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Abstract.

Characterizing methane sources in the Arctic remains challenging, due to the remoteness, heterogeneity, and variety of such

emissions. In situ campaigns provide valuable data sets to reduce these uncertainties. Here we analyse data from the summer

2014 SWERUS-C3 campaign in the eastern Arctic Ocean, offshore Siberia and Alaska. Total concentrations of methane, as

well as relative concentrations of 12CH4 and 13CH4 were measured continuously during this campaign for 35 days in July5

and August. Using a chemistry-transport model, we link observed concentrations and isotopic ratios to regional emissions and

hemispheric transport structures. A simple inversion system helped constrain source signatures from wetlands in Siberia and

Alaska, and oceanic sources, as well as the isotopic composition of lower stratosphere air masses. The variation in the signature

of low stratosphere air masses, due to strongly fractionating chemical reactions in the stratosphere, was suggested to explain a

large share of the observed variability in isotopic ratios. These results point at necessary efforts to better simulate large scale10

transport and chemistry patterns to make a relevant use of isotopic data in remote areas. It is also found that constant and

homogeneous source signatures for each type of emission in a given region (mostly wetlands, and oil and gas industry in our

case at high latitudes) are not compatible with the strong synoptic isotopic signal observed in the Arctic. A regional gradient

in source signatures is highlighted between Siberian and Alaskan wetlands, the latter having lighter signatures (more depleted

in 13C). Finally, our results suggest that marine emissions of methane from Arctic continental shelf sources are dominated by15

thermogenic-origin methane, with a secondary biogenic source as well.

1 Introduction

Methane (CH4 ) is both a potent greenhouse gas and a precursor of ozone with very diverse sources and sinks in the atmosphere

(Saunois et al., 2016). The wide variety of CH4 sources and their spatial and temporal heterogeneity make the uncertainties

on CH4 budgets very large, on both regional and global scales (Saunois et al., 2016). This impairs our understanding of the20

variations of atmospheric concentrations, particularly of which sources of methane and/or regions are causing these variations,

which have been rapid in recent decades (Dlugokencky et al., 2009; Nisbet et al., 2016; Saunois et al., 2017; Nisbet et al., 2019;

Turner et al., 2019).
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In the Arctic, major CH4 sources are natural wetlands, in-land waters (lakes, streams, deltas, estuaries), leaks from oil and

gas extraction and transport, wildfires, seabed and geological seepage. The magnitude of all these sources suffers with very

high uncertainties (McGuire et al., 2009; Kirschke et al., 2013; Berchet et al., 2015; Arora et al., 2015; Berchet et al., 2016;

Ishizawa et al., 2019). The large areas of wetlands above 50◦N and the high sensitivity of their CH4 emissions to the changing

climate make this zone a key region for the global CH4 budget. The present uncertainties on CH4 sources and sinks in the5

Arctic are very large, due to the complexity of the involved processes and the difficult access to these remote regions (e.g.,

Thornton et al., 2016b; Bohn et al., 2015). Moreover, in addition to increased CH4 emissions from wetlands and thawing

permafrost, increasing ocean temperatures could lead to the destabilization of methane hydrates on the Arctic continental

shelf, potentially emitting large quantities of CH4 . For instance, significant point emissions have been detected along the East

Siberian Arctic Shelf (Shakhova et al., 2010, 2014; Thornton et al., 2016a, 2020) taking the shape of CH4 flaring from the sea10

floor extending up to the surface. However, upscaling point measurements of "hot spots" proves difficult and there is no proof

that such methane hydrate emissions are currently reaching the atmosphere in large quantities (Berchet et al., 2016; Pisso et al.,

2016; Ruppel and Kessler, 2017). Other potential Arctic seafloor sources of CH4 include emissions from degrading subsea

permafrost (Dmitrenko et al., 2011), leakage from natural gas reservoirs, and degrading terrestrial organic carbon transported

onto the continental shelf (Charkin et al., 2011). CH4 emissions from the Arctic would then have a positive feedback on climate15

change. A better knowledge of Arctic CH4 emissions would reduce uncertainties in its global budget, and help to better quantify

the sensitivity of Arctic regional sources and sinks to climate change.

