further volume concentration for aerosol particles can be retrieved
21 from the observed ABSR according to the Equation (1).

22 **2.2 Radiosonde observations**


23 In this study we use the air temperature profiles from the RS92 radiosondes with
24 an uncertainty of $\pm 0.2^\circ\text{C}$ below 100 hPa and $\pm 0.3^\circ\text{C}$ between 100 and 20 hPa. The
25 profiles of water vapor are obtained from CFH measurements. The CFH is a
26 microprocessor-controlled instrument with a lightweight of 400 g, and it uses a
27 cryogenic liquid as cooling agent and operates based on the chilled-mirror principle
28 [Vömel et al., 2007a]. The uncertainty of frost point or dew point measured by the CFH
29 is smaller than 0.2 K. Correspondingly, the uncertainty in relative humidity is estimated

1 to be 2 % for measurement in the lower troposphere and 5 % in the tropical tropopause
 2 region [Vömel et al., 2016]. As a standard for water vapor measurements, CFH has
 3 been used in numerous intercomparison experiments, such as the validation of Aura
 4 Microwave Limb Sounder (MLS) water vapor products, globally [Vömel et al., 2007b]
 5 and specifically over the Tibetan Plateau [Yan et al., 2016].


6

7 **3. Results and discussion**

8 Figure 1 shows the BSR profiles at two wavelengths and calculated CI profiles
 9 from COBALD measurement, as well as the profiles of temperature and RH over ice
 10 respectively from RS92 and CFH measurement for three typical cases on June 18, July
 11 15 and 25, 2014. The COBALD measurements suggest an enhanced aerosol layer (BSR
 12 (455 nm)>1.1 and BSR (940 nm)>1.4) extending from 200 hPa (~12 km) to 10hPa (~28
 13 km) with a maximum above the tropopause (90 hPa, ~17 km). The enhanced aerosol
 14 layer from COBALD measurement is a mixture of ATAL and the on-setting Junge
 15 Layer due to the signal above 50 hPa stemming from the Junge Layer but the maximum
 16 occurring in ATAL. The RHi near the maximum of the enhanced aerosol layer varies
 17 from 30% to 40%, indicating that it is impossibly caused by cirrus cloud, which cannot
 18 persist at these dry conditions. The calculated CI of the enhanced aerosol layer is around
 19 5 (4-8), far below CI of cirrus cloud (being around 10 with the maximum value
 20 exceeding 20) at 250 hPa [Vernier et al., 2015].

21

3 **Fig. 1.** (a) Three cases of the backscattering ratio profile from COBALD and MPL
4 measurements on June 18 (top), July 15 (middle) and July 25 (bottom), 2014. (b) The
5 calculated CI profiles from the ABSR at two wavelengths. (c) Temperature and RHi
6 profiles measured by the RS92 radiosonde and CFH, respectively.

