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Abstract. Fires and the aerosols that they emit impact air quality, health, and climate, but the abundance and properties of 18 

carbonaceous aerosol (both black carbon and organic carbon) from biomass burning (BB) remain uncertain and poorly 19 

constrained. We aim to explore the uncertainties associated with fire emissions and their air quality and radiative impacts 20 

from underlying dry matter consumed and emissions factors. To investigate this, we compare model simulations from a 21 

global chemical transport model, GEOS-Chem, driven by a variety of fire emission inventories with surface and airborne 22 

observations of black carbon (BC) and organic aerosol (OA) concentrations and satellite-derived aerosol optical depth 23 

(AOD). We focus on two fire detection/burned area-based (FD/BA) inventories using burned area and active fire counts, 24 

respectively: the Global Fire Emissions Database version 4 (GFED4s) with small fires and the Fire INventory from NCAR 25 

version 1.5 (FINN1.5) and two fire radiative power (FRP)-based approaches: the Quick Fire Emission Dataset version 2.4 26 

(QFED2.4) and the Global Fire Assimilation System version 1.2 (GFAS1.2). We show that, across the inventories, emissions 27 

of BB aerosol (BBA) differ by a factor of 4 to 7 over North America and that dry matter differences, not emissions factors, 28 

drive this spread. We find that simulations driven by QFED2.4 generally overestimate BC and, to a lesser extent, OA 29 

concentrations observations from two fire-influenced aircraft campaigns in North America (ARCTAS and DC3) and from 30 

the Interagency Monitoring of Protected Visual Environments (IMPROVE) network, while simulations driven by FINN1.5 31 

substantially underestimate concentrations. The GFED4s and GFAS1.2-driven simulations provide the best agreement with 32 

OA and BC mass concentrations at the surface (IMPROVE), BC observed aloft (DC3 and ARCTAS), and AOD observed by 33 

MODIS over North America. We also show that a sensitivity simulation including an enhanced source of secondary organic 34 

aerosol (SOA) from fires based on the NOAA Fire Lab 2016 experiments produces substantial additional OA; however, the 35 
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spread in the primary emissions estimates implies that this magnitude of SOA cannot be either confirmed or ruled out when 36 

comparing the simulations against the observations explored here. Given the substantial uncertainty in fire emissions, as 37 

represented by these four emission inventories, we find a sizeable range in 2012 annual BBA PM2.5 population-weighted 38 

exposure over Canada and the contiguous United States (0.5 to 1.6 µg m-3). We also show that the range in the estimated 39 

global direct radiative effect of carbonaceous aerosol from fires (-0.11 to -0.048 W m-2) is large and comparable to the direct 40 

radiative forcing of OA (-0.09 W m-2) estimated in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on 41 

Climate Change (IPCC). Our analysis suggests that fire emissions uncertainty challenges our ability to accurately 42 

characterize the impact of smoke on air quality and climate.    43 

1 Introduction 44 

Biomass burning (BB), which includes wildfires in addition to agricultural and other prescribed burning, emits a variety of 45 

trace gases and aerosols, including carbon dioxide, oxides of nitrogen, volatile organic compounds (VOCs), and particulate 46 

matter (PM) (Akagi et al. 2011) with large associated air quality and climate impacts. Particulate matter from fires (or 47 

smoke) is dominated by carbonaceous aerosol (black carbon (BC) and organic aerosol (OA)) (Akagi et al. 2011; Bond et al. 48 

2013). As these emissions are transported through the atmosphere, they deteriorate air quality in a variety of ways. Because 49 

of their small size and associated ability to lodge deeply in lungs, aerosols can have significant health impacts (respiratory 50 

infections, asthma, and lung cancer) and increase cardiovascular disease (e.g., Pope and Dockery 2006 & Brook et al. 2010), 51 

especially the high levels of PM from fire events (Liu et al. 2015; Reid et al. 2016; Williamson et al. 2016). Deep penetration 52 

of the lungs and most acute health impacts are generally associated with the fine PM (under 2.5 microns) fraction of PM. 53 

Biomass burning aerosols (BBA) can also impact the climate system via absorbing and scattering radiation (Bond et al. 54 

2013). In an era of increasing wildfire activity in the western US (Westerling et al. 2006; Westerling 2016), there is a 55 

pressing need to understand how smoke from fires impacts air quality and alters atmospheric radiation.  56 

 57 

Globally, BB is responsible for roughly 30% of BC and nearly 90% of primary OA emissions (POA), contributing an 58 

estimated 34 Tg yr-1 of aerosol to the atmosphere annually (Bond et al. 2013). In addition, fires may be an important source 59 

of secondary organic aerosol (SOA), which form from the oxidative aging of gas-phase organics emitted during combustion. 60 

Our current understanding of SOA formation is incomplete. Recent studies demonstrate that there is no clear consensus on 61 

the magnitude of SOA from fires, with estimates that range from virtually none to 95 Tg yr-1 (Shrivastava et al. 2017, 62 

Vakkari et al. 2018). Much of this spread comes from diverging results from field versus laboratory studies: the majority of 63 

field studies have reported no secondary aerosol formation (above dilution-corrected POA concentrations; Hodshire et al. 64 

2019) or even a decrease in OA (May et al. 2014; Liu et al. 2016; Akagi et al. 2012; Jolleys et al. 2012; May et al. 2015; 65 

Forrister et al. 2015; Collier et al. 2016; Garofalo et al. 2019), while a few field studies observed significant SOA formation 66 

from biomass burning emissions (Yokelson et al. 2009; Vakkari et al. 2014; Vakkari et al. 2018). Laboratory studies, to the 67 
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contrary, almost always report substantial SOA formation from fires (Grieshop et al., 2009; Hennigan et al., 2011; Ortega et 68 

al., 2013; Tkacik et al. 2017; Lim et al. 2019). The reasons for the discrepancy across studies are not understood (Shrivastava 69 

et al., 2017; Hodshire et al. 2019) and should be the focus of further research. 70 

 71 

Biomass burning aerosols (BC, POA, and SOA) can have major impacts on radiation. Black carbon has a strong warming or 72 

positive direct radiative effect (DRE) (instantaneous radiative impact), both globally and regionally, and some studies 73 

suggest its warming direct radiative forcing (DRF) (the change in DRE from pre-industrial to present day, not including 74 

climate feedbacks) (Heald et al. 2014) is second only to CO2 (Bond et al. 2013). Black carbon from BB and gas flares also 75 

lowers the snow and ice albedo in the Arctic, leading to additional warming (Stohl et al. 2013). Organic aerosol, because it 76 

scatters radiation, has a negative or cooling DRE (Bond et al. 2013). It is therefore the sum of the warming from absorption 77 

and the cooling from scattering that dictates the climate effect of BBA, leading to uncertainty in even the sign of the net 78 

radiative effect of fires. Previous estimates of BBA DRE range from -0.01 to 0.13 W/m2 (Rap et al. 2013; Ward et al. 2012). 79 

Furthermore, when quantifying BBA impacts on radiation, differentiating anthropogenic and natural fires is central to 80 

quantifying the climate forcing, or the DRF of fires which reflects human influence (e.g. via ignition, suppression or changes 81 

in fuel availability).  The uncertainty in fire radiative impacts has not been assessed in detail.  82 

 83 

North America, in particular the western US, is one of the few regions in the world where more intense and frequent 84 

wildfires have been directly tied to climate change impacts (e.g., hotter temperatures and less snowpack) (Wehner et al. 85 

2017; Abatzogolou & Williams 2016). In addition to climate change, historical fire suppression efforts in the US have led to 86 

increased fuel loads for fires (Marlon et al. 2012). Consequently, BBA emissions there are likely to increase in future 87 

decades (Yue et al. 2013). Already, boreal forest fires are responsible for only 2.5% global burned area but 9% of global 88 

BBA emissions (van der Werf et al. 2017). Biomass burning in Alaska has also accelerated in the last decade through 89 

increases in both burned area and fire frequency leading to increases in carbon loss associated with late-season burning 90 

(Turetsky et al. 2011). Both relative and total impacts of BB on air quality and climate forcing are expected to increase as 91 

controls continue to reduce fossil fuel emissions and a changing climate potentially leads to more fires (Fuzzi et al. 2015; 92 