For more than ten years, atmospheric measurements of methane concentrations have been performed in the Arctic, either at

surface stations (e.g., Arshinov et al., 2009; Sasakawa et al., 2010; Dlugokencky et al., 2014), during mobile field campaigns

such as the YAK-AEROSIB aircraft campaigns (Paris et al., 2010) and the TROICA train campaign (Tarasova et al., 2006,20

2009) or during oceanographic campaigns (e.g., Pisso et al., 2016; Yu et al., 2015; Pankratova et al., 2019). In the present

work, we analyze data from the SWERUS-C3 campaign on-board a ship in the Arctic Ocean during summer 2014 (Thornton

et al., 2016a). Such short-term mobile campaigns are necessary to complement the limited number of long-term fixed, mostly

coastal stations currently available. In particular, oceanic campaigns are expected to provide information on oceanic sources

but also on land sources located upwind. However, CH4 from various sources is being mixed during the atmospheric transport25

of the air masses, which makes it difficult to separate them without resorting to numerical modelling (Berchet et al., 2016).

Atmospheric inversions merge together observations, numerical modelling and emission data sets to attribute the observed

variability in CH4 concentrations to emitting regions and thus optimize the CH4 budget. Such methods were successfully

applied in the Arctic using in situ fixed stations (e.g., Berchet et al., 2015; Thompson et al., 2017; Ishizawa et al., 2019),

as well as satellites when available (Tan et al., 2016). But despite technical progress in numerical modelling and inversion30

methods, it is hardly feasible to separate co-located emissions from different emitting sectors upwind observation sites based

on observations of CH4 concentrations alone. Observations of methane isotopic ratios could help separating emission sectors

as the main emission processes are isotopically fractionating, causing significantly different isotopic source signatures. For

example, high-latitude wetlands were attributed signatures in a range of −80 to −55‰ (Thornton et al., 2016b; Fisher et al.,

2017; Ganesan et al., 2018). The δ13C-CH4 signature of atmospheric CH4 above the Arctic Ocean has been previously reported35
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in the range of −50 to −47‰ (Yu et al., 2015; Pankratova et al., 2019). Isotopes have already been used to characterise the

origin of air masses in the Arctic (Fisher et al., 2011; Warwick et al., 2016), though these studies concluded that refinements

in qualifying source emission isotopic signatures are required.

In the following, we explore the potential of using observations of isotopic ratios in the Arctic Ocean together with total

CH4 concentrations to separate pan-Arctic emission sources. We further analyse emission isotopic signatures in the Arctic5

from integrated atmospheric observations. We base our analysis on the unique observation set collected during the ship-based

campaign SWERUS-C3 during summer 2014 in the Arctic Ocean. By comparing measurements to simulations of total CH4

and isotopic ratio, we analyse to what extent the observable signal in the Arctic Ocean is exploitable in a numerical inversion

system. In Sect. 2, we explain our inversion approach alongside giving details on the SWERUS-C3 observation campaign and

on the model CHIMERE used in our study. In Sect. 3, we compare observations to simulations to assess the main contributions10

to the signal variability, and then implement a simplified inversion system to quantify isotopic emission signatures from various

emission sectors around the Arctic.

2 Methods

2.1 Campaign and instrument description

Observations were carried out during the SWERUS-C3 campaign onboard the Swedish icebreaker Oden between July 14th15

and September 26th, 2014. The cruise path was throught the central and outer Laptev and East Siberian seas, and finally the

Chukchi Sea to Point Barrow, Alaska, in a first leg (see Fig. 1). A second leg of the cruise headed north from Point Barrow

back through the Chukchi Sea and into the Arctic Ocean. As shown in Fig. S1 in supplementary materials, sea ice cover was

present during a large portion of the campaign. Regions known to have active seafloor gas seeps (see Thornton et al., 2016a)

occurred in both ice-free (in the Laptev Sea) and ice-covered (in the East Siberian Sea) regions.20

Concentrations of total CH4 were measured during the whole campaign using an off-axis cavity ring-down laser spectrome-

ter, from Los Gatos Research (LGR) Inc. (Model 0010, FGGA 24EP, Mountain View, California, USA). Air inlets were located

at 9, 15, 20, and 35 m above the sea surface; air was pulled through all inlets continuously, and analyzed from one inlet at a time

for 2 minutes before switching to the next inlet. Data were filtered using wind speed and direction to avoid contamination from

the ship exhaust. As no local sources influenced our measurements, concentrations are similar at all levels. We concatenate25

measurements from all inlets indifferently for our study. The spectrometer was calibrated every two hours using two synthetic

air target gases; the target gases themselves were calibrated before, during, and after the cruise to two NOAA Earth System Re-

search Laboratory certified standards for CH4 . The reported precision was 0.5 ppb. Further details on the campaign conditions

and instrument configuration are available in Thornton et al. (2016a).

