Comments by editor

Thank you for addressing the comments. I did a quick review of the revised manuscript. It appears that Table 1, which is summarized and referred to in lines 82-88, is incomplete. A couple of GCM studies mentioned in the text are missing from the table. Also, Koch and Hansen (2005) is a GCM study rather than a CTM study (line 86). Please make the corrections and upload a revised manuscript for publication.

Response: We appreciate for your effect in another review. GCM studies mentioned in the text are now added in Table 1 for comparison, and corresponding references updated. Koch and Hansen (2005) is placed in line with GCM in lines 85-87 as "...chemical transport models (Ikeda et al., 2017; Qi et al., 2017; Shindell et al., 2008; Wang et al., 2011; Xu et al., 2017), and global climate models (Ma et al., 2013; Koch and Hansen, 2005; Schacht et al., 2019; H. Wang et al., 2014) (Table 1)".

				Table 1. Con	nparison of BC source contributions	in the Arctic surface			
Model and versions	Model type	Wet- deposition	Grid resolution	Meteorology	Emissions	Domain/Sites	Year/season	Major source regions/sectors	Reference
Flexpart- WRF 6.2	Lagrangian	Stohl et al. (2005)	unspecified	WRF forcast	ECLIPSE, FINN	continental Norway and Svalbard	spring 2013	Asian anthropogenic	Liu et al. (2015)
Flexpart 6.2	Lagrangian	Stohl et al. (2005)	$1^{\circ} \times 1^{\circ}$	ECMWF operational	Unspecified (BC sensitivities were calculated)	Alert, Barrow, Zeppelin	1989-2009	Northern Eurasia	Hirdman et al. (2010)
Flexpart 6.2	Lagrangian	Stohl et al. (2005)	$1^{\circ} \times 1^{\circ}$	ECMWF operational	ECLIPSE4(GAINS), GFED3	Arctic (north of 66°N)	2008-2010	Flaring (42%), residential (>20%)	Stohl et al. (2013)
Flexpart 9.2	Lagrangian	Stohl et al. (2005)	$1^{\circ} \times 1^{\circ}$	ECMWF operational	ECLIPSE5(GAINS), GFED4.1	Arctic (north of 66.7°N)	2011-2015	Residential and open burning (39%)	Winiger et al. (2019)
Flexpart 10.1	Lagrangian	Grythe et al. (2017)	$1^{\circ} \times 1^{\circ}$	ECMWF operational	HTAP2, GFED3, Huang et al. (2015) for Russia flaring	Arctic (north of 66°N)	2010	Flaring (36%), open burning (18%), residential (15%), others (31%)	Current study
GEOS- Chem 9.02	CTM	Wang et al. (2011)	$2^{\circ} imes 2.5^{\circ}$	GEOS-5	HTAP2, GFED3, Huang et al. (2015) for Russia flaring	Arctic (north of 66°N)	2007-2011	Russia (62%)	lkeda et al. (2017)
GEOS- Chem	СТМ	Wang et al. (2011)	$2^\circ imes 2.5^\circ$	GEOS-5	Bond et al. (2004), Zhang et al. (2009), GFED3	Alert, Barrow, Zeppelin	April 2008	Asian anthropogenic (35– 45%), Siberian biomass burning (46–64%)	Qi et al. (2017)
GEOS- Chem	СТМ	Wang et al. (2011)	$2^\circ imes 2.5^\circ$	GEOS-5	Bond et al. (2007), FLAMBE	North America Arctic	April 2008	Open fire (50%)	Wang et al. (2011)
GEOS- Chem10.01	СТМ	Wang et al. (2011)	$2^\circ imes 2.5^\circ$	GEOS-5	HTAP2, ECLIPSE5, GFED4	Alert, Barrow, Zeppelin, Arctic (north of 66.5°N)	2009-2011	Northern Asian anthropogenic (40–45%) in winter-spring	Xu et al. (2017)
CAM5	GCM	Wang et al. (2013)	1.9° × 2.5°	MERRA	IPCC AR5	Arctic (north of 66.5°N)	1996-2005	Northern Europe in winter, Northern Asia in summer	Wang et al. (2014)
CAM5	GCM	Wang et al. (2013)	1.9° × 2.5°	Free running CAM5, ERA- Interim	POLARCAT-POLMIP	Arctic (north of ~66°N)	Winter 2008	Asia	Ma et al. (2013)
ECHAM- HAM	GCM	Zhang et al. (2012)	1.8°×1.8°	ERA-Interim	ECLIPSE5, and Huang et al. (2015) for anthropogenic BC in Russia (default), GFES, and comparision with ACCMIP	Various sites and aircraft campaigns, Arctic (north of 60°N)	2005–2015	Northern Asia, Northern Europe, Russian gas flaring region (with default emission)	Schacht et al. (2019)
GISS ModelE	GCM	Koch et al. (2006)	$4^\circ \times 5^\circ$	Internal	Bond et al. (2004), Cooke and Wilson (1996)	Arctic (north of ~60°N)	Annual general	South Asia	Koch and Hansen (2005)

1	Flexpart v10.1 simulation of source contributions to Arctic black carbon
2	
3	Chunmao Zhu ¹ , Yugo Kanaya ^{1,2} , Masayuki Takigawa ^{1,2} , Kohei Ikeda ³ , Hiroshi Tanimoto ³ ,
4	Fumikazu Taketani ^{1,2} , Takuma Miyakawa ^{1,2} , Hideki Kobayashi ^{1,2} , Ignacio Pisso ⁴
5	
6	¹ Research Institute for Global Change, Japan Agency for Marine–Earth Science and
7	Technology (JAMSTEC), Yokohama 2360001, Japan
8	² Institute of Arctic Climate and Environmental Research, Japan Agency for Marine–Earth
9	Science and Technology, Yokohama 2360001, Japan
10	³ National Institute for Environmental Studies, Tsukuba 305-8506, Japan
11	⁴ NILU – Norwegian Institute for Air Research, Kjeller 2027, Norway
12	

13 Correspondence to Chunmao Zhu (chmzhu@jamstec.go.jp)

14 Abstract

15 The Arctic environment is undergoing rapid changes such as faster warming than the 16 global average and exceptional melting of glaciers in Greenland. Black carbon (BC) particles, 17 which are a short-lived climate pollutant, are one cause of Arctic warming and glacier 18 melting. However, the sources of BC particles are still uncertain. We simulated the potential 19 emission sensitivity of atmospheric BC present over the Arctic (north of 66° N) using the 20 Flexpart Lagrangian transport model (version 10.1). This version includes a new aerosol wet 21 removal scheme, which better represents particle-scavenging processes than older versions 22 did. Arctic BC at the surface (0-500 m) and high altitudes (4750-5250 m) is sensitive to 23 emissions in high latitude (north of 60° N) and mid-latitude (30– 60° N) regions, respectively. Geospatial sources of Arctic BC were quantified, with a focus on emissions from 24 25 anthropogenic activities (including domestic biofuel burning) and open biomass burning (including agricultural burning in the open field) in 2010. We found that anthropogenic 26 27 sources contributed 82 % and 83 % of annual Arctic BC at the surface and high altitudes, 28 respectively. Arctic surface BC comes predominantly from anthropogenic emissions in 29 Russia (56 %), with gas flaring from the Yamalo-Nenets Autonomous Okrug and Komi 30 Republic being the main source (31 % of Arctic surface BC). These results highlight the need 31 for regulations to control BC emissions from gas flaring to mitigate the rapid changes in the 32 Arctic environment. In summer, combined open biomass burning in Siberia, Alaska, and Canada contributes 56–85 % (75 % on average) and 40–72 % (57 %) of Arctic BC at the 33 34 surface and high altitudes, respectively. A large fraction (40 %) of BC in the Arctic at high 35 altitudes comes from anthropogenic emissions in East Asia, which suggests that the rapidly growing economies of developing countries could have a non-negligible effect on the Arctic. 36 37 To our knowledge, this is the first year-round evaluation of Arctic BC sources that has been

- 38 performed using the new wet deposition scheme in Flexpart. The study provides a scientific
- 39 basis for actions to mitigate the rapidly changing Arctic environment.

41 1 Introduction

42	The Arctic region has experienced warming at a rate twice that of the global average in	
43	recent decades (Cohen et al., 2014). The Arctic cryosphere has been undergoing	
44	unprecedented changes since the mid-1800s (Trusel et al., 2018). Glacier cover in Greenland	
45	reached its historically lowest level in summer 2012 (Tilling et al., 2015). Evidence indicates	
46	that the emissions and transport of greenhouse gases and aerosols to the Arctic region are	
47	contributing to such warming and melting of snow and ice (Keegan et al., 2014; Najafi et al.,	
48	2015). Short-lived climate pollutants such as black carbon (BC) particles (e.g., Sand et al.,	
49	2016; Yang et al., 2019), sulfate aerosol (Yang et al., 2018), tropospheric ozone, and	
50	methane greatly affect the Arctic climate (AMAP, 2015; Quinn et al., 2008).	
51	BC particles are emitted during incomplete combustion of fossil fuels, biofuels, and	
52	biomass. BC warms the atmosphere by direct absorption of solar radiation. The deposition	
53	of BC on snow and ice surfaces accelerates their melting through decreasing albedo, which	
54	contributes to the rapid loss of glaciers. In the Arctic region, ground-based observations	
55	have indicated that BC shows clear seasonal variations, with elevated mass concentrations	
56	in winter and spring (the so-called Arctic haze) and low values in summer (Law and Stohl,	
57	2007). Such seasonal variations are explained by increased transport from lower latitudes in	
58	the cold season and increased wet scavenging in the warm season (Shaw, 1995; Garrett et	
59	al., 2011; Shen et al., 2017).	
60	The presence of BC particles in the Arctic is mainly attributed to emissions in high-latitude	
61	regions outside the Arctic, such as northern Europe and Russia (Stohl, 2006; Brock et al.,	
62	2011). This is partly caused by the polar dome (Stohl, 2006), which is formed because of the	
63	presence of constant potential temperature near the surface. The emissions in high-latitude	

64 regions are transported to the Arctic region and trapped in the dome, which increases the

65	surface concentration. Recently, Schmale et al. (2018) suggested that local emissions from	
66	within the Arctic are another important source, and these are expected to increase in the	
67	future.	
68	Although numerous studies have been performed, results regarding regional	
69	contributions of BC sources in the Arctic are still inconclusive. For example, ground-based	
70	observations and Lagrangian transport model results reported by Winiger et al. (2016)	
71	showed that BC in Arctic Scandinavia is predominantly linked to emissions in Europe. Over	
72	the whole Arctic region (north of 66° N), Russia contributes 62 % to surface BC in terms of	
73	the annual mean (Ikeda et al., 2017). Gas flaring in Russia has been identified as a major	
74	(42 %) source of BC at the Arctic surface (Stohl et al., 2013). Xu et al. (2017) found that	
75	anthropogenic emissions from northern Asia contribute 40–45 % of Arctic surface BC in	
76	winter and spring. However, the results of some other studies have suggested that Russia,	
77	Europe, and South Asia each contribute 20–25 % of BC to the low-altitude springtime Arctic	
78	haze (Koch and Hansen, 2005). Sand et al. (2016) found that the surface temperature in the	
79	Arctic is most sensitive to emissions in Arctic countries, and Asian countries contribute	
80	greatly to Arctic warming because of the large absolute amount of emissions. With these	
81	large disagreements among studies, it is thus necessary to unveil BC sources in the Arctic	
82	with high precision simulations.	
83	Various models have been used to investigate BC sources in the Arctic. Depending on the	
84	simulation method, these models are generally categorized as Lagrangian transport models	
85	(Hirdman et al., 2010; Liu et al., 2015; Stohl et al., 2006, 2013), chemical transport models	
86	(Ikeda et al., 2017; Qi et al., 2017; Shindell et al., 2008; Wang et al., 2011; Xu et al., 2017),	
87	and global climate models (Ma et al., 2013; <u>Koch and Hansen, 2005;</u> Schacht et al., 2019; H.	