Val Martin et al., 2015). It is, therefore, becoming increasingly important to have models and emission inventories that can 93 

accurately characterize the impact that current and future fires and their emitted aerosols have on the environment, climate, 94 

and human health. Several recent laboratory studies (e.g., Jolleys et al. 2014; Levin et al. 2010; McMeeking et al. 2009), 95 

including the recent NOAA Fire Lab 2016 experiments in Missoula, MT (e.g., Koss et al. 2018; Selimovic et al. 2018; Jen et 96 

al. 2019), have explored the BB of North American fuels, providing key constraints on smoke emissions, aging, and 97 

properties. 98 

 99 

Because BBA emissions cannot routinely be measured directly, a variety of global fire emission inventories have been 100 

developed over the last decade(s) based on satellite observations. These inventories use different empirical approaches and 101 
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underlying data to represent gas and aerosol emissions from fires - each with inherent uncertainties. Aerosol emissions from 102 

these inventories often vary by large factors depending on the region, do not agree spatially, and sometimes do not reflect 103 

observations of concentrations and AOD well either when integrated into a model (Reddington et al. 2019; Reddington et al. 104 

2016; Petrenko et al. 2012). In this analysis, we focus on four commonly used, but theoretically distinct inventories: the 105 

Global Fire Emissions Database version 4 (GFED4s) (van der Werf et al. 2017) with small fires, the Fire INventory from 106 

NCAR version 1.5 (FINN1.5) (Wiedinmyer et al. 2011), the Quick Fire Emissions Database version 2.4 (QFED2.4) 107 

(Darmenov and da Silva, 2013), and the Global Fire Assimilation System version 1.2 (GFAS1.2) (Kaiser et al. 2012). The 108 

two main approaches are a fire detection/burned area (FD/BA) method that relies upon burned area, which GFED4s uses, or 109 

active fire counts, which FINN1.5 uses, and the fire radiative power (FRP) approach, which relies upon fire radiative energy 110 

observations, an approach which both QFED2.4 and GFAS1.2 use. Comparisons among these different types of inventories 111 

suggest that there is significant variability in the amount of dry matter burned associated with an individual active fire 112 

detection, which is one explanation for why FD/BA and FRP inventories do not align (van der Werf et al. 2017 and 113 

references therein). Studies using AOD to interrogate BB emission inventories give varied results but suggest that FD/BA 114 

BBA estimates are roughly a factor of 3 too low in large BB regions (e.g., boreal North America, South America, southern 115 

Africa, and equatorial Asia) and globally (Johnston et al., 2012; Kaiser et al., 2012; Petrenko et al., 2012; Tosca et al., 2013). 116 

In this study we will refer to the spread across these inventories as the “uncertainty” in emissions; however, we note that 117 

additional factors, not represented by any of these inventories, may increase the true uncertainty in the estimated emissions.      118 

 119 

Here we use the GEOS-Chem chemical transport model and a suite of fire emission inventories to investigate the emissions 120 

uncertainties associated with impacts of BBA on air quality and radiation. We explore the interannual and geographic 121 

variability of fire emissions and dry matter (DM) consumed from 2004-2016 across inventories and discuss how the 122 

uncertainty in emissions carries forward to concentrations, exposure, aerosol optical depth (AOD), and DRE with a focus on 123 

2012 - 2014. We also explore the impact of a new model parameterization for SOA from fires. 124 

2 Model and observations descriptions   125 

2.1 The GEOS-Chem model 126 

We use GEOS-Chem (www.geos-chem.org), a global chemical transport model, coupled with the rapid radiative transfer 127 

model for global circulation models (RRTMG, Iacono et al. 2008), a configuration known as GC-RT (Heald et al. 2014), to 128 

explore the air quality and climate impacts of BBA. GEOS-Chem is driven by assimilated meteorology from the Modern-Era 129 

Retrospective analysis for Research and Applications, Version 2 (MERRA-2) at the NASA Global Modeling and 130 

Assimilation Office (GMAO). We run version 12.0.0 of GEOS-Chem (https://doi.org/10.5281/zenodo.1343547) with a 131 

horizontal resolution of 2x2.5° and 47 vertical levels with a chemical timestep of 20 minutes and a transport timestep of 10 132 

minutes and with six month spin up simulations prior to the time periods of interest, 2012-2014 and June-July 2008. We also 133 
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perform nested simulations over North America at 0.5x0.625° (with boundary conditions from the global simulation) for 134 

comparison against observations (IMPROVE and aircraft campaigns, see Sect. 2.3) with transport and chemistry timesteps of 135 

5 and 10 minutes, respectively. 136 

 137 

GEOS-Chem employs SO42-–NO3-–NH4+ thermodynamics (Fountoukis & Nenes, 2007) coupled to an ozone–VOC–NOx–138 

oxidant chemical mechanism (Mao et al., 2013; Travis et al., 2016; Miller et al., 2017) with integrated Cl-Br-I chemistry 139 

(Sherwen et al., 2016). The model includes schemes for fine and coarse sea salt aerosols (Jaeglé et al., 2011) and mineral 140 

dust in four size bins (Fairlie et al., 2007; Ridley et al., 2012). The standard simulation of BC in GEOS-Chem is described in 141 

Park et al. (2003). We update this simulation per Wang et al. (2014), as follows: we update the initial hydrophilic fraction 142 

from BB to 70% based on field observations (Wang et al., 2014 and references therein). Fossil-BC is aged from hydrophobic 143 

to hydrophilic using the Liu et al. (2011) BC aging scheme with dynamic [OH] and [SO2] per Wang et al. (2014), and 144 

biofuel/biomass-BC is aged with an e-folding time of 4 hours. For hydrophilic BC, we use an absorption enhancement from 145 

coating of BC of 1.1 for fossil-BC and 1.5 for biofuel/biomass-BC. We also update the BC properties for optical calculations 146 

per Wang et al. (2014). 147 

 148 

The standard primary organic aerosol (POA) simulation emits 50% of POA as hydrophilic and ages hydrophobic POA to 149 

hydrophilic POA with an atmospheric lifetime of 1.15 days (Chin et al. 2002; Cooke et al. 1999). We use an organic matter 150 

(OM) to OC ratio of 1.4 for hydrophobic OC and 2.1 for hydrophilic. The baseline model formation of SOA from BB 151 

follows the simple scheme implemented by Kim et al. (2015) based on field results from six large campaigns summarized by 152 

Cubison et al. (2011). This emits 0.013g SOA precursor (SOAP) per g CO emitted, which then forms non-volatile SOA on a 153 

fixed timescale of one day. SOAP is not lost by dry or wet deposition. Recent laboratory results from the NOAA Fire Lab 154 

2016 campaign suggest much greater SOA formation from the burning of North American fuels (Lim et al, submitted); 155 

however, we note that, as previously discussed, uncertainties surrounding this source of SOA remain large. Based on this 156 

study, we perform a sensitivity analysis for a new parameterization for SOA production from fires, where SOAP is estimated 157 

as POA fire emissions scaled by a factor of 2.48. We note that this is 13 times larger than the field-based estimate of Cubison 158 

et al. (2011), which combines the effects of POA evaporation and SOA formation (see Sect. 5 for further details).    159 

 160 

Anthropogenic emissions (including fossil and biofuel sources) of both BC and POA follow the CEDS global inventory 161 

(Hoesly et al. 2018) with regional inventories used when available, including NEI2011v1 over the US (Environmental 162 

Protection Agency (EPA) National Emissions Inventory, 2015), APEI over Canada, and DICE-Africa over Africa (Marais 163 

and Wiedinmyer 2016). Trash burning emissions are from Wiedinmyer et al. (2014). Aircraft emissions are from the AEIC 164 

inventory (Stettler et al. 2011; Simone et al. 2013). Global annual anthropogenic emissions are 4.5 Tg yr-1 of BC and 8.7 Tg 165 

yr-1 of POA in 2012. Biogenic emissions are calculated online from the MEGANv2.1 emissions framework (Guenther et al. 166 

2012).  167 
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 168 

Fire emission inventories (GFED4s, FINN1.5, QFED2.4, and GFAS1.2) are specified on a daily timescale, the frequency at 169 

which all four inventories were available. The standard version of GEOS-Chem, which we use, emits all fire emissions from 170 

the surface into the boundary layer. Diurnal scale factors from the Western Regional Air Partnership (WRAP 2005) were 171 

applied to all inventories per Kim et al. (2015). Additional information on each fire inventory is provided in Sect. 2.2. 172 

 173 

We quantify simulated AOD at 550 nm, assuming that aerosols are externally mixed with a fixed lognormal size distribution 174 

for each species and that AOD is a function of relative humidity to account for hygroscopic growth, which also varies by 175 

species (Martin et al. 2003). Aerosol optical properties are from the Global Aerosol Data Set (GADS) database (Koepke et 176 

al. 1997) with updates from Drury et al. (2010) and Wang et al. (2014). RRTMG calculates both longwave and shortwave 177 

atmospheric radiative fluxes. When coupled to GEOS-Chem, this calculation is performed every 3 hours. Long and 178 

shortwave DRE at the top of the atmosphere are summed and reported as total DRE.  179 