Isotopic ratios were measured only during the first leg of the campaign, from July 14th to August 26th (see Fig. 1) using30

an Aerodyne Research, Inc (Billerica, MA, USA) direct absorption interband cascade laser spectrometer. This spectrometer

measured the concentrations of the CH4 isotopologues 12CH4 , 13CH4 , and CH3D, the latter of which is not discussed in

the current paper. The more common isotope ratio mass spectrometry methods directly provide (as their name implies) an
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Figure 1. Path of the icebreaker Oden during the SWERUS-C3 campaign and domain of simulations. (left) The ship positions are represented

by gray and brown dots, with brown points corresponding to locations where isotopic observations where carried out. The area delimited

by coloured lines is the domain of CHIMERE simulations used for this study (see Sect. 2.2). The shaded areas and associated numbers

correspond to the regions and their IDs used to separate contributions from remote emissions to the observed signal, as detailed in Sect. 2.3.

ESAS = East Siberian Arctic Shelf. CHIMERE boundary conditions are split along the four sides of the domain as indicated by the coloured

lines. (right) Zoom on the area covered by the campaign. The icebreaker’s locations are coloured depending on their corresponding dates.

Ship positions with a black edge are locations where isotopic observations where carried out. More details on the campaign in Thornton et al.

(2016a). The shaded area corresponds to the ESAS emission region used in our simulation set up.

isotope ratio. In contrast, because the Aerodyne spectrometer measures the individual isotopologues, they must be individually

calibrated before converting to δ13C-CH4 values; this method is described in McCalley et al. (2014).

2.2 Model description

The Eulerian model CHIMERE (Menut et al., 2013) was run to simulate total concentrations of CH4 as well as partial 12CH4

and 13CH4 concentrations to compute CH4 isotopic ratios afterwards using the following formula:5

δ13C =

(
[13C]

[12C]

)
sim(

[13C]

[12C]

)
ref

− 1 (1)

with
(

[13C]
[12C]

)
ref

= 0.0112372 the reference ratio from Craig (1957).
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The domain of simulations spans over most of the Northern hemisphere with a horizontal resolution of ∼ 100 km in order

to include most contributions from distant sources (see Fig. 1). Similarly, the model uses 34 vertical levels from the surface up

to 150 hPa to represent stratosphere-to-troposphere intrusions. A spin-up period of six months prior to the campaign was used

to properly assess the impact of air masses transported for long periods before reaching the Arctic ocean. The chemical sink

of CH4 by OH radicals is explicitly computed in CHIMERE using pre-computed fixed OH fields from the chemical model5

LMDZ-INCA (Hauglustaine et al., 2004; Folberth et al., 2006).

CHIMERE runs use the following input data streams: (i) meteorological fields downloaded from the European Centre for

Medium Range Weather Forecasts (www.ecmwf.int) at 0.5◦ resolution every 3 hours; (ii) anthropogenic emissions aggregated

at the CHIMERE resolution from the EDGARv4.3.2 database at 0.1◦ horizontal resolution (Crippa et al., 2016); (iii) wetland

emissions interpolated from the model ORCHIDEE at 0.5◦ horizontal resolution (Ringeval et al., 2010); (iv) boundary CH410

concentration fields extracted from the general circulation model LMDZ; these global simulations include both the chemical

sinks of OH and chlorine, as well as their impact on the isotopic ratios; Cl and OH fields are prescribed offline from the

chemical model LMDZ-INCA; (v) and isotopic signatures of the different sources chosen from Sherwood et al. (2017).

