## Air quality in the eastern United States and Eastern Canada for 1990-2015: 25 years of change in response to emission reductions of SO<sub>2</sub> and NO<sub>x</sub> in the region

Jian Feng<sup>1\*</sup>, Elton Chan<sup>2</sup> and Robert Vet<sup>1+</sup> 5

> <sup>1</sup>Air Quality Measurement and Analysis Research Section, Atmospheric Science and Technology Directorate, Environment and Climate Change Canada, Toronto, Canada

<sup>2</sup>Measurements, Modelling and Interpretation Section, Atmospheric Science and Technology Directorate, Environment and Climate Change Canada, Toronto, Canada

\*Correspondence to: jian.feng@canada.ca 10

<sup>+</sup>*Retired from Environment and Climate Change Canada in 2018.* 

## Abstract

 $SO_2$  and  $NO_x$  are precursors to form sulfate, nitrate and ammonium particles in the air, which account

15 for more than 50% of PM2.5 mass in the eastern US (Bell et al., 2007), and are dominant components of PM2.5 during many smog events (Dabek-Zlotorzynska et al., 2011). H<sub>2</sub>SO<sub>4</sub> and HNO<sub>3</sub>, formed from oxidation of  $SO_2$  and  $NO_x$  respectively, are the main sources of acid deposition through wet and dry depositions. NO<sub>X</sub> is also a precursor to the formation of tropospheric O<sub>3</sub>, which is an important atmospheric oxidant and is also essential for the formation of other atmospheric oxidants, such as OH 20

and  $H_2O_2$ .

In the past 26 years from 1990 to 2015, emissions of  $SO_2$  and  $NO_x$  in the US were significantly reduced from 23.1 and 25.2 million tons/year in 1990 to 3.7 and 11.5 million tons/year in 2015 respectively. In Canada, SO<sub>2</sub> and NO<sub>x</sub> were reduced by 63% and 33% from 1990 to 2014. In response to the significant reductions of SO<sub>2</sub> and NO<sub>x</sub> emissions, air quality in the eastern US and Eastern Canada improved

tremendously during 1990-2015. In this study, we analyzed surface air concentrations of SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub><sup>-</sup>, 25 NH4<sup>+</sup>, HNO3 and SO2 measured weekly by the Clean Air Status and Trends Network (CASTNET) in the US

and measured daily from the Canadian Air and Precipitation Monitoring Network (CAPMoN) in Canada to reveal the temporal and spatial changes of each species during the 25-year period. For the whole eastern US and Eastern Canada, the annual mean concentrations of  $SO_4^{2^-}$ ,  $NO_3^-$ ,  $NH_4^+$ ,  $HNO_3$ ,  $SO_2$  and  $TNO_3$  ( $NO_3^-$  +  $HNO_3$ , expressed as the mass of equivalent  $NO_3^{-}$ ) were reduced by 73.3%, 29.1%, 67.4%,

- 5 65.8%, 87.6% and 52.6% respectively from 1990 to 2015. In terms of percentage, the reductions of all species except NO<sub>3</sub><sup>-</sup> were spatially uniform. The reductions of SO<sub>2</sub> and HNO<sub>3</sub> were similar in the warm season (May-October) and the cold season (November-April), and the reductions of SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub><sup>-</sup> and NH<sub>4</sub><sup>+</sup> were more significant in the warm season than in the cold season. The reductions of SO<sub>4</sub><sup>2-</sup> and SO<sub>2</sub> mainly occurred in 1990-1995 and 2007-2015 during the warm season, and in 1990-1995 and
- 10 2005-2015 during the cold season. The reduction of  $NO_3^-$  mainly occurred in the Midwest after 2000. Other than in the Midwest,  $NO_3^-$  exhibited very little change during the cold season for the period. The reduction of  $NH_4^+$  generally followed the reduction trend of  $SO_4^{2^-}$ , especially after 2000 the temporal trend of  $NH_4^+$  was almost identical to that of  $SO_4^{2^-}$ . The ratio of S in  $SO_4^{2^-}$  to total S in  $SO_4^{2^-}$  plus  $SO_2$ , as well as the ratio of  $NO_3^-$  to  $TNO_3$  increased by more than 50% during the period. This indicates that a
- 15 notable change in regional chemistry took place from the beginning to the end of the period with a higher percentage of SO<sub>2</sub> being oxidized to SO<sub>4</sub><sup>2-</sup>, and a higher percentage of HNO<sub>3</sub> being neutralized to NH<sub>4</sub>NO<sub>3</sub> near the end of the period.

## 1. Introduction

- 20 Gases and particulate matter released into the air through anthropogenic activities can pollute the air and deteriorate the air quality locally, regionally, and continentally. Air pollution, which can decrease lung function, causing the development of asthma, bronchitis and lung cancer (Kunzli et al, 2000; Heroux et al., 2015; WHO, 2006), is considered as a major environmental risk to human health by the World Health Organization (WHO). Air pollution is also linked to stroke and heart disease and
- 25 improvement of air quality can significantly reduce the PM2.5- and O<sub>3</sub>-related mortality burden (Zhang et al., 2018). When emitted gases and particulate matter or secondary pollutants formed in the air from emissions are brought to the Earth's surface through dry and/or wet deposition, they pose a risk to the established ecosystems through acid rain as well as excessive deposition of nitrogen and sulfur.

Air pollution also affects long term climate through scattering and absorption of solar radiation by directly emitted or secondarily formed aerosols in the air (Haywood and Shine, 1995; Yu et al., 2006). In some heavily polluted regions, even local weather can be affected due to the change of energy budgets in the atmosphere and at the Earth's surface (Kajino et al., 2017).

5

In order to control air pollution, the US passed the Clean Air Act (CAA) of 1963 (Kuklinska et al., 2015). Major amendments to the law were passed in 1970, 1977 and 1990 (Kuklinska et al, 2015). The Amendments to the CAA of 1990 addressed acid deposition, ozone depletion, and toxic air pollution (CAA, 1990). Specifically Title IV of the 1990 Amendments to the CAA, also known as acid deposition control, targeted emission reductions of two acid deposition precursors, SO<sub>2</sub> and NO<sub>x</sub>, which along 10 with CO, O<sub>3</sub>, Pb and particulate matter, are among the 6 species designated as criteria pollutants by United States Environmental Protection Agency (US EPA). SO<sub>2</sub> and NO<sub>x</sub> in the air can be oxidized to form acid H<sub>2</sub>SO<sub>4</sub> and HNO<sub>3</sub>, which in turn can react with NH<sub>3</sub> to form fine particulate matter (PM2.5), and with crustal material or sea salts to form coarse particles (Yoshizumi and Hoshi, 1985; Zhuang et 15 al., 1999). NO<sub>x</sub>, together with volatile organic compounds (VOCs), also participate in formation of tropospheric O<sub>3</sub>, which is another criteria pollutant and an important atmospheric oxidant. Title IV of the Clean Air Act 1990 specifically targets SO<sub>2</sub> and NO<sub>x</sub> emissions from stationary fuel combustion facilities. The first phase of the Title IV of the 1990 CAA Amendment, which was implemented on January 1, 1995, requires 110 power plants to reduce the SO<sub>2</sub> emissions to a level calculated as the product of an emissions rate of 2.5 lbs of SO<sub>2</sub>/mmBtu times an average of their 1985-1987 fuel use 20 (Lee, 1991). The second phase, which took effect on January 1, 2000, requires approximately 2000 utilities to reduce SO<sub>2</sub> emission to a level of 1.2 lbs of SO<sub>2</sub>/mmBtu times the average of their 1985-1997 fuel use (Lee, 1991). Since 1990, the national emissions of SO<sub>2</sub> in the US decreased steadily from 23.1 million tons in 1990 to 21.3 million tons in 1994, and dropped significantly to 18.6 million tons in 25 1995 due to the first phase implementation of Title IV of the 1990 CAA Amendments (EPA 2016; EPA

2019). The SO<sub>2</sub> emissions underwent a small increase during 1996-1998 to 18.9 million tons in 1998,

and then continued the steady decrease to 14.5 million tons in 2005. From 2005 to 2012, the decrease of the emissions was accelerated with an annual reduction rate of 1.34 million tons /year during the period. The emissions of SO<sub>2</sub> were leveled off during 2012-2015. In 1990, 87.9% of SO<sub>2</sub> emissions were from stationary fuel combustion facilities, 2% from on-road vehicles, and 2% from off-road mobile sources. By 2007, SO<sub>2</sub> emission from on-road vehicles was totally eliminated due to cleaner gasoline.

sources. By 2007, SO<sub>2</sub> emission from on-road vehicles was totally eliminated due to cleaner gasoline.
 In 2014, of the 4.9 million tons of total SO<sub>2</sub> emissions, stationary fuel combustion, off-road mobile, and industrial and other processes contributed 4.1, 0.1, and 0.7 million tons respectively (EPA 2016).