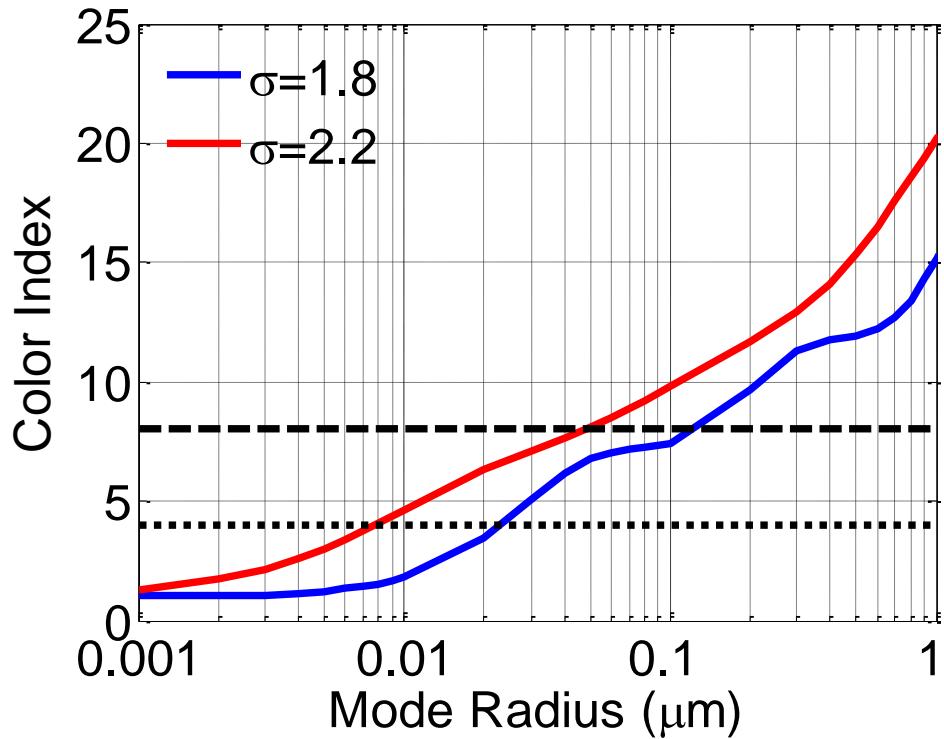
7

8 On February 13, 2014 the Mt. Kelud (8°S , 112°E) in Indonesia erupted, with a
9 volcanic plume located near 18-21 km within the tropical stratosphere, which was
10 detected 11 days after the eruption by the Cloud-Aerosol Lidar with Orthogonal
11 Polarization (CALIOP) onboard the Cloud-Aerosol Lidar and Infrared Pathfinder
12 Satellite Observation (CALIPSO) [Vernier et al, 2016]. Stratospheric aerosols were
13 perturbed significantly by the Kelud volcanic plumes, especially the fresh ash plume in
14 the southern hemisphere [Vernier et al, 2016; Sakai et al., 2016]. The Kelud volcanic
15 eruption might have negligible influence on the observed aerosols in the ATAL, since
16 the ATAL began to form about four months after the Kelud eruption when the volcanic
17 materials in the troposphere might have vanished. On the other hand, CALIOP data
18 analysis also showed that sulfate components from the Kelud volcanic eruption,
19 peaking at an higher altitude with a longer residence time compared with the volcanic
20 ashes, influenced aerosol optical depth (AOD) between 20°N and 20°S 18-25 km
21 considerably three months after the eruption [Vernier et al, 2016]. It is likely that sulfate

1 aerosols from the Kelud eruption contributed to stratospheric background aerosols
2 above the ATAL and even in the Junge layer at slightly higher latitude, as indicated by
3 our COBALD measurements.

4 Pinnick et al. [1975] adopted a lognormal distribution with a mode radius of 0.0725
5 μm and standard deviation (σ) of 1.86 to parameterize the background aerosols in the
6 stratosphere. Rosen and Kjome [1991] suggested a mode radius between 0.04 and 0.06
7 μm and σ value of \sim 2.0-2.2 for the 20-km stratospheric aerosol background layer. In
8 this study, the CI as a function of mode radius was derived from Mie calculation using
9 a lognormal distribution for different size of aerosols with standard deviations (σ) of
10 1.8 and 2.2 respectively and the result is shown in Fig. 2. The signal to noise ratio at
11 the blue channel with respect to the molecular Rayleigh backscatter at tropopause
12 conditions (taken 100 hPa and 210 K) is 220. Given the molecular backscatter
13 coefficient of 4.4e^{-7} ($\text{sr}^{-1}\text{m}^{-1}$) for 455 nm, this corresponds to a backscatter coefficient
14 minimum detection limit of 2e^{-9} ($\text{sr}^{-1}\text{m}^{-1}$), which is holding in general over the entire
15 profile. To define an aerosol size limit, typical aerosol dumber densities need to be
16 assumed: 10 cm^{-3} for stratospheric background and 100 cm^{-3} for the ATAL. The aerosol
17 backscatter coefficients of different aerosol mode radius for the typical aerosol dumber
18 densities are calculated by Mie theory and listed in Table 1. The results confirm that
19 the particles with 100 nm radius are well detected under background conditions, which
20 mainly contribute to the particulate backscatter ratio of approx. 0.01 and is always
21 present. With increasing particle number density, the particles with 30 nm radius start
22 to contribute to the particulate backscatter ratio ($> 2\text{e}^{-9}$ $\text{sr}^{-1}\text{m}^{-1}$). Therefore, the lower
23 size boundary that cannot be observed by COBALD due to the lack of scattering
24 efficiency of small aerosols can be defined as 30 nm.

25


26 **Table 1** The aerosol backscatter coefficients of different aerosol mode radius for the
27 typical aerosol dumber densities.

Mode Radius (nm)	10	30	100
β_a @ 10 cm^{-3} ($\text{sr}^{-1}\text{ m}^{-1}$)	1e^{-12}	3e^{-10}	2e^{-8}

β_a @100 cm ⁻³ (sr ⁻¹ m ⁻¹)	1e ⁻¹¹	3e ⁻⁹	2e ⁻⁷
---	-------------------	------------------	------------------

1

2 The CI increases monotonously from 1 to 15 with mode radius growing from 1 nm
 3 to 1 μ m. The CI of the enhanced aerosol layer from COBALD measurement usually
 4 varied from 4 to 8 as indicated in this figure. With the assumed lognormal widths, the
 5 measured CI imposes an upper limit of 100 nm on the particle radius. Therefore, we
 6 conclude that the enhanced aerosol layer is composed of a large number of fine particles
 7 with radius less than 0.1 μ m. It has been documented that aerosols in the UTLS are
 8 mainly composed of liquid inorganics with typical mode radii smaller than 0.1 μ m
 9 [Tobo et al., 2007]. Our observations in Linzhi are consistent with previous findings.