88 Wang et al., 2014) (Table 1). The treatment of wet-scavenging parameterizations is a key

Deleted: Koch and Hansen, 2005;

90 factor affecting the model performance, which determines the uncertainties related to BC 91 particle removal (Kipling et al., 2013; Schacht et al., 2019; Q. Wang et al., 2014). The use of 92 emission inventories is another important factor that affects the simulation results (Dong et 93 al., 2019). The observations of BC that are used for model comparisons may be biased by a 94 factor of 2 depending on the method used (Sinha et al., 2017; Sharma et al., 2017). There 95 are still large uncertainties regarding the sources of BC in the Arctic with respect to emission 96 sectors (anthropogenic sources and open biomass burning) and geospatial contributions 97 (Eckhardt et al., 2015). 98 The FLEXible PARTicle dispersion model (Flexpart) had been used to investigate the 99 transport pathways and source contributions of BC in the Arctic (Stohl et al., 1998, 2006, 100 2013). Of Flexpart model up to version 9, wet removal was treated considering below-cloud 101 and within-cloud scavenging processes (Hertel et al., 1995; McMahon and Denison, 1979), 102 which depends on cloud liquid water content, precipitation rate and the depth of the cloud. 103 However, clouds were parameterized based on relative humidity, clouds frequently 104 extended to the surface and at times no clouds could be found in grid cells, with unrealistic 105 precipitation (Grythe et al., 2017). Recently, version 10 of Flexpart had been developed in 106 which cloud is differentiated into liquid, solid, and mixed phase, the cloud distribution is 107 more consistent with the precipitation data (Grythe et al., 2017). This improvement in the 108 cloud distribution and phase leads to a more realistic distribution of below-cloud and in-109 cloud scavenging events. In this study, we quantified region-separated sources of BC in the 110 Arctic in 2010 by using Flexpart v10.1. We first evaluated the model performance by 111 comparing the results with those based on observations at surface sites. The source 112 contributions of emission sectors and geospatial contributions were evaluated by 113 incorporating the Arctic BC footprint into the emission inventories.

114 2 Materials and methods

115 2.1 Transport model

116 The Flexpart model (version 10.1) was run in backward mode to simulate BC footprints in 117 the Arctic region. The calculation of wet deposition was improved compared with those in 118 previous versions because in-cloud scavenging and below-cloud scavenging of particles were 119 separately calculated (Grythe et al., 2017). In previous versions of Flexpart, in the in-cloud 120 scavenging scheme, the aerosol scavenging coefficient depended on the cloud water 121 content, which was calculated according to an empirical relationship with precipitation rate, 122 in which all aerosols had the same nucleation efficiency (Hertel et al., 1995; Stohl et al., 123 2005). In the new version, the in-cloud scavenging scheme depends on the cloud water 124 phase (liquid, ice, or mixed phase). Aerosols were set as ice nuclei for ice clouds and as 125 cloud condensation nuclei for liquid-water clouds, respectively. For mixed-phase clouds, it 126 was assumed that 10 % of aerosols are ice nuclei and 90 % are cloud condensation nuclei, 127 because BC is much more efficiently removed in liquid water clouds than in ice clouds (Cozic 128 et al., 2007; Grythe et al., 2017). The below-cloud scavenging scheme can parameterize 129 below-cloud removal as a function of aerosol particle size, and precipitation type (snow or 130 rain) and intensity. The biases produced in simulations using the new scheme are therefore 131 smaller than those in the old scheme for wet deposition of aerosols, especially at high 132 latitudes (Grythe et al., 2017). 133 The Arctic region is defined as areas north of 66° N. The potential BC emission 134 sensitivities at two heights in the Arctic region, i.e., the surface (0-500 m) and high altitudes 135 (4750–5250 m), were simulated. The Flexpart outputs were set as gridded retention times. 136 We performed tests at 500, 2000, and 5000 m, and chose 500 m as the upper boundary

137 height of the model output. The model was driven with operational analytical data from the

138	European Centre for Medium-Range Weather Forecasts (ECMWF) at a spatial resolution of
139	$1^\circ \times 1^\circ$ with 61 vertical levels. Temporally, ECMWF has a resolution of 3 h, with 6 h analysis
140	and 3 h forecast time steps. The simulation period was set at 60 days backward starting
141	from each month in 2010. The maximum lifetime of BC was set at 20 days because its
142	suspension time in the upper atmosphere during long-range transport is longer than that at
143	the surface level (Stohl et al., 2013). We implemented the wet deposition scheme in the
144	backward calculations, but it was not represented in the default setting (Flexpart v10.1,
145	https://www.flexpart.eu/downloads, obtained 10 April 2017).
146	The chemistry and microphysics could not be resolved by Flexpart. The model therefore
147	ignores hydrophobic to hydrophilic state changes and size changes of BC, and assumes that
148	all BC particles are aged hydrophilic particles. This may lead to an overestimation of BC
149	removal and hence force underestimation of simulated BC concentration, especially of fossil
150	fuel combustion sources where BC could be in the hydrophobic state for a few days. A
151	logarithmic size distribution of BC with a mean diameter of 0.16 μm and a standard
152	deviation of 1.96, in accordance with our ship observations in the Arctic, was used (Taketani
153	et al., 2016). The particle density was assumed to be 2000 kg m $^{-3}$, and 1 million
154	computational particles were randomly generated in the Arctic region for the backward
155	runs.
156	Four ground-based observations made during the period 2007–2011 were used to
157	validate the model performance. The potential BC emission sensitivity at 0–500 m above
158	ground level from a 0.1° grid centered at each site was simulated. Other model
159	parameterizations were consistent with those for the Arctic region, except that 200 000
160	computational particles were released.

161 2.2 Emission inventories

162	We focused on BC sources from anthropogenic emissions and open biomass burning. The
163	Hemispheric Transport of Air Pollution version 2 inventory (HTAP2) for 2010 was used for
164	monthly anthropogenic BC emissions (Janssens-Maenhout et al., 2015), which include
165	sectors from energy, industry, residential and transport. It is worth noting that the
166	residential sector includes not only combustions of fossil fuels, but also biofuels. However,
167	as it has been reported that BC emissions in Russia were underestimated in HTAP2, we used
168	the BC emissions reported by Huang et al. (2015) for Russia, in which the annual BC
169	emissions were 224 Gg yr $^{-1}$. For open biomass burning, we used the monthly BC emissions
170	from the Global Fire Emissions Database version 3 inventory (GFED3) (van der Werf et al.,
171	2010) for the purposes of intercomparison with other studies, as this version is widely used.
172	The term "open biomass burning" here indicates burning of biomass in the open field as is
173	determined by the remote sensing measurement basis, including forest, agricultural waste,
174	peat fires, grassland and savanna, woodland, deforestation and degradation, where biofuel
175	burning for residential use is not included. Geospatial distributions of emissions from
176	anthropogenic sources and open biomass burning in January and July are shown in Fig. S1.
177	2.3 Calculation of Arctic BC source contributions
178	The source contributions to Arctic BC were derived by incorporating the gridded
179	retention time into the column emission flux, which was derived from the emission
180	inventories in each grid. Calculations for anthropogenic sources and open biomass burning
181	were performed separately and the sum was used. For anthropogenic sources, the regions
182	were separated into North America and Canada (25–80° N, 50–170° W), Europe (30–80° N,
183	0–30° E), Russia (53–80° N, 30–180° E), East Asia (35–53° N, 75–150° E and 20–35° N, 100–
184	150° E), and others (the rest) (Fig. 1a). For open biomass burning sources, the regions were

185 separated into Alaska and Canada (50–75° N, 50–170° W), Siberia (50–75° N, 60–180° E),

- 186 and others (Fig. 1b).
- 187 2.3 Observations
- 188 BC levels simulated by Flexpart were compared with those based on surface observations
- 189 at four sites: Barrow, USA (156.6° W, 71.3° N, 11 m asl), Alert, Canada (62.3° W, 82.5° N,
- 190 210 m asl), Zeppelin, Norway (11.9° E, 78.9° N, 478 m asl), and Tiksi, Russia (128.9° E, 71.6°
- 191 N, 8 m asl). Aerosol light absorption was determined by using particle soot absorption
- 192 photometers (PSAPs) at Barrow, Alert, and Zeppelin, and an aethalometer at Tiksi. For PSAP
- 193 measurements, the equivalent BC values were derived using a mass absorption efficiency of
- $10 \text{ m}^2 \text{ g}^{-1}$. The equivalent BC at Tiksi, which was determined with an aethalometer, was
- 195 obtained directly. These measurement data were obtained from the European Monitoring
- 196 and Evaluation Programme and World Data Centre for Aerosols database
- 197 (<u>http://ebas.nilu.no</u>) (Tørseth et al., 2012).