NO<sub>x</sub> forms in the air when nitrogen reacts with oxygen under high temperature. Anthropogenic
 emissions of NO<sub>x</sub> are mainly due to stationary fuel combustion, on-road vehicles and off-road mobile operations. Nationwide in the US, they contributed 10.9, 9.6 and 3.8 million tons of the total 25.2 million tons of NO<sub>x</sub> in 1990 (EPA 2016). Changes in NO<sub>x</sub> emission during the 1990s were relatively small (Butler et al., 2003). Total NO<sub>x</sub> emission remained generally constant from 1990 to 1998. From 1999 there was a decreasing of NO<sub>x</sub> emission from stationary fuel combustion, due to the

- 15 implementation of Title IV of 1990 CAA Amendment as well as the implementation of the NO<sub>x</sub> Budget Trading Program (NBP). Title IV of 1990 CAA Amendment not only required the reduction of SO<sub>2</sub>, but also stipulated the reduction of NOx emission from power plants, and it took effect in 1996. The NBP started in 2003 and was created to reduce NO<sub>x</sub> emissions from power plants and other large combustion sources in the eastern US during warm months (https://www.epa.gov/airmarkets/nox-
- 20 budget-trading-program). The NBP was replaced by the ozone season NO<sub>x</sub> program under the Clean Air Interstate Rule in 2009. The NO<sub>x</sub> emissions from stationary combustion facilities decreased steadily from 10.4 million tons in 1998 to 3.6 million tons in 2012, then remained relatively unchanged thereafter (EPA 2016). Emissions of NO<sub>x</sub> from on-road vehicles declined slowly from 1990 until 2001. After 2002, on-road emissions of NO<sub>x</sub> decreased continuously and steadily. The trend of NO<sub>x</sub> emissions
- from off-road mobile was generally increased during the period from 1990-2002, up from 3.8 tons to
  4.9 tons, but after that it was reduced gradually to 2.7 tons in 2014. Combining the emissions from

stationary fuel combustion, on-road vehicles and off-road mobiles, the nationwide emissions of NO<sub>x</sub> in the US changed little during 1990-1998, decreased during 1998-2001. After 2002, it decreased steeply up to recent years. Note that there was a change in NO<sub>x</sub> measurement methodology from 20001 to 2002, and it caused a sharp increase in the reported NO<sub>x</sub> emissions in the US from 2001 to 2002 (EPA, 2019)

5 2019

In Canada, similar measures were adopted to reduce air pollutant emissions. SO<sub>2</sub> emissions in Canada were mainly from three major sectors: ore and mineral industries, oil and gas industry and electric utilities. For each sector, the annual SO<sub>2</sub> emissions were reduced from 1.5, 0.53 and 0.62 million tons in 1990 to 0.47, 0.28 and 0.27 million tons in 2015 (ECCC, 2019). Nationally, annual SO<sub>2</sub> emissions were reduced from 3.1 million tons in 1990 to 1.1 million tons in 2015 (ECCC, 2019). In 1990, the annual emissions of SO<sub>2</sub> from Eastern Canada accounted for 59% of the national annual emissions. NO<sub>x</sub> emissions in Canada were mainly from transportation (43%) and oil and gas industries (14%) (ECCC, 2019). Nationally, annual emissions of NO<sub>x</sub> were reduced by 25%, from 2.4 million tons in 1990 to 1.8 million tons in 2015. Specifically, annual emissions of NO<sub>x</sub> in Eastern Canada were reduced by close to

15

10

50%, from 1.2 million tons to 0.64 million tons.

Air quality trends during the past few decades, especially since 1990, are of great interests of both scientific communities and the general public. For the eastern part of US and Canada, trends of air quality after 1990 have been reported in previous studies for O<sub>3</sub> (Chan and Vet, 2010), O<sub>3</sub> and nitrate (Butler et al., 2011), particulate SO<sub>4</sub><sup>2-</sup> (Hand et al., 2012) and air quality and atmospheric deposition (Sickles and Shadwick, 2007; Sickles and Shadwick, 2015, Cheng and Zhang, 2017). Sickles and Shadwick (2007, 2015) compared the 5-year averages of air quality and atmospheric deposition in the eastern US for 1990-2004 and 1990-2009. Cheng and Zhang (2017) reported the temporal trends of annual concentration of air pollutants from 31 Canadian rural locations, most of which were located in

Eastern Canada. Aas et al. (2019) reported global and regional trends of atmospheric sulfur for 1990-

2015, and found North America and East Asia had the largest reductions of sulfur emissions during the late part of the period. In this study, we analyze the surface air concentration data measured weekly by the CASTNET network in the US and measured daily from the CAPMoN network in Canada to reveal the detailed temporal and spatial trends of air quality from 1990-2015. These trends are not only

- 5 important for the assessment of the improvement of air quality due to emissions reductions, but also are essential for the evaluations of chemical transportation models. The analysis will answer the following questions: (1) what are the trends of air pollutants over the eastern US and Eastern Canada following the significant reductions of SO<sub>2</sub> and NO<sub>x</sub> emissions during 1990-2015; (2) what are the physical and chemical mechanisms responsible for the trends. We will look at the air concentrations of
- 10

SO<sub>2</sub>, or due to the oxidation of SO<sub>2</sub> and NO<sub>x</sub> as well as reaction of these oxidants with NH<sub>3</sub>.

gases SO<sub>2</sub> and HNO<sub>3</sub>, and particulates SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub><sup>-</sup>, and NH<sub>4</sub><sup>+</sup>, which are either due to direct emissions of

## 2. Data and method

#### 15 2.1 Networks of measurement: CASTNET and CAPMoN

The monitoring of background- and regional-level ambient pollutants is essential for assessing regional air quality. In the US and Canada, this long-term monitoring of air quality in rural and remote areas is fulfilled by the two monitoring networks: CASTNET and CAPMoN, respectively.

20

CASTNET is a monitoring network managed and operated by the US EPA in cooperation with several other federal, state and local partners (Clarke et al., 1997; Bloomer et al, 2010). The network was established under the 1990 CAA to assess the trends of acidic deposition due to emission reduction programs. The network makes weekly integrated measurements of gases (SO<sub>2</sub> and HNO<sub>3</sub>) and particulates (SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub><sup>-</sup>, NH<sub>4</sub><sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Na<sup>+</sup>, and Cl<sup>-</sup>) using filter pack methods, as well as hourly

25

measurements of  $O_3$ . At selected sites, it also measures hourly concentration of NO, reactive nitrogen (NO<sub>y</sub>), SO<sub>2</sub>, and CO.

CAPMON is a monitoring network operated by Environment and Climate Change Canada (ECCC). The
 network began operation in 1983, although one of its two predecessor networks, the Air and
 Precipitation Network (APN), measured air concentrations as far back as in 1978. The network
 measures 24-hour integrated air concentrations of pollutants (from 08:00 AM to 08:00 AM, local time)
 through filter pack sampling, and 24-hour wet deposition by collection of precipitation samples at the
 ground level. The daily air concentration measurements by CAPMON also include gases (SO<sub>2</sub> and

10 HNO<sub>3</sub>) and particulates (SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub><sup>--</sup>, NH<sub>4</sub><sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Na<sup>+</sup>, and Cl<sup>-</sup>), similar to CASTNET's weekly measurements. CAPMoN also measures hourly air concentration of O<sub>3</sub>, NO<sub>y</sub>, and gaseous Hg at selected sites. More details about the CAPMoN dataset can be found in Cheng and Zhang (2017).

#### 2.2 Statistical analysis and method

As we focus on the long-term trends of air pollutants over the region, annual means for all seasons and seasonal means for the warm, and cold seasons were derived for each site from the weekly measurements of CASTNET and daily measurements of CAPMOM. To be precise, the seasonal mean concentrations in this study refer to the mean concentrations calculated for the warm (May – October) and cold (November – April) seasons for each year. In order to avoid the fluctuations of annual or seasonal mean concentrations due to meteorology, 3-year averages were used to represent the mean concentrations at the beginning or the end of a period in calculating changes for that period.

The Mann-Kendall test (MKT) is a non-parametric test to detect the trend of a time series and it doesn't require the variable of the time series follows a normal distribution (Mann, 1945, Du et al.,

2014). In this study, the MKT was used to detect if an increasing or decreasing trend exists when a time series generally looks flat. The p-value and tau coefficient are the two statistical parameters of the MKT, indicating the statistical significance and significance of a monotonic trend respectively.

- To assess the changes of air pollutants in response to emission reductions of  $SO_2$  and  $NO_x$ , we looked at the followings for species of  $SO_4^{2^-}$ ,  $SO_2$ ,  $NH_4^+$ ,  $NO_3^-$ ,  $HNO_3$  and  $TNO_3$  ( $NO_3^- + HNO_3$ , expressed as equivalent  $NO_3^-$ ):
  - (1) temporal and spatial trends in the eastern US and Eastern Canada;
  - (2) 10-year and 25-year changes for the periods of 1990-2000 and 1990-2015;
- 10 (3) differences in trends in cold and warm seasons;
  - (4) time series of the yearly regional means during the warm and cold seasons;
  - (5) long-term trends derived from polynomial regressions.

We also looked at correlations between  $SO_4^{2-}$  and  $SO_2$ , the ratio of sulfur (RSO<sub>4</sub>) in  $SO_4^{2-}$  to total sulfur in  $SO_4^{2-}$  plus  $SO_2$  in the air, the ratio of nitrogen (RNO<sub>3</sub>) in  $NO_3^{-}$  to TNO<sub>3</sub>, and their changes during the

15 period, in order to explain the physical and chemical mechanisms responsible for the trends.

#### 2.3 Region-clustering of CASTNET and CAPMoN sites in the eastern US and Eastern Canada

- In the eastern US (EUS) and Eastern Canada (EC), there are significant spatial differences in emissions of SO<sub>2</sub>, NO<sub>x</sub> and NH<sub>3</sub>. This results in distinctive regional patterns of air concentration of SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub><sup>-</sup>, NH<sub>4</sub><sup>+</sup>, HNO<sub>3</sub> and SO<sub>2</sub>. In this study, we used the cold season (November to April) 3-year mean concentrations of NO<sub>3</sub><sup>-</sup> and SO<sub>2</sub> of each site, supplemented with the ratio of RNO<sub>3</sub>, as the criteria to cluster the CASTNET and CAPMON sites into 4 different regions. The reasons for selecting the cold season are: (1) NO<sub>3</sub><sup>-</sup> is mainly in form of NH<sub>4</sub>NO<sub>3</sub> (Zhang et al., 2008), and it is more
- thermodynamically stable in the cold season than in the warm season; (2) the oxidation rate of  $SO_2$  is much lower in the cold season than in the warm season, therefore the air concentration of  $SO_2$  more
  - 8

reflects the SO<sub>2</sub> emission rate of the region; (3) because NH<sub>4</sub>NO<sub>3</sub> is much more thermodynamically stable and much less affected by ambient temperature, RNO<sub>3</sub> is mainly determined by the availability of NH<sub>3</sub> over the region; therefore RNO<sub>3</sub> during the cold season is an indicator of the abundance of NH<sub>3</sub> to form NH<sub>4</sub>NO<sub>3</sub>. The mean concentrations at the beginning of the period were used to cluster the sites as the emission rate of SO<sub>2</sub> was highest.

