## 1 Supplement of

Molecular compositions and optical properties of dissolved brown carbon in
smoke particles illuminated by excitation-emission matrix spectroscopy and
Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS)
analysis

6 Jiao Tang et al.

- 7 Correspondence to: Gan Zhang (Zhanggan@gig.ac.cn) and Jun Li (junli@gig.ac.cn)
- 8
- 9

### 10 **Contents:**

- 11 1. **S1**.Data analysis.
- 12 2. **S2**.Quality control
- 13

### 14 S1. Data analysis.

### 15 *Emission factors*

Fuel-based emission factors were obtained by the carbon mass balanceformula:(Cui et al., 2018;Cui et al., 2017)

18 
$$EF_{i} = \frac{\Delta X_{i}}{\Delta CO_{2}} \cdot \frac{M_{i}}{M_{CO_{2}}} \cdot EF_{CO_{2}}$$
(1)

Here,  $\text{EF}_i$  and  $EF_{CO_2}(\text{g kg}^{-1} \text{ fuel})$  are the emission factor for species *i* and CO<sub>2</sub>, respectively.  $\Delta X_i$  and  $\Delta CO_2$  (mol m<sup>-3</sup>), as well as  $M_i$  and  $M_{CO_2}(\text{g mol}^{-1})$  are the background-corrected concentrations and molecular weights of species *i* and CO<sub>2</sub>, respectively.

Among the above formula, the CO<sub>2</sub> emission factor  $(EF_{CO_2})$  were calculated as:

24 
$$EF_{CO_2} = \frac{C_F}{c(C_{CO}) + c(C_{CO_2}) + c(C_{PM})} \cdot c(CO_2) \cdot M_{CO_2}$$
(2)

Here,  $C_F$  (g C kg<sup>-1</sup> fuel) are the mass of carbon in 1kg diesel fuel;  $c(C_{CO})$ ,  $c(C_{CO2})$ and  $c(C_{PM})$  (g C m<sup>-3</sup>) are the corresponding flue gas mass concentrations of carbon, respectively;  $c(CO_2)$  (mol m<sup>-3</sup>) is the molar concentration of CO<sub>2</sub>.

28

### ESI FT-ICR MS data processing

Custom software was applied to calculate all mathematically possible formulas 29 for all ions with a signal-to-noise ratio > 10 using a mass tolerance of  $\pm$  1.5 ppm as 30 described elsewhere (Mo et al., 2018;Lin et al., 2015). Formula calculator was 31 performed using the following constraints:  $C \le 45$ ,  $H \le 60$ ,  $O \le 20$ ,  $N \le 3$ , and  $S \le 2$ . 32 Identified formulas with isotopomers (i.e., <sup>13</sup>C, <sup>18</sup>O, or <sup>34</sup>S) were not discussed in this 33 paper. These identified molecular formulas were classified into four main compound 34 groups based on their composition: CHO, CHON, CHOS, and CHONS compounds. 35 For the chemical formula C<sub>c</sub>H<sub>h</sub>O<sub>o</sub>N<sub>n</sub>S<sub>s</sub>, the double bonds equivalent (DBE) used as 36 measure of unsaturated level in a molecule was calculated using the following 37 equation: DBE = (2c + 2 - h + n)/2, and an aromaticity index (AI) used to estimate the 38

fraction of aromatic and condensed aromatic structures was calculated to estimate the 39 fraction of aromatic and condensed aromatic structures from the formulas:  $AI_{mod} = (1$ 40 + c - 0.50 - s - 0.5h)/(c - 0.50 - s - n) (Song et al., 2018). Commonly, formulae are 41 as follows: no aromatic (AI<sub>mod</sub> < 0.5), aromatic (AI<sub>mod</sub> > 0.5) and condensed aromatic 42 (AI<sub>mod</sub>  $\geq$  0.67). The van Krevelen (VK) diagram was a useful tool which could 43 44 provide a visual graphic display of compound distribution (Lv et al., 2016).

From the molecular formula assignments, the intensity-averaged calculations for 45 46 each sample can be determined by the following equations: (Mo et al., 2018; Song et al., 2018;Lv et al., 2016) 47

48 
$$O/Cw = \Sigma(w_i * o_i) / \Sigma(w_i * c_i)$$
(3)

49 
$$H/Cw = \Sigma(w_i * hi) / \Sigma(w_i * c_i)$$
(4)

50 
$$DBEw = \Sigma(w_i * DBE_i) / \Sigma w_i$$
 (5)

51 
$$AI_{mod,w} = \Sigma(w_i * AI_{mod,i}) / \Sigma w_i$$
 (6)

Where,  $w_i$  is the relative abundance for each individual molecular formula, *i*.

#### 53 **S2.** Quality control

In this study, the field blank values of TC (TC=OC+EC), WSOC, and MSOC for 54 ambient blank sample were 0.75  $\pm$  0.02 µg C cm<sup>-2</sup>, 1.2  $\pm$  0.21 µg C cm<sup>-2</sup>, 0.48 µg C 55 cm<sup>-2</sup>, respectively. The standard deviation of parallel experiments based on smoke 56 particle samples were 0.01 µg C cm<sup>-2</sup>, 0.14 µg C mL<sup>-1</sup>, 0.16 µg C mL<sup>-1</sup> for TC, WSOC, 57 and MSOC, respectively. We also corrected the procedural blank concentrations of 58 WSOC and MSOC in each sample. The total recoveries of WSOC and MSOC to OC 59 were 112 %  $\pm$  14 % for biomass burning, 101 %  $\pm$  20 % for coal combustion, and 100 % 60 61  $\pm$  26 % for vehicle emission.

The value of absorbance for field blank samples at 365 nm was  $0.0009 \pm 0.00008$ , 62 much less than that of smoke samples. The standard deviation of parallel experiments 63 of absorbance at 365 nm for instrument and method were 0.00006 and 0.0008, 64 respectively. Further, no obvious peak was found in the fluorescence spectrum of field 65 blank samples. The fluorescence spectrum of samples were measured with their 66 absorbance lower than 1. 67