10

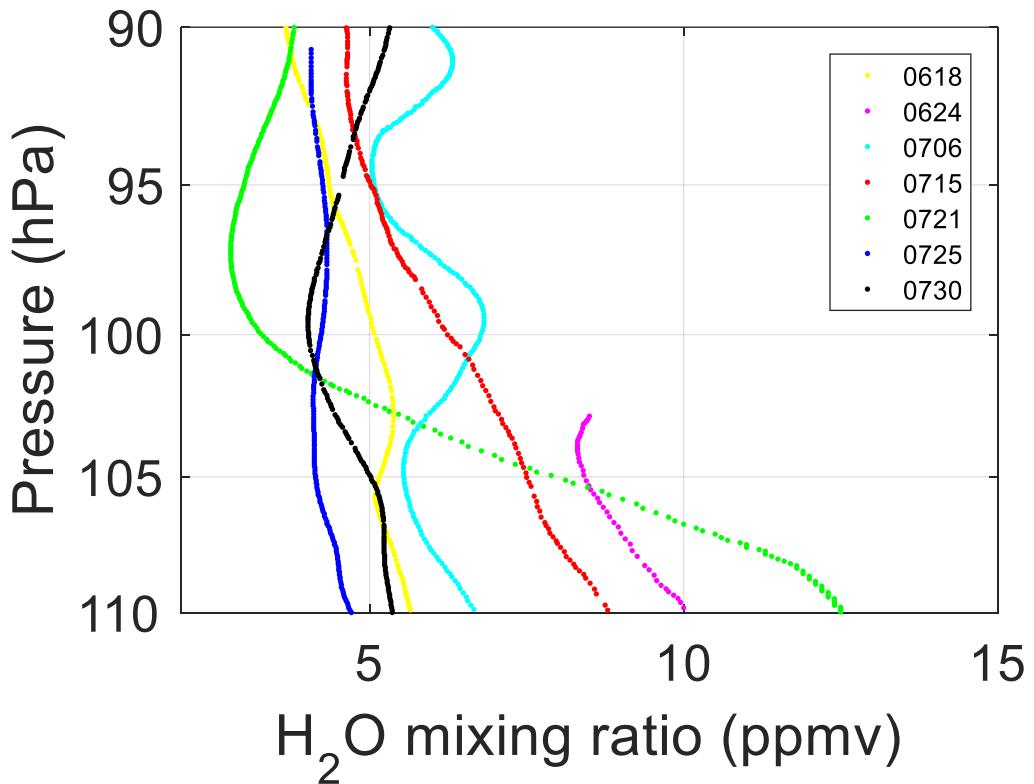
11 **Fig. 2.** CI as a function of mode radius from Mie calculation assuming an index of
 12 refraction of 1.45 and a lognormal size distribution with the indicated standard
 13 deviations (σ) of 1.8 and 2.2. The dotted and dashed lines represent the minimum (~4)
 14 and maximum (~8) CI of the enhanced aerosol layer from COBALD measurement for
 15 all cases.

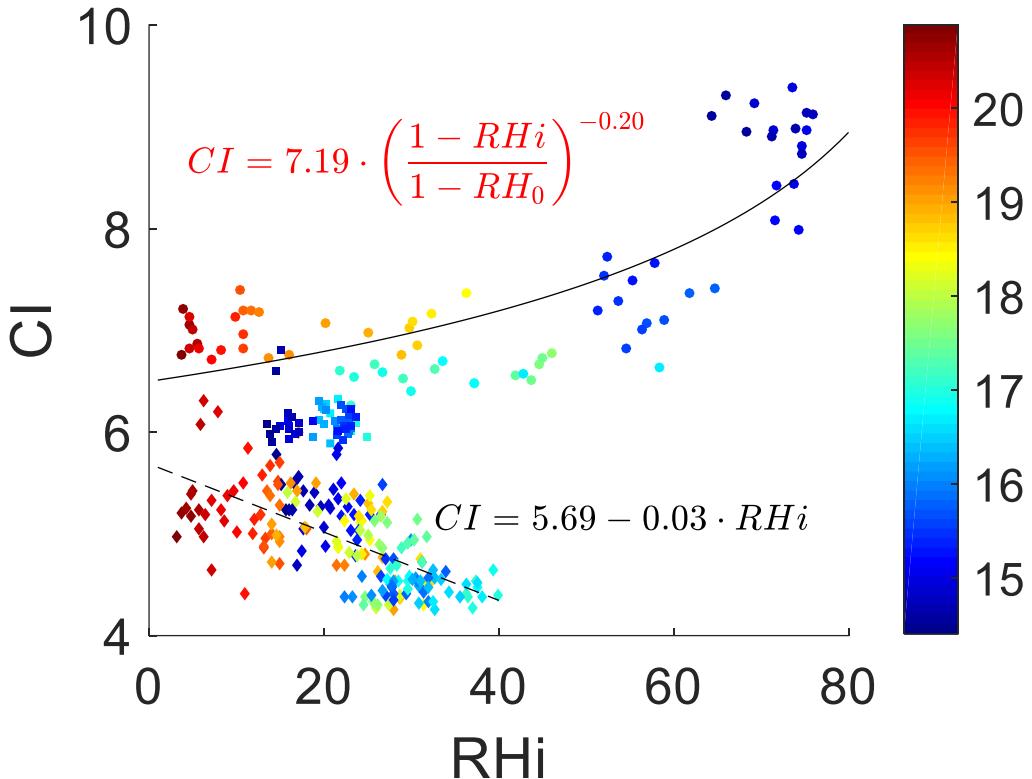
16

17 The middle troposphere over the Tibetan Plateau is likely to act as a pipe for the

1 transport of water vapor from the marine boundary layer (i.e., Indian Ocean and South
2 China Sea) to the UTLS, leading to an increase of H₂O mixing ratio near the tropopause
3 [Fu et al., 2006; Lelieveld et al., 2007]. Figure 3(a) presents the CFH H₂O profiles from
4 110 hPa (~16 km ASL) to 90 hPa (~17.5 km ASL). It is noticed that H₂O mixing ratio
5 changes greatly in the vertical direction (3~12ppmv) for some cases. The dehydration
6 process results in minimum H₂O mixing ratio just above the altitude of each lowest
7 temperature. Pronounced decrease of the H₂O mixing ratio from 110 hPa to 90 hPa are
8 attributed to convective transport of moist air parcels just occurring during the balloon
9 flying periods. The three relatively uniform H₂O profiles (on June 18, July 25 & 30)
10 correspond to the well mixed status of strong upward transport prior to the balloon-
11 based measurements. The water vapor cycle driven by synoptic-scale convection
12 increases the possibility of aerosol hygroscopic growth near the tropopause over the
13 Tibetan plateau. It has been estimated that the scattering ratio could increase by 10% to
14 50% with a water vapor mixing ratio enhancement from 3 ppmv to 6 ppmv [Vernier et
15 al., 2011].