5

Based on the spatial patterns of mean air concentration of NO<sub>3</sub><sup>-</sup> and SO<sub>2</sub>, and RNO<sub>3</sub> during the cold season of 1989-1991, which are shown in Table S1.b and Fig. S1.b, 4 regions in the EUS and EC were clustered:

- 10
- Region 1: sites located north of latitude 40°, and with concentration of SO<sub>2</sub> less than 6.4  $\mu$ g m<sup>-3</sup> in the cold season.
  - Region 2: sites with mean concentration of NO<sub>3</sub><sup>-</sup> greater than 2.5  $\mu$ g m<sup>-3</sup>. Except for site ARE128 at 2.1  $\mu$ g m<sup>-3</sup>, the highest air concentration of NO<sub>3</sub><sup>-</sup> of all other sites was 1.9  $\mu$ g m<sup>-3</sup>. For sites in region 2, RNO<sub>3</sub> was greater than 54%, which was higher than any CASTNET and CAPMoN sites in other regions.
- 15
- Region 3: sites excluded from regions 1 and 2, and with an air concentration of SO<sub>2</sub> greater than 15.0  $\mu$ g m<sup>-3</sup> during the cold season.
- Region 4: all other sites excluded from regions 1, 2 and 3. The highest mean SO<sub>2</sub> of sites in region 4 during the cold season was less than 11.7  $\mu$ g m<sup>-3</sup>.

20

The clustering of sites is shown in Fig. 1 with site names. Regions 2, 3, and 4 roughly correspond to the Midwest, Mid-Atlantic, and Southeast regions participating in the NBP (Butler et al., 2011). The site SND152 had a characteristic of region 2, but it is geologically located in region 4; therefore the site SND152 was not included in the study. Characteristics of each region are listed in Table 1. After

25 grouping the sites into each cluster appropriately, annual and seasonal mean concentrations of each

species from each site within the cluster show high correlations with the averaged values of the cluster, as shown in Fig. S3 and Table S3. For example, as shown in Table S3 for region 2, the averaged correlation coefficients of the seasonal mean concentrations of each site *vs.* the averaged values of the cluster during the warm season are 0.98, 0.95, 0.98, 0.97, 0.98 and 0.98 for SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub><sup>-</sup>, NH<sub>4</sub><sup>+</sup>, HNO<sub>3</sub>, SO<sub>2</sub> and TNO<sub>3</sub>, respectively. For all seasons, the corresponding averaged correlation coefficients are 0.97-0.99, 0.59-0.91, 0.93-0.98, 0.94-0.99, 0.96-0.99 and 0.86-0.98 for regions 1-4.

## 3. Results

5

20

#### 3.1 Air quality in the eastern US and Eastern Canada at the beginning of the study period: 1989-1991

Three-year averages of air concentrations of SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub><sup>-</sup>, NH<sub>4</sub><sup>+</sup>, HNO<sub>3</sub>, SO<sub>2</sub> and TNO<sub>3</sub>, as well as RSO4 and RNO3 from 1989-1991 are used to describe the air quality at the beginning of the study period, and are shown in Table S1.a and b for the warm and cold seasons. Mapping of 3-year average for each species is also provided as Fig. S1 in the Supplement. Among the 4 regions and both the warm and cold seasons, region 1 had the lowest air concentration of all species with mean NO<sub>3</sub><sup>-</sup>, HNO<sub>3</sub> and NH<sub>4</sub><sup>+</sup>
concentrations of less than 1.0 µg m<sup>-3</sup>. The mean air concentration of NO<sub>3</sub><sup>-</sup> during the warm season was only 0.14 µg m<sup>-3</sup>. Mean SO<sub>4</sub><sup>2-</sup> concentrations were 2.9 and 2.3 µg m<sup>-3</sup> during the warm and cold seasons respectively, and SO<sub>2</sub> was 1.6 and 3.6 µg m<sup>-3</sup> correspondingly.

For regions 2-4,  $SO_4^{2-}$  was highest in region 3 and lowest in region 4 for both seasons, varying from 7.6 to 8.2 µg m<sup>-3</sup> during the warm season and 3.6 to 4.2 µg m<sup>-3</sup> during the cold season. The difference in the regional mean of  $SO_4^{2-}$  between region 2 and 3 was less than 0.1 µg m<sup>-3</sup> during the cold season. Generally  $SO_4^{2-}$  in regions 2-4 was spatially uniform. For each region  $SO_4^{2-}$  during the warm season was about double that during the cold season. Same as  $SO_4^{2-}$ ,  $SO_2$  was also highest in region 3 and lowest in region 4 for regions 2-4, but  $SO_2$  in region 3 was much higher and was about 2.5 times that in region 4.  $SO_2$  in regions 3 and 2 during the cold season, being 19.2 and 13.7 µg m<sup>-3</sup> respectively, were the two

highest concentrations and the only two concentrations greater than 10.0 µg m<sup>-3</sup> among all species in 4 regions and during the warm and cold seasons. The difference in SO<sub>2</sub> between region 3 and 2 was less than 1.0 µg m<sup>-3</sup> during the warm season, but was more than 5.0 µg m<sup>-3</sup> during the cold season. Despite significant differences in  $SO_2$  for regions 2-4, the corresponding differences in  $SO_4^{2-}$  were small. As an example, during the cold season, the seasonal mean concentration of SO<sub>2</sub> in region 3 was 5 higher than that in region 4 by 10.0  $\mu$ g m<sup>-3</sup>, but the corresponding difference in SO<sub>4</sub><sup>2-</sup> was only 0.7  $\mu$ g m<sup>-3</sup>. This can be attributed to the fact that the lifetime of  $SO_4^{2-}$  (~ 5-7 days) in the air is much longer than that of SO<sub>2</sub> (~ 2 days) (Penner et al. 2001; Pitari et al, 2016). Lee et al. (2011) estimated that the mean SO<sub>2</sub> lifetime in the eastern US is  $19 \pm 7$  h in summer and  $58 \pm 20$  h in winter. Comparing SO<sub>2</sub> in 10 the cold season to that in the warm season, it was about 2 times higher in region 3 and 4, and 59% higher in region 2. In contrast to the pattern of  $SO_4^{2-}$ ,  $NO_3^{-}$  in regions 2-4 was significantly different from region to region. Region 2 had the highest concentration of NO<sub>3</sub><sup>-</sup> at 1.5 μg m<sup>-3</sup> during the warm season and 3.6 µg m<sup>-3</sup> during the cold season, which were about triple the value in region 3, which was the second highest. Region 4 had the lowest NO<sub>3</sub><sup>-</sup> concentrations among regions 2-4, being 0.3 and 0.6 15  $\mu$ g m<sup>-3</sup> for the warm and cold seasons respectively. The lowest value for stations in region 2 during the cold season was 2.5  $\mu$ g m<sup>-3</sup> at ALH157, higher than the highest value of 2.1  $\mu$ g m<sup>-3</sup> at BEL116 in region 3. During the warm season, HNO<sub>3</sub> ranged from 1.7  $\mu$ g m<sup>-3</sup> in region 4 to 2.8 and 2.9  $\mu$ g m<sup>-3</sup> in regions 3 and 2. During the cold season, the highest concentration of HNO<sub>3</sub> was in region 3, and the lowest in region 2, with values of 2.3 and 1.8  $\mu$ g m<sup>-3</sup>, respectively. Considering both seasons, region 3 had the highest concentration of HNO<sub>3</sub> among the four regions. Region 2 had the lowest concentration of 20 HNO<sub>3</sub> among regions 2-4 during the cold season due to the fact that a large portion of HNO<sub>3</sub> was neutralized by NH<sub>3</sub> to form NH<sub>4</sub>NO<sub>3</sub>. For TNO<sub>3</sub>, in both seasons, region 2 had the highest concentration, being 4.3 and 5.3  $\mu$ g m<sup>-3</sup> in the warm and cold seasons, mainly because of the significantly higher concentration of NO<sub>3</sub><sup>-</sup> than other regions. TNO<sub>3</sub> was 3.2 and 3.5  $\mu$ g m<sup>-3</sup> for region 3, and 2.0 and 2.3 µg m<sup>-3</sup> for region 4 during the warm and cold seasons. NH<sub>4</sub><sup>+</sup> in regions 2-4 varied from

25

1.9 to 2.7  $\mu$ g m<sup>-3</sup> during the warm season, and 1.1 to 2.3  $\mu$ g m<sup>-3</sup> during the cold season, with the highest concentrations in region 2 and the lowest concentrations in region 4 for both seasons. NH<sub>4</sub><sup>+</sup> was higher in the warm season than in the cold season for all regions, as much more (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> formed in the warm season than in the cold season.

In general, region 1 had the lowest concentration of all species among the 4 regions, and region 4 had the second lowest except HNO<sub>3</sub> which was slightly more than in region 2 during the cold season.
Regions 2 and 3 were the two most polluted regions in the EUS and ECA. Region 3 had the highest regional concentration of SO<sub>2</sub> in both seasons, more than double that in region 1 and 4; Region 2 had the highest concentration of NO<sub>3</sub><sup>-</sup> and TNO<sub>3</sub>. In both seasons, NO<sub>3</sub><sup>-</sup> in region 2 was more than 4 times
higher than that in regions 1 and 4, and TNO<sub>3</sub> was more than double that in regions 1 and 4.

# **3.2** Time series of seasonal mean concentrations of $SO_4^{2^-}$ , $SO_2$ , $NO_3^-$ , $HNO_3$ , $TNO_3$ and $NH_4^+$ during 1990-2015

Time series of seasonal mean concentrations of SO<sub>4</sub><sup>2-</sup>, SO<sub>2</sub>, NO<sub>3</sub><sup>-</sup>, HNO<sub>3</sub>, TNO<sub>3</sub> and NH<sub>4</sub><sup>+</sup> for each region as well as each site of the region are shown in Fig. S3.a for the cold season and Fig. S3.b for the warm season. As an example, time series of regional averaged seasonal mean concentrations in regions 2 and 4 are shown in Fig. 2.a and b for the cold and warm seasons. Time series of regional averages for regions 1-4 normalized to year 2000 are presented in Fig. 3.a and 3.b for the warm and cold seasons. Year 2000 was chosen for normalization because: (1) emissions of NO<sub>x</sub> changed little during the first 10 years; (2) 10 and 25 years of change of annual and seasonal mean concentrations of each species will be discussed in Section 3.3. As shown in Fig. S3, the time series for the stations within each region were very highly correlated when the stations are properly grouped into 4 regions. The discussion in this section is based on the time series of seasonal mean concentrations presented in Fig. 3.