### 69 **Reference:**

- Chen, Q., Ikemori, F., Nakamura, Y., Vodicka, P., Kawamura, K., and Mochida, M.: Structural and
  Light-Absorption Characteristics of Complex Water-Insoluble Organic Mixtures in Urban
  Submicrometer Aerosols, Environ. Sci. Technol., 51, 8293-8303,
  https://doi.org/10.1021/acs.est.7b01630., 2017.
- Chen, Y., Ge, X., Chen, H., Xie, X., Chen, Y., Wang, J., Ye, Z., Bao, M., Zhang, Y., and Chen, M.:
- Seasonal light absorption properties of water-soluble brown carbon in atmospheric fine particles
  in Nanjing, China, Atmos. Environ., 230-240, https://doi.org/10.1016/j.atmosenv.2018.06.002,
  2018.
- Cui, M., Chen, Y., Feng, Y., Li, C., Zheng, J., Tian, C., Yan, C., and Zheng, M.: Measurement of
   PM and its chemical composition in real-world emissions from non-road and on-road diesel
- 80 vehicles, Atmos. Chem. Phys., 17, 6779-6795, https://doi.org/10.5194/acp-17-6779-2017, 2017.
- 81 Cui, M., Chen, Y., Zheng, M., Li, J., Tang, J., Han, Y., Song, D., Yan, C., Zhang, F., Tian, C., and
- Zhang, G.: Emissions and characteristics of particulate matter from rainforest burning in the
  Southeast Asia, Atmos. Environ., 191, 194-204, https://doi.org/10.1016/j.atmosenv.2018.07.062,
  2018.
- Li, M., Fan, X., Zhu, M., Zou, C., Song, J., Wei, S., Jia, W., and Peng, P.: Abundances and light
  absorption properties of brown carbon emitted from residential coal combustion in China,
  Environ. Sci. Technol., 53, 595-603, https://doi.org/10.1021/acs.est.8b05630, 2018.
- 88 Lin, P., Laskin, J., Nizkorodov, S. A., and Laskin, A.: Revealing Brown Carbon Chromophores
- 89 Produced in Reactions of Methylglyoxal with Ammonium Sulfate, Environ. Sci. Technol., 49,

90 14257-14266, https://doi.org/10.1021/acs.est.5b03608, 2015.

- 91 Liu, J., Mo, Y., Ding, P., Li, J., Shen, C., and Zhang, G.: Dual carbon isotopes ((14)C and (13)C)
- 92 and optical properties of WSOC and HULIS-C during winter in Guangzhou, China, Sci. Total
- 93 Environ., 633, 1571-1578, https://doi.org/10.1016/j.scitotenv.2018.03.293, 2018.
- 94 Lv, J., Zhang, S., Wang, S., Luo, L., Cao, D., and Christie, P.: Molecular-Scale Investigation with

95 ESI-FT-ICR-MS on Fractionation of Dissolved Organic Matter Induced by Adsorption on Iron

- 96 Oxyhydroxides, Environ. Sci. Technol., 50, 2328-2336, https://doi.org/10.1021/acs.est.5b04996,
- 97 2016.

- 98 Mo, Y., Li, J., Jiang, B., Su, T., Geng, X., Liu, J., Jiang, H., Shen, C., Ding, P., Zhong, G., Cheng,
- 99 Z., Liao, Y., Tian, C., Chen, Y., and Zhang, G.: Sources, compositions, and optical properties of
- 100 humic-like substances in Beijing during the 2014 APEC summit: Results from dual carbon
- 101 isotope and Fourier-transform ion cyclotron resonance mass spectrometry analyses, Environ.
- 102 Pollut., 239, 322-331, https://doi.org/10.1016/j.envpol.2018.04.041, 2018.
- 103 Park, S. S., and Yu, J.: Chemical and light absorption properties of humic-like substances from
- biomass burning emissions under controlled combustion experiments, Atmos. Environ., 136,
- 105 114-122, https://doi.org/10.1016/j.atmosenv.2016.04.022, 2016.
- 106 Patriarca, C., Bergquist, J., Sjoberg, P. J. R., Tranvik, L., and Hawkes, J. A.: Online
- HPLC-ESI-HRMS Method for the Analysis and Comparison of Different Dissolved Organic
   Matter Samples, Environ. Sci. Technol., 52, 2091-2099, https://doi.org/10.1021/acs.est.7b04508,
- 109
   2018.
- Song, J., Li, M., Jiang, B., Wei, S., Fan, X., and Peng, P.: Molecular Characterization of
  Water-Soluble Humic like Substances in Smoke Particles Emitted from Combustion of Biomass
  Materials and Coal Using Ultrahigh-Resolution Electrospray Ionization Fourier Transform Ion
- 113 Cyclotron Resonance Mass Spectrometry, Environ. Sci. Technol., 52, 2575-2585,
  114 https://doi.org/10.1021/acs.est.7b06126, 2018.
- 115 Yan, C., Zheng, M., Sullivan, A. P., Bosch, C., Desyaterik, Y., Andersson, A., Li, X., Guo, X.,
- 116 Zhou, T., Gustafsson, Ö., and Collett, J. L.: Chemical characteristics and light-absorbing
- 117 property of water-soluble organic carbon in Beijing: Biomass burning contributions, Atmos.
- 118 Environ., 121, 4-12, https://doi.org/10.1016/j.atmosenv.2015.05.005, 2015.
- 119 Zhu, C. S., Cao, J. J., Huang, R. J., Shen, Z. X., Wang, Q. Y., and Zhang, N. N.: Light absorption
- 120 properties of brown carbon over the southeastern Tibetan Plateau, Sci. Total Environ., 625,
- 121 246-251, https://doi.org/10.1016/j.scitotenv.2017.12.183, 2018.
- 122

|     | •                                   |      | Biomass types |     |    |  |  |  |
|-----|-------------------------------------|------|---------------|-----|----|--|--|--|
| IDs | Latin name                          | N%   | C%            | H%  | O% |  |  |  |
| 1   | Eupatorium odoratum L.              | 0.97 | 42            | 6.0 | 39 |  |  |  |
| 2   | Chaetocarpus castanocarpus          | 1.9  | 46            | 5.7 | 41 |  |  |  |
| 3   | Cassia siamea Lam.                  | 2.3  | 38            | 5.5 | 33 |  |  |  |
| 4   | Baccaurea ramiflora Lour.           | 1.5  | 48            | 6.3 | 46 |  |  |  |
| 5   | Rauvolfieae verticillata*           | 0.32 | 49            | 6.0 | 46 |  |  |  |
| 6   | Macaranga denticulata               | 0.91 | 49            | 6.4 | 46 |  |  |  |
| 7   | Toona ciliata M. Roem.              | 0.51 | 43            | 7.1 | 44 |  |  |  |
| 8   | Duabanga grandiflora                | 0.46 | 44            | 5.8 | 45 |  |  |  |
| 9   | Paramichelia baillonii              | 0.00 | 48            | 6.1 | 49 |  |  |  |
| 10  | Bischofia polycarpa                 | 0.38 | 48            | 6.7 | 45 |  |  |  |
| 11  | Rauvolfieae verticillata            | 0.78 | 48            | 6.2 | 47 |  |  |  |
| 12  | Pseudostachyum polymorphum          | 0.71 | 44            | 6.6 | 47 |  |  |  |
| 13  | Broussonetia papyrifera             | 0.65 | 49            | 7.3 | 48 |  |  |  |
| 14  | Citrus maxima                       | 0.66 | 51            | 5.7 | 45 |  |  |  |
| 15  | Litchi chinensis Sonn.              | 0.62 | 46            | 6.3 | 44 |  |  |  |
| 16  | Anthocephalus chinensis             | 1.6  | 45            | 5.7 | 44 |  |  |  |
| 17  | Antiaris toxicaria Lesch.           | 1.0  | 46            | 5.9 | 47 |  |  |  |
| 18  | Musa nana Lour.                     | 0.86 | 50            | 6.8 | 46 |  |  |  |
| 19  | Melia azedarach                     | 0.69 | 47            | 5.8 | 48 |  |  |  |
| 20  | Pterospermum menglunense Hsue       | 0.72 | 46            | 5.3 | 56 |  |  |  |
| 21  | Castanopsis Spach                   | 0.73 | 50            | 5.7 | 24 |  |  |  |
| 22  | Rhynchelytrum repens                | 0.33 | 49            | 5.9 | 73 |  |  |  |
| 23  | Hevea brasiliensis                  | 0.41 | 49            | 5.9 | 49 |  |  |  |
| 24  | Trema tomentosa (Roxb.) H. Hara     | 0.49 | 47            | 5.5 | 50 |  |  |  |
| 25  | Pinus kesiya var. langbianensis     | 0.42 | 39            | 5.5 | 49 |  |  |  |
| 26  | Lasiococca comberi Haines H. S. Kiu | 0.95 | 46            | 5.4 | 51 |  |  |  |