16 Fig. 3(b) presents the variation of CI with RHi for all cases between 50 hPa and
17 150 hPa, the typical altitude range for the ATAL. The dependence of CI on RHi can be
18 classified into three types according to the CI of dry aerosols, i.e. the aerosols existing
19 at very low relative humidity (e.g., RHi < 20%):

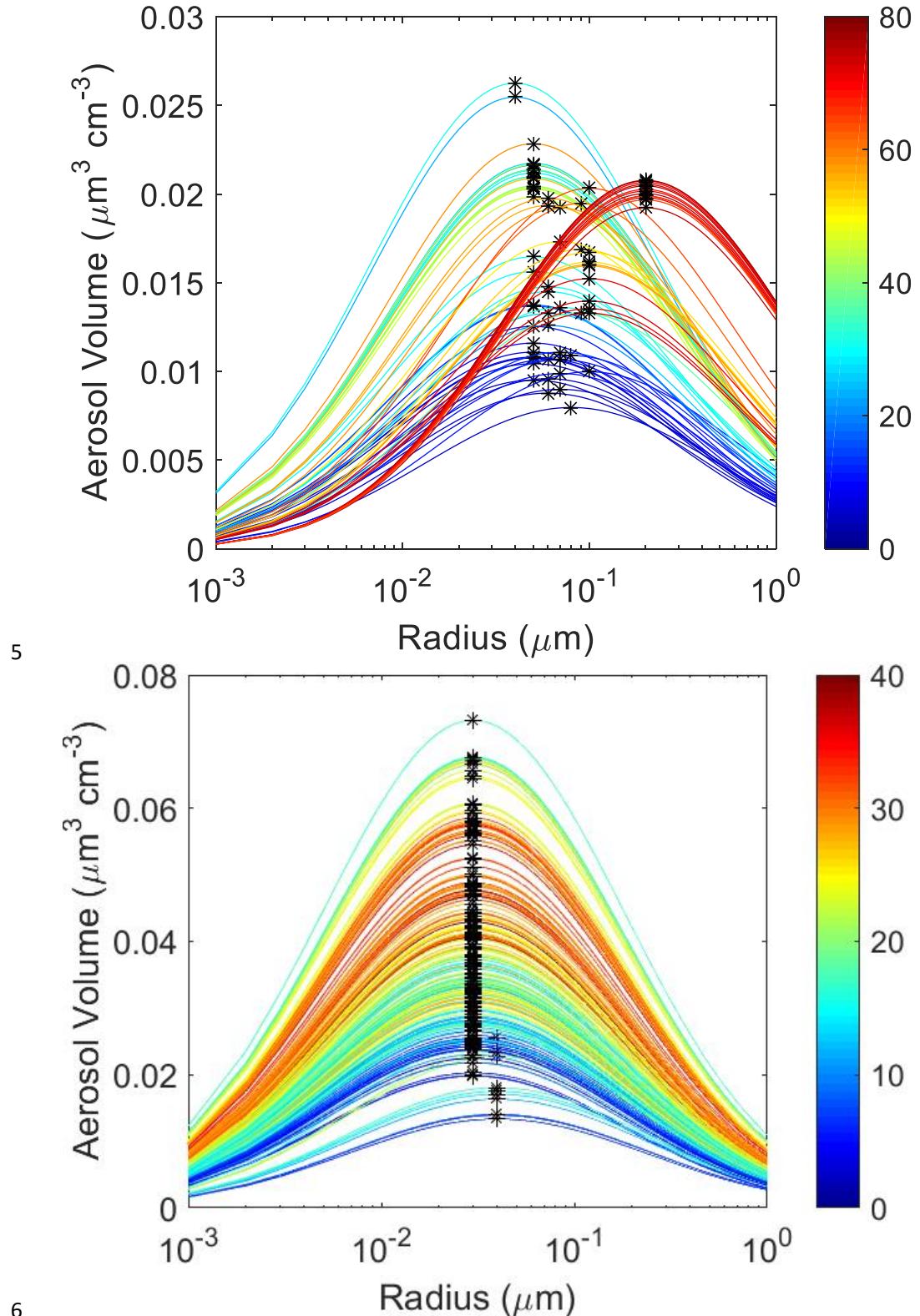

20 (1) When the CI of dry aerosol is larger than about 6, CI of the enhanced aerosol
21 layer shows an exponential growth with increasing RHi;


22 (2) When the CI of dry aerosol is smaller than about 6, CI of the enhanced aerosol
23 layer decreases with increasing RHi in a slope of -0.03;

24 (3) When the CI of dry aerosol is close to 6, it keeps almost constant with variation
25 of RHi.