## 3.2.1 $SO_4^{2-}$ and $SO_2$

#### 3.2.1.1 SO<sub>4</sub><sup>2-</sup> and SO<sub>2</sub> during the cold season

As seen from the time series of the seasonal mean concentrations in Fig. S3, SO<sub>4</sub><sup>2-</sup> in region 1 had a steady decreasing trend from 1989 to 2000, then a relatively slower decreasing trend from 2001 to

- 5 2016. SO<sub>4</sub><sup>2-</sup> in region 2 had a decreasing trend during 1989-1995 and a slow decreasing trend during 1995-2005. From 2005 to 2016, there was a straight decreasing trend with only small increases in 2008 and 2014. SO<sub>4</sub><sup>2-</sup> in region 3 generally decreased significantly for the period 1989-1999 and was followed by a slow decreasing period from 2000-2008. There was a smooth decreasing trend from 2008 to 2016, and the drop of the seasonal mean concentration was significant in 2008-2011 and
- 10 2014-2016.  $SO_4^{2-}$  in region 4 had a peak in 1989 for 1988-1990, which was followed by three relatively constant periods of 1990-1993, 1994-2001 and 2002-2007 with the averages of the seasonal mean concentrations of  $SO_4^{2-}$  during the periods being 3.4 µg m<sup>-3</sup>, 3.1 µg m<sup>-3</sup>, and 2.8 µg m<sup>-3</sup> respectively. There were only two major drops between the periods, in 1994 and 2002 respectively. From 2007 to 2016,  $SO_4^{2-}$  in region 4 had a steep drop, and the concentration was reduced from 2.7 µg m<sup>-3</sup> in 2007
- to 1.1 μg m<sup>-3</sup> in 2016. In general, SO<sub>4</sub><sup>2-</sup> in the EUS and EC during the cold season can be described by two fast decreasing periods of 1989-1995 and 2005-2016, and a slow decreasing period of 1995-2005. The annual reduction rates during the three periods were 0.14, 0.03, and 0.05 μg m<sup>-3</sup>yr<sup>-1</sup> in region 1; 0.16, 0.04, and 0.13 μg m<sup>-3</sup>yr<sup>-1</sup> in region 2; 0.15, 0.05, and 0.15 μg m<sup>-3</sup>yr<sup>-1</sup> in region 3; and 0.10, 0.04 and 0.14 μg m<sup>-3</sup>yr<sup>-1</sup> in region 4. The decreasing rates in regions 2 and 3 were close. If all sites within
  regions 1-4 were combined, the corresponding rates were 0.14, 0.04, and 0.12 μg m<sup>-3</sup>yr<sup>-1</sup> for the three

periods.

SO<sub>2</sub> in regions 2-4 during the cold season had a significant drop in 1989-1995 with a temporary increase in 1993 and 1994. From 1995 to 2005 the decreasing trend was slow, and then there was a very steep reduction from 2005 to 2012. The trend from 2012 to 2016 was relatively flat. The trend of

25 SO<sub>2</sub> in region 1 was similar except that there was no obvious increase in 1993-1994.

SO<sub>2</sub> exhibited an annual reduction rate of 0.28, 0.06, and 0.12  $\mu$ g m<sup>-3</sup>yr<sup>-1</sup> in region 1; 0.83, 0.09, and 0.73  $\mu$ g m<sup>-3</sup>yr<sup>-1</sup> in region 2; 1.13, 0.22, 1.13  $\mu$ g m<sup>-3</sup>yr<sup>-1</sup> in region 3; 0.32, 0.08, and 0.49  $\mu$ g m<sup>-3</sup>yr<sup>-1</sup> in region 4 for the periods of 1989-1995, 1995-2005, and 2005-2012. For regions 1-4 combined, the corresponding reduction rates were 0.72, 0.16 and 0.48  $\mu$ g m<sup>-3</sup>yr<sup>-1</sup>. For the third period, if we only consider 2005-2012, the annual reduction rate was 0.61  $\mu$ g m<sup>-3</sup>yr<sup>-1</sup>. Although the trend of SO<sub>2</sub> during 2012-2016 was generally flat, the decrease of SO<sub>4</sub><sup>2-</sup> during the period was still significant, especially in terms of percentage.

3.2.1.2  $SO_4^{2-}$  and  $SO_2$  during the warm season

5

- SO4<sup>2-</sup> in region 1 had a significant decrease from 1989 to 1996, followed by a levelling off until 2005 and a decreasing trend from 2005-2016. After a significant peak in 1989, SO4<sup>2-</sup> in region 2 had a large drop from 1989 to 1993. There was a steady decreasing trend for 1994-2004, followed by a significant peak in 2005 which was captured by all measurement sites within the region. This was followed by a smooth decreasing trend for 2005-2016, with major drops in 2005-2006, 2007-2009, 2012, and 2013-
- 2016. Unlike region 2, SO<sub>4</sub><sup>2-</sup> in region 3 had no significant peak in 1989, and had a decreasing trend during 1989-1999. There was a levelling off for 1999-2005, and it was followed by a significant decreasing trend for 2005-2016 with steep drops in 2005-2006, 2007-2009, and 2011-2016. SO<sub>4</sub><sup>2-</sup> in region 4 had a decreasing trend in 1989-1994 and a slow decreasing trend in 1994-2000. After a drop in 2001, it had another levelling off in 2001-2007 with a peak in 2005. There was a significant straight decreasing trend for 2007-2016 with a major drop during 2007-2009. SO<sub>4</sub><sup>2-</sup> in all stations converged to
- the regional average after 2009. In general, the trend of  $SO_4^{2-}$  during the warm season can be characterized by two fast reduction periods of 1989-1995 and 2007-2016, and a slow period of 1995-2007. For the three periods,  $SO_4^{2-}$  had a reduction rate of 0.17, 0.01 and 0.14 µg m<sup>-3</sup>yr<sup>-1</sup> for region 1; 0.39, 0.03 and 0.43 µg m<sup>-3</sup>yr<sup>-1</sup> for region 2; 0.28, 0.01 and 0.52 µg m<sup>-3</sup>yr<sup>-1</sup> for region 3; and 0.24, 0.04

and 0.50  $\mu$ g m<sup>-3</sup>yr<sup>-1</sup> for region 4. For regions 3 and 4, the most significant decrease occurred in 2007-2009.

SO<sub>2</sub> concentrations during the warm season was quite low during 1990-2015 in region 1. There was a slow decreasing trend from 1990 to 2007, a relatively large decreasing trend in 2007-2009, and a level-

off at very low concentration ( < 1.0 μg m<sup>-3</sup>) in 2009-2016. SO<sub>2</sub> during the warm season in regions 2-4 had similar trends: (1) a fast decreasing period of 1989-1995, with a levelling off period of 1992-1994 in region 2 and a peak in 1993 in regions 3 and 4; (2) a slowly decreasing period of 1995-2007 with an initial slow increase in 1995-1999 in region 2, and an initial steep increase in 1996-1998 in region 3 and 4; (3) a fast decreasing period of 2007-2016 with very steep decreases in 2007-2009. SO<sub>2</sub> had annual reduction rates of 0.12, 0.03 and 0.04 μg m<sup>-3</sup>yr<sup>-1</sup> for region 1; 0.55, 0.08, and 0.43 μg m<sup>-3</sup>yr<sup>-1</sup> for region 2; 0.46, 0.11 and 0.48 μg m<sup>-3</sup>yr<sup>-1</sup> for region 3; 0.13, 0.05 and 0.22 μg m<sup>-3</sup>yr<sup>-1</sup> for region 4. For the whole region, the annual reduction rates during the warm season were 0.31, 0.04 and 0.38 μg m<sup>-3</sup>yr<sup>-1</sup> for SO<sub>4</sub><sup>2-</sup>, and 0.34, 0.08, and 0.30 μg m<sup>-3</sup>yr<sup>-1</sup> for SO<sub>2</sub> for the periods of 1989-1995, 1995-2007, and 2007-2016.

#### 15

3.2.2  $NO_3^-$ ,  $HNO_3$  and  $TNO_3$ 

 $3.2.2.1 \text{ NO}_3^-$ ,  $\text{HNO}_3$  and  $\text{TNO}_3$  during the cold season

NO<sub>3</sub><sup>-</sup> in EUS and EC during the cold season was dominated by NO<sub>3</sub><sup>-</sup> in region 2, which was much higher than NO<sub>3</sub><sup>-</sup> in other regions. As the trends of NO<sub>3</sub><sup>-</sup> during the cold season were not as obvious as other species, the MKT was applied to detect if a monotonic (increasing or decreasing) trend existed. The MKT indicated that: (1) NO<sub>3</sub><sup>-</sup> in region 2 had no obvious trend in the period of 1989-2001 (p = 0.45, tau = 0.18), but there was a decreasing trend for the period 2001-2016 ( p < 0.001, tau = -0.70); the trends of NO<sub>3</sub><sup>-</sup> in regions 1, 3 and 4 over the whole study period were pretty flat ( p = 0.17-0.40, |tau| < 0.2).

Excluding a peak of 1.9  $\mu$ g m<sup>-3</sup> in 1993, the trend of HNO<sub>3</sub> in region 2 in the 1990s is flat. From 2003 to 2013, there was a decreasing trend, then a slow increasing trend for 2013-2016 in region 2. HNO<sub>3</sub> in region 3 showed a general declining trend by 21.7% (2004-2005 vs. 1989-1990) during 1989-2005. The

- declining trend of HNO<sub>3</sub> in the 1990s was consistent with the increasing trend of NO<sub>3</sub><sup>-</sup> during the 5 period, as more HNO<sub>3</sub> was neutralized by additional NH<sub>3</sub> made available from decreasing SO<sub>4</sub><sup>2-</sup>. HNO<sub>3</sub> decreased markedly from 2005 to 2009 in region 3, then exhibited a slower decreasing trend for 2009-2016. HNO<sub>3</sub> in region 4 had an initial decrease from 1989 to 1991, then an increasing trend of 21.1% (1999-2000 vs. 1991-1992) for 1991-2000. The region then showed a slow decrease in 2000-2005, a fast decrease in 2005-2009, and a slow decrease in 2009-2016.
- 10

TNO<sub>3</sub> in the cold seasons over region 2, 3 and 4 had similar trends. For 1990-2001, the general trend of TNO<sub>3</sub> over the regions was from roughly constant to slowly increasing. This is consistent with the NO<sub>x</sub> emission trend during the period. For 2001-2016, there was a significant decrease of TNO<sub>3</sub> over the three regions. For region 3, it occurred mainly during the period 2001-2009.