| 27  | Broussonetia papyrifera*                                  | 1.4 | 37 | 5.1 | 48 |
|-----|-----------------------------------------------------------|-----|----|-----|----|
| 125 | Note that the "*" is representative of twig of this tree. |     |    |     |    |
| 126 |                                                           |     |    |     |    |
| 127 |                                                           |     |    |     |    |

| 129 Types       | IDs | Location   | N%   | C% | H%  | O%  | S%   |
|-----------------|-----|------------|------|----|-----|-----|------|
|                 | 34  | Jining     | 0.51 | 75 | 3.4 | 6.2 | 0.29 |
|                 | 35  | Yangcheng  | 0.39 | 75 | 3.5 | 5.1 | 0.00 |
|                 | 36  | Liupanshui | 0.73 | 80 | 3.5 | 4.5 | 0.20 |
| Anthracite      | 37  | Menkou     | 0.57 | 85 | 3.1 | 5.5 | 0.00 |
|                 | 38  | Xinxiang   | 0.61 | 86 | 3.3 | 5.2 | 0.00 |
|                 | 39  | Chengzhou  | 0.65 | 77 | 3.3 | 5.0 | 0.09 |
|                 | 40  | Yinchuan   | 0.18 | 91 | 4.3 | 3.8 | 0.00 |
|                 | 41  | Huainan    | 0.47 | 75 | 4.1 | 20  | 0.00 |
|                 | 42  | Baitashan  | 0.30 | 68 | 3.9 | 29  | 0.00 |
|                 | 43  | Longkou    | 1.0  | 65 | 4.8 | 27  | 0.19 |
|                 | 44  | Baoji      | 0.25 | 68 | 4.0 | 21  | 0.00 |
|                 | 45  | Lingshi    | 0.78 | 81 | 4.4 | 6.0 | 0.77 |
| Bituminous coal | 46  | Dazhou     | 0.44 | 76 | 3.3 | 6.9 | 0.30 |
|                 | 47  | Shenmu     | 0.59 | 77 | 4.4 | 14  | 0.00 |
|                 | 48  | Daqing     | 0.37 | 69 | 5.0 | 19  | 0.00 |
|                 | 49  | Zibo       | 0.46 | 76 | 3.7 | 5.4 | 0.73 |
|                 | 50  | Hailaer    | 0.58 | 64 | 4.7 | 30  | 0.00 |

|                                  | Biomass burning      |                      | Anthracite combustion |                      | Bituminous coal combustion |                      | Vehicle emission       |                        |
|----------------------------------|----------------------|----------------------|-----------------------|----------------------|----------------------------|----------------------|------------------------|------------------------|
|                                  | Avg                  | SD                   | Avg                   | SD                   | Avg                        | SD                   | Avg                    | SD                     |
| PM (g kg <sup>-1</sup> fuel)     | 15                   | 11                   | 1.5×10 <sup>-1</sup>  | 8.9×10 <sup>-2</sup> | 9.1×10 <sup>-1</sup>       | 6.5×10 <sup>-1</sup> | 3.7 <sup>a</sup>       | 7.8 <sup>a</sup>       |
| OC(g kg <sup>-1</sup> fuel)      | 8.0                  | 6.4                  | 1.2×10 <sup>-2</sup>  | 4.5×10 <sup>-3</sup> | 4.2×10 <sup>-1</sup>       | 3.3×10 <sup>-1</sup> | 3.7×10 <sup>-1 a</sup> | 8.2×10 <sup>-1 a</sup> |
| EC (g kg <sup>-1</sup> fuel)     | 7.7×10 <sup>-1</sup> | 3.4×10 <sup>-1</sup> | 1.6×10 <sup>-4</sup>  | 1.4×10 <sup>-4</sup> | 9.4×10 <sup>-2</sup>       | 1.9×10 <sup>-1</sup> | 1.0×10 <sup>-1 a</sup> | 2.2×10 <sup>-1 a</sup> |
| WSOC (µg C<br>mL <sup>-1</sup> ) | 4.8                  | 2.6                  | 1.1                   | 1.9×10 <sup>-1</sup> | 3.2                        | 3.7                  | 2.6                    | 1.8                    |
| MSOC (µg C<br>mL <sup>-1</sup> ) | 8.5                  | 10                   | 1.1                   | 1.0                  | 25                         | 26                   | 2.5                    | 1.1                    |
| WSOC/OC                          | 0.50                 | 0.15                 | 0.66                  | 0.18                 | 0.13                       | 0.08                 | 0.45                   | 0.11                   |
| MSOC/OC                          | 0.62                 | 0.18                 | 0.47                  | 0.14                 | 0.80                       | 0.20                 | 0.56                   | 0.25                   |
| OC/EC                            | 16                   | 32                   | 145                   | 99                   | 21                         | 28                   | 3.0                    | 1.5                    |

130 **Table S3.** The EFs of 27 biomass burning and 17 coal combustion and carbon content of three