The chemical sink by chlorine is not included in our setup to keep simulations as light as possible. This sink can be separated

into two main contributions: the upper stratosphere and the Arctic Ocean boundary layer. The upper stratosphere is not included15

in our model of simulation, but chlorine sink (and isotope fractionation) is expicitly accounted for in global LMDZ simulations

used as boundary conditions in our setup. Regarding the Arctic Ocean boundary layer, the setup by Thonat et al. (2017) was

adapted to our case, including the boundary layer Cl sink using pre-computed fields from the model LMDZ-INCA. It resulted

in differences of concentrations lower than 1 ppb over the Arctic ocean, and less than 0.02‰ for the isotopic ratio of air masses,

which is negligible compared to the signal we are inquiring into.20

Other fluxes not included in our setup play a significant role in the regional pan-Arctic budget, such as in-land water bodies,

wildfires and the sink in soil, but have limited impact on our observations. These fluxes were tested in our case and were

quantified to cause differences in simulated concentrations lower than 2 ppb, and less than 0.01‰ in simulated isotopic ratios

at the locations sampled during the SWERUS-C3 campaign.

2.3 Atmospheric inversion of isotopic signature25

Usually observations of δ13C-CH4 are used to help constraining methane fluxes and differentiating between different sources

with known signatures. However, the intrinsic spatial and temporal variability of source isotopic signatures limits the robustness

of this approach (e.g., Fisher et al., 2017, as illustrated in Sect. 3.1). Here, we conversely assume that total CH4 is properly

simulated by our model (as confirmed by the good performance of the model to reproduce total CH4 concentrations, highlighted

in Sect. 3.1) and that the relative contributions of various sources from various regions are correct. Thus we use δ13C-CH430

observations to help reduce uncertainties on source isotopic signatures: we test the ability of the ship-based measurements to

help constrain the isotopic signature of remote sources, such as wetland sources and oceanic emissions from the Laptev, East

Siberian, and Chukchi Seas, dominant in the region explored during the campaign.

5
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To do so, δ13C-CH4 observations are implemented into a classical analytical Bayesian framework (Tarantola, 2005). The

designed inversion system optimizes source signatures from different source types and different regions. At every time step

when an isotopic observation is available, the system fits observations of isotopic ratios by altering the isotopic ratio in air

masses coming from relevant source types and regions. Thus, the control vector contains one isotopic ratio value to optimize

for each time step, each sector, and each region as detailed in Eq. 3 below.5

The isotopic ratios of wetlands, solid fossil fuels, oil and gas, other anthropogenic sources from various land regions, and a

potential variety of marine sources (gas field leaks, decomposing hydrates, degrading permafrost, etc.) from the East Siberian

Arctic Shelf (ESAS), as well as from air masses coming from the sides and roof of our domain of simulations are optimized in

the system. Apart from ESAS, emissions are spatially differentiated into 23 geographical regions (see Figure 1). Contributions

from different regions and sectors are differentiated by computing so-called response functions by region, emission type and10

boundary side. That is to say, we carry out individual CHIMERE chemistry-transport simulations for every region, every type

of emission and every side of the domain, all the other emissions and boundary conditions being switched off, resulting in an

ensemble of 98 response functions (= 23 regions × 4 sectors + ESAS + 4 sides + top).

The simulated isotopic final composition y(t) at every given time step t when an observation is available is retrieved by

scaling relative contributions according to assumed source signatures (or original average composition for boundary conditions)15

as follows:

y(t) =
∑

r∈regions

∑
s∈sectors

αr,s(t)× δr,s(t) (2)

with r and s varying over all available regions and sectors respectively, αt
r,s (0< αt

r,s < 1) the relative contribution of the

sector s from region r at time t and δtr,s the signature in ‰ of the sector s from region r at time t.

This linear relationship allows us to define the control vector x and the observation operator, linking the control vector to20

observations of isotopic ratios, to easily compute and scale the simulated isotopic composition:

y(t) =H(t)x(t) with

 x(t) = δr,s(t) ∀(r,s) ∈ (regions)× (sectors)

H(t) = (αr,s(t))r∈regions,s∈sectors

(3)

Given the prior control vector xb containing assumed source signatures before inversion, the observation vector yo and the

observation operator H, optimized signatures are obtained by solving the Bayesian problem equation:

xa = xb +K(yo−Hxb) (4)25

with K=PbHT(R+HPbHT)−1 the Kalman matrix.

The matrix R represents uncertainties in the observations and in the capability of the model to reproduce them. In our case,

we set them uniformly to 1.5‰ (1‰ from observation errors and 0.5‰ from simulation errors). The matrix Pb represents

uncertainties and covariances in the prior knowledge we have on source signatures. We build the matrix Pb following the
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Table 1. Isotopic signatures for the inputs in the CHIMERE model. The min-max range is deduced from existing literature (Sherwood et al.,

2017; Sapart et al., 2017). The prior signature is computed as the center of the min-max range.