2.2 Description of fire emission inventories 180 

Here we describe the differences and similarities of the four fire emission inventories investigated in this study: two FD/BA 181 

approaches (GFED4s and FINN1.5) and two FRP-based (QFED2.4 and GFAS1.2). GFED4s is the most widely used of fire 182 

emission inventories (other inventories are sometimes scaled to it), and it employs a FD/BA approach based on the Moderate 183 

Resolution Imaging Spectroradiometer (MODIS)-observed burned area complemented by the Carnegie–Ames–Stanford 184 

Approach (CASA) biogeochemical model. CASA provides estimated biomass factors (i.e., combustion completeness and 185 

fuel load) in a variety of carbon pools (e.g. leaves, grasses, litter, etc.), depending on pool-specific and environmental 186 

conditions, which are combined with emission factors (EFs) and MODIS burned area to produce emissions (van der Werf et 187 

al. 2017). GFED4s therefore estimates emissions as: 188 

𝑀" = 𝐴	𝑥	𝜌	𝑥	𝛾	𝑥	𝐸𝐹",                                                                                                                                                              (1) 189 

where MS is the mass of the species of interest (g), A is burned area (m2), γ is combustion completeness (%), ρ is fuel load 190 

(kg DM/m2), and EFS is the species-specific emission factor (g species/kg DM). 191 

 192 

The fourth and most recent version of GFED (GFED4s) provides emissions at a 0.25° resolution from 1997 in near real time, 193 

and boosts emissions to include small fires (Randerson et al. 2012). Burned area estimates from 2000 onwards are from the 194 

MODIS MCD64A1 500m burned area maps aggregated at 0.25° resolution and a monthly time step (Giglio et al. 2013). 195 

Because of measurement limitations, EFs, in general, are very uncertain (see Sect. 3), but GFED4s employs a recent 196 

compilation of EFs (Akagi et al. 2011) with some updates, such as for the temperate forest biome. GFED4s emissions are 197 

available monthly with scalars also available to distribute emissions over daily or three-hour intervals. These scalars are only 198 

available from 2003 onwards. 199 

 200 
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FINN1.5 follows the same FD/BA approach as GFED4s but with some differences, including: burned area is estimated from 201 

active fire detection identified with the MODIS Thermal Anomalies Product (Giglio et al., 2006), EFs are based on the 2015 202 

updates from Akagi et al. (2011) (http://bai.acom.ucar.edu/Data/fire/), and different land cover maps are used. FINN1.5 203 

emissions uncertainty comes from the use of fire hot spots, assumed area burned (each fire hot spot is equivalent to 1km2 204 

burned area except grasslands, which are 0.75 km2), land cover maps, biomass consumption estimates, and EFs (Wiedinmyer 205 

et al. 2011). The original emission estimates are available at 1 km2 spatial resolution and from 2002 – 2016 at both daily and 206 

monthly mean temporal resolution. Within the GEOS-Chem model, FINN1.5 input files are available at 0.25°, and CO2 207 

emissions are produced with FINN1.5 and then other emitted species are scaled based on emission factors and land cover 208 

type.  209 

  210 

QFED2.4 and GFAS1.2 employ an FRP-based method, which estimates emissions using satellite observations of fire 211 

radiative power (FRP), relying upon the following theoretical approach:   212 

 𝑀" = 	𝛼	𝑥	𝐸𝐹"	𝑥	𝐹𝑅𝐸 = 	𝛼	𝑥	𝐸𝐹"	𝑥	 ∫ 𝐹𝑅𝑃(𝑡)𝑑𝑡,45
46

	                                                                                                                 (2) 213 

where α is the emission coefficient (kg DM J-1), EFS is the species-specific emission factor (g species/kg DM), and FRE in 214 

joules (is fire radiative energy or the integral of fire radiative power (FRP in J s-1) over time. 215 

  216 

This FRP-based approach takes advantage of an empirically derived linear relationship between the energy released as 217 

thermal radiation (FRE) and the mass of fuel or DM consumed during combustion (Wooster 2002; Wooster et al. 2005; 218 

Ichoku and Kaufman 2005). This basic relationship is supported by the fact that the energy released by burning the same 219 

amount of a fuel is similar regardless of vegetation type (Wooster et al. 2005). The energy from combustion processes not 220 

transferred into the environment (through conductive, evaporative, and convective processes) is released as infrared 221 

radiation, which is then assumed to be proportional to the total energy produced during combustion. One can then relate the 222 

amount of fuel burned with the time-integrated FRE using an emission coefficient (α). In laboratory studies, the coefficient 223 

appears to be universal, i.e. independent of fuel type (Wooster et al. 2005). For satellite-observed FRE, however, different 224 

values are associated with different broad classes of fire types (Kaiser et al. 2012). 225 

 226 

QFED2.4 uses the MODIS Active Fire Level 2 product (MOD14 and MYD14) and the MODIS Geolocation product 227 

(MOD03 and MYD03) for FRP and the location of fires. A linear regression between the QFED2.4 dataset, starting with an 228 

emission coefficient (α0) from Kaiser et al. (2009), and version 2 of GFED was used to calculate the α used in QFED2.4. The 229 

location of the fire in addition to a vegetation land type mask was used to assign the FRP to a QFED2.4 vegetation type, 230 

which was based on an aggregated version of the International Geosphere-Biosphere Programme (IGBP) vegetation mask 231 

with four basic classes: tropical forest, extratropical forest, savanna, and grassland. GFAS1.2 also uses the MOD14 fire 232 

product. GFAS1.2 utilizes land cover maps based on the dominant vegetation type from GFED3 and additional organic soil 233 
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and peat maps (Kaiser et al. 2012). GFAS1.2 also derives conversion factors linking FRP and the GFEDv3.1 dry matter 234 

combustion rates based on linear regressions between the two. 235 

 236 

QFED2.4 and GFAS1.2 utilize EFs from Andreae and Merlet (2001). An update to this EF compilation is now available 237 

(Andreae 2019) but is not yet used in these inventories. QFED2.4 scales its aerosol emissions to better represent MODIS-238 

observed AOD, using biome-dependent strength factors. It should be noted that these enhancement factors were based on the 239 

GEOS model, and depend on the underlying model configuration, most importantly, the single assumed OM:OC ratio of 1.4, 240 

but also the specific anthropogenic emissions and the radiative properties of aerosols in the model. Thus, these enhancement 241 

factors that scale to AOD could differ substantially in a model that treats these factors differently. To our knowledge, these 242 

differences have not been accounted for in previous model studies that have used QFED (e.g., Kim et al. 2015; Marais et al. 243 

2016; Lu et al. 2015; Saide et al. 2015; Zhang et al. 2014). We make no effort to re-derive the biome-specific enhancement 244 

factors for GEOS-Chem. In an effort to ensure that global totals of emitted BC and OA are consistent with those reported by 245 

QFED2.4, we scale down emissions by a uniform factor of 0.69 (1.4/average OM:OC ratio in GEOS-Chem in 2012). 246 

QFEDv2.4 provides daily mean emissions and is available at 0.1° resolution from 2003 – 2016. GFAS1.2 provides daily 247 

mean emissions and is available from 2003 – 2019 at 0.1° resolution.  248 

 249 

Some advantages of QFED2.4, GFAS1.2, and other FRP-based inventories are that the uncertain factors used in FD/BA 250 

inventories to convert burned area to DM consumed (fuel load and combustion completeness) can be bypassed, and that FRP 251 

observations are more sensitive to small fires than burned area observations (MODIS has detection limits of ~5MW and 252 

50m2, respectively). However, FRP-based approaches face significant challenges associated with the sparse temporal 253 

coverage of the underlying polar-orbiting MODIS observations of FRP. The daytime overpass of Terra and Aqua (10:30 LT 254 

and 13:30LT, respectively), generally miss the period of peak fire activity in the western US and Canada. In addition, active 255 

fire observations (both active fire counts and FRP) can only detect fires during the burning phase, while the accumulated 256 

burned area can be detected for an extended period of time after the burning phase. FRP-based emission estimates therefore 257 

contain errors due to assumptions on undetectable fire activity under cloud cover and between satellite overpasses (for low-258 

earth orbiting instruments like MODIS). Smouldering and peat fires are difficult to quantify with both methods: FRP-based 259 

approaches suffer from weak thermal signatures and uncertain emission coefficients (Darmenov and da Silva 2013), and 260 

FD/BA-based approaches suffer from missing information on burn depth and thus combustion completeness. 261 