26 As the CI can be regarded as an indicator of aerosol particle size, it can be inferred
27 that for those aerosol particles with large dry sizes (Type 1, i.e., CI > 6), increasing RHi
28 facilitates water vapor and other gaseous precursors to condense onto pre-existing
29 aerosol particles and then contribute to the particle growth. For those with small dry
30 sizes (Type 2 and Type 3, i.e., CI <= 6), the situation appears to be more completed and

1 cannot be fully understood without more detailed information about aerosol chemical
2 composition and their gas precursors. Since all these aerosol particles were observed at
3 very low RHi, well below 40% deliquescence relative humidity of most of the salts
4 (e.g., 40% for NH_4HSO_4) [Benson et al., 2009], the hygroscopic growth should have
5 negligible effect on the size of these particles under this condition. New particle
6 formation through the gas-to-particle conversion process, which tends to become faster
7 with increasing RH [Fountoukis and Nenes, 2007], increases the number concentration,
8 resulting in decrease of mode radius of bulk aerosols. Therefore, the decrease of CI
9 with RHi (Type 2) indicates that new particle formation might play an important role
10 in the formation and prevalence of fine particles in the UTLS over the Tibetan Plateau.



1 **Fig. 3.** (a) H_2O mixing ratio from CFH measurements, and (b) the variation of CI with
2 RHi between 50 hPa and 150 hPa for all cases. The circle, square and diamond
3 symbols refer to those particles with CI of dry aerosol larger than, close to and smaller
4 than about 6, respectively. The altitude (in unit of km), where particles were measured,
5 is marked with different color. The two fitted equations exceed the 99% significance
6 level.
7

8
9 Based on the BSR and CI at the UTLS altitudes (50-150 hPa) from COBALD, we
10 calculated the aerosol volume concentration in the enhanced aerosol layer for the two
11 typical CI variation trend according to an assumption of lognormal size distribution
12 with standard deviation of 1.8. The variation of aerosol volume concentration
13 distributions with RHi is shown in Fig. 4. It can be seen from Fig 4a that when RHi is
14 less than 60%, aerosol mode radius ranges mostly between 0.04 and 0.07 μm , and it
15 increases steeply to 0.2 μm when RHi is more than 60%. The aerosol volume
16 concentrations are obviously high compared with those in dry condition, especially for
17 those particles with a mode radius of 0.1 μm . For those aerosols with small initial dry

1 particle size (as shown in Fig 4b), accompanied by a mode radius decrease from 0.04
 2 to 0.03 μm , the aerosol volume concentration increases by 4-5 times when RHi rises
 3 from nearly zero to 40%, indicating that the number concentrations experience an
 4 explosive increase due to the formation of new particles.

1 **Fig. 4.** The variation of aerosol volume concentration distributions in the enhanced
2 aerosol layer with RHi for (a) case 5 (July 21), and (b) the other cases corresponding to
3 the CI<6 case (diamonds) in Fig 3b. The color of each distribution represents RHi
4 labeled on the color bar. The asterisk is mode radius of each distribution.

5

6 **4. Conclusions**

7 The vertical profiles of aerosol BSR measured over the southeastern Tibetan
8 Plateau during summertime demonstrate an enhanced aerosol layer, consisting
9 predominantly of fine particles with mode radius smaller than 0.1 μm , in the UTLS.
10 The size of particles in the enhanced aerosol layer shows an exponential increase with
11 increasing RHi when the CI of dry aerosols is larger than 6 (corresponding mode radius
12 larger than 0.04 μm). It can be inferred that increasing RHi leads to more condensation
13 of water vapor onto pre-existing aerosol particles and contributes to the particle growth.
14 For the CI of dry aerosols smaller than about 6 (i.e., mode radius smaller than 0.04 μm),
15 the size of particles in the enhanced aerosol layer decreases with increasing RHi when
16 RHi is below 40%, lower than typical aerosol deliquescence point. In this case, new
17 particle formation, which results in a decrease of aerosol mode radius and an increase
18 of number concentration, can play an important role in the accumulation of large
19 amounts of fine particles in the UTLS over the Tibetan Plateau. It must be borne in
20 mind that the conclusions drawn from this study are only based on 7 balloon flights so
21 that general conclusions should be established with caution. In fact, chemical
22 interactions involved in the stratosphere troposphere exchange are complicated and
23 further experimental and model studies are needed to understand the nature and origin
24 of the ATAL and its influence on global atmospheric chemistry and climate.

25

26 **Author Contributions**

27 Qianshan He, Jianzhong Ma and Xiangdong Zheng designed the study. Holger Vömel
28 and Frank G. Wienhold respectively contributed to data quality control of COBALD
29 and CFH. Guangming Shi calculated Mie scattering parameters. Wei Gao, Dongwei
30 Liu and Tiantao Cheng contributed to data analysis, numerical experiments,

1 interpretation and paper writing. Xiaolu Yan executed the in-situ balloon sondes
2 observation. Qianshan He did further analysis and interpreted the results. All authors
3 contributed to improve the manuscript.

4

5 *Acknowledgements.* This study was supported by the National Natural Science
6 Foundation of China (Grant No. 91637101, 91837311 and 91537213) and the Shanghai
7 Science and Technology Committee Research Project (Grant No. 16ZR1431700). We
8 thank all TOAR team members and the staff from the Tibet Meteorological Service for
9 assisting our experiment work. We also thank Dr. Yutaka Tobe, whose useful
10 suggestions have greatly improved the paper.