# origins.

132 Note: a, units (mg C  $m^{-3}$ ).

133

|                                        | MAE <sub>365</sub> (m <sup>2</sup> | Reference     |                     |  |
|----------------------------------------|------------------------------------|---------------|---------------------|--|
| Extracts                               | WSOC                               | MSOC          |                     |  |
| Biomass burning                        | 1.6 ± 0.55                         | $2.3 \pm 1.1$ |                     |  |
| Anthracite combustion                  | $1.3 \pm 0.34$                     | $0.88\pm0.74$ | In current study    |  |
| Bituminous coal combustion             | $2.0\pm0.75$                       | $3.2 \pm 1.1$ |                     |  |
| Vehicle emission                       | $0.71 \pm 0.30$                    | $0.26\pm0.09$ |                     |  |
|                                        | 0.3 - 0.7 for bituminous           |               |                     |  |
| Smoke particle from coal               | coal, 0.9 - 1.0 for                |               | (Li et al., 2018)   |  |
| combustion                             | anthracite                         |               |                     |  |
| PM <sub>2.5</sub> from biomass burning | 0.86 - 1.38                        |               | (Park and Yu, 2016) |  |
|                                        | $1.54 \pm 0.16$ (Winter)           |               |                     |  |
| PM <sub>2.5</sub>                      | $0.73 \pm 0.15$ (summer)           |               | (Yan et al., 2015)  |  |
| Total suspended particulate            | $0.75 \pm 0.13$ (winter)           |               | (Zhu et al., 2018)  |  |
| PM <sub>2.5</sub>                      | 0.51 - 1.04                        |               | (Chen et al., 2018) |  |
| PM (aerodynamic diameter:              |                                    |               |                     |  |
| <0.95 µm)                              | < 0.4                              |               | (Chen et al., 2017) |  |
| Total suspended particulate            | $0.81 \pm 0.16$                    |               | (Liu et al., 2018)  |  |

Table S4. Mass absorption efficiency at 365 nm in different extracts of three origins.

Table S5. The maximum fluorescence intensities (RU) of P1-P6 of WSOC fraction in three

| 138              |                |                        | origins.       |                                       |                |                |  |
|------------------|----------------|------------------------|----------------|---------------------------------------|----------------|----------------|--|
|                  | P1             | P2                     | Р3             | P4                                    | P5             | P6             |  |
|                  | $(Avg \pm SD)$ | $(Avg \pm SD)$         | $(Avg \pm SD)$ | $(Avg \pm SD)$                        | $(Avg \pm SD)$ | $(Avg \pm SD)$ |  |
| Biomass burning  | $41\pm42$      | $92\pm1.2{\times}10^2$ | $30 \pm 26$    | $23 \pm 47$                           | $48 \pm 64$    | $4.0 \pm 4.5$  |  |
| Coal combustion  | $57\pm76$      | $68 \pm 90$            | $65 \pm 84$    | $1.1 \times 10^2 \pm 1.2 \times 10^2$ | $72\pm88$      | $6.5\pm9.2$    |  |
| vehicle emission | $6.0 \pm 3.1$  | $0\pm 0$               | $2.6 \pm 2.0$  | 5.1 ± 1.7                             | 3.5 ± 1.7      | $1.9 \pm 1.3$  |  |
| Total            | $39\pm53$      | $70\pm1.1{\times}10^2$ | $35 \pm 52$    | $44 \pm 83$                           | $47 \pm 69$    | $4.3 \pm 6.1$  |  |
| 139              |                |                        |                |                                       |                |                |  |

Table S6. The maximum fluorescence intensities (RU) of C1-C6 of MSOC fraction in three

# origins.

|            | C1 (Avg $\pm$ SD)     | $C2 (Avg \pm SD)$     | C3 (Avg $\pm$ SD)          | C4 (Avg $\pm$ SD)       | C5 (Avg $\pm$ SD)          | C6 (Avg $\pm$ SD)     |
|------------|-----------------------|-----------------------|----------------------------|-------------------------|----------------------------|-----------------------|
| Biomass    | $1.9 \times 10^2 \pm$ | $1.2 \times 10^2 \pm$ | $00 + 2 + 10^{2}$          | $1.2 \times 10^{2} \pm$ | $0.5 + 0.4 + 10^{2}$       | 27 . 07               |
| burning    | $4.3 \times 10^{2}$   | 2.9×10 <sup>2</sup>   | $80 \pm 2.3 \times 10^{2}$ | 4.0×10 <sup>2</sup>     | $95 \pm 2.4 \times 10^{2}$ | 37±97                 |
| Coal       | $1.2 \times 10^3 \pm$ | $1.4{\times}10^3$ ±   | $1.5 \times 10^3 \pm$      | $5.2 \times 10^3 \pm$   | $1.5 \times 10^3 \pm$      | $6.3 \times 10^2 \pm$ |
| combustion | 1.3×10 <sup>3</sup>   | 1.8×10 <sup>3</sup>   | 2.1×10 <sup>3</sup>        | 7.8×10 <sup>3</sup>     | 2.4×10 <sup>3</sup>        | 1.1×10 <sup>3</sup>   |
| vehicle    | 66162                 | 85 80                 | 5740                       | 15 + 12                 | 60 + 5 1                   | 11 + 6 5              |
| emission   | $0.0 \pm 0.5$         | $0.3 \pm 0.0$         | 5.7 ± 4.9                  | $13 \pm 15$             | $0.9 \pm 3.1$              | $11 \pm 0.5$          |
| Total      | $4.5 \times 10^2 \pm$ | $4.7 \times 10^2 \pm$ | $4.7 \times 10^2 \pm$      | $1.5 \times 10^{3} \pm$ | $4.9 \times 10^2 \pm$      | $2.0 \times 10^2 \pm$ |
| Total      | 9.1×10 <sup>2</sup>   | 1.1×10 <sup>3</sup>   | 1.3×10 <sup>3</sup>        | 4.7×10 <sup>3</sup>     | 1.4×10 <sup>3</sup>        | 6.3×10 <sup>2</sup>   |
| 143        |                       |                       |                            |                         |                            |                       |

146**Table S7.** The number of formulas identified for each compound class and average values of

147 molecular weight, elemental ratios, double-bond equivalent (DBE) and aromaticity index (AI<sub>mod</sub>)

in WSOC fraction from three origins.