198 It is worth noting that uncertainties could be introduced by using different BC

- 199 measurement techniques. An evaluation of three methods for measuring BC at Alert,
- 200 Canada indicated that an average of the refractory BC determined with a single-particle soot
- 201 photometer (SP2) and elemental carbon (EC) determined from filter samples give the best
- 202 estimate of BC mass (Sharma et al., 2017). Xu et al. (2017) reported that the equivalent BC
- 203 determined with a PSAP was close to the average of the values for refractory BC and EC at
- 204 Alert. In this study, we consider that the equivalent BC values determined with a PSAP at
- 205 Barrow, Alert, and Zeppelin to be the best estimate. There may be uncertainties in the
- 206 equivalent BC observations performed with an aethalometer at Tiksi because of co-existing
- 207 particles such as light-absorptive organic aerosols, scattering particles, and dusts
- 208 (Kirchstetter et al., 2004; Lack and Langridge, 2013). Interference by the filter and

209	uncertainties in the mass absorption cross section could also contribute to the bias
210	observed in measurements made with an aethalometer at Tiksi.
211	3 Results and discussion
212	3.1. Comparisons of simulations with BC observations at Arctic surface sites
213	Flexpart generally reproduced the seasonal variations in BC at four Arctic sites well
214	[Pearson correlation coefficient (R) = 0.53–0.80, root-mean-square error (RMSE) = 15.1–56.8
215	ng m ^{-3}] (Fig. 2). Winter maxima were observed for the four sites, while a secondary
216	elevation was observed for Alert and Tiksi. At Barrow, the observed high values of BC were
217	unintentionally excluded during data screening in the forest fire season in summer (Stohl et
218	al., 2013); the original observed BC is supposed to be higher as was reflected by the
219	simulation. This seasonality is probably related to relatively stronger transport to the Arctic
220	region in winter, accompanied by lower BC aging and inefficient removal, as simulated by
221	older versions of Flexpart (Eckhardt et al., 2015; Stohl et al., 2013).
222	From January to May at Barrow and Alert, the mean BC simulated by Flexpart v10.1 were
223	32.2 ng m $^{-3}$ and 31.2 ng m $^{-3}$, respectively. Which was 46 % lower than the observations
224	(59.3 ng m ⁻³ and 58.2 ng m ⁻³ , respectively). This is probably related to the inadequate BC
225	emission in the inventory, although seasonal variations in residential heating are included in
226	HTAP2, which would reduce the simulation bias (Xu et al., 2017). Simulations by GEOS-Chem
227	using the same emission inventories also underestimated BC levels at Barrow and Alert
228	(Ikeda et al., 2017; Xu et al., 2017). The underestimation by Flexpart could also be partly
229	contributed by the assumption that all particles are hydrophilic, where the BC scavenging
230	could be overestimated. The corresponding uncertainties are larger in winter months, when
231	there are more sources from fossil fuel combustion.

232	At Zeppelin, the Flexpart-simulated BC (39.1 ng m $^{-3}$ for annual mean) was 85 % higher
233	than the observed value (21.1 ng m $^{\!\!-3}$ for annual mean), especially in winter (112% higher). It
234	has been reported that riming in mixed-phase clouds occurs frequently at Zeppelin (Qi et al.,
235	2017). During the riming process, BC particles act as ice particles and collide with the
236	relatively numerous water drops, which form frozen cloud droplets, and then snow is
237	precipitated. This results in relatively efficient BC scavenging (Hegg et al., 2011). Such a
238	process could not be dealt with by the model. At Tiksi, Flexpart underestimated BC (74.4 ng
239	$m^{\text{-3}}$ for annual mean) in comparison with observation (104.2 ng $m^{\text{-3}}$ for annual mean). Other
240	than the hydrophilic BC assumption and underestimated BC emission in the simulation as
241	the cases for Barrow and Alert, the observations at Tiksi by an aethalometer could
242	containing light-absorbing particles other than BC, resulting in higher observed
243	concentrations if compared with those obtained by SP2, EC and PSAP.
244	Anthropogenic emissions are the main sources of BC at the four Arctic sites from late
245	autumn to spring, whereas open biomass burning emissions make large contributions in
246	summer. From October to April, anthropogenic emissions accounted for 87–100 % of BC
247	sources at all the observation sites. At Barrow, open biomass burning accounted for 35-
248	78 % of BC in June–September (Fig. 2). There are large interannual variations in both
249	observed and simulated BC (Fig. S2). In June–August 2010, the mean contributions of open
250	biomass burning to BC were 6.3, 2.4, and 8.6 times those from anthropogenic sources at
251	Alert, Zeppelin, and Tiksi, respectively. In this study, we focused on BC in the Arctic region in
252	2010.
253	3.2 Potential emission sensitivity of Arctic BC

- The potential emission sensitivities (footprint) of Arctic BC showed different patterns 254
- with respect to altitude. The Arctic surface is sensitive to emissions at high latitudes (>60° 255

256 N). Air masses stayed for over 60 s in each of the 1° grids from the eastern part of northern 257 Eurasia and the Arctic Ocean before being transported to the Arctic surface in the winter, 258 represented by January (Fig. 3a). In comparison, during the summer, represented by July, BC 259 at the Arctic surface was mainly affected by air masses that originated from the Arctic 260 Ocean and the Norwegian Sea (Fig. 3b). These results imply that local BC emissions within 261 the Arctic regions, although relatively weak compared with those from the mid-latitude 262 regions, could strongly affect Arctic air pollution. Local BC emissions are important in the 263 wintertime because the relatively stable boundary layer does not favor pollution dispersion. 264 Recent increases in anthropogenic emissions in the Arctic region, which have been caused 265 by the petroleum industry and development of the Northern Sea Route, are expected to 266 cause deterioration of air quality in the Arctic. Socio-economic developments in the Arctic 267 region would increase local BC emissions, and this will be a non-negligible issue in the future (Roiger et al., 2015; Schmale et al., 2018). 268 269 BC at high altitudes in the Arctic is more sensitive to mid-latitude (30-60° N) emissions, 270 especially in wintertime. In January, air masses hovered over the Bering Sea and the North 271 Atlantic Ocean before arriving at the Arctic (Fig. 3c). A notable corridor at 30–50° N covering 272 Eurasia and the United States was the sensitive region that affected BC at high altitudes in 273 the Arctic in January. These results indicate that mid-latitude emissions, especially those 274 with relatively large strengths from East Asia, East America, and Europe, could alter the 275 atmospheric constituents at high altitudes in the Arctic. Central to east Siberia was the most 276 sensitive region for BC at high altitudes in the Arctic in July (Fig. 3d). These results suggest 277 that pollutants from frequent and extensive wildfires in Siberia in summer are readily 278 transported to high altitudes in the Arctic. Boreal fires are expected to occur more 279 frequently and over larger burning areas under future warming (Veira et al., 2016),

280 therefore the atmospheric constituents and climate in the Arctic could undergo more rapid

281 changes.

282 **3.3 Seasonal variations and sources of Arctic surface BC**

283 Arctic surface BC showed clear seasonal variations, with a primary peak in winter-spring 284 (December–March, 61.8–82.8 ng m⁻³) and a secondary peak in summer (July, 52.7 ng m⁻³). 285 BC levels were relatively low in May–June (21.8–23.1 ng m⁻³) and September–November (34.1–40.9 ng m⁻³) (Fig. 4a). This seasonality agrees with observations and simulations at 286 287 Alert, Tiksi, and Barrow if consider the unintentional data exclusion (Stohl et al., 2013), and 288 previous studies targeting the whole Arctic (Ikeda et al., 2017; Xu et al., 2017). Compared 289 with the study reported by Stohl et al. (2013), the current work using the new scheme 290 produced smaller discrepancies between the simulated data and observations. Although the 291 simulation periods (monthly means for 2007–2011 in this study and for 2008–2010 in the 292 old scheme) and the anthropogenic emission inventories (HTAP2 in this study and ECLIPSE4 293 in the previous study) are different, the new scheme shows potential for better representing 294 BC transport and removal processes in the Arctic. 295 The annual mean Arctic BC at the surface was estimated to be 48.2 ng m⁻³. From October 296 to April, anthropogenic sources accounted for 96–100 % of total BC at the Arctic surface. 297 Specifically, anthropogenic emissions from Russia accounted for 61–76 % of total BC in 298 October–May (56 % annually), and was the dominant sources of Arctic BC at the surface. 299 From an isentropic perspective, the meteorological conditions in winter favored the 300 transport of pollutants from northern Eurasia to the lower Arctic, along with diabatic cooling 301 and strong inversions (Klonecki et al., 2003). In comparison, open biomass burning from 302 boreal regions accounted for 56–85 % (75 % on average) of Arctic BC at the surface in

303 summer; open biomass burning emissions from North America and Canada accounted for

304	54 % of total Arctic surface BC in June, and those from Siberia accounted for 59–61 % in
305	July-August. Wildfires in the boreal forests in summer had a major effect on air quality in
306	the Arctic.
307	On an annual basis, anthropogenic sources and open biomass burning emissions
308	accounted for 82 % and 18 %, respectively, of total Arctic surface BC. In which, gas flaring
309	and residential burning (including burning of fossil fuels and biofuels) are accounting for
310	36 % (28–57 % in October–March) and 15 % (13–25 % in October–March), respectively (Fig.
311	5a-b). Our results support Stohl et al. (2013) that residential combustion emissions,
312	especially in winter are important sources of Arctic BC (Table 1). We estimated a
313	contribution of gas flaring to Arctic surface BC of 17.5 ng m $^{-3}$ (36% of total). In comparison,
314	the value was estimated as 11.8 ng $m^{\text{-3}}$ using an average Arctic surface BC of 28 ng $m^{\text{-3}}$ and
315	a fraction from gas flaring of 42 % evaluated by earlier versions of Flexpart (Stohl et al.,
316	2013; Winiger et al., 2019). The different contribution could be partly attributed to the
317	difference in gas flaring emission inventory. BC emission from gas flaring in Russia by Huang
318	et al. (2015) was used in the current study, where total BC emission from gas flaring in
319	Russia in 2010 was ca. 81.1 kilotonne, which was larger than the estimate of ca. 64.9
320	kilotonne by GAINS inventory (Klimont et al., 2017) used by Stohl et al. (2013). Moreover,
321	Adopting ECLIPSEv5 inventory as was used by Winiger et al. (2019), we estimated that gas
322	flaring was contributing 14.4 ng m $^{-3}$ to Arctic surface BC using Flexpart v10.1, a value 22 $\%$
323	higher than those obtained using Flexpart v9. This difference could be attributed to the
324	improvement of the wet-scavenging scheme by Flexpart v10.1.
325	A recent study based on isotope observations at the Arctic sites and Flexpart v9.2
326	simulation suggested that open biomass burning, including open field burning and