2.3 In-situ observations 262 

The ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) summer airborne 263 

campaign surveyed large swaths of the Arctic with an emphasis on probing forest fire smoke plumes using the NASA DC-8 264 

aircraft from June 18 to July 13, 2008 (Jacob et al. 2010) (see Fig. 1 for flight tracks). Black carbon mass concentrations 265 

were measured with a single particle soot photometer (SP-2, Schwarz et al. 2008). For ARCTAS, the SP-2 detection range 266 
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for particle diameter is 80-860nm, and the uncertainty is estimated to be 10% (Kondo et al. 2011). Organic aerosol was 267 

measured using a high-resolution time-of-flight aerosol mass spectrometer (CU-Boulder Aerodyne HR-ToF-AMS, DeCarlo 268 

et al. 2006; Canagaratna et al. 2007; Cubison et al. 2011) with a 2s estimated uncertainty of 38% for OA (Bahreini et al. 269 

2009) and a size detection limit extending down to 35nm vacuum aerodynamic (about 25 nm geometric diameter for typical 270 

BBOA densities) (DeCarlo et al. 2006; 2008). Concentration detection limits for OA for 1 min. data are ~0.16 µg m-3 271 

(DeCarlo et al., 2006; Dunlea et al., 2009), several orders-of-magnitude lower than typical field BBOA concentrations (>= 272 

10 ug m-3). The model structural and emission uncertainties for fire OA likely far outweigh measurement uncertainties, and 273 

thus, these measurement uncertainties are not germane to the analysis presented here.  Acetonitrile, a useful tracer for BB, 274 

was measured using a Proton-Transfer-Reaction Mass-Spectrometer (PTR-MS, Hansel et al. 1995; Wisthaler et al. 2002) and 275 

used as a filter to help isolate BB influence. 276 

 277 

Observations from the Deep Convective Clouds and Chemistry (DC3) campaign are also included in our analyses. DC3 278 

focused on thunderstorms and their impact on the chemical composition of the troposphere and also documented BB plumes 279 

and their interactions with deep convection in the Southern Great Plains, the Colorado Front Range, and the southeastern US. 280 

Flights occurred from May 18 to June 22, 2012 (Barth et al. 2015) (Fig. 1). As in ARCTAS, BC was measured using the SP-281 

2, and OA was measured using an HR-ToF-AMS. The detection range for BC mass from the SP-2 corresponds to 90-550 nm 282 

volume equivalent diameter, assuming 1.8 g cm-3 density, with ± 30% total uncertainty in the accumulation mode BC mass 283 

mixing ratio (Schwarz et al. 2013). Acetonitrile was again measured using a PTR-MS (Hansel et al. 1995; Wisthaler et al. 284 

2002). For comparison with airborne measurements, the model was sampled to the nearest grid box both temporally and 285 

spatially to each flight track using 1-minute aircraft data. We then average both the model and the observations to the model 286 

grid box. 287 

 288 

As the spatial and temporal coverage of aircraft campaigns is limited, we also include surface observations from 168 sites in 289 

the contiguous United States (CONUS) that are part of the IMPROVE aerosol network (Interagency Monitoring of Protected 290 

Visual Environments, http://vista.cira.colostate.edu/improve/) from 2012 and compare against 24-hour averaged model 291 

results. Black carbon and OC are measured using a PM2.5 size-selective filter-based thermal method in this network (Chow et 292 

al. 2007). We use a conversion factor of 1.8 from OC to OA mass (Malm and Hand 2007), which is the average of fresh and 293 

more aged OA in the model, to represent average surface conditions (note that the same OM:OC is applied to the model 294 

simulation when compared against IMPROVE).  295 

2.4 MODIS AOD observations 296 

Aerosol optical depth (AOD), the column total aerosol extinction, is directly proportional to the total mass concentration of 297 

aerosol in an atmospheric column (Levy et al., 2007, 2010) and is commonly measured by satellites. AOD measurements 298 
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capture all aerosol contributions and, therefore, do not provide a unique quantitative constraint on BBA, but they can be a 299 

used to understand spatial and interannual BB patterns. 300 

 301 

We use the MODIS Collection 6 level 3 daily product of satellite AOD retrievals at 550nm and 10km resolution (Levy et al. 302 

2013 & Sayer et al. 2014) from the Aqua platform and re-grid MODIS AOD from 1x1° to the model grid of 2x2.5° for 303 

further comparison with GEOS-Chem AOD. AOD retrievals from Aqua are used because the cross-over time of Aqua (early 304 

afternoon) typically coincides with peak burning activity and a well-mixed boundary layer. We use a merged AOD product 305 

(Dark Target-Deep Blue Combined Mean) from the Collection 6 MODIS data that combines ocean and vegetated land 306 

surface retrievals (Dark Target) and bright land surface retrievals (Deep Blue) to maximize coverage. Retrieved AOD (t) is 307 

estimated to be accurate to ±0.03 ± 0.05t over the ocean (Remer et al. 2005), to ±0.05 ± 0.15t over dark land surfaces (Levy 308 

et al. 2010), and to ±0.05 ± 0.20t over bright surfaces (Hsu et al. 2006; Sayer et al. 2013). The model was sampled at the 309 

satellite overpass time (1330 local time). In addition, we filter out AOD values from both MODIS and the model for which 310 

the cloud fraction from MODIS is greater than 80% to eliminate potential cloud contamination. 311 

3 Underlying emissions and dry matter uncertainty 312 

Figure 2 demonstrates the large differences in total annual BBA emissions estimated by the four different fire emission 313 

inventories from 2004-2016 for boreal North America (BONA, Canada and Alaska), the contiguous US (CONUS), and the 314 

globe. Emission totals over other large BB regions that are not the focus of this study (Amazon, Africa, and Asia) are shown 315 

in Fig. S1. We focus on BC and OC (note that inventories provide OC, not OA) emissions in our analysis, but also provide a 316 

summary of CO for context, which generally follows the trends observed for OC (as does NOx, not shown). Globally, 317 

emissions of BC and OC are highest in QFED2.4 (3.1Tg yr-1 and 28.3Tg yr-1, respectively) but emissions are also most 318 

variable in this inventory (i.e., more variability from 2004-2016 as evidenced by the wider range between the 25th and 75th 319 

percentiles) (Fig. 2). Average global annual emissions are smallest in GFED4s for BC, and, for OC and CO, FINN1.5 320 

emissions are smallest – though very similar to GFED4s for OC and similar to QFED for CO. Global mean total annual BC 321 

emissions differ by roughly a factor of 2.3 across the inventories while mean total annual OC emissions differ by less (~ a 322 

factor of 1.7). The inventories show a smaller range in mean total annual CO emissions (~ a factor of 1.1): from GFAS1.2 323 

(360Tg yr-1) to FINN1.5 (327Tg yr-1).  324 

 325 

The spread in BBA emissions across North America is larger than that seen globally. In BONA, mean annual BC and OC 326 

emissions show a factor of roughly five and four range, respectively, from the smallest, FINN1.5 (0.02Tg yr-1 and 0.4Tg yr-1, 327 

respectively), to the largest, GFAS1.2 (0.1Tg yr-1 and 1.7Tg yr-1, respectively). The relative magnitudes of the four 328 

inventories are consistent across species for CONUS with QFED2.4 largest (0.09Tg yr-1 and 1.3Tg yr-1, for BC and OC 329 

respectively), followed by GFAS1.2 (0.04Tg yr-1 and 0.5Tg yr-1, for BC and OC respectively), and then FINN1.5 (0.03Tg yr-330 
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1 and 0.2Tg yr-1, for BC and OC respectively) and GFED4s (0.01Tg yr-1 and 0.3Tg yr-1, for BC and OC respectively) – where 331 

the exception is that the mean OC emissions from GFED4s are slightly larger than those of FINN1.5. The range of values is 332 

very similar for BC and OC in CONUS (a factor of ~7 for BC and ~6 for OC). For CONUS, GFED4s, GFAS1.2, and 333 

QFED2.4 show similar spatial patterns; FINN1.5 continues to show very little fire influence. 334 

 335 

Multiple studies (e.g., Akagi et al. 2011; Alvarado et al. 2010; Urbanski et al. 2011) have identified uncertainties in EFs as a 336 

large source of uncertainty in BB emissions. Table 1 confirms that there are large differences in the EFs used in the four 337 

inventories explored here in North America, particularly in boreal and agricultural regions. For example, OC boreal forest 338 

EFs range from 7.8 to 9.6 g/kg DM and BC from 0.2 to 0.56g/kg DM. The EFs used in each inventory are shown spatially 339 

over North America in Fig. 3. Updated EFs have also become recently available – from a large recent EF compilation 340 