| Orisias         | Commission ( | Elemental    | number of | Molecular | 0/0              |                  | ΔΙ                  | DDE  |
|-----------------|--------------|--------------|-----------|-----------|------------------|------------------|---------------------|------|
| Origins         | Samples      | compositions | formulas  | weight    | U/C <sub>W</sub> | H/C <sub>W</sub> | AI <sub>mod,W</sub> | DBEW |
|                 |              | СНО          | 2362      | 341       | 0.39             | 1.3              | 0.29                | 7.1  |
|                 | <b>D</b> 10  | CHON         | 2970      | 387       | 0.35             | 1.2              | 0.39                | 9.4  |
|                 | B18          | CHOS         | 430       | 328       | 0.40             | 1.5              | 0.15                | 4.6  |
| Biomass         |              | CHONS        | 330       | 359       | 0.55             | 1.5              | 0.13                | 5.1  |
| burning         |              | СНО          | 1975      | 357       | 0.39             | 1.16             | 0.39                | 9.1  |
|                 | D22          | CHON         | 1536      | 390       | 0.41             | 1.1              | 0.46                | 11   |
|                 | B23          | CHOS         | 171       | 351       | 0.30             | 1.5              | 0.21                | 6.1  |
|                 |              | CHONS        | 56        | 401       | 0.65             | 1.4              | 0.27                | 5.8  |
|                 | C38          | СНО          | 1302      | 281       | 0.29             | 0.89             | 0.60                | 10.0 |
|                 |              | CHON         | 1984      | 322       | 0.36             | 0.83             | 0.70                | 11   |
|                 |              | CHOS         | 552       | 316       | 0.34             | 1.2              | 0.37                | 7.2  |
| Coal            |              | CHONS        | 741       | 338       | 0.52             | 0.96             | 0.52                | 9.2  |
| combustion      | 046          | СНО          | 600       | 263       | 0.22             | 1.0              | 0.53                | 8.5  |
|                 |              | CHON         | 478       | 267       | 0.28             | 0.93             | 0.65                | 9.4  |
|                 | C40          | CHOS         | 396       | 326       | 0.27             | 1.3              | 0.35                | 7.4  |
|                 |              | CHONS        | 291       | 306       | 0.49             | 0.98             | 0.57                | 8.0  |
|                 |              | СНО          | 1107      | 289       | 0.50             | 1.2              | 0.40                | 6.7  |
|                 | SD55         | CHON         | 1202      | 340       | 0.52             | 1.2              | 0.38                | 7.7  |
| <b>T7 1 * 1</b> | 3033         | CHOS         | 578       | 313       | 0.59             | 1.7              | 0.04                | 2.8  |
| Vehicle         |              | CHONS        | 403       | 340       | 0.91             | 1.8              | 0.45                | 2.8  |
| emission        |              | СНО          | 910       | 289       | 0.28             | 1.4              | 0.29                | 5.5  |
|                 | SD59         | CHON         | 803       | 317       | 0.40             | 1.3              | 0.38                | 6.9  |
|                 |              | CHOS         | 119       | 372       | 0.24             | 1.5              | 0.24                | 7.1  |

| CHONS | 15 | 384 | 0.93 | 1.01 | 0.76 | 7.0 |
|-------|----|-----|------|------|------|-----|
|       |    |     |      |      |      |     |

**Table S8.** The number of formulas identified for each compound class and average values of

151 molecular weight, elemental ratios, double-bond equivalent (DBE) and aromaticity index (AI<sub>mod</sub>)

in MSOC fraction from three origins.

| Origing    | Samplas     | Elemental    | number of | Molecular | 0/0              |      | AT                  | DBFw |
|------------|-------------|--------------|-----------|-----------|------------------|------|---------------------|------|
| Origins    | Samples     | compositions | formulas  | weight    | U/C <sub>W</sub> | n/Cw | A1 <sub>mod,W</sub> | DDEW |
|            |             | СНО          | 1890      | 365       | 0.14             | 1.8  | 0.11                | 3.2  |
|            | <b>D</b> 10 | CHON         | 1255      | 425       | 0.17             | 1.7  | 0.18                | 5.2  |
|            | B18         | CHOS         | 100       | 367       | 0.20             | 1.7  | 0.10                | 3.5  |
| Biomass    |             | CHONS        | 49        | 460       | 0.32             | 1.7  | 0.09                | 4.5  |
| burning    |             | СНО          | 1401      | 349       | 0.19             | 1.6  | 0.20                | 4.9  |
|            | D22         | CHON         | 306       | 322       | 0.12             | 1.9  | 0.10                | 2.5  |
|            | B23         | CHOS         | 59        | 333       | 0.22             | 1.7  | 0.12                | 3.5  |
|            |             | CHONS        | 14        | 423       | 0.31             | 1.9  | 0.07                | 2.8  |
|            |             | СНО          | 600       | 295       | 0.17             | 1.4  | 0.31                | 5.8  |
|            | <b>G2</b> 0 | CHON         | 1097      | 312       | 0.21             | 1.2  | 0.48                | 8.2  |
|            | C38         | CHOS         | 99        | 334       | 0.24             | 1.6  | 0.15                | 4.1  |
| Coal       |             | CHONS        | 54        | 366       | 0.66             | 1.4  | 0.42                | 5.0  |
| combustion |             | СНО          | 1071      | 334       | 0.12             | 1.0  | 0.54                | 12   |
|            |             | CHON         | 898       | 341       | 0.17             | 1.1  | 0.56                | 11   |
|            | C46         | CHOS         | 240       | 346       | 0.24             | 1.3  | 0.37                | 8.2  |
|            |             | CHONS        | 19        | 385       | 0.69             | 0.93 | 0.56                | 9.4  |
|            |             | СНО          | 480       | 320       | 0.16             | 1.9  | 0.07                | 1.8  |
|            | SD55        | CHON         | 237       | 377       | 0.21             | 2.0  | 0.04                | 1.7  |
|            | 2022        | CHOS         | 170       | 360       | 0.30             | 1.8  | 0.06                | 2.6  |
| Vehicle    |             | CHONS        | 50        | 341       | 0.81             | 1.8  | 0.51                | 3.1  |
| emission   |             | СНО          | 310       | 314       | 0.14             | 2.0  | 0.04                | 1.3  |
|            | SD50        | CHON         | 217       | 340       | 0.13             | 1.9  | 0.08                | 2.1  |
|            | 2029        | CHOS         | 43        | 362       | 0.19             | 1.8  | 0.09                | 3.1  |
|            |             | CHONS        | 13        | 418       | 0.44             | 1.5  | 0.36                | 6.1  |

Table S9. The first method is to follow their O/C and H/C ratios of matter to classify all ions of
FT-ICR MS: The Pearson's correlation coefficients (r) and the significance levels (p, two-sided
t-test) from the correlation analysis between the relative intensity of the PARAFAC components
and the FT-ICR MS ions-groups for WSOC fractions in three origins (n=6).