327 residential biofuel burning, contributed 39 % of annual BC in 2011–2015 (Winiger et al.,

328	2019) (Table 1). In comparison, we estimated that residential burning and open biomass
329	burning together account for 33 % of total Arctic surface BC. As the residential burning in
330	our study includes burning of both biofuels and fossil fuels, our results indicated that
331	biomass burning has a relatively smaller contribution. Other than the differences in BC
332	removal treatment between different versions of the model, the contribution difference
333	could also be attributed to the different emission inventories and years (2010 versus 2011-
334	2015).
335	The geospatial contributions of anthropogenic sources and open biomass burning
336	emissions can be further illustrated by taking January and July as examples. In January, high
337	levels of anthropogenic emissions from Russia (contributing 64 % of Arctic surface BC),
338	Europe (18 %), and East Asia (9 %) were identified (Fig. 6a). Specifically, Yamalo-Nenets
339	Autonomous Okrug in Russia, which has the largest reserves of Russia's natural gas and oil
340	(Filimonova et al., 2018), was the most notable emission hotspot, which suggests gas-flaring
341	sources. The Komi Republic in Russia was also identified as a strong anthropogenic emitter
342	contributing to Arctic surface BC. These gas-flaring industrial regions in Russia (58–69 $^\circ$ N,
343	68–81°E) together contributed 33 % and 31 % of Arctic surface BC for January and the
344	annual mean, respectively. Recently, Dong et al. (2019) evaluated BC emission inventories
345	using GEOS-Chem and proposed that using the inventory compiled by Huang et al. (2015)
346	for Russia, in which gas flaring accounted for 36 % of anthropogenic emissions, had no
347	prominent impact on the simulation performance in Russia and the Arctic. They suggested
348	that use of a new global inventory for BC emissions from natural gas flaring would improve
349	the model performance (Huang and Fu, 2016). These results suggest that inclusion of BC
350	emissions from gas flaring on the global scale is necessary for further BC simulations.

In Europe, a relatively high contribution of anthropogenic emissions to Arctic surface BC
in January was made by Poland (50–55° N, 15–24° E, contributing 4 % of Arctic surface BC)
because of relatively large emission fluxes in the region (Fig. S1a). Anthropogenic emissions
from East China, especially those north of ~33° N (33–43° N, 109–126° E), contributed
perceptibly (5 %) to Arctic surface BC.

356 In July, contributions from anthropogenic sources shrank to those from Yamalo-Nenets 357 Autonomous Okrug and Komi Republic in Russia, and contributed a lower fraction (3 % of 358 Arctic surface BC) (Fig. 6b). Few open biomass burning sources contributed in January (Fig. 359 6c), but contributions from open biomass burning to Arctic surface BC in July can be clearly 360 seen, mainly from the far east of Russia, Canada, and Alaska (Fig. 6d). Open biomass burning 361 emissions from Kazakhstan, southwest Russia, southern Siberia, and northeast China also 362 contributed to Arctic surface BC, although at relatively low strengths (Fig. 5d and Fig. S1d). However, the contributions from open biomass burning could be higher, as the MODIS 363 364 burned area, the basis of GFED emission inventories, was underestimated for northern 365 Eurasia by 16 % (Zhu et al., 2017). Evangeliou et al. (2016) estimated a relatively high 366 transport efficiency of BC from open biomass burning emissions to the Arctic, which led to a 367 high contribution, i.e., 60 %, from such sources to BC deposition in the Arctic in 2010. A 368 recent study suggested that open fires burned in western Greenland in summer (31 July to 369 21 August 2017) could potentially alter the Arctic air composition and foster glacier melting 370 (Evangeliou et al., 2019). Although the footprint of Arctic surface BC showed a relatively 371 weak sensitivity to areas such as forests and tundra, in the boreal regions, pollutants from 372 boreal wildfires could have greater effects on the Arctic air composition in summer under future warming scenarios (Veira et al., 2016). 373

374 3.4 Sources of Arctic BC at high altitudes

375	Arctic BC levels at high altitudes showed the highest levels in spring (March–April, 40.5–
376	53.9 ng m ⁻³), followed by those in late autumn to early winter (November–January, 36.5–
377	40.0 ng m ⁻³), and summer (July–August, 33.0–39.0 ng m ⁻³) (Fig. 4c). The annual mean Arctic
378	BC at high altitudes was estimated to be 35.2 ng m ⁻³ , which is ca. 73 % of those at the
379	surface. Such a vertical profile is in accordance with those based on aircraft measurements
380	over the High Canadian Arctic (Schulz et al., 2019). Similarly to the case for the surface,
381	anthropogenic sources dominated by residential sectors, transport, industry and energy
382	(excluding gas flaring), accounted for 94–100 % of Arctic BC at high altitudes in October–
383	May (Figs. 4c, 5c). East Asia accounted for 34–65 % of the total BC in October–May (40 %
384	annually). In comparison, using the Community Atmosphere Model version 5 driven by the
385	NASA Modern Era Retrospective-Analysis for Research and Applications reanalysis data and
386	the IPCC AR5 year 2000 BC emission inventory, H. Wang et al. (2014) found that East Asia
387	accounted for 23% of BC burden in the Arctic for 1995–2005. In summer, open biomass
388	burning in the boreal regions accounted for 40–72 $\%$ (57 $\%$ on average) of Arctic BC at high
389	altitudes, similar to the source contributions to Arctic surface BC. Specifically, open biomass
390	burning sources from Siberia accounted for 40–42 % of Arctic BC at high altitudes in July–
391	August. Annually, anthropogenic sources and open biomass burning accounted for 83 $\%$ (in
392	which residential sources accounted for 34%) and 17 %, respectively, of total Arctic BC at
393	high altitudes (Figs. 4d, 5d).
394	Further investigations of geospatial contributions to Arctic BC at high altitudes in January
395	and July provided more details regarding BC sources. In January, the main anthropogenic BC
396	source in East Asia covered a wide range in China (Fig. 7a). Not only east and northeast
397	China, but also southwest China (Sichuan and Guizhou provinces) were the major

398 anthropogenic sources of Arctic BC at high altitudes. In July, anthropogenic sources made a

399	relatively weak contribution to Arctic BC at high altitudes. The regions that were sources of
400	open biomass burning contributions to Arctic BC at high altitudes were mainly the far east of
401	Siberia, Kazakhstan, central Canada, and Alaska, i.e., similar to the sources of Arctic surface
402	BC. Unlike Arctic surface BC, for which the dominant source regions are at high latitudes in
403	both winter and summer, Arctic BC at high altitudes mainly originates from mid-latitude
404	regions (Figs. 6 and 7). In terms of transport pathways, air masses could be uplifted at low-
405	to-mid latitudes and transported to the Arctic (Stohl, 2006). Further investigations are
406	needed to obtain more details of the transport processes.
407	3.5 Comparison of Flexpart and GEOS-Chem simulations of BC sources
408	Data for BC sources simulated with Flexpart were compared with those obtained with
409	GEOS-Chem (Ikeda et al., 2017), which is an Eulerian atmospheric transport model, using the
410	same emission inventories. The simulated seasonal variations in Arctic BC levels and source
411	contributions obtained with Flexpart agreed well with those obtained with GEOS-Chem (Fig.
412	S3). The annual mean BC levels at the Arctic surface obtained by Flexpart and GEOS-Chem
413	simulations were 48 and 70 ng m $^{-3}$, respectively; the high-altitude values simulated by
414	Flexpart and GEOS-Chem were 35 and 38 ng m $^{-3}$, respectively. The magnitude difference
415	between the BC levels at the Arctic surface could be related to meteorology. ECMWF ERA-
416	Interim data were used as the input for the Flexpart simulation, whereas the GEOS-Chem
417	simulation was driven by assimilated meteorological data from the Goddard Earth
418	Observation System (GEOS-5).
419	The treatments of the BC removal processes could also lead to different simulation
420	results, depending on the model. In terms of BC loss processes, dry and wet depositions
421	were the removal pathways, depending on the particle size and density, in Flexpart. The

422 treatment of meteorology, especially cloud water and precipitation, would therefore affect

423	the uncertainties of the simulations. In Flexpart version 10.1, BC particles are separately
424	parameterized as ice nuclei for ice clouds, cloud condensation nuclei for liquid-water clouds,
425	and 90 % as cloud condensation nuclei for mixed-phase clouds. The separation of mixed-
426	phase clouds is realistic, as 77 % of in-cloud scavenging processes occurred in the mixed
427	phase over a 90 day period starting from December 2006 (Grythe et al., 2017).
428	In GEOS-Chem simulations, the BC aging was parameterized based on the number
429	concentration of OH radicals (Liu et al., 2011). The BC was assumed to be hydrophilic in
430	liquid clouds ($T \ge 258$ K) and hydrophobic when serving as ice nuclei in ice clouds ($T < 258$ K)
431	(Wang et al., 2011), with modifications because the scavenging rate of hydrophobic BC was
432	reduced to 5 % of water-soluble aerosols for liquid clouds (Bourgeois and Bey, 2011). Such a
433	treatment is expected to improve the simulation accuracy (Ikeda et al., 2017).
434	In Lagrangian models, the trajectories of particles are computed by following the
435	movement of air masses with no numerical diffusion, although some artificial numerical
436	errors could be generated from stochastic differential equations (Ramli and Esler, 2016). As
437	a result, long-range transport processes can be well simulated (Stohl, 2006; Stohl et al.,
438	2013). In comparison, Eulerian chemical transport models such as GEOS-Chem have the
439	advantage of simulating non-linear processes on the global scale, which enables treatment
440	of the BC aging processes (coating with soluble components) (Bey et al, 2001; Eastham et
441	al., 2018). However, with GEOS-Chem, the capture of intercontinental pollution plumes is
442	difficult because of numerical plume dissipation (Rastigejev et al., 2010). Nevertheless, the
443	agreement between the Flexpart and GEO-Chem simulations of BC source contributions
444	indicates improved reliability of evaluated source contributions to Arctic BC.