11

12

13 **References**

14 Benson, D. R., Erupe, M. E., and Lee, S. H.: Laboratory-measured $\text{H}_2\text{SO}_4\text{-H}_2\text{O-NH}_3$
15 ternary homogeneous nucleation rates: Initial observations, *Geophys. Res. Lett.*,
16 36, 10.1029/2009gl038728, 2009.

17 Bian, J., Pan, L. L., Paulik, L., Vmeli, H., Chen, H., and Lu, D.: In situ water vapor
18 and ozone measurements in Lhasa and Kunming during the Asian summer
19 monsoon, *Geophys. Res. Lett.*, 39(19), 19808, 2012.

20 Carslaw, K. S., Luo, B. P., Clegg, S. L., Peter, T. H., Brimblecombe, P., and Crutzen, P.
21 J.: Stratospheric aerosol growth and HNO_3 gas phase depletion from coupled
22 HNO_3 and water uptake by liquid particles, *Geophys. Res. Lett.*, 21, 2479 – 2482,
23 1994.

24 Cirisan, A., Luo, B. P., Engel, I., Wienhold, F. G., Krieger, U. K., Weers1, U., Romanens,
25 G., Levrat, G., Jeannet, P., Ruffieux, D., Philipona, R., Calpini, B., Spichtinger,
26 P., and Peter, T.: Balloon-borne match measurements of mid-latitude cirrus clouds,
27 *Atmos. Chem. Phys.*, 14, 7341–7365, 2014.

28 Deshler, T., Hervig, M. E., Hofmann, D. J., Rosen, J. M., and Liley, J. B.: Thirty years
29 of in situ stratospheric aerosol size distribution measurements from Laramie,
30 Wyoming (41N), using balloon-borne instruments, *J. Geophys. Res.*, 108,

1 doi:10.1029/2002JD002514, 2003.

2 Engel, I.: The Role of Heterogeneous Nucleation in Polar Stratospheric Cloud
3 Formation: Microphysical Modeling, ETH ZURICH, Doctor Dissertation, 2013.

4 English J. M., Toon, O. B., Mills, M. J., and Yu, F.: Microphysical simulations of new
5 particle formation in the upper troposphere and lower stratosphere, *Atmos. Chem.*
6 *Phys.*, 11, 9303–9322, 2011.

7 Fadnavis, S., Semeniuk, K., Pozzoli, L., Schultz, M. G., Ghude, S. D., Das, S., and
8 Kakatkar, R.: Transport of aerosols into the UTLS and their impact on the Asian
9 monsoon region as seen in a global model simulation, *Atmos. Chem. Phys.*,
10 13(17), 8771-8786, 2013.

11 Fountoukis, C., and Nenes, A.: ISORROPIA II: a computationally efficient
12 thermodynamic equilibrium model for K^+ - Ca^{2+} - Mg^{2+} - NH^{4+} - Na^+ - SO_4^{2-} - NO_3^-
13 - Cl^- - H_2O aerosols, *Atmos. Chem. Phys.*, 7, 4639-4659, 10.5194/acp-7-4639-
14 2007, 2007.

15 Fu, R., Hu, Y., Wright, J. S., Jiang, J. H., Dickinson, R. E., Chen, M., Filipiak, M., Read,
16 W. G., Waters, J. W., and Wu, D. L.: Short circuit of water vapor and polluted air
17 to the global stratosphere by convective transport over the Tibetan Plateau, *Proc.*
18 *Natl. Acad. Sci. U. S. A.*, 103, 5664–5669, doi:10.1073/pnas.0601584103, 2006.

19 Gettelman, A., Hoor, P., Pan, L. L., Randel, W. J., Hegglin, M. I., and Birner, T.: The
20 extratropical upper troposphere and lower stratosphere, *Rev. Geophys.*, 49(3),
21 RG3003, 2011.

22 He, Q. S., Li, C. C., Ma, J. Z., Wang, H. Q., Yan, X. L., Lu, J., Liang, Z. R., and Qi, G.
23 M.: Lidar-observed enhancement of aerosols in the upper troposphere and lower
24 stratosphere over the Tibetan Plateau induced by the Nabro volcano eruption,
25 *Atmos. Chem. Phys.*, 14, 1-9, 2014.

26 Kim, Y. S., Shibata, T., Iwasaka, Y., Shi, G. Y., Zhou, X. J., Tamura, K., and Ohashi, T.:
27 Enhancements of aerosols near the cold tropopause in summer over Tibetan
28 Plateau: Lidar and balloon borne measurements in 1999 at Lhasa, Tibet, China.
29 *Proc SPIE*, 4893, 496-503, doi:10.1117/12.466090, 2003.

30 Lelieveld, J., Brühl, C., Jackel, P., Steil, B., Crutzen, P. J., Fischer, H., Giorgetta, M. A.,

1 Hoor, P., Lawrence, M. G., Sausen, R., and Tost, H.: Stratospheric dryness: model
2 simulations and satellite observations, *Atmos. Chem. Phys.*, 7, 1313-1332,
3 doi:10.5194/acp-7-1313-2007, 2007.