#### 15

20

 $3.2.2.2 \text{ NO}_3^-$ , HNO<sub>3</sub> and TNO<sub>3</sub> during the warm season

 $NO_3^{-}$  in region 1 had an increasing trend in 1990-2000, a decreasing trend in 2000-2007, and a flat trend in 2007-2016. Linear regression of NO<sub>3</sub><sup>-</sup> seasonal mean concentration in region 2 during the warm season from 1990 to 1999 showed a slow increasing trend for  $NO_3^-$  in the 1990s. After 2002, there was a straight decline of  $NO_3^-$  concentration until 2009, and a steady decreasing from 2011-2016. Linear regression of NO<sub>3<sup>-</sup></sub> in region 3 shows a flat trend during 1989-2000 and a weakly increasing trend during 1990-1999. Between 2000 and 2005, NO<sub>3<sup>-</sup></sub> in region 3 exhibited a clearly declining trend. From 2005 to 2016, the trend was generally flat. The seasonal concentration of NO<sub>3</sub><sup>-</sup>

in region 4 had a weakly increasing trend for 1992-2000, followed by a decreasing trend for 2000-2005 and a slow increasing trend for 2005-2016. In general, NO<sub>3</sub><sup>-</sup> during the warm season had a flat-toweakly-increasing trend for 1990-2000 and a strong decreasing trend for 2000-2005 for regions 2-4. For 2005-2016, there was a decreasing trend for region 2, a flat trend for region 3, and a weakly increasing trend for region 4.

5 increasing trend for region 4.

HNO<sub>3</sub> in region 1 was very low ( < 1.0  $\mu$ g m<sup>-3</sup>) in general during the whole study period. There was flat trend in 1990 to 2001, a slow decreasing trend in 2001 to 2009, and a flat trend again in 2009 to 2016. HNO<sub>3</sub> in regions 2-4 can be characterized by three periods: a flat (regions 2 and 3) or a weak increasing (region 4) trend for 1989-1999, a significant decreasing trend for 1999-2009, and a generally flat trend for 2009-2016.

HNO<sub>3</sub> dominated over NO<sub>3</sub><sup>-</sup> in TNO<sub>3</sub> during the warm season for all regions, and especially in regions 3 and 4, where the ratio of NO<sub>3</sub><sup>-</sup> to TNO<sub>3</sub> was usually less than 20%. Therefore, the trend of TNO<sub>3</sub> generally followed that of HNO<sub>3</sub> during the warm season. In the 1990s (1990-1999) the trend of TNO<sub>3</sub> in the warm season over regions 2 and 3 was very flat, and there was a very weakly increasing trend over region 4. The turning point of the trend was in 1999. For the period 1999-2009, all three regions showed significant decreasing trends. For 2009-2016, the trends in the three regions were generally flat.

#### 3.2.3 NH4<sup>+</sup>

10

15

#### 20 3.2.3.1 NH<sub>4</sub><sup>+</sup> during the cold season

 $NH_4^+$  during the cold season in region 1 had a flat trend in 1990-1999, a very slow decreasing trend in 1999-2009, followed by a generally flat trend in 2009-2015. The trend of  $NH_4^+$  in region 2 during the cold season was affected by both  $SO_4^{2-}$  and  $NO_3^{-}$ . It had a near-linear decreasing trend from 1991 to

2009, and was followed by another steeper declining trend for 2009-2016.  $NH_4^+$  in region 3 had a steep decrease in 1989-1994, and was followed by a weak decrease and a steep decrease in 1994-2009 and 2009-2016 respectively.  $NH_4^+$  in region 4 remained unchanged during 1990-2001. After 2001,  $NH_4^+$  decreased steadily until 2016.

5 3.2.3.2 NH<sub>4</sub><sup>+</sup> during the warm season

10

NH<sub>4</sub><sup>+</sup> in region 1 changed little in 1990-2005 and 2009-2015 during the warm season, but there was a decreasing trend in 2005-2009. Excluding the two significant peaks in 1989 and 2005, NH<sub>4</sub><sup>+</sup> in region 2 showed a consistent and steady decreasing trend from 1990 to 2016. Fig. 3 shows that the trend of NH<sub>4</sub><sup>+</sup> in region 3 generally followed that of SO<sub>4</sub><sup>2-</sup> closely because NH<sub>4</sub><sup>+</sup> in region 3 was dominantly associated with SO<sub>4</sub><sup>2-</sup> during the warm season. The two trends were almost identical after 2000. From 1995-2005, the trend of NH<sub>4</sub><sup>+</sup> in region 3 was almost flat. There was a major decrease of NH<sub>4</sub><sup>+</sup> in region 3 in 2005-2009 when it decreased by almost 50% in 4 years. NH<sub>4</sub><sup>+</sup> in region 4 changed little from 1990-2000. Although during the same period SO<sub>4</sub><sup>2-</sup> had an obvious decreasing trend, its impact on NH<sub>4</sub><sup>+</sup> was offset by the increasing trend of NO<sub>3</sub><sup>-</sup> during this period. After a drop in 2000-2001, NH<sub>4</sub><sup>+</sup> had a flat

trend for 2001-2007, a dramatic decrease in 2007-2009, and a steady decreasing trend for 2010-2016.

# 3.3 10 and 25 years of changes of ambient SO<sub>4</sub><sup>2-</sup>, SO<sub>2</sub>, NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>-</sup>, HNO<sub>3</sub> and TNO<sub>3</sub> in the EUS and EC for 1990-2015

As mentioned in Section 1, emissions of NO<sub>x</sub> changed little during the 1990s in the EUS. Correspondingly, the time series of TNO<sub>3</sub> in regions 2-4 during the 1990s didn't decrease or even increased, as shown in Section 3.2. Also, some important metrics, such as RSO<sub>4</sub> during the cold season and RNO<sub>3</sub> during the warm and cold seasons, only started to have significant changes after the first 10 years. In order to capture how ambient air pollutants responded to emission reductions of SO<sub>2</sub> and

NO<sub>x</sub> temporarily, 10 and 25 years of change of ambient SO<sub>4</sub><sup>2-</sup>, SO<sub>2</sub>, NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>-</sup>, HNO<sub>3</sub>, and TNO<sub>3</sub> during 1990-2015 are presented in Tables 2 and 3, and are summarized in Sections 3.3.1 and 3.3.2. To avoid the fluctuation of annual ambient concentrations due to the variation of meteorology, the changes are calculated based on 3-year averages centered on 1990, 2000, and 2015.

5

15

#### 3.3.1 10 years of changes for the period 1990-2000

During the 10-year period of 1990-2015, air quality in the EUS and EC underwent a number of major changes which are summarized as follows:

- During the first 10 years, SO<sub>2</sub> concentrations declined in all regions and seasons by more than
   25.0% except for region 4, which had a reduction of 15.5% during the warm season and 23.8%
   during the cold season.
  - SO4<sup>2-</sup> showed a similar but less significant decreasing trend as SO<sub>2</sub>. The reduction was more than
     20% in all regions except for region 4 during the cold season. Region 4 during the warm season had
     a similar reduction rate to region 3 despite the significant difference in the reduction rates of SO<sub>2</sub>
     in the two regions.
    - NO<sub>3</sub><sup>-</sup> increased between 6.6% and 40.0% during the cold season for regions 1-4. Changes of NO<sub>3</sub><sup>-</sup> during the warm season in regions 3 and 4 were very small, and only had a significant reduction of 9.6% in region 2.
- TNO<sub>3</sub> increased little in region 1, by 0.09 and 0.02 µg m<sup>-3</sup> for the cold and warm seasons respectively. TNO<sub>3</sub> in regions 2 and 3 changed very little during the cold season, and had a 9.4% and 11.8% reduction during the warm season. TNO<sub>3</sub> in region 4 increased by 3.9% during the warm season, and by 14.2% during the cold season.

- Except for a negligible change in region 4, NH4<sup>+</sup> decreased by 13.5% to 22.8% for regions 1-3 during the cold season; during warm season, it decreased by 12.0% to 29.8% for regions 1-4.
- In summary, over the first ten-year period of 1990-2010, SO<sub>2</sub>, SO<sub>4</sub><sup>2-</sup> and NH<sub>4</sub><sup>+</sup> declined by 31.6%,
   26.7% and 18.5% respectively in the EUS and EC. HNO<sub>3</sub> reduced in regions 1-3. NO<sub>3</sub><sup>-</sup> increased in
- 5
- regions 1-4 during the cold season, and changed very little (< 0.15  $\mu$ g m<sup>-3</sup>) during the warm season. Considering both seasons and all regions, NO<sub>3</sub><sup>-</sup> increased by 12.7%, HNO<sub>3</sub> declined by 5.6%, and the change of TNO<sub>3</sub> was negligible with the mean concentration being 3.02  $\mu$ g m<sup>-3</sup> for 1989-1990 vs. 3.05  $\mu$ g m<sup>-3</sup> for 1999-2001.

#### 10 **3.3.2 25 years of changes for the period 1990-2015**

During the 25-year period of 1990-2015, air quality in the EUS and EC changed significantly, and are summarized as follows:

- 1. Among all species, the most significant reduction during the period was  $SO_2$ . The reduction of  $SO_2$  in regions 2-4 was similar in percentage, from 83.9% in the warm season for region 4 to 91.2% in the warm season for region 3. There were no major differences between the warm and cold seasons in terms of percentage reduction. In terms of absolute value, the biggest reduction was for  $SO_2$  in region 3 during the cold season, and the 3-year-averaged seasonal mean concentration was reduced from 19.2 µg m<sup>-3</sup> to 2.2 µg m<sup>-3</sup>.
- 2. The reduction in SO4<sup>2-</sup> concentrations during the cold season was relatively uniform in terms of percentage, ranging from 60.1% in region 2 to 62.5% in region 3. The reduction was more significant during the warm season than during the cold season, ranging from 72.7% in region 1 to 78.7% in region 4. The reductions in regions 2, 3, and 4 were similar in terms of values in

20

15

both seasons. The reduction of  $SO_4^{2-}$  in terms of percentage was much smaller than  $SO_2$  in all regions during both seasons except for  $SO_4^{2-}$  during the warm season in region 1.