445 4 Conclusions

446	The source contributions to Arctic BC were investigated by using a Flexpart (version 10.1)
447	transport model that incorporated emission inventories. Flexpart-simulated BC data agreed
448	well with observations at Arctic sites, i.e., Barrow, Alert, Zeppelin, and Tiksi. The source
449	regions and source sectors of BC at the surface and high altitudes over a wide region in the
450	Arctic north of 66° N were simulated. BC at the Arctic surface was sensitive to local
451	emissions and those from nearby Nordic countries (>60° N). These results emphasize the
452	role of anthropogenic emissions such as gas flaring and development of the Northern Sea
453	Route in affecting air quality and climate change in the Arctic. Anthropogenic emissions in
454	the northern regions of Russia were the main source (56 %) of Arctic surface BC annually. In
455	contrast, BC in the Arctic at high altitudes was sensitive to mid-latitude emissions (30–60 $^\circ$
456	N). Although they are geospatially far from the Arctic, anthropogenic emissions in East Asia
457	made a notable (40 %) contribution to BC in the Arctic at high altitudes annually. Open
458	biomass burning emissions, which were mainly from Siberia, Alaska, and Canada, were
459	important in summer, contributing 56–85 % of BC at the Arctic surface, and 40–72 % at
460	Arctic high altitudes. Future increases in wildfires as a result of global warming could
461	therefore increase the air pollution level during the Arctic summer. This study clarifies the
462	source regions and sectors of BC in the Arctic. This information is fundamental for
463	understanding and tackling air pollution and climate change in the region.
464	
465	Data Availability. The data set for simulated footprint and BC source contributions is
466	available on request to the corresponding author.
467	

468 Author contributions. CZ and YK designed the study. CZ, MT, and IP optimized the Flexpart
 469 model. CZ performed Flexpart model simulations, conducted analyses, and wrote the

470	manuscript. KI and HT provided data for GEOS-Chem simulations and site observations. All
471	authors made comments that improved the paper.
472	
473	<i>Competing interests.</i> The authors declare that they have no conflict of interest.
474	
	Cinemaics Comparent This study was supported by the Environmental Descents and Technology
475	Financial Support. This study was supported by the Environmental Research and Technology
476	Development Fund (2-1505) of the Ministry of the Environment, Japan.
477	
478	Acknowledgment. We acknowledge staffs from the following university and agencies for BC
479	observational data: Barrow and Tiksi sites are operated by National Oceanic and
480	Atmospheric Administration; Zeppelin site is operated by Stockholm University; and Alert
481	site is operated by Environment and Climate Change Canada. We are grateful to Chandra
482	Mouli Pavuluri (Tianjin University) and an anonymous reviewer for the comments. We thank
483	Helen McPherson, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of
484	this manuscript.
485	
486	References
487	AMAP Assessment 2015: Black carbon and ozone as Arctic climate forcers, Arctic Monitoring
488	and Assessment Programme (AMAP), Oslo, Norway, 2015.
489	Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G.
490	Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with
491	assimilated meteorology: Model description and evaluation, J Geophys Res-Atmos, 106,
492	23073-23095, doi:10.1029/2001jd000807, 2001.
493	Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S. K., Ro- den, C., Streets, D. G., and
494	Trautmann, N. M.: Historical emis- sions of black and organic carbon aerosol from energy-
495	related combustion, 1850-2000, Glob Biogeochem Cy, 21, Gb2018,
496	<u>doi:10.1029/2006GB002840, 2007.</u>

497	Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H., and Klimont, Z.: A								
498	technology-based global inventory of black and organic carbon emissions from								
499	combustion, J Geophys Res, 109, D14203, doi:10.1029/2003JD003697, 2004.								
500	Bourgeois, Q. and Bey, I.: Pollution transport efficiency toward the Arctic: sensitivity to								
501	aerosol scavenging and source regions, J. Geophys. Res., 116, D08213,								
502	doi:10.1029/2010JD015096, 2011.								
503	Brock, C. A., Cozic, J., Bahreini, R., Froyd, K. D., Middlebrook, A. M., McComiskey, A.,								
504	Brioude, J., Cooper, O. R., Stohl, A., Aikin, K. C., de Gouw, J. A., Fahey, D. W., Ferrare, R.								
505	A., Gao, R. S., Gore, W., Holloway, J. S., Hubler, G., Jefferson, A., Lack, D. A., Lance, S.,								
506	Moore, R. H., Murphy, D. M., Nenes, A., Novelli, P. C., Nowak, J. B., Ogren, J. A., Peischl, J.,								
507	Pierce, R. B., Pilewskie, P., Quinn, P. K., Ryerson, T. B., Schmidt, K. S., Schwarz, J. P.,								
508	Sodemann, H., Spackman, J. R., Stark, H., Thomson, D. S., Thornberry, T., Veres, P., Watts,								
509	L. A., Warneke, C., and Wollny, A. G.: Characteristics, sources, and transport of aerosols								
510	measured in spring 2008 during the aerosol, radiation, and cloud processes affecting								
511	Arctic Climate (ARCPAC) Project, Atmospheric Chemistry and Physics, 11, 2423-2453,								
512	doi:10.5194/acp-11-2423-2011, 2011.								
513	Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D., Francis, J.,								
514	Dethloff, K., Entekhabi, D., Overland, J., and Jones, J.: Recent Arctic amplification and								
515	extreme mid-latitude weather, Nature Geoscience, 7, 627-637, doi:10.1038/Ngeo2234,								
516	2014.								
517	Cooke, W. F. and Wilson, J. J. N.: A global black carbon aerosol model, J. Geophys. Res								
518	<u>Atmos., 101(D14), 19395–19409, 1996.</u>								
519	Cozic, J., Verheggen, B., Mertes, S., Connolly, P., Bower, K., Petzold, A., Baltensperger, U.,								
520	and Weingartner, E.: Scavenging of black carbon in mixed phase clouds at the high alpine								
521	site Jungfraujoch, Atmos. Chem. Phys., 7, 1797-1807, doi:10.5194/acp-7-1797-2007,								
522	2007.								
523	Dong, X., Zhu, Q., Fu, J. S., Huang, K., Tan, J., and Tipton, M.: Evaluating recent updated black								
524	carbon emissions and revisiting the direct radiative forcing in Arctic, Geophysical								
525	Research Letters, 46, 3560– 3570. <u>doi:10.1029/2018GL081242</u> , 2019.								
526	Eastham, S. D., Long, M. S., Keller, C. A., Lundgren, E., Yantosca, R. M., Zhuang, J. W., Li, C.,								
527	Lee, C. J., Yannetti, M., Auer, B. M., Clune, T. L., Kouatchou, J., Putman, W. M., Thompson,								
528	M. A., Trayanov, A. L., Molod, A. M., Martin, R. V., and Jacob, D. J.: GEOS-Chem High								

- 529 Performance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem 530 chemical transport model for massively parallel applications, Geosci Model Dev, 11, 531 2941-2953, doi:10.5194/gmd-11-2941-2018, 2018. 532 Eckhardt, S., Quennehen, B., Olivie, D. J. L., Berntsen, T. K., Cherian, R., Christensen, J. H., 533 Collins, W., Crepinsek, S., Daskalakis, N., Flanner, M., Herber, A., Heyes, C., Hodnebrog, 534 O., Huang, L., Kanakidou, M., Klimont, Z., Langner, J., Law, K. S., Lund, M. T., Mahmood, 535 R., Massling, A., Myriokefalitakis, S., Nielsen, I. E., Nojgaard, J. K., Quaas, J., Quinn, P. K., 536 Raut, J. C., Rumbold, S. T., Schulz, M., Sharma, S., Skeie, R. B., Skov, H., Uttal, T., von Salzen, K., and Stohl, A.: Current model capabilities for simulating black carbon and 537 538 sulfate concentrations in the Arctic atmosphere: a multi-model evaluation using a 539 comprehensive measurement data set, Atmospheric Chemistry and Physics, 15, 9413-540 9433, doi:10.5194/acp-15-9413-2015, 2015. 541 Evangeliou, N., Balkanski, Y., Hao, W. M., Petkov, A., Silverstein, R. P., Corley, R., Nordgren, 542 B. L., Urbanski, S. P., Eckhardt, S., Stohl, A., Tunved, P., Crepinsek, S., Jefferson, A., 543 Sharma, S., Nojgaard, J. K., and Skov, H.: Wildfires in northern Eurasia affect the budget of 544 black carbon in the Arctic - a 12-year retrospective synopsis (2002-2013), Atmospheric 545 Chemistry and Physics, 16, 7587-7604, doi:10.5194/acp-16-7587-2016, 2016. 546 Evangeliou, N., Kylling, A., Eckhardt, S., Myroniuk, V., Stebel, K., Paugam, R., Zibtsev, S., and 547 Stohl, A.: Open fires in Greenland in summer 2017: transport, deposition and radiative 548 effects of BC, OC and BrC emissions, Atmospheric Chemistry and Physics, 19, 1393-1411, 549 doi:10.5194/acp-19-1393-2019, 2019. 550 Filimonova, I. V., Komarova, A. V., Eder, L. V., and Provornaya, I. V.: State instruments for the 551 development stimulation of Arctic resources regions, IOP Conference Series: Earth and 552 Environmental Science, 193, 012069, doi:10.1088/1755-1315/193/1/012069, 2018. 553 Garrett, T. J., Brattstrom, S., Sharma, S., Worthy, D. E. J., and Novelli, P.: The role of 554 scavenging in the seasonal transport of black carbon and sulfate to the Arctic, 555 Geophysical Research Letters, 38, L16805, doi:10.1029/2011gl048221, 2011. 556 Grythe, H., Kristiansen, N. I., Zwaaftink, C. D. G., Eckhardt, S., Strom, J., Tunved, P., Krejci, R., 557 and Stohl, A.: A new aerosol wet removal scheme for the Lagrangian particle model
- 558 FLEXPART v10, Geosci Model Dev, 10, 1447-1466, doi:10.5194/gmd-10-1447-2017, 2017.