|    |   | T :: 4- | Ductoine | <b>II I</b> ::- | Miliania | I Lignin | Carbohydrates | Tannins | Unsaturated  |
|----|---|---------|----------|-----------------|----------|----------|---------------|---------|--------------|
|    |   | Lipids  | Proteins | H-Lignin        | M-Lignin | L-Lignin | Carbonydrates | Tannins | hydrocarbons |
| P1 | r | -0.63   | 0.42     | -0.69           | 0.43     | -0.69    | 0.79          | 0.73    | -0.78        |
|    | р | 0.18    | 0.41     | 0.13            | 0.40     | 0.13     | 0.06          | 0.10    | 0.07         |
| P2 | r | -0.31   | -0.66    | 0.41            | 0.32     | -0.39    | -0.48         | -0.34   | 0.27         |
|    | р | 0.56    | 0.15     | 0.42            | 0.54     | 0.45     | 0.34          | 0.51    | 0.61         |
| P3 | r | -0.60   | -0.32    | 0.18            | 0.59     | -0.73    | -0.34         | -0.04   | -0.37        |
|    | р | 0.21    | 0.54     | 0.73            | 0.22     | 0.10     | 0.52          | 0.94    | 0.47         |
| P4 | r | 0.45    | -0.17    | 0.53            | -0.87*   | 0.70     | -0.16         | 0.02    | 0.40         |
|    | р | 0.37    | 0.74     | 0.28            | 0.02     | 0.12     | 0.76          | 0.97    | 0.44         |
| P5 | r | 0.75    | 0.32     | -0.16           | 0.07     | 0.70     | -0.34         | -0.76   | 0.55         |
|    | р | 0.09    | 0.54     | 0.76            | 0.89     | 0.15     | 0.51          | 0.08    | 0.26         |
| P6 | r | -0.35   | 0.48     | -0.67           | 0.24     | -0.52    | 0.79          | 0.72    | -0.82*       |
|    | р | 0.50    | 0.34     | 0.14            | 0.64     | 0.29     | 0.06          | 0.11    | 0.04         |

157 \*\*. P<0.01;\*.p<0.05

**Table S10.** The first method is to follow their O/C and H/C ratios of matter to classify all ions of

160 FT-ICR MS: The Pearson's correlation coefficients (r) and the significance levels (p, two-sided

161 t-test) from the correlation analysis between the relative intensity of the PARAFAC components

162

and the FT-ICR MS ions-groups for MSOC fractions in three origins (n=6).

|    |   |        | Ductoing | II Lionin | Mliquin  | L-Lignin | Carbohydrates | Tannins | Unsaturated  |
|----|---|--------|----------|-----------|----------|----------|---------------|---------|--------------|
|    |   | Lipids | Proteins | H-Lighin  | M-Lighin | L-Lignin | Carbonyurales | Tannins | hydrocarbons |
| C1 | r | -0.11  | -0.66    | 0.20      | 0.80     | 0.02     | -0.37         | -0.24   | -0.21        |
|    | р | 0.84   | 0.15     | 0.71      | 0.05     | 0.97     | 0.47          | 0.65    | 0.70         |
| C2 | r | -0.34  | -0.31    | 0.34      | 0.64     | 0.06     | 0.12          | 0.02    | 0.11         |
|    | р | 0.51   | 0.55     | 0.51      | 0.18     | 0.91     | 0.82          | 0.97    | 0.84         |
| C3 | r | 0.05   | -0.13    | -0.03     | 0.55     | 0.06     | 0.30          | 0.04    | -0.25        |
|    | р | 0.93   | 0.80     | 0.96      | 0.26     | 0.91     | 0.57          | 0.95    | 0.64         |
| C4 | r | -0.53  | 0.27     | 0.59      | -0.05    | 0.64     | 0.04          | 0.70    | 0.36         |
|    | р | 0.28   | 0.60     | 0.22      | 0.92     | 0.17     | 0.94          | 0.12    | 0.48         |
| C5 | r | 0.38   | 0.36     | -0.46     | -0.61    | -0.20    | 0.01          | -0.10   | -0.09        |
|    | р | 0.45   | 0.49     | 0.36      | 0.20     | 0.70     | 0.99          | 0.85    | 0.87         |
| C6 | r | 0.37   | 0.37     | -0.46     | -0.81    | -0.37    | 0.09          | -0.23   | 0.02         |
|    | р | 0.47   | 0.47     | 0.36      | 0.05     | 0.47     | 0.86          | 0.67    | 0.98         |

163 \*\*. P<0.01;\*.p<0.05

164

165

**Table S11.** The second method is to follow their O/C and H/C ratios of matter to classify potential

168 BrC ions: The Pearson's correlation coefficients (r) and the significance levels (p, two-sided t-test)

169 from the correlation analysis between the relative intensity of the PARAFAC components and the

|    | T in: |        | D ( '    | H-I jonin | M-I ignin |          |               | Tanning | Unsaturated  |
|----|-------|--------|----------|-----------|-----------|----------|---------------|---------|--------------|
|    |       | Lipids | Proteins | H-Lignin  | M-Lignin  | L-Lignin | Carbonydrates | Tannins | hydrocarbons |
| P1 | r     |        | 0.35     | -0.89*    | 0.59      |          | 0.31          | 0.67    | -0.75        |
|    | р     |        | 0.50     | 0.02      | 0.22      |          | 0.55          | 0.15    | 0.09         |
| P2 | r     |        | 0.49     | 0.24      | 0.19      |          | -0.34         | -0.58   | 0.15         |
|    | р     |        | 0.32     | 0.65      | 0.71      |          | 0.51          | 0.22    | 0.78         |
| P3 | r     |        | 0.79     | 0.06      | 0.31      |          | -0.59         | -0.35   | -0.50        |
|    | р     |        | 0.06     | 0.91      | 0.55      |          | 0.22          | 0.49    | 0.31         |
| P4 | r     |        | -0.84*   | 0.61      | -0.91*    |          | 0.15          | 0.15    | 0.43         |
|    | р     |        | 0.04     | 0.20      | 0.01      |          | 0.78          | 0.78    | 0.40         |
| P5 | r     |        | -0.06    | 0.18      | 0.12      |          | -0.06         | -0.51   | 0.62         |
|    | р     |        | 0.92     | 0.73      | 0.82      |          | 0.91          | 0.31    | 0.19         |
| P6 | r     |        | 0.03     | -0.80     | 0.44      |          | 0.31          | 0.72    | -0.76        |
|    | р     |        | 0.96     | 0.06      | 0.38      |          | 0.55          | 0.11    | 0.08         |

FT-ICR MS ions-groups for WSOC fractions in three origins (n=6).