4 Li, Q.: Trapping of Asian pollution by the Tibetan anticyclone: A global CTM
5 simulation compared with EOS MLS observations, *Geophys. Res. Lett.*, 32,
6 L14826, doi:10.1029/2005GL022762, 2005.

7 Martinsson, B. G., Friberg, J., Andersson, S. M., Weigelt, A., Hermann, M., Assmann,
8 D., Voigtlander, B. C. A. M., van Velthoven, P. J. F., and Zahn, A.: Comparison
9 between CARIBIC aerosol samples analyzed by accelerator-based methods and
10 optical particle counter measurements, *Atmos. Meas. Tech.*, 7, 2581–2596,
11 doi:10.5194/amt-7-2581-2014, 2014.

12 Li, D., Vogel, B., Bian, J., Müller, R., Pan, L. L., Günther, G., Bai, Z., Li, Q., Zhang,
13 J., Fan, Q., and Vömel, H.: Impact of typhoons on the composition of the upper
14 troposphere within the Asian summer monsoon anticyclone: the SWOP
15 campaign in Lhasa 2013, *Atmos. Chem. Phys.*, 17, 4657-4672, 10.5194/acp-17-
16 4657-2017, 2017.

17 Park, M., Randel, W. J., Kinnison, D. E., Garcia, R. R., and Choi, W.: Seasonal variation
18 of methane, water vapor, and nitrogen oxides near the tropopause: Satellite
19 observations and model simulations, *J. Geophys. Res.*, 109, D03302,
20 doi:10.1029/2003JD003706, 2004.

21 Park, M., Randel, W. J., Gettelman, A., Massie, S. T., and Jiang, J. H.: Transport above
22 the Asian summer monsoon anticyclone inferred from Aura Microwave Limb
23 Sounder tracers, *J. Geophys. Res.*, 112, D16309, doi:10.1029/2006jd008294,
24 2007.

25 Pierce, J. R., and Adams, P. J.: Can cosmic rays affect cloud condensation nuclei by
26 altering new particle formation rates? *Geophys. Res. Lett.*, 36, L09820,
27 doi:10.1029/2009GL037946, 2009.

28 Pinnick, R. G., Rosen, J. M., and Hofmann, D. J.: Stratospheric Aerosol Measurements
29 III: Optical Model Calculations, *J. Atmos. Sci.*, 33, 304-314, 1975.

30 Randel, W. J., Park, M., Emmons, L., and Pumphrey, H. C.: Asian monsoon transport

1 of pollution to the stratosphere, Science, 328, 611-613,
2 doi:10.1126/science.1182274, 2010.

3 Rosen, J., and Kjome, N.: Backscatter sonde: a new instrument for atmospheric aerosol
4 research, *Appl. Opt.*, 30, 1552–1561, 1991.

5 Rosen, J., Kjome, N., and Liley, J.: Tropospheric aerosol backscatter at a midlatitude
6 site in the northern and southern hemispheres, *J. Geophys. Res.*, 102, D17, 21329-
7 21339, 1997.

8 Sakai, T., Uchino, O., Nagai, T., Liley, B., Morino, I., and Fujimoto, T.: Long-term
9 variation of stratospheric aerosols observed with lidars over tsukuba, japan, from
10 1982 and lauder, new zealand, from 1992 to 2015, *J. Geophys. Res.*, 121(17),
11 10283-10293, 2016.

12 Solomon, S., Daniel, J. S., Neely III, R. R., Vernier, J. P., Dutton, E. G., and Thomason,
13 L. W.: The persistently variable background stratospheric aerosol layer and global
14 climate change, *Science*, 333, 866-870, doi:10.1126/science.1206027, 2011.

15 Schlager, H., and Arnold, F.: Measurement of stratospheric gaseous nitric acid in the
16 Winter arctic vortex using a novel rocket-borne mass spectrometer method,
17 *Geophys. Res. Lett.*, 17, 433–436, 1990.

18 Tabazadeh, A., Turco, R. P., and Jacobson, M. Z.: A model for studying the composition
19 and chemical effects of stratospheric aerosols, *J. Geophys. Res.*, 99, 12897-12914,
20 1994.

21 Thomason, L. W., and Vernier, J. P.: Improved SAGE II cloud/aerosol categorization
22 and observations of the Asian tropopause aerosol layer: 1989-2005, *Atmos. Chem.*
23 *Phys.*, 13, 4605-4616, doi:10.5194/acp-13-4605-2013, 2013.

24 Timmreck, C., Graf, H. F., Lorenz, S. J., Niemeier, U., Zanchettin, D., Matei, D.,
25 Jungclaus, J. H., and Crowley, T. J.: Aerosol size confines climate response to
26 volcanic super-eruptions, *Geophys. Res. Lett.*, 37, L24705,
27 doi:10.1029/2010GL045464, 2010.

28 Tobo, Y., Iwasaka, Y., Shi, G. Y., Kim, S., Ohashi, T., Tamura, K., and Zhang, D. Z.:
29 Balloon-borne observations of high aerosol concentrations near the summertime
30 tropopause over the Tibetan Plateau, *Atmos. Res.*, 84, 233-241, doi:
19

1 10.1016/j.atmosres.2006.08.003, 2007.

2 Vernier, J. P., Thomason, L. W., and Kar, J.: CALIPSO detection of an Asian tropopause
3 aerosol layer, *Geophys. Res. Lett.*, 38, L07804, doi:10.1029/2010GL046614,
4 2011.