560 aerosol washout ratio on Svalbard, Tellus B, 63, 891-900, doi:10.1111/j.1600-0889.2011.00577.x, 2011. 561 562 Hertel, O., Christensen, J. Runge, E. H., Asman, W. A. H., Berkowicz, R., Hovmand, M. F., and 563 Hov, O.: Development and testing of a new variable scale air pollution model - ACDEP, 564 Atmos. Environ., 29, 1267-1290, 1995. 565 Hirdman, D., Burkhart, J. F., Sodemann, H., Eckhardt, S., Jefferson, A., Quinn, P. K., Sharma, S., Strom, J., and Stohl, A.: Long-term trends of black carbon and sulphate aerosol in the 566 Arctic: changes in atmospheric transport and source region emissions, Atmospheric 567 568 Chemistry and Physics, 10, 9351-9368, doi:10.5194/acp-10-9351-2010, 2010. 569 Huang, K., and Fu, J. S.: A global gas flaring black carbon emission rate dataset from 1994 to 570 2012, Scientific Data, 3, 160104. doi:10.1038/sdata.2016.104, 2016. 571 Huang, K., Fu, J. S., Prikhodko, V. Y., Storey, J. M., Romanov, A., Hodson, E. L., Cresko, J., 572 Morozova, I., Ignatieva, Y., and Cabaniss, J.: Russian anthropogenic black carbon: 573 Emission reconstruction and Arctic black carbon simulation, J Geophys Res-Atmos, 120, 574 11306-11333, doi:10.1002/2015jd023358, 2015. 575 Ikeda, K., Tanimoto, H., Sugita, T., Akiyoshi, H., Kanaya, Y., Zhu, C. M., and Taketani, F.: 576 Tagged tracer simulations of black carbon in the Arctic: transport, source contributions, 577 and budget, Atmospheric Chemistry and Physics, 17, 10515-10533, doi:10.5194/acp-17-578 10515-2017, 2017. 579 Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., 580 Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. 581 P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.: HTAP_v2.2: a mosaic of regional 582 and global emission grid maps for 2008 and 2010 to study hemispheric transport of air 583 pollution, Atmos. Chem. Phys., 15, 11411–11432, doi:10.5194/acp-15-11411-2015, 2015. 584 Keegan, K. M., Albert, M. R., McConnell, J. R., and Baker, I.: Climate change and forest fires

Hegg, D. A., Clarke, A. D., Doherty, S. J., and Ström, J.: Measurements of black carbon

- synergistically drive widespread melt events of the Greenland Ice Sheet, P Natl Acad Sci
 USA, 111, 7964-7967, doi:10.1073/pnas.1405397111, 2014.
- 587 Kipling, Z., Stier, P., Schwarz, J. P., Perring, A. E., Spackman, J. R., Mann, G. W., Johnson, C.
- 588 E., and Telford, P. J.: Constraints on aerosol processes in climate models from vertically-
- 589 resolved aircraft observations of black carbon, Atmos. Chem. Phys., 13, 5969–5986,
- 590 doi:10.5194/acp-13-5969-2013, 2013.

559

591	Kirchstetter, T. W., Novakov, T., and Hobbs, P. V.: Evidence that the spectral dependence of	
592	light absorption by aerosols is affected by organic carbon, J Geophys Res-Atmos, 109,	
593	D21208, doi:10.1029/2004jd004999, 2004.	
594	Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., Borken-Kleefeld, J., and	
595	Schöpp, W.: Global anthropogenic emissions of particulate matter including black carbon,	
596	Atmos. Chem. Phys., 17, 8681–8723, doi:10.5194/acp-17- 8681-2017, 2017.	
597	Klonecki, A., Hess, P., Emmons, L., Smith, L., Orlando, J., and Blake, D.: Seasonal changes in	
598	the transport of pollutants into the Arctic troposphere-model study, J Geophys Res-	
599	Atmos, 108, 8367, doi:10.1029/2002jd002199, 2003.	
600	Koch, D., and Hansen, J.: Distant origins of Arctic black carbon: A Goddard Institute for Space	
601	Studies ModelE experiment, J Geophys Res-Atmos, 110, D04204,	
602	doi:10.1029/2004jd005296, 2005.	
603	Koch, D., Schmidt, G. A., and Field, C. V.: Sulfur, sea salt, and radionuclide aerosols in GISS	
604	ModelE, J. Geophys. Res., 111, D06206, doi:10.1029/2004jd005550, 2006.	
605	Lack, D. A., and Langridge, J. M.: On the attribution of black and brown carbon light	
606	absorption using the Angstrom exponent, Atmospheric Chemistry and Physics, 13,	
607	10535–10543, doi:10.5194/acp-13-10535-2013, 2013.	
608	Law, K. S., and Stohl, A.: Arctic air pollution: Origins and impacts, Science, 315, 1537–1540,	
609	doi:10.1126/science.1137695, 2007.	
610	Liu, J., Fan, S., Horowitz, L. W., and Levy II, H.: Evaluation of factors controlling long-range	
611	transport of black carbon to the Arctic, J. Geophys. Res., 116, D00A14,	
612	doi:10.1029/2010JD015145, 2011.	
613	Liu, D., Quennehen, B., Darbyshire, E., Allan, J. D., Williams, P. I., Taylor, J. W., Bauguitte, S. J.	
614	B., Flynn, M. J., Lowe, D., Gallagher, M. W., Bower, K. N., Choularton, T. W., and Coe, H.:	
615	The importance of Asia as a source of black carbon to the European Arctic during	
616	springtime 2013, Atmospheric Chemistry and Physics, 15, 11537–11555, doi:10.5194/acp-	
617	15-11537-2015, 2015.	
618	Ma, PL., Gattiker, J. R., Liu, X., and Rasch, P. J.: A novel approach for determining source-	
619	receptor relationships in model simulations: a case study of black carbon transport in	
620	northern hemisphere winter, Environ Res Lett, 8, 024042, doi:10.1088/1748-	
621	<u>9326/8/2/024042, 2013</u> ,	

Deleted: Ma, P.-L., Rasch, P. J., Wang, H., Zhang, K., Easter, R. C., Tilmes, S., Fast, J. D., Liu, X., Yoon, J.-H., and Lamarque, J.-F.: The role of circulation features on black carbon transport into the Arctic in the Community Atmosphere Model version 5 (CAM5), J. Geophys. Res.-Atmos., 118, 4657–4669, doi:10.1002/jgrd.50411, 2013

628	McMahon, T. A. and Denison, P. J.: Empirical atmospheric deposition parameters – a survey,	
629	Atmos. Environ., 13, 571–585, doi:10.1016/0004-6981(79)90186-0, 1979.	
630	Najafi, M. R., Zwiers, F. W., and Gillett, N. P.: Attribution of Arctic temperature change to	
631	greenhouse-gas and aerosol influences, Nature Climate Change, 5, 246-249,	
632	doi:10.1038/Nclimate2524, 2015.	
633	Park, R. J., Jacob, D. J., Palmer, P. I., Clarke, A. D., Weber, R. J., Zondlo, M. A., Eisele, F. L.,	
634	Bandy, A. R., Thornton, D. C., Sachse, G. W., and Bond, T. C.: Export efficiency of black	
635	carbon aerosol in continental outflow: Global implications, J Geophys Res-Atmos, 110,	
636	D11205, doi:10.1029/2004jd005432, 2005.	
637	Qi, L., Li, Q. B., Henze, D. K., Tseng, H. L., and He, C. L.: Sources of springtime surface black	
638	carbon in the Arctic: an adjoint analysis for April 2008, Atmospheric Chemistry and	
639	Physics, 17, 9697–9716, doi:10.5194/acp-17-9697-2017, 2017.	
640	Quinn, P. K., Bates, T. S., Baum, E., Doubleday, N., Fiore, A. M., Flanner, M., Fridlind, A.,	
641	Garrett, T. J., Koch, D., Menon, S., Shindell, D., Stohl, A., and Warren, S. G.: Short-lived	
642	pollutants in the Arctic: their climate impact and possible mitigation strategies,	
643	Atmospheric Chemistry and Physics, 8, 1723–1735, doi:10.5194/acp-8-1723-2008, 2008.	
644	Ramli, H. M. and Esler, J. G.: Quantitative evaluation of numerical integration schemes for	
645	Lagrangian particle dispersion models, Geosci. Model Dev., 9, 2441–2457,	
646	doi:10.5194/gmd-9-2441-2016, 2016.	
647	Rastigejev, Y., Park, R., Brenner, M., and Jacob, D.: Resolving intercontinental pollution	
648	plumes in global models of atmospheric transport, J. Geophys. Res., 115, D02302,	
649	doi:10.1029/2009JD012568, 2010.	
650	Roiger, A., Thomas, J. L., Schlager, H., Law, K. S., Kim, J., Schafler, A., Weinzierl, B.,	
651	Dahloktter, F., Krisch, I., Marelle, L., Minikin, A., Raut, J. C., Reiter, A., Rose, M., Scheibe,	
652	M., Stock, P., Baumann, R., Bouapar, I., Clerbaux, C., George, M., Onishi, I., and Flemming,	
653	J.: Quantifying emerging local anthropogenic emissions in the Arctic region: The ACCESS	
654	aircraft campaign experiment, B. Am. Meteorol. Soc., 96, 441–460, doi:10.1175/Bams-D-	
655	13-00169.1, 2015.	
656	Sand, M., Berntsen, T. K., von Salzen, K., Flanner, M. G., Langner, J., and Victor, D. G.:	
657	Response of Arctic temperature to changes in emissions of short-lived climate forcers,	

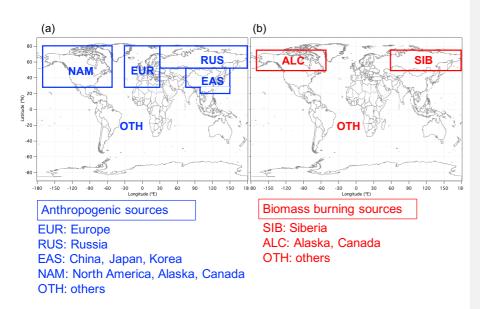
658 Nature Climate Change, 6, 286-289, doi:10.1038/Nclimate2880, 2016.