Emission type Prior signature Min-Max range Temporal correlation scale

(‰) (‰) (days)

Wetlands -65 25 15

Fossil solid -55 25 30

Oil & gas -42 15 30

Other anthropogenic -60 10 30

ESAS -55 15 15

Boundary concentrations (sides) -47.5 0.5 7

Boundary concentrations (top) -47.5 1 7

values in Tab. 1, deduced from Sherwood et al. (2017) and Sapart et al. (2017). Ranges and prior signatures for boundary

conditions are deduced from global simulations with the model LMDZ. Observation time steps are not optimized separately.

Instead, we use temporal correlations in the Pb between different time steps. We represent temporal correlations between two

time steps ti and tj as:

r = exp

(
−|ti− tj |

τ

)
(5)5

with τ the temporal correlation scale of Tab. 1.

As shown in Tab. 1, the values of source signatures are not well known and a very large range of signatures is available in

the literature. To account for this large variety of realistic signatures, we carry out a Monte Carlo ensemble of 8000 inversions

with varying prior signatures and uncertainties, instead of running one single inversion. Prior signatures are sampled following

a normal distribution with average and standard deviation from Tab. 1; the standard deviation is chosen as half of the min-10

max range. Uncertainties are sampled following a uniform distribution spanning over [σref/2,σref], with σref equals half of the

min-max range of Tab. 1.

In the end, we obtain hourly posterior signatures for each simulated sector and region for each of the 8000 inversions. Even

though posterior signatures are available for each region and each sector at each observation time step, we do not inquire

into the temporal variability of sources as constraints provided by the SWERUS observations are very heterogeneous in time15

and space. Instead, we compute overall posterior distributions for each simulated sector and region based on an ensemble

of 8000000 (=8000 inversions × 1000 hourly observations). To minimizing the impact of control vector components that

are ill-constrained by the inversion, all data points are not evenly counted in posterior distributions. Posterior distributions of

signatures are computed accounting for all the Monte Carlo samples and weighted by the corresponding values of the sensitivity

matrix KH (Cardinali et al., 2004), which gives an indicator of how much observations constrain one component of the control20

vector. The posterior optimal signature for each region and sector is computed as the maximum of the probability distribution.
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3 Results and discussion

3.1 Forward modelling of total methane and isotopic ratio

Figure 2 shows observations of total CH4 and of isotopic ratios as measured during the campaign and compared to simulations.

The model CHIMERE reproduces well most of the variability in the total CH4 signal. The average bias over the period is lower

than 5 ppb with a correlation of 0.66 between observations and simulations on an hourly basis. Most peaks spanning more than5

one day are properly represented in the model, proving the capability of the model to reproduce the synoptic variability of the

observations. Smaller peaks are missed by the model, in particular on Aug. 5, 12 and 15, indicating that some local sources are

not included in the model, or are dispersed too quickly in the numerical realm. These could be local intense seeps met along

the ship’s track, or onshore wetlands not well represented with the model ORCHIDEE at 0.5◦ horizontal resolution. We do not

investigate further missing emissions as most peaks are well explained by the model, which we assume sufficient to carry out10

an inversion of isotopic signatures as described in Sect. 3.2.

When computing the intersect with the y-axis of the linear fit between δ13C-CH4 and total CH4 (see Keeling plots in Supple-

mentary material), the observed isotope ratios point to an average generic Arctic source of −63.0‰, consistent with dominant

biogenic sources in Arctic regions. The model reproduces well this average signature at −59.5‰. Observations highlight a

strong synoptic variability in isotopic ratios in the Arctic, with a standard deviation of 0.50‰ and a range of 2‰. Most of15

this is missed by the model (see Fig. 2, top panel, prior simulation). Simulated ratios with fixed (temporally and spatially)

isotopic signatures for the emission sectors detailed in Sect. 2.3 barely exhibit any variations. The prior standard deviation is

0.22‰ (resp. 0.12‰ when removing the wetland event on August 21st), with a range of 1.5‰ (resp. 0.5‰). Considering the

good fit of simulations to observations of total CH4 , the missing variability indicates that the classical assumption of uniform

signatures for given sectors and regions is not valid in the Arctic, consistent with Ganesan et al. (2018) and Fisher et al. (2011).20