(Andreae 2019) to multiple studies focused on western fuels because of recent field intensives there. Some of this work has 341 

suggested that the PM EFs for western US fuels may be higher than those used in the inventories explored in this work (Liu 342 

et al. 2017). For example, the OA EFs measured by Liu et al. 2017 are roughly a factor of 1.5 to 4 larger than those used by 343 

the four inventories in this work. The uncertainty in EFs is associated with: measurement technique, variation in the 344 

experimental conditions used to measure species’ EFs in a laboratory, post-processing and aging that can change smoke 345 

composition rapidly but is likely not yet fully mechanistically understood, and poorly characterized combustion and fire 346 

types (Akagi et al. 2011). Measured EFs vary considerable from different fuels (Jolleys et al. 2014; McMeeking et al. 2009); 347 

however, only coarse vegetation types (e.g., boreal forests) are typically delineated in emission inventories, making it 348 

difficult to apply laboratory-measured EFs. Of relevance to this study, relatively few measurements of BB have been made 349 

in temperate regions, such as large portions of the US, where much of the BB is prescribed for land management but 350 

controlled to protect air quality (Akagi et al. 2011), conditions which may lead to substantially lower BBA emissions (Liu et 351 

al., 2017). Another potential source of uncertainty in EFs is that experimentally-derived OC EFs may represent SOA as well 352 

as POA; EFs presented in compilations (Akagi et al. 2011; Andreae and Merlet 2001) are generally calculated from fresh 353 

smoke where the quantity of SOA production is not well constrained.  354 

 355 

We quantify how the range in EFs contributes to the overall spread in BBA emissions.  First, we divide emissions by the 356 

applied EFs to estimate the underlying dry matter (DM) consumed across inventories in the same regions and years as our 357 

emissions analysis (Fig. 4) to isolate the importance of EFs. We note that the two-FD/BA inventories (GFED4s and 358 

FINN1.5) quantify DM consumption in the construction of the inventory; however, for the FRP-based inventories (QFED2.4 359 

and GFAS1.2) this division results in an effective DM consumed (FRE multiplied by an emission coefficient). We show DM 360 

calculated from BC emissions except for QFED2.4, where we use the effective DM calculated from the CO emissions so as 361 

to avoid any confounding issues with the aerosol strength scaling factors discussed briefly in Sect. 2.2. Across all regions, 362 

the range in DM tracks very closely the range observed across emissions, suggesting that the uncertainty in the underlying 363 

DM, not EFs, is the predominant factor in emissions uncertainty. We note that the large range in the DM consumed globally 364 
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alongside the similar global CO emissions indicates that large differences in the EFs of CO and different vegetation 365 

classifications offset the DM differences for this species. 366 

 367 

To further illustrate the role of EFs, Fig. 5 shows the time series of total annual emissions from 2004-2016 for GFED4s, 368 

alongside the estimated emissions obtained by applying the GFED4s EFs to the estimated DM for the other three original 369 

inventories (applied using each inventories’ respective vegetation mask). We then compare total annual emissions from the 370 

original inventories (dashed lines) with their GFED4s-EF counterparts (solid lines) and with the original GFED4s inventory 371 

from 2004-2016 (Fig. 5). While eliminating the variation in assumed EFs does constrict the range in emissions across the 372 

inventories across North America and globally, there remain substantial differences. This suggests that EFs are important but 373 

that underlying DM burned is the largest source of fire emissions uncertainty – consistent with previous work (Van Leeuwen 374 

et al. 2014). One reason for this is that substantial uncertainties are associated with using biome-averaged values to represent 375 

DM consumed for whole biomes (Veraverbeke et al. 2015; Van Leeuwen et al. 2014) and that satellite products and 376 

assumptions used to capture fuel burned vary significantly (van der Werf et al. 2017 and references therein).  377 

 378 

Furthermore, assuming that the EFs used in the four inventories are all equally reasonable values, we can estimate a much 379 

larger range in plausible fire emissions by multiplying the minimum and the maximum DM consumed across the inventories 380 

by the smallest and largest EFs (Table 1) using the GFED4s vegetation mask. Globally, this calculation suggests a plausible 381 

range that spans a factor of 24 for BC and 18 for OC compared to the inventory spread of 2.3 and 1.7, respectively. This 382 

suggests that using the range across these four inventories may be a modest estimate of the uncertainty in fire emissions.  383 

 384 

Interannual differences, especially in North America, are fairly consistent across the inventories except for 2014 (Fig. 5) 385 

where QFED2.4 trends down while the other three increase. It should be noted that an updated version of QFED (v2.5r1) 386 

does not show this decreasing trend in 2014. Globally and in CONUS, GFED4s, GFAS1.2, and QFED2.4 show similar 387 

interannual differences while FINN1.5 shows the greatest interannual variability and different maximum and minimum 388 

years. We note that 2012 is a fairly typical fire year (see Fig. 5), and much of the following analysis will focus on this year. 389 

 390 

We also explore the seasonality of BC and OC emissions represented in the inventories for BONA, CONUS, and globally 391 

across the same 13 years (Fig. 6). The seasonality, including relative magnitude, is generally consistent across regions and 392 

species. Some seasonal features (e.g., the October-November enhancement in BONA and the springtime enhancement in 393 

CONUS) are only visible in the three inventories that rely on active fire counts or FRP – FINN1.5, QFED2.4, and GFAS1.2 394 

– which is consistent with work suggesting that these methodologies pick up small fires better than GFED4s (Kaiser et al. 395 

2012). The fall peak in the boreal region is driven by fires in eastern British Columbia. The seasonal CONUS springtime 396 

peak is primarily associated with small fires (as identified in GFED4s), likely linked to agricultural and prescribed burns in 397 

the southeastern US. 398 
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4 How emissions uncertainty impacts mass concentrations and AOD 399 

Given the large range in fire emissions, we use observations to try to assess which, if any, inventory is most realistic. We use 400 

IMPROVE surface observations and two airborne campaigns to compare with model simulations driven by each inventory. 401 

As another constraint on aerosol abundance, we also compare model AOD with MODIS-observed AOD in North America. 402 

 403 

We test the model against IMPROVE observations of surface concentrations across the US and find significant variation in 404 

model skill across the inventories with QFED2.4 generally biased high and FINN1.5 low (Fig. 7 & 8). Seasonal comparisons 405 

of IMPROVE surface concentrations with simulated concentrations driven by the four different inventories show similar 406 

patterns across aerosol species but significant differences between the western and eastern US (Fig. 7). This is likely related 407 

to how well the inventories capture the differences in burning regimes in the western (predominantly wildfires) and eastern 408 

(mostly prescribed and agricultural burns) US (Brey et al. 2018). The southeastern US, in particular, is of interest to the 409 

public health and policy communities because a prevalence of agricultural and prescribed burning there, which dominates 410 

burned surface area (Nowell et al. 2018), may have a stronger impact on low altitude air quality in a relative sense than large 411 

wildfires that inject higher into the air. We also analyse the western and eastern US separately because, in the east, the 412 

magnitude of fire emissions is lower and BC, in particular, is dominated by anthropogenic sources. In the western US, 413 

GFED4s and GFAS1.2-driven concentrations of both BC and OA match the seasonality and magnitude of IMPROVE 414 

observations well. QFED2.4 is biased high, particularly during the peak in the wildfire season (August-September). 415 

FINN1.5-based concentrations are biased low and are virtually indistinguishable from simulations with no BB. In the eastern 416 

US, because fire is a smaller relative source of carbonaceous aerosol, there is less of a spread between the simulations. All 417 

inventories other than QFED2.4 do a reasonable job capturing observations with a general tendency for simulated BC and 418 

OA to be a bit too high, suggesting an overestimate in anthropogenic emissions in the eastern US. However, the 25th to 75th 419 

percentile bars on the observations show that across the US for BC and in the west for OA, virtually all the simulations fall 420 

within this range of the measurements. QFED2.4 overestimates OA well beyond the 25th to 75th percentile range in the 421 

eastern US, starting with the northern hemispheric wildfire season in May and continuing the overestimate through the end 422 

of the calendar year.  423 

 424 

Figure 8 illustrates the ability of these simulations to capture the spatial distribution of observed surface concentrations 425 

during the fire season (May-September). Similar skill is seen across both aerosol species for GFED4s and GFAS1.2 (R2 for 426 

BC, 0.25 and 0.24, respectively, and, for OA, 0.36 and 0.29, respectively), but FINN1.5 matches observed BC somewhat 427 

better than OA (R2 of 0.23 and 0.034, respectively) and QFED2.4 matches OA somewhat better than BC (R2 of 0.46 versus 428 