3. During the warm season, the reduction of NO<sub>3</sub><sup>-</sup> was seen in all 4 regions, ranging from 14.3% and 15.6% in regions 1 and 4, to 36.2% and 57.5% in regions 3 and 2. The reduction of NO<sub>3</sub><sup>-</sup> during the cold season was only observed in region 2 (30.4%). Although TNO<sub>3</sub> was reduced during the cold season in regions 3 and 4, a higher percentage of HNO<sub>3</sub> was converted to NO<sub>3</sub><sup>-</sup> as more excess NH<sub>3</sub> was available to form NH<sub>4</sub>NO<sub>3</sub> due to the reduction of SO<sub>4</sub><sup>2-</sup>. As a result, the trend of NO<sub>3</sub><sup>-</sup> in the two regions during the cold season changed very little. Unlike regions 3 and 4, region 2 did observe a significant reduction of NO<sub>3</sub><sup>-</sup> in the cold season, following a 38.3% reduction of TNO<sub>3</sub>. This can be explained as region 2 is an NH<sub>3</sub>-rich region. Formation of NH<sub>4</sub>NO<sub>3</sub> during the cold season in the region is less sensitive to the excess NH<sub>3</sub> made available from SO<sub>4</sub><sup>2-</sup> reduction than in regions 3 and 4. This can also be demonstrated by the least reduction of HNO<sub>3</sub> (in terms of percentage) in region 2 during the cold season as well as the correlations of RNO<sub>3</sub> vs. SO<sub>4</sub><sup>2-</sup> shown in Section 5.4.

5

10

25

- The reduction of HNO<sub>3</sub> was similar in all four regions during the warm season, ranging from 63.1% to 68.8%. During the cold season, region 2 had the lowest percentage reduction at 56.0%, and region 1 had the highest at 63.5%. The reduction of HNO<sub>3</sub> can be through two paths: a reduction of NO<sub>x</sub> emissions and an increased neutralization of HNO<sub>3</sub> by more excess NH<sub>3</sub> due to lower amount of formation of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> and NH<sub>4</sub>HSO<sub>4</sub>. In terms of percentage, the reduction of HNO<sub>3</sub> was more significant than TNO<sub>3</sub> during the cold season, ranging from 14.4% more in region 4 to 28.0% more in region 1.
  - 5. TNO<sub>3</sub> had a reduction rate ranging from 35.5% for the cold season in region 1, to 64% during the warm season in region 3. The reduction during the warm season was much greater than in the cold season, ranging from 11.4% higher in region 4 to 23.9% higher in region 3. The difference was partially due to extra reductions of NO<sub>x</sub> emissions from power plants and other large combustion sources during the ozone season (May September) required by the NBP

that began in 2003 and the Clean Air Interstate Rule that started in 2009 (Napolitano et al., 2007; Butler et al., 2011; Sickles and Shadwick, 2015).

- 6. The reduction of NH<sub>4</sub><sup>+</sup> was similar in regions 2, 3, and 4, ranging from 48.9% to 53.2% in the cold season, and from 74.0% to 75.7% in the warm season. The reduction of NH<sub>4</sub><sup>+</sup> during the warm season was more significant than in the cold season, over 20% more in regions 2-4. The reduction of NH<sub>4</sub><sup>+</sup> generally followed the trends of SO<sub>4</sub><sup>2-</sup>, but the reduction rate was much lower than that of  $SO_4^{2-}$  during the cold season because a certain percentage of  $NH_4^+$  was associated with NO<sub>3</sub><sup>-</sup> and the reduction of NO<sub>3</sub><sup>-</sup> was not as significant as SO<sub>4</sub><sup>2-</sup> during the cold season. Region 2 exhibited the largest reduction of  $NH_4^+$  (75.7%) during the warm season, contributed by a 76.8% reduction of  $SO_4^{2-}$  as well as a 57.5% reduction of  $NO_3^{--}$ .
- 7. RSO<sub>4</sub> increased the most in region 3 during the cold season at 166.3%, and the least in region 1 during the warm season at 0.6%. During the warm season, RSO<sub>4</sub> increased by 54.9% and 58.4% in regions 2 and 3, respectively. The increase of RSO<sub>4</sub> during the cold season was much higher than in the warm season in terms of percentage, ranging from 48.6% in region 1 to 166.3 % in region 3.
- 8. RNO<sub>3</sub> increased significantly in regions 1, 3, and 4 in both seasons, ranging from 73.9% to 94.9%, but RNO<sub>3</sub> only increased by 8.0% and 12.8% in the warm and cold seasons for region 2, which was rich in NH<sub>3</sub>.
- 9. As presented in Table 3, for the whole region: (1) among the 5 species of  $SO_4^{2-}$ ,  $NO_3^{-}$ ,  $NH_4^+$ , HNO<sub>3</sub> and SO<sub>2</sub>, only SO<sub>4</sub><sup>2-</sup> and SO<sub>2</sub> still had regionally-averaged annual mean concentrations 20 exceeding 1.0  $\mu$ g m<sup>-3</sup> at the end of the study period. (2) SO<sub>4</sub><sup>2-</sup> was reduced by 73.3% for the whole region during the study period, and it was reduced about 15% more in the warm season than in the cold season in terms of percentage; (3)  $NH_4^+$  was reduced more in the warm season than in the cold season, in terms of both percentage and absolute value; (4) NO<sub>3</sub><sup>-</sup> was reduced by 29.1% for the whole region. The reduction during the cold season occurred only in region 2, 25

5

15

10



and the reduction during the warm season mainly occurred in regions 2 and 3. The reduction of  $NO_3^-$  for the whole region was mainly due to the reductions in region 2 during the warm and cold seasons; (5) RSO<sub>4</sub> increased by 97.7% in the cold season, much higher than 26.2% in the warm season. RSO<sub>4</sub> increased the most in region 3 during the cold season, in terms of both absolute value and percentage.

#### 3.4 Air quality at the end of the study period: 2014-2016

5

10

3-year-averaged air concentrations for 2014-2016 are used to describe the air quality at the end of the study period, and are presented in Table S2 and Fig. S2. The air concentration mentioned in this Section refers to the 3-year-averaged air concentration for each species, either for the warm or the cold seasons.

As at the beginning of the period, region 1 had the cleanest air among all regions with the lowest air concentrations, being less than 1.0 μg m<sup>-3</sup>, for all species and for both the warm and cold seasons. Unlike at the beginning of the period that SO<sub>4</sub><sup>2-</sup> during the warm season was about double that during
the cold season in regions 2-4, SO<sub>4</sub><sup>2-</sup> at the end of the period had no significant differences between the two seasons. The air concentrations of SO<sub>4</sub><sup>2-</sup> were less than 2.0 μg m<sup>-3</sup> in all regions and both seasons. For regions 2-4 the regional averages ranged from 1.6 to 1.8 μg m<sup>-3</sup> during the warm season, and from 1.4 to 1.7 μg m<sup>-3</sup> during the cold season. SO<sub>2</sub> during the warm season was only from 0.6 to 1.0 μg m<sup>-3</sup> for regions 2-4. In the cold season, SO<sub>2</sub> in regions 2 and 3 was the same at 2.2 μg m<sup>-3</sup>, and was only 1.1 μg m<sup>-3</sup> in region 4. NH<sub>4</sub><sup>+</sup> during the warm season varied from 0.5 to 0.7 μg m<sup>-3</sup> for regions 2-4. During the cold season, it was 0.5 and 0.8 μg m<sup>-3</sup> in regions 4 and 3 respectively, and it was much higher in region 2 with the value of 1.2 μg m<sup>-3</sup>. The air concentration of NO<sub>3</sub><sup>-</sup> during the warm season was very low in regions 3 and 4 with values of 0.3 μg m<sup>-3</sup>, and it was doubled in region 2, being 0.6 μg m<sup>-3</sup>. During the cold season, NO<sub>3</sub><sup>-</sup> was much higher than during the warm season, being 2.5, 1.3 and

0.5  $\mu$ g m<sup>-3</sup> for regions 2, 3, and 4 respectively. HNO<sub>3</sub> in regions 2-4 varied from 0.6  $\mu$ g m<sup>-3</sup> in region 4 to 1.1  $\mu$ g m<sup>-3</sup> in region 2 during the warm season, and from 0.7  $\mu$ g m<sup>-3</sup> in region 4 to 0.9  $\mu$ g m<sup>-3</sup> in region 3 during the cold season. There was little difference between the warm and cold seasons in regions 3 and 4. TNO<sub>3</sub> was highest in region 2 in both seasons, being 1.7 and 3.2  $\mu$ g m<sup>-3</sup> for the warm and cold seasons respectively. Region 3 had the second highest TNO<sub>3</sub> with values of 1.2  $\mu$ g m<sup>-3</sup> and 2.1  $\mu$ g m<sup>-3</sup> for the warm and cold seasons, and the corresponding values for region 4 were 0.9  $\mu$ g m<sup>-3</sup> and 1.3  $\mu$ g m<sup>-3</sup>.