Contributions to modelled concentrations from different regions of a given emission sector can change much more than the

variability of total CH4 as indicated in Fig. 2. For instance, on July 22nd, contributions from wetlands turn from a dominating

Siberian influence to a North American one, causing a change of ∼30 ppb in the signal. Differences in the average wetland

source signatures between these two regions of∼ 20‰ (as suggested by Ganesan et al., 2018) would thus translate into∼ 0.3‰

in measured isotopic ratio, partly explaining the corresponding observed event (see middle panel of Fig. 2).25

Still, more critical for the composition of air masses are the changes in very large-scale hemispheric contributions. As

indicated by the blue shades in Fig. 2 (middle panel), depending on the dominant large scale transport patterns, contributions

from the stratosphere and from the model lateral sides (located in the Tropics) can vary by more than 400 ppb within a few days.

This corresponds to dominantly updraught or downdraught transport patterns, as illustrated by Fig. S2 in Supplement. These

very strong variations in total CH4 enhance the impact of uncertainties in the vertical and horizontal distribution of isotopic30

ratios at the hemispheric scale. First, tropical air masses are influenced by tropical wetlands and anthropogenic emissions,

causing a spatial and temporal variability in tropical isotopic ratio of up to 1‰, which is not accounted for in our CHIMERE

setup with fixed isotopic ratios at the simulation domain sides (see Sect.2.2). Second, the vertical profiles of isotopic ratios

in the Arctic (see simulated example from the global transport model LMDZ in Fig. S3 in Supplement) are very steep. Such
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gradients are poorly represented in most global models, due to issues in the representation of the vertical transport or to the

insufficiently quantified fractionating OH and chlorine sinks in the stratosphere and upper troposphere. These two sources

of uncertainties in chemistry-transport models coupled with the strong real-world variations in stratospheric and tropospheric

contributions could explain why the regional model CHIMERE does not reproduce the strong synoptic variability in δ13C-CH4

observed during the SWERUS-C3 campaign. In particular, for the above-mentioned event of July 22nd, contributions from the5

domain sides vary by more than 300 ppb. Such a variability in CH4 contributions, associated with differences of a few ‰

between the isotopic ratios of lower stratosphere airmasses and mid/low latitude air masses, could explain the observed event.

Thus, the first order variability of atmospheric isotopic ratios is due to a balance between non-regional transport-related

hemispheric features and regional contributions of wetland, ocean and anthropogenic emissions.
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Figure 3. (top panel) Map of regions constrained by the observations in the inversion; for land regions, only wetlands are constrained; the

green region corresponds to oceanic sources from the East Siberian Arctic Shelf; the ship path is indicated in black, with red points highlight-

ing locations with available isotopes observations. (bottom panel) Distribution of posterior hourly signatures as deduced by the inversion for

regions constrained by the observations for the ensemble of 8000 Monte-Carlo inversions (see details in Sect. 2.3. Prior signatures distribu-

tions (dashed lines) are those of Tab. 1. The optimal posterior signatures, defined as the maximum of the posterior distribution, is highlighted

by plain horizontal lines.

3.2 Optimisation of Arctic source signatures

Assuming that the mix of CH4 sources is correct, we now attempt to separate hemispheric and regional contributions by opti-

mizing source signatures for a set of geographical regions and different emission sectors in the Arctic as detailed in Sect. 2.3.

Posterior isotopic ratios in Fig. 2 (bottom panel) follow most of the variability in observations, indicating the inverse method

does fit the observations in a satisfying way. The rest of the signal is within the observation uncertainties of 0.1‰. This proves5
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that even though the model is not perfect in representing the transport, it is reasonable to use simulated contributions to optimize

isotopic signatures.