659	Schacht, J., Heinold, B., Quaas, J., Backman, J., Cherian, R., Ehrlich, A., Herber, A., Huang, W.
660	T. K., Kondo, Y., Massling, A., Sinha, P. R., Weinzierl, B., Zanatta, M., and Tegen, I.: The
661	importance of the representation of air pollution emissions for the modeled distribution
662	and radiative effects of black carbon in the Arctic, Atmos. Chem. Phys., 19, 11159–11183,
663	doi:10.5194/acp-19-11159-2019, 2019.
664	Schmale, J., Arnold, S. R., Law, K. S., Thorp, T., Anenberg, S., Simpson, W. R., Mao, J., and
665	Pratt, K. A.: Local Arctic Air Pollution: A Neglected but Serious Problem, Earths Future, 6,
666	1385–1412, doi:10.1029/2018ef000952, 2018.
667	Schulz, H., Zanatta, M., Bozem, H., Leaitch, W. R., Herber, A. B., Burkart, J., Willis, M. D.,
668	Kunkel, D., Hoor, P. M., Abbatt, J. P. D., and Gerdes, R.: High Arctic aircraft measurements
669	characterising black carbon vertical variability in spring and summer, Atmospheric
670	Chemistry and Physics, 19, 2361–2384, doi:10.5194/acp-19-2361-2019, 2019.
671	Sharma, S., Leaitch, W. R., Huang, L., Veber, D., Kolonjari, F., Zhang, W., Hanna, S. J.,
672	Bertram, A. K., and Ogren, J. A.: An evaluation of three methods for measuring black
673	carbon in Alert, Canada, Atmospheric Chemistry and Physics, 17, 15225–15243,
674	doi:10.5194/acp-17-15225-2017, 2017.
675	Shaw, G. E.: The arctic haze phenomenon, B Am Meteorol Soc, 76, 2403–2413, 1995.
676	Shen, Z. Y., Ming, Y., Horowitz, L. W., Ramaswamy, V., and Lin, M. Y.: On the seasonality of
677	Arctic black carbon, J. Climate, 30, 4429–4441, doi:10.1175/Jcli-D-16-0580.1, 2017.
678	Shindell, D. T., Chin, M., Dentener, F., Doherty, R. M., Faluvegi, G., Fiore, A. M., Hess, P.,
679	Koch, D. M., MacKenzie, I. A., Sanderson, M. G., Schultz, M. G., Schulz, M., Stevenson, D.
680	S., Teich, H., Textor, C., Wild, O., Bergmann, D. J., Bey, I., Bian, H., Cuvelier, C., Duncan, B.
681	N., Folberth, G., Horowitz, L. W., Jonson, J., Kaminski, J. W., Marmer, E., Park, R., Pringle,
682	K. J., Schroeder, S., Szopa, S., Takemura, T., Zeng, G., Keating, T. J., and Zuber, A.: A multi-
683	model assessment of pollution transport to the Arctic, Atmos. Chem. Phys., 8, 5353-5372,
684	doi:10.5194/acp-8-5353-2008, 2008.
685	Sinha, P. R., Kondo, Y., Koike, M., Ogren, J. A., Jefferson, A., Barrett, T. E., Sheesley, R. J.,
686	Ohata, S., Moteki, N., Coe, H., Liu, D., Irwin, M., Tunved, P., Quinn, P. K., and Zhao, Y.:
687	Evaluation of ground-based black carbon measurements by filter-based photometers at
688	two Arctic sites, J Geophys Res-Atmos, 122, 3544-3572, doi:10.1002/2016jd025843,

689 2017.

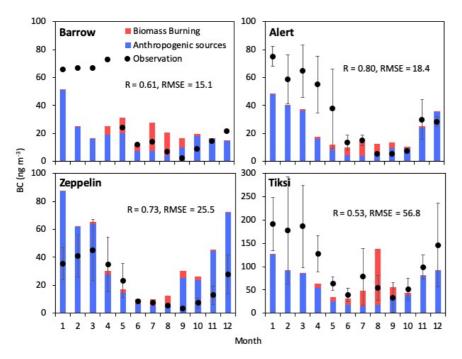
690	Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian
691	particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474,
692	doi:10.5194/acp-5-2461-2005, 2005.
693	Stohl, A.: Characteristics of atmospheric transport into the Arctic troposphere, J Geophys
694	Res-Atmos, 111, D11306, doi:10.1029/2005jd006888, 2006.
695	Stohl, A., Hittenberger, M., and Wotawa, G.: Validation of the Lagrangian particle dispersion
696	model FLEXPART against large-scale tracer experiment data, Atmos Environ, 32, 4245-
697	4264, doi:10.1016/S1352-2310(98)00184-8, 1998.
698	Stohl, A., Klimont, Z., Eckhardt, S., Kupiainen, K., Shevchenko, V. P., Kopeikin, V. M., and
699	Novigatsky, A. N.: Black carbon in the Arctic: the underestimated role of gas flaring and
700	residential combustion emissions, Atmospheric Chemistry and Physics, 13, 8833-8855,
701	doi:10.5194/acp-13-8833-2013, 2013.
702	Taketani, F., Miyakawa, T., Takashima, H., Komazaki, Y., Pan, X., Kanaya, Y., and Inoue, J.:
703	Shipborne observations of atmospheric black carbon aerosol particles over the Arctic
704	Ocean, Bering Sea, and North Pacific Ocean during September 2014, J Geophys Res-
705	Atmos, 121, 1914-1921, doi:10.1002/2015jd023648, 2016.
706	Tietze, K., Riedi, J., Stohl, A., and Garrett, T. J.: Space-based evaluation of interactions
707	between aerosols and low-level Arctic clouds during the Spring and Summer of 2008,
708	Atmospheric Chemistry and Physics, 11, 3359-3373, doi:10.5194/acp-11-3359-2011,
709	2011.
710	Tilling, R. L., Ridout, A., Shepherd, A., and Wingham, D. J.: Increased Arctic sea ice volume
711	after anomalously low melting in 2013, Nature Geoscience, 8, 643-646,
712	doi:10.1038/Ngeo2489, 2015.
713	Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M., Hjellbrekke, A. G., Lund Myhre, C.,
714	Solberg, S., and Yttri, K. E.: Introduction to the European Monitoring and Evaluation
715	Programme (EMEP) and observed atmospheric composition change during 1972–2009,
716	Atmos. Chem. Phys., 12, 5447–5481, doi:10.5194/acp-12-5447-2012, 2012.
717	Trusel, L. D., Das, S. B., Osman, M. B., Evans, M. J., Smith, B., Fettweis, X., McConnell, J. R.,
718	Noel, B. P. Y., and van den Broeke, M. R.: Nonlinear rise in Greenland runoff in response
719	to post-industrial Arctic warming, Nature, 564, 104-108, doi:10.1038/s41586-018-0752-4,
720	2018.

- 721 van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., 722 Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the 723 contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009), 724 Atmospheric Chemistry and Physics, 10, 11707-11735, doi:10.5194/acp-10-11707-2010, 725 2010. 726 Veira, A., Lasslop, G., and Kloster, S.: Wildfires in a warmer climate: Emission fluxes, 727 emission heights, and black carbon concentrations in 2090-2099, J Geophys Res-Atmos, 728 121, 3195-3223, doi:10.1002/2015jd024142, 2016. 729 Wang, H., Easter, R. C., Rasch, P. J., Wang, M., Liu, X., Ghan, S. J., Qian, Y., Yoon, J. H., Ma, P. 730 L., and Vinoj, V.: Sensitivity of remote aerosol distributions to representation of cloud-731 aerosol interactions in a global climate model, Geosci. Model Dev., 6, 765–782, 732 doi:10.5194/gmd-6-765-2013, 2013. 733 Wang, H., Rasch, P. J., Easter, R. C., Singh, B., Zhang, R., Ma, P. L., Qian, Y., and Beagley, N.: 734 Using an explicit emission tag- ging method in global modeling of source-receptor 735 relationships for black carbon in the Arctic: Variations, Sources and Trans- port pathways, J. Geophys. Res.-Atmos., 119, 12888-12909, doi:10.1002/2014JD022297, 2014. 736 737 Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M., Carouge, C. C., Le Sager, P., 738 Kondo, Y., Jimenez, J. L., Cubison, M. J., and Doherty, S. J.: Sources of carbonaceous 739 aerosols and deposited black carbon in the Arctic in winter-spring: implications for 740 radiative forcing, Atmos. Chem. Phys., 11, 12453-12473, doi:10.5194/acp-11-12453-741 2011, 2011. 742 Wang, Q., Jacob, D. J., Spackman, J. R., Perring, A. E., Schwarz, J. P., Moteki, N., Marais, E. A., 743 Ge, C., Wang, J., and Barrett, S. R. H.: Global budget and radiative forcing of black carbon 744 aerosol: constraints from pole-to-pole (HIPPO) observations across the Pacific, J. 745 Geophys. Res. Atmos., 119, 195–206, doi:10.1002/2013JD020824, 2014. 746 Winiger, P., Andersson, A., Eckhardt, S., Stohl, A., and Gustafsson, O.: The sources of 747 atmospheric black carbon at a European gateway to the Arctic, Nat Commun, 7, 12776, 748 doi:10.1038/ncomms12776, 2016. 749 Winiger, P., Barrett, T. E., Sheesley, R. J., Huang, L., Sharma, S., Barrie, L. A., Yttri, K. E.,
- 750 Evangeliou, N., Eckhardt, S., Stohl, A., Klimont, Z., Heyes, C., Semiletov, I. P., Dudarev, O.
- 751 V., Charkin, A., Shakhova, N., Holmstrand, H., Andersson, A., and Gustafsson, O.: Source


752	apportionment of circum-Arctic atmospheric black carbon from isotopes and modeling,
753	Sci Adv, 5, eaau8052, doi:10.1126/sciadv.aau8052, 2019.
754	Xu, J. W., Martin, R. V., Morrow, A., Sharma, S., Huang, L., Leaitch, W. R., Burkart, J., Schulz,
755	H., Zanatta, M., Willis, M. D., Henze, D. K., Lee, C. J., Herber, A. B., and Abbatt, J. P. D.:
756	Source attribution of Arctic black carbon constrained by aircraft and surface
757	measurements, Atmospheric Chemistry and Physics, 17, 11971-11989, doi:10.5194/acp-
758	17-11971-2017, 2017.
759	Yang, Y., Wang, H., Smith, S. J., Easter, R. C., and Rasch, P. J.: Sulfate aerosol in the Arctic:
760	Source attribution and radiative forcing, J. Geophys. Res. Atmos., 123, 1899–1918,
761	doi:10.1002/2017JD027298, 2018.
762	Yang, Y., Smith, S. J., Wang, H., Mills, C. M., and Rasch, P. J.: Variability, timescales, and
763	nonlinearity in climate responses to black carbon emissions, Atmospheric Chemistry and
764	Physics, 19, 2405–2420, doi:10.5194/acp-19-2405-2019, 2019.
765	Yu, K., Keller, C. A., Jacob, D. J., Molod, A. M., Eastham, S. D., and Long, M. S.: Errors and
766	improvements in the use of archived meteorological data for chemical transport
767	modeling: an analysis using GEOS-Chem v11-01 driven by GEOS-5 meteorology, Geosci
768	Model Dev, 11, 305-319, doi:10.5194/gmd-11-305-2018, 2018.
769	Zhang, K., O'Donnell, D., Kazil, J., Stier, P., Kinne, S., Lohmann, U., Ferrachat, S., Croft, B.,
770	Quaas, J., Wan, H., Rast, S., and Feichter, J.: The global aerosol-climate model ECHAM-
771	HAM, version 2: sensitivity to improvements in process representations, Atmos. Chem.
772	Phys., 12, 8911–8949, doi:10.5194/acp-12-8911-2012, 2012.
773	Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I.
774	S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian
775	emissions in 2006 for the NASA INTEX-B mission, Atmos Chem Phys, 9, 5131–5153,
776	doi:10.5194/acp-9-5131-2009, 2009.
777	7hu C. Kohavashi H. Kapava V. and Saita M. Siza dependent validation of MODIS