0.20). Consistent with the seasonal IMPROVE analysis, simulations driven by GFED4s, QFED2.4, and GFAS1.2 have 429 

greater skill in the western US than the eastern US while the FINN1.5-driven simulation performs better in the east. 430 

QFED2.4 is generally biased high, especially in the Pacific Northwest and, to some extent, in the southeastern US. However, 431 
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QFED2.4 also has the highest skill in reproducing the spatial patterns of the highest concentrations when compared against 432 

the 95th percentile of observed concentrations (not shown).  433 

 434 

The ability of models to accurately represent aerosol concentrations aloft is also important for both air quality and climate, 435 

and we use two fire-influenced aircraft campaigns, DC3 and ARCTAS, to explore the model skill in this dimension. These 436 

campaigns provide observations from two very different fire regimes across North America (See Sect. 2.3) – DC3 in the 437 

central/southeastern US and a subset of ARCTAS focusing on boreal Canada. In addition to median vertical profiles for both 438 

BC and OA for each campaign, we also show median vertical profiles filtered by the top 25th percentile of acetonitrile 439 

(equivalent to a concentration cut off of 167 ppt for DC3 and 213 ppt for boreal ARCTAS), a useful BB tracer that allows us 440 

to investigate the most BB-influenced data.  441 

 442 

We find that concentrations driven by the various inventories perform somewhat differently against each of the campaigns 443 

(Fig. 9 & 10). Across both campaigns, QFED2.4-driven modelled concentrations are generally biased high, particularly 444 

towards the surface, while FINN1.5 simulations are nearly always biased low (Fig. 9 & 10). QFED2.4 has been constrained 445 

to observed AOD, so one could assume that it would perform best. We find that after adjusting the QFED2.4 emissions 446 

downward to account for our different OM:OC ratio, QFED2.4 simulations of OA do match observed concentrations fairly 447 

well; however, BC concentrations remain much too high. This suggests that the QFED2.4 biome-specific adjustment factors 448 

should not be applied to BC and that the scaling factor applied in this inventory to match AOD constraints may be 449 

accounting for errors in other properties (i.e. optical properties or background aerosol), not fire emissions. This is consistent 450 

with recent work showing that even when observed and modelled concentrations agree in the Amazon, observed and 451 

modelled AOD sometimes do not (Reddington et al., 2019). Over the continental US (Fig. 9) QFED2.4 emissions result in 452 

the highest concentrations of OA and BC; however, in the boreal region (Fig. 10), simulations driven by GFAS1.2 (as well 453 

as GFED4s to a lesser extent) produce more smoke than QFED2.4, consistent with the relative emissions magnitudes show 454 

for these regions in Figures 2 & 5. As a result, both GFAS1.2 and GFED4s significantly overestimate both BC and OA 455 

concentrations towards the surface in the boreal region.  456 

 457 

In DC3, all four inventories, and even the noBB run, overestimate the BC median vertical profile, suggesting that 458 

anthropogenic emissions are overestimated in the southeastern US, consistent with the IMPROVE analysis. This is 459 

reinforced by the DC3 BC vertical profile filtered for fire influence where three of the inventories (GFED4s, FINN1.5, and 460 

GFAS1.2 to a lesser extent) match observations quite well. Similarly, in boreal ARCTAS, all the inventories but FINN1.5 461 

overestimate BC concentrations, especially towards the surface.  462 

 463 

This analysis suggests that anthropogenic emissions of BC may be overestimated throughout the U.S., that the two FRP-464 

based inventories and GFED4s, to some extent, may overestimate boreal emissions, and that FINN1.5 emissions are too low 465 
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throughout, but particularly in boreal regions. In concert with the analysis at IMPROVE sites, this indicates that GFED4s-466 

driven simulations generally provide the best match to observations, but with substantial under/over-estimates in some 467 

regions and species.  468 

 469 

Our comparisons with in situ mass concentrations, both at the surface and aloft, consistently suggest that the FINN1.5 470 

inventory substantially underestimates fires over North America. Scaling relationships between fire activity and dry matter 471 

consumed should be re-visited for this inventory for North American fuels. One likely cause of the underestimation of North 472 

American fires by FINN1.5 is that the MODIS Land Cover Type (LCT) data used to define burned ecosystems assigns 473 

shrubs where other classifications assign forest, leading to lower fuel burned estimates. A second likely contributor to this 474 

underestimate is that the way in which burned area is calculated from active fire counts underestimates large wildfires, which 475 

is particularly relevant for the western US. This underestimation was also seen in earlier work by Pfister et al. 2011, using 476 

FINN1.5 to explore CO from fires in California. 477 

 478 

Some of the disagreement aloft with the baseline model across inventories may be related to the model failure to capture 479 

injection heights for some fires which loft aerosols above the boundary layer. This is not represented in the simulations 480 

shown here, but typical approaches put too much aerosol at the top of boundary layer (~2km) (Zhu et al. 2018) (See Fig. S3 481 

for an injection height sensitivity test). It is also worth noting that sampling in the DC3 campaign was biased towards 482 

convective outflow given campaign goals, and it is possible that the model may also have errors in convection and 483 

convective removal. 484 

 485 

Figure 11 shows the spatial distribution of average AOD over North America during the northern hemispheric fire season 486 

(May – September) in both 2012 and 2014 compared to MODIS-observed AOD. In general, the model simulation 487 

underestimates observed AOD, which may result from a combination of errors in model optics, background aerosol, or cloud 488 

contamination in the MODIS product. We note that Reddington et al. (2019) similarly show that their model underestimates 489 

AOD, even when it captures the observed mass concentrations of PM over the Amazon. Here we focus on the fire-driven 490 

AOD features.  Across both years, FINN1.5 AOD is low compared to MODIS in CONUS and does not capture the fires in 491 

BONA. GFED4s and GFAS1.2-driven AOD look quite similar to each other across years and include the large fire 492 

signatures in BONA that MODIS observes. AOD driven by QFED2.4 identifies the boreal, and potentially Pacific 493 

Northwest, fire signatures in 2012 but misses the large boreal hot spot in 2014 that is evident in both MODIS-observed and 494 

GFED4s and GFAS1.2 AOD.  495 
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5 Secondary organic aerosol from biomass burning and its implications 496 

Previous simulations in Sect. 4 included the GEOS-Chem default minor source of SOA from fires. The recent NOAA Fire 497 

Lab 2016 experiment (Lim et al., 2019) reported large increases in OA mass when fire emissions were oxidatively aged, as 498 

have many other laboratory studies; though, this has not been observed in the majority of field campaigns (see Sect. 1). 499 

While uncertainties on this potential source of additional OA mass are large, we test the sensitivity of our results to this 500 

additional source.  The default scheme ((0.013 times CO emissions) (Kim et al. 2015; Cubison et al. 2011)) results in a mean 501 

annual global source of BB SOA (~5 Tg yr-1) from GFED4s, which is at the lower range of potential annual global fire SOA 502 

source amounts reported in Shrivastava et al. (2017). We implement a new parameterization from the NOAA Fire Lab 2016 503 

lab studies for SOA production from BB based on Lim et al. (submitted) (2.48 times POA emissions). This new scheme 504 

produces a mean annual global GFED4s source of BB SOA of ~41 Tg yr-1, which is roughly in the middle of estimates 505 

reported in Shrivastava et al. 2017. In principle, such a large additional source of OA should be distinguishable from 506 

observations. However, our previous analysis using the default scheme demonstrates that the range in estimated POA is so 507 

large that it is challenging to say how much additional OA mass from SOA from BB would be consistent with the 508 

observations. In particular, even with negligible SOA the model already matches observed OA with at least one inventory 509 

(QFED2.4). With this new parameterization, we show a roughly order of magnitude increase in the BB SOA burden (and 510 

thus more than a doubling of total OA) from GFED4s in 2012 with similar increases across the other inventories. Figure 12 511 

shows how this new SOA impacts model-observation agreement with the DC3 and ARCTAS campaigns. The QFED2.4 512 

simulations now overestimate OA across campaigns while FINN1.5 simulations improve against observations modestly, 513 

consistent with its smaller BB OA burdens to start with. It is possible that the AOD-based scaling of QFED2.4 emissions 514 

previously compensated for underestimated SOA. With the new SOA parametrization, GFED4s and GFAS1.2 simulations 515 

are better able to capture the magnitude of the mean concentrations observed during DC3.  However, for boreal ARCTAS, 516 

GFED4s and GFAS1.2-driven simulations with the default scheme captured observed OA concentrations and indeed 517 

overestimated (Fig. 10); thus, this new large source of fire SOA exacerbates this overestimate. Our analysis of observations 518 

over North America can neither preclude nor confirm the presence of a large source of SOA from fires, given the uncertainty 519 

in POA emissions over the region. This additional SOA source is not included in the assessment of air quality and radiative 520 

impacts of fires in Sections 6 and 7. 521 

6 How emissions uncertainty translates to air quality and fire PM exposure 522 

We next explore how uncertainty in fire emissions affects estimates of air quality impacts. We show the differences in fire 523 