Figure 3 shows the posterior signature distributions as deduced from the 8000 Monte Carlo inversions for the four regions

that are the most constrained by the observations, i.e. weighted by the sensitivity matrix as detailed in Sect. 2.3. Accounting

for the sensitivity matrix, it appears that only the roof boundary conditions (i.e., air masses from the lower stratosphere),5

ESAS emissions (i.e., emissions from the Laptev, East Siberian, and Chukchi Seas) and wetland regions on the shores of the

Arctic ocean are reasonably constrained by the SWERUS-C3 ship-based campaign. Even though anthropogenic emissions

were optimized in our system, only the wetland emission sector is significantly constrained for land regions (Fig. 3). The

lower stratosphere signatures span in a short range of −48.5/− 46.5‰. Wetlands are suggested to have a heavier signature in

Canada (optimal signature: −69.9‰) than in Eastern Siberia (optimal signature: −65.9‰, with a node of similar importance10

at −55‰), consistent with Ganesan et al. (2018) and the compilation by Thornton et al. (2016b). Wetlands in Alaska exhibit a

narrow posterior distribution at −51.3‰, with a secondary mode at −75‰. Alaska is thus well constrained by the inversion.

However, the final value may suggest that the inversion has difficulties in differentiating collocated emissions and mixes the

signal due to thermogenic sources with co-located wetland emissions, as it is the case in Alaska with extensive extraction of

raw oil and gas.15

Posterior ESAS signatures are significantly shifted by more than 5‰ to −49.5‰ from the prior signature towards lighter

values. This compares with previous studies and points towards a mix of different processes taking place in the Arctic shelf such

as inputs from the sea bed (James et al., 2016; Berchet et al., 2016; Skorokhod et al., 2016; Pankratova et al., 2018; Thornton

et al., 2020). The posterior signature could thus be explained by mixed biogenic and thermogenic sources, confirming that

ESAS emissions, possibly including an hydrate contribution, are not as depleted as wetland sources (Cramer et al., 1999;20

Lorenson, 1999).

Overall, the approach developed here reveals that the spatial and temporal variations of isotopic source signatures must be

accounted for in order to properly represent δ13C-CH4 observations. Such an approach does not allow us to reach definitive

conclusions when considering the spread of the inferred regional isotopic signatures. However, it is crucial to account for

isotopic ratios to avoid misallocating methane flux variations in methane inversions. We also show that atmospheric δ13C-CH425

signals can be significant (larger than observation errors), indicating a good potential for the use of isotopic observations based

on oceanic campaign to improve our knowledge of the Arctic methane cycle. Finally, the weight of the boundary conditions in

the signal points at necessary progress in global simulations (including fractionating chemical reactions in the stratosphere) of

CH4 atmospheric isotopic ratios.

4 Conclusions30

Observations of total atmospheric methane and isotopic ratio were carried out in Summer 2014 in the Arctic Ocean during the

SWERUS-C3 campaign onboard the Swedish icebreaker Oden. A unique continuous dataset of 45 days of atmospheric isotopic

ratios over the Arctic Ocean is available from this campaign. Consistently with other campaigns in the region collecting flasks,

12



the synoptic variability of atmospheric isotopic ratios in the Arctic is very strong, spanning ∼ 2‰, largely above observation

error. Using forward simulations, we confirmed that the assumption of uniform isotopic signatures to represent emission sectors

is invalid in the Arctic dominated by natural sources. We also exhibited the strong dependency of atmospheric isotopic ratios

to large-scale changes in air mass origin (lateral boundaries of our simulation domain, corresponding to mid-/low-latitude

air masses; top boundaries corresponding to lower stratosphere air masses). Based on a simplified inversion framework, the5

SWERUS-C3 data were used to infer isotopic source signatures of the Arctic regions and emission sectors. Due to the limited

number of available observations and the important distance between sources and observations, our system was not able to

provide any significant constraints on anthropogenic emissions, and could optimize signatures from ESAS and wetlands near

the Arctic Ocean shores only. Wetland and oceanic ESAS source signatures were found to span a very wide range with a

multimodal distribution for wetlands. The inversion also indicated that CH4 emissions from ESAS are composed of a mixture10

of dominant thermogenic methane, complemented by some biogenic methane.

Overall, only a strong spatial and temporal variability in emission signatures and in stratospheric isotopic ratios can explain

the variability of observations. Therefore, our study points at necessary improvements in simulating the first-order transport

and chemistry of methane and its isotopes to reproduce large scale hemispheric features, especially stratosphere to troposphere

exchanges. This makes it necessary to improve i) the quality of continuous isotopic measurements to capture the synoptic signal15

with even higher confidence, ii) numerical chemistry-transport models, so that the uncertainties on the first-order processes are

at least one order of magnitude smaller than the regional signal, which is not the case in our study, and iii) the mapping of

isotopic emission signatures used as priors in inversions as initiated by Ganesan et al. (2018).
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