- 777 Zhu, C., Kobayashi, H., Kanaya, Y., and Saito, M.: Size-dependent validation of MODIS
- 778 MCD64A1 burned area over six vegetation types in boreal Eurasia: Large underestimation
- 779 in croplands, Scientific reports, 7, 4181, doi:10.1038/s41598-017-03739-0, 2017.

						in the / i elle sur	400	
Model and versions	Model type	Wet- deposition	Grid resolution	Meteorology	Emissions	Domain/Sites	Year/season	Major source regions/sector
Flexpart- WRF 6.2	Lagrangian	Stohl et al. (2005)	unspecified	WRF forcast	ECLIPSE, FINN	continental Norway and Svalbard	spring 2013	Asian anthropogeni
Flexpart 6.2	Lagrangian	Stohl et al. (2005)	$1^{\circ} \times 1^{\circ}$	ECMWF operational	Unspecified (BC sensitivities were calculated)	Alert, Barrow, Zeppelin	1989-2009	Northern Euras
Flexpart 6.2	Lagrangian	Stohl et al. (2005)	$1^{\circ} \times 1^{\circ}$	ECMWF operational	ECLIPSE4(GAINS), GFED3	Arctic (north of 66°N)	2008-2010	Flaring (42%) residential (>20%)
Flexpart 9.2	Lagrangian	Stohl et al. (2005)	$1^{\circ} \times 1^{\circ}$	ECMWF operational	ECLIPSE5(GAINS), GFED4.1	Arctic (north of 66.7°N)	2011-2015	Residential an open burning (39%)
Flexpart 10.1	Lagrangian	Grythe et al. (2017)	1° × 1°	ECMWF operational	HTAP2, GFED3, Huang et al. (2015) for Russia flaring	Arctic (north of 66°N)	2010	Flaring (36%) open burning (18%), resident (15%), others (31%)
GEOS- Chem 9.02	СТМ	Wang et al. (2011)	2° × 2.5°	GEOS-5	HTAP2, GFED3, Huang et al. (2015) for Russia flaring	Arctic (north of 66°N)	2007-2011	Russia (62%)
GEOS- Chem	СТМ	Wang et al. (2011)	2° × 2.5°	GEOS-5	Bond et al. (2004), Zhang et al. (2009), GFED3	Alert, Barrow, Zeppelin	April 2008	Asian anthropogeni (35–45%), Siberian bioma burning (46–64


Table 1. Comparison of BC source contributions in the Arctic surface

	GEOS- Chem	СТМ	Wang et al. (2011)	2° × 2.5°	GEOS-5	Bond et al. (2007), FLAMBE	North America Arctic	April 2008	Open fire (50%)	Wang et al. (2011)
	GEOS- Chem10.01	СТМ	Wang et al. (2011)	2° × 2.5°	GEOS-5	HTAP2, ECLIPSE5, GFED4	Alert, Barrow, Zeppelin, Arctic (north of 66.5°N)	2009-2011	<u>Northern</u> Asian anthropogenic (40–45%) in winter-spring	Xu et (2017)
	CAM5	<u>GCM</u>	<u>Wang et</u> al. (2013)	<u>1.9° × 2.5°</u>	MERRA	IPCC AR5	Arctic (north of 66.5°N)	<u>1996-2005</u>	<u>Northern Europe</u> <u>in winter,</u> <u>Northern Asia in</u> <u>summer</u>	<u>Wang et</u> al. (2014)
	<u>CAM5</u>	<u>GCM</u>	<u>Wang et</u> al. (2013)	<u>1.9° × 2.5°</u>	<u>Free running</u> <u>CAM5, ERA-</u> <u>Interim</u>	POLARCAT-POLMIP	<u>Arctic (north</u> <u>of ~66°N)</u>	<u>Winter</u> 2008	Asia	<u>Ma et al.</u> (2013)
	<u>ECHAM-</u> <u>HAM</u>	<u>GCM</u>	<u>Zhang et</u> <u>al. (2012)</u>	<u>1.8° × 1.8°</u>	ERA-Interim	ECLIPSE5, and Huang et al. (2015) for anthropogenic BC in Russia (default), GFES, and comparision with ACCMIP	<u>Various sites</u> <u>and aircraft</u> <u>campaigns,</u> <u>Arctic (north</u> <u>of 60°N)</u>	<u>2005–2015</u>	<u>Northern Asia,</u> <u>Northern Europe,</u> <u>Russian gas</u> <u>flaring region</u> (with default <u>emission)</u>	<u>Schacht et</u> al. (2019)
	GISS ModelE	GCM	Koch et al. (2006)	4° × 5°	Internal	Bond et al. (2004), Cooke and Wilson (1996)	Arctic (north of ~60°N)	Annual general	South Asia	Koch and Hansen (2005)

783 Figure 1. Regional separation for quantification of BC in the Arctic from (a) anthropogenic and

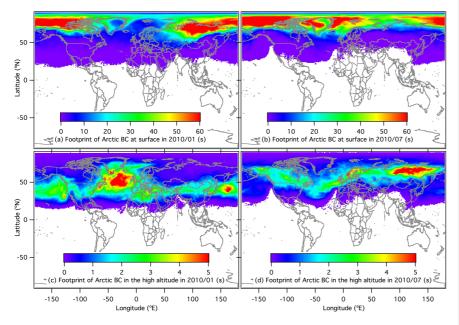
- 784 (b) open biomass burning sources.
- 785

787 Figure 2. Observed (filled circles) and modeled (bars) seasonal variations in BC mass

788 concentrations at Arctic sites. Contributions from anthropogenic sources (blue) and open

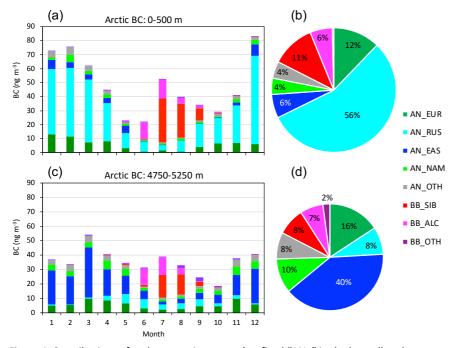
biomass burning (red) in each month are shown. Monthly averages of observed (filled circles)

790 ~ and simulated (bars) BC were conducted for 2007–2011 at Alert, Canada (62.3 $^{\circ}$ W, 82.5 $^{\circ}$ N),


791 $\,$ and Zeppelin, Norway (11.9° E, 78.9° N), for 2009 at Barrow, USA (156.6° W, 71.3° N), and for

792 2010–2014 at Tiksi, Russia (128.9° E, 71.6° N). *R* and RMSE indicate correlation coefficient and

793 root-mean-square error (ng m⁻³), respectively.

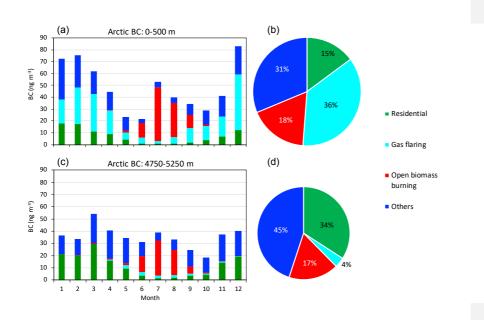


795

Figure 3. Footprints of Arctic BC shown as retention time(s) of (a) BC at surface (0–500 m) in
January 2010, (b) BC at surface in July 2010, (c) BC at high altitudes (4750–5250 m) in January

798 2010, and (d) BC at high altitudes in July 2010.

799


801 $\hfill \mbox{Figure 4. Contributions of anthropogenic sources (prefixed "AN_" in the legend) and open$

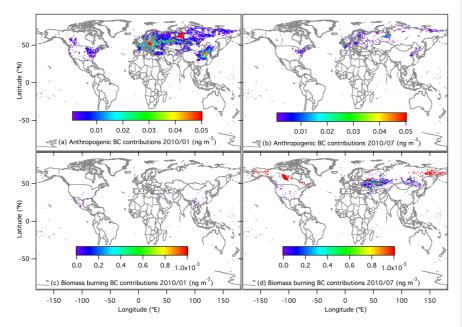
802 biomass burning ("BB_") from each region to (a) seasonal variations in Arctic surface BC, (b)

803 annual mean Arctic surface BC, (c) seasonal variations in Arctic BC at high altitudes, and (d)

- 804 annual mean of Arctic BC at high altitudes.
- 805

800

806


807 Figure 5. Sectorial contributions from residential combustion (including fossil fuel and biofuel

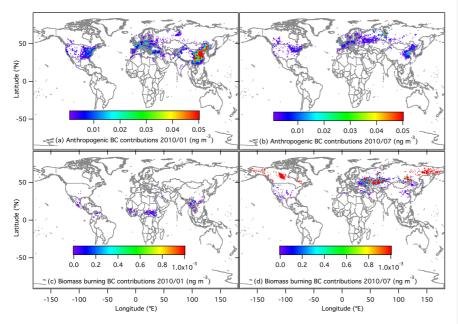
808 combustions), gas flaring, open biomass burning and others (energy other than gas flaring,

809 industry and transport) to (a) seasonal variations in Arctic surface BC, (b) annual mean Arctic

810 surface BC, (c) seasonal variations in Arctic BC at high altitudes, and (d) annual mean of Arctic

- 811 BC at high altitudes.
- 812

813


814 Figure 6. Spatial distributions of contributions to Arctic BC at surface for (a) anthropogenic

815 contributions in January 2010, (b) anthropogenic contributions in July 2010, (c) open biomass

816 burning contributions in January 2010, and (d) open biomass burning contributions in July

817 2010.

818

819

820 Figure 7. Spatial distributions of contributions to Arctic BC at high altitudes for (a)

821 anthropogenic contributions in January 2010, (b) anthropogenic contributions in July 2010, (c)

822 open biomass burning contributions in January 2010, and (d) open biomass burning

823 contributions in July 2010.

824