171 \*\*. P<0.01;\*.p<0.05

172

170

Table S12. The second method is to follow their O/C and H/C ratios of matter to classify potential
BrC ions: The Pearson's correlation coefficients (r) and the significance levels (p, two-sided t-test)
from the correlation analysis between the relative intensity of the PARAFAC components and the
FT-ICR MS ions-groups for MSOC fractions in three origins (n=6).

|    | Т |        | Lipids Proteins |            | M-Lignin    | I Lionin   | Carbahydrataa | Tanning  | Unsaturated  |
|----|---|--------|-----------------|------------|-------------|------------|---------------|----------|--------------|
|    |   | Lipius | Proteins        | n-Ligiiiii | wi-Ligiiiii | L-Ligiiiii | Carbonyurates | 1 annins | hydrocarbons |
| C1 | r |        |                 | 0.60       | 0.50        |            |               | -0.73    | -0.21        |
|    | р |        |                 | 0.21       | 0.32        |            |               | 0.10     | 0.69         |
| C2 | r |        |                 | 0.28       | 0.31        |            |               | -0.69    | 0.08         |
|    | р |        |                 | 0.59       | 0.55        |            |               | 0.13     | 0.88         |
| C3 | r |        |                 | 0.31       | 0.63        |            |               | -0.45    | -0.28        |
|    | р |        |                 | 0.54       | 0.18        |            |               | 0.37     | 0.60         |
| C4 | r |        |                 | 0.19       | -0.73       |            |               | -0.17    | 0.37         |
|    | р |        |                 | 0.71       | 0.10        |            |               | 0.75     | 0.47         |
| C5 | r |        |                 | -0.42      | -0.21       |            |               | 0.74     | -0.07        |
|    | р |        |                 | 0.41       | 0.69        |            |               | 0.10     | 0.90         |
| C6 | r |        |                 | -0.64      | -0.214      |            |               | 0.82*    | 0.02         |
|    | р |        |                 | 0.17       | 0.69        |            |               | 0.05     | 0.96         |

178 \*\*. P<0.01;\*.p<0.05

**Table S13.** The third method is to follow their functional groups to classify all ions: The Pearson's

181 correlation coefficients (r) and the significance levels (p, two-sided t-test) from the correlation

analysis between the relative intensity of the PARAFAC components and the FT-ICR MS

183 ions-groups for WSOC fractions in three origins (n=6).

|    |   | $CHO_1$ | CHO>1 | L-CHON | H-CHON | L-CHOS | H-CHOS | L-CHONS | H-CHONS |
|----|---|---------|-------|--------|--------|--------|--------|---------|---------|
| P1 | r | -0.78   | 0.22  | -0.33  | 0.29   | -0.90* | 0.15   | -0.76   | 0.60    |
|    | р | 0.07    | 0.68  | 0.52   | 0.58   | 0.02   | 0.77   | 0.08    | 0.21    |
| P2 | r | 0.28    | 0.29  | 0.51   | -0.04  | 0.05   | -0.42  | 0.26    | -0.61   |
|    | р | 0.59    | 0.58  | 0.30   | 0.94   | 0.93   | 0.41   | 0.62    | 0.20    |
| P3 | r | -0.44   | 0.17  | 0.51   | 0.77   | -0.52  | -0.59  | -0.18   | -0.32   |
|    | р | 0.38    | 0.75  | 0.30   | 0.08   | 0.29   | 0.22   | 0.73    | 0.53    |
| P4 | r | 0.36    | -0.59 | -0.20  | -0.19  | 0.48   | 0.39   | 0.57    | 0.26    |
|    | р | 0.48    | 0.22  | 0.71   | 0.72   | 0.34   | 0.45   | 0.24    | 0.62    |
| P5 | r | 0.61    | 0.14  | 0.17   | -0.47  | 0.82*  | -0.11  | 0.21    | -0.54   |
|    | р | 0.20    | 0.80  | 0.75   | 0.35   | 0.05   | 0.84   | 0.69    | 0.27    |
| P6 | r | -0.80   | 0.28  | -0.65  | 0.19   | -0.80  | 0.17   | -0.80   | 0.64    |
|    | р | 0.06    | 0.59  | 0.16   | 0.72   | 0.06   | 0.74   | 0.06    | 0.17    |

184 \*\*. P<0.01;\*.p<0.05

185

186

187

**Table S14.** The third method is to follow their functional groups to classify all ions: The Pearson's

190 correlation coefficients (r) and the significance levels (p, two-sided t-test) from the correlation

analysis between the relative intensity of the PARAFAC components and the FT-ICR MS

192 ions-groups for MSOC fractions in three origins (n=6).

|    |   | $CHO_1$ | CHO>1 | L-CHON | H-CHON | L-CHOS | H-CHOS | L-CHONS | H-CHONS |
|----|---|---------|-------|--------|--------|--------|--------|---------|---------|
| C1 | r | -0.20   | 0.54  | -0.36  | -0.39  | -0.18  | -0.50  | -0.37   | -0.50   |
|    | р | 0.70    | 0.27  | 0.49   | 0.44   | 0.73   | 0.31   | 0.48    | 0.31    |
| C2 | r | 0.11    | 0.18  | -0.36  | -0.06  | -0.39  | 0.11   | -0.61   | -0.05   |
|    | р | 0.83    | 0.73  | 0.49   | 0.92   | 0.44   | 0.83   | 0.20    | 0.92    |
| C3 | r | -0.24   | 0.31  | -0.21  | -0.17  | -0.34  | -0.11  | -0.36   | 0.09    |
|    | р | 0.65    | 0.55  | 0.69   | 0.74   | 0.51   | 0.83   | 0.49    | 0.87    |
| C4 | r | 0.38    | -0.81 | -0.05  | 0.94** | 0.27   | 0.56   | 0.12    | 0.41    |
|    | р | 0.45    | 0.05  | 0.92   | 0.01   | 0.60   | 0.25   | 0.81    | 0.42    |
| C5 | r | -0.10   | -0.08 | 0.22   | 0.00   | 0.17   | -0.06  | 0.53    | 0.13    |
|    | р | 0.84    | 0.88  | 0.68   | 1.00   | 0.75   | 0.92   | 0.28    | 0.81    |
| C6 | r | 0.00    | -0.08 | 0.45   | -0.20  | 0.20   | 0.06   | 0.38    | 0.07    |
|    | р | 0.99    | 0.89  | 0.38   | 0.71   | 0.71   | 0.92   | 0.46    | 0.90    |

```
193 **. P<0.01;*.p<0.05
```

194

**Table S15.** The last method is to follow their functional groups to classify potential BrC ions: The
Pearson's correlation coefficients (r) and the significance levels (p, two-sided t-test) from the
correlation analysis between the relative intensity of the PARAFAC components and the FT-ICR
MS ions-groups for WSOC fractions in three origins (n=6).