PM2.5 (calculated as the sum of the BB-only BC and OA mass fractions for aerosol under 2.5 microns) exposure spatially 524 

(Fig. S5) and quantify the range in population-weighted fire PM2.5 exposure in 2012 across North America (Canada and 525 

CONUS only) given by the four inventories. We calculate fire PM2.5 exposure by averaging surface concentrations of the 526 

sum of BC and OA from BB across North America in 2012. We then calculate population-weighted annual fire PM2.5 for 527 
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each inventory by using population data from the Gridded Population of the World, Version 4 (GPWv4), created by the 528 

Center for International Earth Science Information Network (CIESIN) and available from the Socioeconomic Data and 529 

Applications Center (SEDAC) (Accessed 6 February 2019). We linearly interpolate the gridded UN-adjusted population 530 

count dataset, which has a native resolution of 30 arc-seconds and provides population estimates for 2000, 2005, 2010, 2015, 531 

and 2020, to 2012 and grid the data to the GEOS-Chem nested grid (0.5x0.625°). Figure 13 shows that the range in BBA 532 

emissions carries forward to uncertainty in 2012 North America fire annual mean PM2.5 exposure with a range of 0.5 – 1.6µg 533 

m-3. The World Health Organization (WHO) air quality guidelines for annual mean PM2.5 are 10 µg m-3, and the US EPA 534 

annual standard for PM2.5 is 12 µg m-3. Thus, the range in fire PM2.5 exposure across the inventories in North America is 535 

equivalent to roughly 10% of these air quality standards. The population-weighted mean PM2.5 exposure due to fires in North 536 

America varies by about a factor of two between different years, reflecting the location and intensity of different fire events 537 

(see Fig. S6 and S7 for an analysis of 2012 – 2014 at 2x2.5º).  538 

Because the 24-hour average PM2.5 reflects acute exposure, we also looked at the differences in this metric when driven by 539 

each inventory. Over the United States, the simulated daily PM2.5 from fires in 2012 ranges up to 1778 µg m-3 as simulated 540 

by QFED2.4 while FINN1.5-driven simulations show the smallest maximum BBA concentration at 55 µg m-3. A number of 541 

regions experience well over the PM2.5 daily standard (35 µ gm-3) due to fires alone for more than ten days a year, and in 542 

some locations for several weeks (see Fig. S8), highlighting smoke as a major cause for air quality degradation in the United 543 

States. These regions and the magnitudes of daily fire influence are highly variable year to year. 544 

7 Impacts on the direct radiative effect 545 

Across North America and globally, we compare the mean annual top-of-atmosphere (TOA) all-sky DRE of BB-only BC 546 

and OA driven by each of the inventories with the OA DRF reported in the Fifth Assessment Report (AR5) of the 547 

Intergovernmental Panel on Climate Change (IPCC). We quantify the annual mean BBA DRE in 2012 (Fig. 14) and the 548 

Northern Hemispheric fire season (May – September) average DRE in each year from 2012 to 2014 (Fig. S9) to investigate 549 

interannual variability. The differences across inventories seen in the sections above translate to the large ranges in DRE 550 

estimated for BONA and CONUS with smaller, but still significant, ranges seen globally.  551 

 552 

For 2012, GFAS1.2-driven global DRE is largest in absolute magnitude for BBA (-0.11 W/m2) with FINN1.5 smallest (-553 

0.048 W/m2) (See Table S1 for underlying values). These values are significantly more negative than previous estimates of 554 

BBA DRE, which ranged from -0.01 to 0.13 W/m2 (Rap et al. 2013; Ward et al. 2012). Previous work suggests that the 555 

whitening of fire-generated brown carbon (BrC) may limit the global absorption from BrC (Forrister et al., 2015; Wang et 556 

al., 2016).  Wang et al. (2018) estimate a modest global mean DRE of BrC of +0.048 Wm-2 when accounting for this 557 

whitening; however, uncertainties on the magnitude and the evolution of absorption of BrC remain large. We treat OA as 558 



 

18 
 

scattering here, which may lead to a positive bias in the total DRE of carbonaceous aerosol from smoke, thus we focus on the 559 

range in values associated with the use of various fire inventories rather than the absolute magnitude of the DRE. The range 560 

across the 2012 annual global mean inventory-driven BBA DRE is -0.062 W/m2, which is comparable to the magnitude of 561 

the direct radiative forcing of OA (-0.09 W m-2) reported in the in AR5 (IPCC 2013). Only some fires contribute to the DRF, 562 

but we have shown here that the uncertainty in BBA DRE as represented by the spread in values driven by different 563 

inventories is on a comparable scale to the anthropogenic influence on OA forcing. While we have not assessed the annual 564 

global mean BBA DRE across other years, we have quantified the northern hemispheric fire season BBA DRE from 2012-565 

2014, which show generally similar trends across years with some variability; larger boreal fire years generally affect the 566 

DRE driven by GFED4s and GFAS1.2 the most (see 2014 in Fig. S9). 2014 also appears to be an outlier year where 567 

GFED4s and GFAS1.2-driven OA DRE is larger than QFED2.4-driven DRE across both BONA and CONUS and also 568 

globally, consistent with our emissions analysis (See Fig. 5).The IPCC estimate of aerosols’ contributions to the DRF only 569 

includes one set of historical fire emissions and one for each RCP – this choice allows for better intermodal comparisons but 570 

masks underlying uncertainty from fire emissions, which we have shown here to be important.  571 

8 Conclusions 572 

Most models do not test basic uncertainty associated with fire emissions both in air quality and climate studies – our work 573 

suggests that this uncertainty is large and may substantially impact our understanding of fire impacts. We note that, while we 574 

refer to the spread across these inventories as the “uncertainty” in emissions, additional factors, not represented by any of 575 

these inventories, may increase the true uncertainty in the estimated emissions beyond what we have shown in this work. We 576 

provide an evaluation of this uncertainty by comparing multiple, commonly-used fire emission inventories (GFED4s, 577 

FINN1.5, QFED2.4, and GFAS1.2) that have become available in the last five to ten years. We show that the four 578 

inventories perform differently depending on species, location, and season. We also calculate that average BC and OC 579 

emissions differ by roughly a factor of five and four, respectively, across the inventories in BONA. The range in BC and OC 580 

emissions in CONUS is even larger (a factor of ~7 and 6, respectively). Global ranges in BC emissions are smaller than 581 

those in North America (~2.3) with a somewhat more modest spread (~1.7) in OC emissions, possibly because of emission 582 

factor differences. We also show that dry matter, not emission factor, differences are the driving force for emissions 583 

variation across inventories.  584 

 585 

With such large differences in emissions, we test which of these inventories drives model simulations closest to observations 586 

over North America. We show that modeled concentrations both at the surface and aloft show variable skill across 587 

inventories when compared to in situ observations (IMPROVE, DC3 and ARCTAS campaigns) with FINN1.5 biased low for 588 

BC and OA and QFED2.4 biased high against observed BC. GFED4s and GFAS1.2-driven AOD also do a better job 589 

matching MODIS-observed AOD over the regions, in general and with specific features, than FINN1.5 and QFED2.4. 590 



 

19 
 

QFED2.4 emissions may be biased high because they were scaled up to ensure that the GEOS model AOD simulation 591 

matches satellite-observed AOD, potentially mis-attributing biases in aerosol extinction efficiency and SOA formation in the 592 

GEOS model to emission; MODIS AOD has also been shown to be high in some environments (Lapina et al. 2011). That 593 

these enhancement factors are too high is further reinforced by the fact that, after adjusting the QFED2.4 emissions 594 

downward to account for our different OM:OC ratio, QFED2.4 simulations of OA match observed concentrations fairly well 595 

across campaigns – while BC concentrations remain much too high. The assumptions that FINN1.5 uses to compute burned 596 

area from active fire counts likely contribute to its low bias and should be revisited, especially for regions with large 597 

wildfires (e.g., boreal Canada and the western US). We also show that a laboratory-based parameterization for fire SOA, 598 

scaled from fire POA emissions, does improve model agreement with observations in some regions. However, from our 599 

comparisons, the range in POA emissions makes it challenging to discern whether SOA from fires is significant. 600 