5 Vernier, J. P., Fairlie, T. D., Natarajan, M., Wienhold, F. G., Bian, J., Martinsson, B.
6 G., Crumeyrolle, S., Thomason, L. W., and Bedka, K. M.: Increase in upper
7 tropospheric and lower stratospheric aerosol levels and its potential connection
8 with Asian pollution, *J. Geophys. Res. Atmos.*, 120, 1608–1619, , 2015.

9 Vernier, J. P., Fairlie, T. D., Deshler, T., Natarajan, M., Knepp, T., and Foster, K.: In
10 situ and space - based observations of the kelud volcanic plume: the persistence
11 of ash in the lower stratosphere, *J. Geophys. Res. Atmos.*, 121(18), 11104-11118,
12 2016.

13 Vernier, J. P., Fairlie, T. D., Deshler, T., Kumar, B. S., Natarajan, M., Pandit, A. K.,
14 Akhil Raj, S. T., Hemanth Kumar, A., Jayaraman, A., Singh, A., Rastogi, N.,
15 Sinha, P. R., Kumar, S., Tiwari, S., Wegner, T., Baker, N., Vignelles, D.,
16 Stenchikov, G., Shevchenko, I., Smith, J., Bedka, K., Kesarkar, A., Singh, V.,
17 Bhate, J., Ravikiran, V., Durga Rao, M., Ravindrababu, S., Patel, A., Vernier, H.,
18 Wienhold, F. G., Liu, H., Knepp, T. N., Thomason, L., Crawford, J., Ziembka, L.,
19 Moore, J., Crumeyrolle, S., Williamson, M., Berthet, G., Jégou, F., and Renard,
20 J. B.: BATAL: The Balloon measurement campaigns of the Asian Tropopause
21 Aerosol Layer. *Bulletin of the American Meteorological Society*, BAMS-D-17-
22 0014.1, 2017.

23 Voigt, C., Schlager, H., Roiger, A., Stenke, A., de Reus, M., Borrmann, S., Jensen, E.,
24 Schiller, C., Konopka, P., and Sitnikov, N.: Detection of reactive nitrogen
25 containing particles in the tropopause region – evidence for a tropical nitric acid
26 trihydrate (NAT) belt, *Atmos. Chem. Phys.*, 8(24), 7421-7430, doi:10.5194/acp-
27 8-7421-2008, 2008.

28 Vömel, H., Selkirk, L., Miloshevich, J., Valverde-Canossa, J., Valdes, J., and Diaz, J.:
29 Radiation Dry Bias of the Vaisala RS92 Humidity Sensor, *J. Atmos. Ocean. Tech.*,
30 24, 953–963, 2007a.

1 Vömel, H., Barnes, J. E., Forno, R., Fujiwara, M., Hasebe, F., Iwasaki, S., Kivi, R.,
2 Komala, N., Kyrö, E., Leblanc, T., Morel, B., Ogino, S. Y., Read, W. G., Ryan, S.
3 C., Saraswati, S., Selkirk, H., Shiotani, M., Valverde Canossa, J., and Whiteman,
4 D. N.: Validation of Aura Microwave Limb Sounder water vapor by balloon-
5 borne Cryogenic Frost point Hygrometer measurements, *J. Geophys. Res.*,
6 112(D24), doi:10.1029/2007JD008698, 2007b.

7 Vömel, H., Naeber, T., Dirksen, R., and Sommer, M.: An update on the uncertainties
8 of water vapor measurements using cryogenic frost point hygrometers, *Atmos.*
9 *Meas. Tech.*, 9, 3755-3768, doi:10.5194/amt-9-3755-2016, 2016.

10 Weigel, R., Borrmann, S., Kazil, J., Minikin, A., Stohl, A., Wilson, J. C., Reeves, J. M.,
11 Kunkel, D., de Reus, M., Frey, W., Lovejoy, E. R., Volk, C. M., Viciani, S.,
12 D'Amato, F., Schiller, C., Peter, T., Schlager, H., Cairo, F., Law, K. S., Shur, G.
13 N., Belyaev, G. V., and Curtius, J.: In-situ observations of new particle formation
14 in the tropical upper troposphere: The role of clouds and the nucleation
15 mechanism, *Atmos. Chem. Phys.*, 11, 9983–10010, doi:10.5194/acp-11-9983-
16 2011, 2011.

17 Wienhold, F. G.:
18 http://www.iac.ethz.ch/groups/peter/research/Balloon_soundings/COBALD_sen
19 sor, COBALD Data Sheet, 2012.

20 Yan X. L., Wright, J. S., Zheng, X. D., Livesey, N., Vömel, H., and Zhou, X. J.:
21 Validation of Aura MLS retrievals of temperature, water vapour and ozone in the
22 upper troposphere and lower-middle stratosphere over the Tibetan Plateau during
23 boreal summer, *Atmos. Meas. Tech.*, 9, 3547-3566, doi:10.5194/amt-9-3547-
24 2016, 2016.

25 Yu P., Rosenlof, K. H., Liu, S., Telg, H., and Gao, R. S.: Efficient transport of
26 tropospheric aerosol into the stratosphere via the Asian summer monsoon
27 anticyclone. *Proc. Nation. Acad. Sci.*, 114(27): 6972-6977, 2017.