|    |   | CHO <sub>1</sub> | CHO>1 | L-CHON | H-CHON | L-CHOS | H-CHOS | L-CHONS | H-CHONS |
|----|---|------------------|-------|--------|--------|--------|--------|---------|---------|
| P1 | r | -0.72            | 0.65  | -0.12  | 0.48   | -0.57  | -0.82* | -0.76   | -0.42   |
|    | р | 0.11             | 0.16  | 0.83   | 0.34   | 0.24   | 0.05   | 0.08    | 0.41    |
| P2 | r | 0.21             | -0.03 | 0.42   | -0.16  | -0.34  | 0.11   | 0.27    | -0.44   |
|    | р | 0.70             | 0.96  | 0.41   | 0.76   | 0.51   | 0.84   | 0.60    | 0.39    |
| P3 | r | -0.52            | -0.15 | 0.50   | 0.68   | -0.68  | -0.34  | -0.20   | -0.05   |
|    | р | 0.29             | 0.77  | 0.31   | 0.14   | 0.14   | 0.51   | 0.71    | 0.93    |
| P4 | r | 0.34             | -0.47 | -0.36  | -0.31  | 0.37   | 0.61   | 0.54    | 0.85*   |
|    | р | 0.51             | 0.35  | 0.48   | 0.55   | 0.47   | 0.20   | 0.27    | 0.03    |
| P5 | r | 0.66             | -0.22 | 0.17   | -0.44  | 0.84*  | 0.42   | 0.24    | -0.23   |
|    | р | 0.16             | 0.67  | 0.74   | 0.38   | 0.04   | 0.40   | 0.64    | 0.67    |
| P6 | r | -0.74            | 0.73  | -0.47  | 0.40   | -0.32  | -0.82* | -0.81   | -0.25   |
|    | р | 0.10             | 0.10  | 0.35   | 0.44   | 0.53   | 0.05   | 0.05    | 0.63    |

\*\*. p<0.01;\*.p<0.05

Table S16. The last method is to follow their functional groups to classify potential BrC ions: The
 Pearson's correlation coefficients (r) and the significance levels (p, two-sided t-test) from the
 correlation analysis between the relative intensity of the PARAFAC components and the FT-ICR
 MS ions-groups for MSOC fractions in three origins (n=6).

|    |   | CHO <sub>1</sub> | CHO <sub>&gt;1</sub> | L-CHON | H-CHON | L-CHOS | H-CHOS | L-CHONS | H-CHONS |
|----|---|------------------|----------------------|--------|--------|--------|--------|---------|---------|
| C1 | r | -0.20            | 0.72                 | -0.01  | -0.40  | -0.67  | -0.87* | -0.68   | -0.73   |
|    | р | 0.70             | 0.11                 | 0.99   | 0.43   | 0.15   | 0.02   | 0.14    | 0.10    |
| C2 | r | 0.12             | 0.87*                | -0.01  | -0.67  | -0.85* | -0.76  | -0.93** | -0.72   |
|    | р | 0.83             | 0.02                 | 0.99   | 0.15   | 0.03   | 0.08   | 0.01    | 0.11    |
| C3 | r | -0.23            | 0.94**               | -0.24  | -0.71  | -0.67  | -0.80  | -0.77   | -0.48   |
|    | р | 0.66             | 0.01                 | 0.65   | 0.11   | 0.15   | 0.06   | 0.08    | 0.34    |
| C4 | r | 0.36             | -0.53                | 0.18   | 0.59   | -0.31  | 0.09   | -0.22   | -0.20   |
|    | р | 0.49             | 0.28                 | 0.74   | 0.22   | 0.56   | 0.87   | 0.68    | 0.71    |
| C5 | r | -0.11            | -0.80                | 0.11   | 0.56   | 0.84*  | 0.77   | 0.91*   | 0.77    |
|    | р | 0.83             | 0.06                 | 0.83   | 0.25   | 0.04   | 0.08   | 0.01    | 0.08    |
| C6 | r | 0.02             | -0.61                | -0.06  | 0.26   | 0.96** | 0.91*  | 0.96**  | 0.85*   |
|    | р | 0.97             | 0.20                 | 0.91   | 0.62   | 0.00   | 0.01   | 0.00    | 0.03    |

\*\*. P<0.01;\*.p<0.05

205





210 Figure S1. Experiments running in this work (biomass burning, coal combustion, and sampling





**Figure S2.** The resident analysis of excitation and emission wavelength of 2- to 7-components







217 Figure S3. The core consistency of 2- to 7-component model for all EEM of WSOC fraction





**Figure S4.** Split analysis of 6-component PARAFAC model with the split style  $S_4C_6T_3$  for all

220 EEM of WSOC fraction



222

Figure S5. The resident analysis of excitation and emission wavelength of 2- to 7-components

224 PARAFAC model for MSOC fraction



Figure S6. The core consistency of 2- to 7-component model for all EEM of MSOC fraction





**Figure S7.** Split analysis of 6-component PARAFAC model with the split style  $S_4C_6T_3$  for all

EEM of MSOC fraction



**Figure S8.** (a) Relative abundance of each PARAFAC component, (b) MAE<sub>365</sub> values of MSOC

236 fraction of three origins



Figure S9. The relative intensity of four types of elemental formulas in WSOC fraction in six
samples of three origins: CHO- and CHON-group were the main species in all extract, while
S-contained compounds only presented higher fraction in coal combustion and vehicle emission.



Figure S10. The relative intensity of four types of elemental formulas in MSOC fraction in six samples of three origins: CHO- and CHON-group were the abundance substances in this phases derived from three origins, while S-contained compounds mainly presented in WSOC fraction of coal combustion and vehicle emission, not rich in MSOC fractions





Figure S11. Van Krevelen diagrams of four groups (CHO, CHON, CHOS, and CHONS) in WSOC fraction of three origins; The different regions, identified by the H/C and O/C values, are listed according to the following criteria: lipids (O/C=0-0.2, H/C=1.7-2.2), proteins (O/C=0.2-0.6, H/C=1.5-2.2, N/C $\ge$ 0.05), lignin (O/C = 0.1-0.6, H/C =0.6-1.7, AI<sub>mod</sub> < 0.67), carbohydrates (O/C = 0.6-1.2, H/C = 1.5-2.2), tannins (O/C = 0.6-1.2, H/C = 0.5-1.5, AI<sub>mod</sub> < 0.67), and unsaturated hydrocarbons (O/C = 0-0.1, H/C = 0.7-1.5) (Patriarca et al., 2018)





Figure S12. Van Krevelen diagrams of four groups (CHO, CHON, CHOS, and CHONS) inMSOC fraction of three origins



Ex.(mm)

- 267 Figure S13. The EEM spectra of WSOC fraction of three origins: IDs: 1-33 for biomass burning,
- 268 IDs: 34-50 for coal combustion, and IDs: 51-60 for vehicle emission.





**Figure S14.** The EEM spectra of MSOC fraction in three origins: IDs: 1-33 for biomass burning,