5

In summary, for species of  $SO_4^{2-}$ ,  $NO_3^{-}$ ,  $NH_4^+$ ,  $HNO_3$  and  $SO_2$ , region 1 had air concentrations of less than 1.0  $\mu$ g m<sup>-3</sup> for all species in both seasons. For regions 2-4,  $NO_3^{-}$  was less than 1.0  $\mu$ g m<sup>-3</sup> for all

- <sup>10</sup> regions and both seasons except regions 2 and 3 during the cold season, for which the air concentrations of NO<sub>3</sub><sup>-</sup> were 2.5 and 1.3  $\mu$ g m<sup>-3</sup> respectively; HNO<sub>3</sub> was less than 1.0  $\mu$ g m<sup>-3</sup> except region 2 during the warm season with a value of 1.1  $\mu$ g m<sup>-3</sup>; NH<sub>4</sub><sup>+</sup> was less than 1.0  $\mu$ g m<sup>-3</sup> for all regions except region 2 during the cold season at 1.2  $\mu$ g m<sup>-3</sup>; SO<sub>4</sub><sup>2-</sup> was greater than 1.0 but less than 2.0  $\mu$ g m<sup>-3</sup> for regions 2-4 and both seasons; SO<sub>2</sub> was greater than 1.0 but less than 2.5  $\mu$ g m<sup>-3</sup> for
- regions 2-4 and both seasons, except regions 3 and 4 during the warm season being 0.8 and 0.6 μg m<sup>-</sup>
  <sup>3</sup>. Among 4 regions, region 2 had the highest air concentration for all species except HNO<sub>3</sub> during the cold season. Especially NO<sub>3</sub><sup>-</sup> in region 2 was double the second highest value in region 3 in both seasons. Also NO<sub>3</sub><sup>-</sup> in region 2 had the highest in value (at 2.5 μg m<sup>-3</sup>) among all species in 4 regions and both seasons, although it has significantly decreased from 3.6 μg m<sup>-3</sup> at the beginning of the study period.

#### 3.5 The Long-term trends derived with polynomial regressions

Through trial and error, we found that polynomial regressions can reasonably describe the long-term trends of species for the period. Through these regressions, we can eliminate the relative-short-term variations due to meteorology. The 4<sup>th</sup> order polynomial regressions were applied to the normalized seasonal means of SO<sub>4</sub><sup>2-</sup>, SO<sub>2</sub> and NH<sub>4</sub><sup>+</sup> during the cold and warm seasons. For NO<sub>3</sub><sup>-</sup>, HNO<sub>3</sub> and TNO<sub>3</sub>, we applied the 5<sup>th</sup> order polynomial regressions to better capture the trends. The regressed trends are normalized to the regressed values of year 2000 as this was the turning point for the trends of NO<sub>3</sub><sup>-</sup>. Examples of the regression for SO<sub>4</sub><sup>2-</sup> and SO<sub>2</sub> in region 3 during the cold season are shown in Fig. 4. Fig. 5 shows the comparisons between the normalized seasonal means during the cold season in region 3 and the corresponding regressed values.

- 10 The regressed trends for SO<sub>4</sub><sup>2-</sup>, SO<sub>2</sub>, NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>-</sup>, HNO<sub>3</sub> and TNO<sub>3</sub> for the 4 regions during the cold and warm seasons are shown in Fig. 6.a. The regressed trends for regions 1-4 clearly show: (1) the most significant reduction of all species was SO<sub>2</sub>; (2) There were significant disparities of the reduction rates between SO<sub>4</sub><sup>2-</sup> and SO<sub>2</sub> during the cold season. There were also disparities during the warm season in regions 1-3, but much less significant than the cold season; (3) among all species, the least significant
- 15 reduction was for NO<sub>3</sub><sup>-</sup> during the period. Fig 6.b shows the regressed trends for each species during the cold and warm seasons for different regions. For SO<sub>4</sub><sup>2-</sup> and SO<sub>2</sub>, there were large differences in the trends during 1990-2000 between regions 1 and 4. The trends of NH<sub>4</sub><sup>+</sup> were different for the 4 regions during 1990-2000 in both seasons, and during 2000-2016 in the cold season. In the warm season, the trends of NO<sub>3</sub><sup>-</sup> were similar for regions 2-4 during 1990-2000, but were different during 2000-2016.
- 20 The trends of HNO<sub>3</sub> and TNO<sub>3</sub> were different for 1990-2000 during the warm season, but were similar during 2000-2016.

#### 4. Discussions

5

#### 4.1 RSO<sub>4</sub> and correlations of RSO<sub>4</sub> vs. SO<sub>2</sub>

5

10

15

RSO<sub>4</sub> is a metric describing how much sulfur in the air is oxidized from gas SO<sub>2</sub> to particulate SO<sub>4</sub><sup>2-</sup>. The similar metric, the ratio of SO<sub>2</sub> mass oxidized below 2 km to SO<sub>2</sub> mass emitted, was used by Shah et al (2018). RSO<sub>2</sub>, which is 1 - RSO<sub>4</sub>, was used by Sickles and Shadwick (2015). RSO<sub>4</sub> is also an indicator of gas-particle partition ratio for sulfur in the air as SO<sub>2</sub> and SO<sub>4</sub><sup>2-</sup> exist in the air as gas and particle respectively. This metrics depends on a number of factors: the oxidation capacity of the air, the local emission rate of SO<sub>2</sub>, the transportation of SO<sub>2</sub> and SO<sub>4</sub><sup>2-</sup> from upwind regions, and the time it takes to bring upwind SO<sub>2</sub> and SO<sub>4</sub><sup>2-</sup> to a local site. Generally the longer it takes to transport an upwind air parcel, the more percentage of SO<sub>2</sub> is oxidized into  $SO_4^{2-}$  and the more SO<sub>2</sub> is dry-deposited than  $SO_4^{2-}$ , so the higher RSO<sub>4</sub>; also the less percentage of  $SO_2$  is emitted locally and the higher the atmospheric oxidation capacity, the higher RSO<sub>4</sub>. RSO<sub>4</sub> for 1989-1991 and 2014-2016, and the changes of RSO<sub>4</sub> between 1989-1991 and 2014-2016 during the warm and cold seasons are presented in Fig. S4. During the warm season, because more solar photons are available to produce O<sub>3</sub> from NO<sub>x</sub> and VOCs, RSO<sub>4</sub> was much higher in the warm season than cold season. At the beginning of the period, RSO<sub>4</sub> in the warm season was about double that in the cold season in regions 1, 2 and 4, and around triple in region 3. RSO<sub>4</sub> was much higher in regions 4 and 1 than in regions 2 and 3 because the local emissions of SO<sub>2</sub> were much higher in regions 2 and 3. The "freshly" emitted SO<sub>2</sub> made RSO<sub>4</sub> in regions 2 and 3 relatively smaller. RSO<sub>4</sub> in region 3 during the cold season was only 13.1% in 1989-1991, indicating a very low sulfur gas-particle partitioning ratio. Fig. S4 shows that during the cold season, RSO<sub>4</sub>

increased by more than 40% at all sites except for VPI120, which increased by 18.7%. During the warm season, RSO<sub>4</sub> increased at all sites except for VPI120, ASH135 and WST109, which decreased by 25.0%, 12.5% and 3.9% respectively. The most significant increase of RSO<sub>4</sub> was in region 3 during the cold season, with a regional average of 166.3%.

Fig. 7 shows that RSO<sub>4</sub> increased with year linearly for region 1 and quadratically for regions 2-4 for
both seasons. RSO<sub>4</sub> increased significantly after 2005 in regions 2-4. Fig. 8 shows the correlations of

RSO<sub>4</sub> vs. SO<sub>2</sub> for regions 2-4 and it is clearly that RSO<sub>4</sub> increased with the decrease of SO<sub>2</sub>. The increase of RSO<sub>4</sub> was relatively slow when the concentration of SO<sub>2</sub> was greater than 5  $\mu$ g m<sup>-3</sup> in the cold season, and 7.5  $\mu$ g m<sup>-3</sup> in the warm season. RSO<sub>4</sub> soared when SO<sub>2</sub> was less than 5  $\mu$ g m<sup>-3</sup> in the cold season in regions 2-4, and less than 3  $\mu$ g m<sup>-3</sup> in the warm season in regions 2 and 3. The increase of

- 5 RSO<sub>4</sub> with the decrease of SO<sub>2</sub> can be explained as follows: (1) the atmospheric oxidants didn't decrease as much as SO<sub>2</sub> emissions did. For example, the daily maximum 8 hour average O<sub>3</sub> only decreased by 14% for the EUS during the May-September ozone season from 1997 to 2008 (Butler et al., 2011), and decreased by 4-15% during 1997-2006 for region 2, 3, and 4 (Chan, 2009). No decreasing trend was found for the EUS during the cold season for 1997-2006 (Chan, 2009). Sickles
- and Shadwick (2015) found that O<sub>3</sub> in the EUS increased during the cold season for 1990-2010. O<sub>3</sub> is an atmospheric oxidant, and is a precursor to the formation of other atmospheric oxidants, such as OH and H<sub>2</sub>O<sub>2</sub>. Therefore, relative to the significantly reduced SO<sub>2</sub>, more atmospheric oxidants were available to oxidize SO<sub>2</sub>, and RSO<sub>4</sub> increased significantly during the period. (2) NH<sub>3</sub> was relatively unchanged during the period, and even increased in some regions (Yao and Zhang, 2016). The
- 15 decrease of SO<sub>2</sub> caused the decrease of H<sub>2</sub>SO<sub>4</sub> formation. Together this made cloud or rain droplets or snow particles less acid, which was beneficial to the oxidation of SO<sub>2</sub> by H<sub>2</sub>O<sub>2</sub> in aqueous phase (Makar et al., 2009; Jones and Harrison, 2011).