 601 

This range in fire emissions also carries through to uncertainties in the air quality and radiation impacts of fires, which we 602 

have shown to be large and significant. Over North America depending on the inventory used, large differences in both the 603 

spatial extent and magnitude of BBA-only annual and daily surface concentrations and also in population-weighted annual 604 

fire PM2.5 exposure (0.5 - 1.6 µg m-3 for 2012) arise. We have also shown that fire emissions uncertainty produces a 605 

considerable envelope in global BBA DRE (-0.062 W m-2), roughly comparable to the direct radiative forcing of OA (-0.09 606 

W m-2) reported in AR5.  607 

 608 

Additional evaluation of satellite-based fire emission inventories, particularly in other large BB source regions, would help 609 

to provide insight into fire emissions uncertainty. Observations at all scales (surface, aloft, and satellite) are needed to better 610 

constrain our understanding of fire emissions and processing. To bridge fire emissions and subsequent impacts, additional 611 

investigation of uncertainties in fire aerosol aging and processing (e.g., injection heights, mixing state, SOA formation, etc.) 612 

is needed. Our work suggests that emissions uncertainty is a major factor in our ability to model the air quality and climate 613 

impacts of fires and should be incorporated into modeling studies of both. 614 
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 1176 

Emission factors across inventories and vegetation types (g species/kg dry matter) 

Types: 

BC OC 

GFED4s FINN1.5 QFED2.4AM GFAS1.2AM GFED4s FINN1.5 QFED2.4AM GFAS1.2AM 

temp 

forest 0.5AM  0.56An 2.52 0.56 0.56 9.6AM 7.6An 28.38* 9.14 9.1 

boreal 

forest 0.5AM   0.2Mc 2.52 0.56 0.56 9.6AM   7.8Mc 28.38* 9.14 9.1 

sav, 

grass, 

shrub 0.37Ak  

0.37 

(SG)/ 

0.5 

(WS)Ak 0.86 0.48 0.46 2.62Ak 

2.62 

(SG)Ak/ 

6.6(WS)Mc 4.22* 3.40 3.2 

tropical 

forests 0.52Ak   0.52Ak   1.65 0.66 0.57 4.71Ak 4.71Ak 8.97* 5.20 4.3 

ag 0.75Ak 0.69AM -- -- 0.42 2.3Ak 3.3AM -- -- 4.2 

Table 1: Emissions factors used in each inventory. Superscripted AM is from Andreae and Merlet 2001, Ak is from Akagi et al. 1177 
2011, An is Andreae and Rosenfeld 2008, and Mc is McMeeking et al. 2009. Note that QFED2.4 and GFAS1.2 EFs shown here for 1178 
BC and OC are entirely from Andreae and Merlet 2001. *The first QFED2.4 column shows the underlying EFs (shown in the 1179 
second QFED2.4 column) multiplied by their biome-specific enhancement factor. We also adjust this factor down by the ratio of 1180 
1.4 (the OM:OC ratio used in the GEOS model) to the average OM:OC ratio use in GEOS-Chem in 2012 (see Section 2.2 for 1181 
details). 1182 



 

38 
 

 1183 

 1184 
Figure 1: Flight tracks of the ARCTAS and DC3 aircraft campaigns. The red box indicates the boreal region of the ARCTAS 1185 
flights used here. 1186 
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 1187 
Figure 2: Boxplot summaries of each inventory’s total annual emissions of BC, OC, and CO globally and for boreal North 1188 
America and CONUS from 2004-2016. Diamonds indicate means. The horizontal bar is the median. The box shows the 25th to the 1189 
75th percentile, and the whiskers show 1.5 times the interquartile range. Points outside 1.5 times the interquartile range are shown 1190 
as dots. GFED4s emissions are in red, FINN1.5 in orange, QFED2.4 in light blue, and GFAS1.2 in dark blue. 1191 

 1192 
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 1193 
Figure 3: Emissions factors in g species/ kg DM (shown only for vegetated land) for each inventory over North America; BC shown 1194 
on left, OC shown on right. 1195 

 1196 

 1197 

 1198 
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 1199 
Figure 4: Boxplot summary of each inventory’s underlying total annual dry matter (DM) globally and for boreal North America 1200 
and CONUS. The conventions of this boxplot are described in Fig. 2. GFED4s DM are in red, FINN1.5 in orange, QFED2.4 1201 
effective DM in light blue, and GFAS1.2 effective DM in dark blue. 1202 

 1203 
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 1204 
Figure 5: Annual emissions scaled to GFED4s emissions factors from 2004-2016. The original inventory emissions from FINN1.5 1205 
(orange), QFED2.4 (light blue), and GFAS1.2 (dark blue) are shown as dashed lines while their annual values using GFED4s (red) 1206 
emissions factors are shown as solid lines. 2012 is marked with a gray rectangle. 1207 

 1208 
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 1209 
Figure 6: Seasonal mean BC and OC emissions from 2004-2016 for boreal North America, CONUS, and the globe. GFED4s 1210 
emissions are in red, FINN1.5 in orange, QFED2.4 in light blue, and GFAS1.2 in dark blue. 1211 

 1212 
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 1213 
Figure 7: 2012 monthly comparison of simulated and observed median surface concentrations at IMPROVE sites in CONUS split 1214 
between east and west at -104 degrees longitude. Observations in black are compared with concentrations simulated using 1215 
GFED4s in red, FINN1.5 in orange, QFED2.4 in light blue, GFAS1.2 in dark blue, and a simulation with no biomass burning 1216 
(noBB) in gray. Error bars show the 25th to 75th percentile range of observations. Note the different scales among panels. 1217 

 1218 



 

45 
 

 1219 
Figure 8: Fire Season (May-September) 2012 mean surface BC and OA concentrations in CONUS with the model driven by each 1220 
inventory. Overlaid (circles) show mean observed surface concentrations at IMPROVE sites.   1221 
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 1222 

 1223 
Figure 9: The median vertical profiles of BC and OA mass concentrations (shown in 0.5km bins) from the DC3 campaign. 1224 
Observations (black) are compared with simulations using the four fire inventories– GFED4s (red), FINN1.5 (orange), QFED2.4 1225 
(light blue), and GFAS1.2 (dark blue) – and a simulation with no fire emissions (noBB) in gray. Error bars show the 25th – 75th 1226 
percentile range of measurements averaged in each vertical bin. The number of observations in each bin is given on the right side 1227 
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of each panel. The left column shows total results for the campaign. The right column shows results filtered for the top 25th 1228 
percentile of observed acetonitrile. Note the different scale between BC panels. 1229 

 1230 
Figure 10:  The median vertical profiles of BC and OA mass concentrations (shown in 0.5km bins) from the boreal part of the 1231 
ARCTAS campaign. Observations (black) are compared with simulations using the four fire inventories– GFED4s (red), FINN1.5 1232 
(orange), QFED2.4 (light blue), and GFAS1.2 (dark blue) – and a simulation with no fire emissions (noBB) in gray. Error bars 1233 
show the 25th – 75th percentile range of measurements averaged in each vertical bin. The number of observations in each bin is 1234 
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given on the right side of each panel. The left column shows total results for the campaign. The right column shows results filtered 1235 
for the top 25th percentile of observed acetonitrile. Note the different scale among panels. 1236 

 1237 

 1238 
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Figure 11: The mean Northern Hemispheric fire season (May – September) 2012 and 2014 simulated AOD at 550nm sampled to 1239 
and compared with daily MODIS-observed AOD from the Aqua satellite. 1240 

 1241 

 1242 
Figure 12: Bar plots of mean OA mass concentrations from the DC3 (left panel) and boreal ARCTAS (right panel) campaigns. 1243 
Observations (black) are compared with simulations using the four fire inventories– GFED4s (red), FINN1.5 (orange), QFED2.4 1244 
(light blue), and GFAS1.2 (dark blue). The hatched version of each inventory denotes OA mass concentrations using the baseline 1245 
fire SOA scheme while the full color of each shows OA with the new SOA from fire parameterization.  1246 

 1247 

 1248 

 1249 
Figure 13: Bar plots of the 2012 annual mean population-weighted fire PM2.5 exposure across the four inventories (GFED4s in 1250 
red, FINN1.5 in orange, QFED2.4 in light blue, and GFAS1.2 in dark blue) across North America (Canada and CONUS only) at 1251 
nested resolution. See Figure S6 for an analysis from 2012 – 2014 and for bar plots split out for Canada and the US at 2x2.5. 1252 
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 1253 
Figure 14: Top-of-atmosphere all-sky direct radiative effect of BB-only BC (top panel) and OA (bottom panel) averaged over 2012 1254 
in BONA, CONUS, and globally. GFED4s is shown in red, FINN1.5 orange, QFED2.4 light blue, and GFAS1.2 dark blue. (The size 1255 
of BC versus OA panels is not to scale). 1256 
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