The disparity of the reduction of  $SO_2$  and  $SO_4^{2-}$  in responses to emission reductions of  $SO_2$ , namely the reduction rate of  $SO_2$  was faster than  $SO_4^{2-}$ , has been reported and discussed in some previous studies

- 20 (Lövblad et al., 2004; Reid et al. 2001; Sickles II and Shadwick, 2015; Shah et al., 2018; Aas et al., 2019). The time series of the normalized regional concentrations of  $SO_4^{2-}$  and  $SO_2$  in Fig. 3 have clearly shown the disparity during the period of 1990-2015. The significant increase of RSO<sub>4</sub> during the period, especially during the cold season, explains why the reduction rate of  $SO_2$  was much higher than that of  $SO_4^{2-}$ . The reduction of  $SO_2$  was due to not only the emission reductions, but also more faction of  $SO_2$
- 25 was converted to  $SO_4^{2-}$ . Faster reduction of  $SO_2$  was observed for all 4 regions during the cold season,

both before and after year 2000, and it was more significant after 2000. This can be explained by the fact that the increase of RSO<sub>4</sub> with time was nonlinear. As shown in Table 2, in the first 10 years of the study period, the increase of RSO<sub>4</sub> was relatively limited. During the cold season, it was only increased by 7.3% in region 4 to 16.5% in region 3. It was in the last 10 years from 2005-2015 when SO<sub>2</sub> was

- further reduced that RSO<sub>4</sub> increased dramatically. As shown in Tables 2 and 3, during the cold season in region 3, RSO<sub>4</sub> was only increased by 16.5% in the first 10 years, 1990-2000, but it was increased by 149.8% for the last 15 years of 2000-2015. During the warm season, the disparity of reduction between SO<sub>2</sub> and SO<sub>4</sub><sup>2-</sup> was much less, as clearly shown in Fig. 3. This is because the increase of RSO<sub>4</sub> during the warm season was much less significant than during the cold season (Table 4). In the first 10
- 10 years, RSO<sub>4</sub> changed from -4.1% in region 4 to 7.7% in region 1. For the period of 1990-2015, RSO<sub>4</sub> only increased by 0.6% and 12.4% percentage in regions 1 and 4. The disparity of the reduction rate of SO<sub>2</sub> *vs.*  $SO_4^{2-}$  for these two regions was only 1.7% and 5.2% during the warm season respectively. This is expected, and can be explained as follows: (1) in the warm season more atmospheric oxidants are produced due to more solar photons available than in the cold season, so oxidation of SO<sub>2</sub> is less
- 15 limited by the availability of atmospheric oxidants in the warm season; (2) in the cold season, limited atmospheric oxidants are available for the oxidation of SO<sub>2</sub>. The reduction of the SO<sub>2</sub> emissions to the air will make more atmospheric oxidants available to each SO<sub>2</sub> molecule, increase the oxidation rate of SO<sub>2</sub>, and result in an increase of RSO<sub>4</sub>; (3) furthermore, in the EUS, the seasonal mean O3 concentration decreased in the warm season and increased in the cold season for the study period
- 20 (Sickles and Shadwick; 2015). This made the overall oxidation capacity of the lower atmosphere in the EUS higher in the cold season and lower in the warm season.

## 4.2 Correlations of SO<sub>4</sub><sup>2-</sup> *VS.* SO<sub>2</sub>

Correlations between  $SO_4^{2-}$  and  $SO_2$  are presented in Fig. 9 for regions 1-4 and for the warm and cold seasons. The  $SO_4^{2-}$ - $SO_2$  relationships for the period of 1990-2010 can be described by linear regressions (not shown in the graph) with R = 0.87 - 0.98 during the warm season, and R = 0.96 - 0.99 during the cold season. During the cold season, region 1 had the highest slope, and it was followed by

- <sup>5</sup> regions 4, 2, and 3. During the warm season, the slopes for regions 1 and 4 were similar, and were higher than slopes for regions 2 and 3. A linear relationship between the seasonal mean concentrations of  $SO_4^{2-}$  and  $SO_2$  indicates that there exists a linear relationship between the concentration of  $SO_4^{2-}$  and the emission of  $SO_2$ . This is consistent with the relationship of the  $SO_4^{2-}$ concentration and the  $SO_2$  emission rate from the early 1990s through 2010 revealed in the study of
- Hand et al. (2012). As RSO<sub>4</sub> significantly increased when SO<sub>2</sub> was further reduced during 2010-2016, as seen in Fig. 8, the slopes of the linear regression for 2010-2016 were much higher than those for 1990-2010. A power law regression, which bends a linear regression with a gentle slope to a linear regression with a steep slope, described the SO<sub>4</sub><sup>2-</sup>-SO<sub>2</sub> relationships very well with R= 0.97-0.98 during the cold season, and R=0.94-0.99 during the warm season, as shown in Fig. 9. In some previous studies (e.g., Jones and Harrison, 2011), non-linear power-law relationships have been found for observations
- at different sites and seasons, and for different periods. Our results indicate that a linear relationship between  $SO_4^{2^-}$  and  $SO_2$  exists for a sub-period of a long-term period, but generally the correlation of  $SO_4^{2^-}$  vs.  $SO_2$  is a power-law relationship.

#### 20 4.3 RNO<sub>3</sub>

Similar to RSO<sub>4</sub> being a gas-particle partition indicator for sulfur in the air, RNO<sub>3</sub> is a metric indicating the fraction of gas HNO<sub>3</sub> is aerosolized (Sickles and Shadwick, 2015). In the air, the emitted NO<sub>x</sub> is oxidized to gas HNO<sub>3</sub>, which can be aerosolized through two paths: (1) reaction with NH<sub>3</sub> to form NH<sub>4</sub>NO<sub>3</sub>; (2) reaction with existing aerosols such as sea salts and crustal materials to form NaNO3,

 $Ca(NO_3)_2$ ,  $Mg(NO_3)_2$  et al. The ratio is significantly sensitive to the air temperature, as  $NH_4NO_3$ ,  $NH_3$ , and  $HNO_3$  in the air are in equilibrium and temperature changes can affect the partitioning between gas and particle phases (Doyle et al., 1979; Harrison and Pio, 1982).

RNO<sub>3</sub> for 1989-1991 and 2014-2016, as well as the change of RNO<sub>3</sub> between the two periods are
shown in Fig. S5. At the beginning of the period: (1) RNO<sub>3</sub> in the cold season was much higher than the warm season for all regions. RNO<sub>3</sub> of the cold season in regions 2 and 3 was more than double that for the warm season; (2) RNO<sub>3</sub> in region 2 was much higher than other regions, and was more than double that in regions 3 and 4. For the 25-year period of 1990-2015, RNO<sub>3</sub> significantly increased by more than 70% in regions 1, 3 and 4 during both seasons. In region 2, RNO<sub>3</sub> only increased by 12.8% and
8.0% during the cold and warm seasons respectively. The significant increase of RNO<sub>3</sub> in regions 1, 3,

and 4 can be attributed to the significant reduction of SO<sub>4</sub><sup>2-</sup> during the period, as it is explained in Section 4.4.

Fig. 7 shows that RNO<sub>3</sub> had an increasing trend with year for all regions and both seasons except for region 2 during the warm season. The trends can be described well by linear regressions in regions 1 and 2, and by quadratic regressions in regions 3 and 4. The linear regression shows that RNO<sub>3</sub> in region

and 2, and by quadratic regressions in regions 3 and 4. The linear regression shows that RNO<sub>3</sub> in region
 2 had a decreasing trend for 1990-2010 during the warm season. The exact reason for this is unknown.
 One hypothesis is that due to the global warming trend in recent years, and the significant reductions of sulfate and nitrate aerosols (which cool the atmosphere by reflecting more solar radiation back to the space), the near surface temperature in the Midwest had an increasing trend during the period of
 1990-2010 (National Climate Assessment, 2014). As region 2 is rich of NH<sub>3</sub>, RNO<sub>3</sub> is more sensitive to the air temperature than to the availability of NH<sub>3</sub>. An increasing trend of air temperature in the warm season can cause a decreasing trend of RNO<sub>3</sub>.

4.4 Correlations of RNO<sub>3</sub> VS. SO<sub>4</sub><sup>2-</sup>

Correlations between the seasonal mean RNO<sub>3</sub> and the seasonal mean concentration of  $SO_4^{2-}$  for regions 2-4 and for the warm and cold seasons are presented in Fig. 10. For NH<sub>3</sub>-rich region 2, RNO<sub>3</sub> increased slightly with the decrease of  $SO_4^{2-}$  during the cold season, and there was no obvious trend during the warm season. For regions 3 and 4, which were NH<sub>3</sub>-limited, RNO<sub>3</sub> increased with the

decrease of SO<sub>4</sub><sup>2-</sup>. Especially RNO<sub>3</sub> increased steeply when the seasonal mean concentration of SO<sub>4</sub><sup>2-</sup> was less than 4 µg m<sup>-3</sup> during the warm season, and less than 3 µg m<sup>-3</sup> during the cold season. The increase of RNO<sub>3</sub> with the decrease of SO<sub>4</sub><sup>2-</sup> can be explained as follows: (1) in regions 3 and 4, the formation of NH<sub>4</sub>NO<sub>3</sub> was limited by the availability of NH<sub>3</sub>; (2) as SO<sub>4</sub><sup>2-</sup> decreased, part of NH<sub>3</sub> previously forming (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> / NH<sub>4</sub>HSO<sub>4</sub> was released, and was available to react with HNO<sub>3</sub> to form NH<sub>4</sub>NO<sub>3</sub>. In contrast, RNO<sub>3</sub> was much less sensitive to the SO<sub>4</sub><sup>2-</sup> reduction in region 2 as the emissions of NH<sub>3</sub> there were much higher than that in regions 3 and 4, as seen in Fig. S6. Thus, in general there was always excess NH3 available to react with HNO<sub>3</sub> to form NH<sub>4</sub>NO<sub>3</sub> in region 2, which resulted in a lack of trends in RNO3. This also explained while TNO<sub>3</sub> decreased by 40.1% and 46.4% respectively

during the cold season in regions 3 and 4, the change of  $NO_3^-$  was negligible in these two regions.

15

## 4.5 Correlations of NH4<sup>+</sup> VS. SO4<sup>2-</sup> and NO3<sup>-</sup>

Correlations of NH<sub>4</sub><sup>+</sup> vs. SO<sub>4</sub><sup>2-</sup> and NH<sub>4</sub><sup>+</sup> vs. NO<sub>3</sub><sup>-</sup> are shown in Fig. 11 for regions 2-4 and for the cold and warm seasons. During the warm season, NO<sub>3</sub><sup>-</sup> in regions 3 and 4 changed little in value during 1990-2015, while NH<sub>4</sub><sup>+</sup> changed significantly and this change was mostly and linearly associated with the change of SO<sub>4</sub><sup>2-</sup>. In region 2, the change of NH<sub>4</sub><sup>+</sup> was also mostly associated with the change of SO<sub>4</sub><sup>2-</sup>, but the change of NO<sub>3</sub><sup>-</sup> also made a contribution to it. During the cold season, NH<sub>4</sub><sup>+</sup> correlated with SO<sub>4</sub><sup>2-</sup> linearly very well in regions 2-4. In region 2, NO<sub>3</sub><sup>-</sup> also changed significantly during the period, and the variation of NO<sub>3</sub><sup>-</sup> correlated with the variation of NH<sub>4</sub><sup>+</sup> well with R = 0.87, indicating part of the reduction of NH<sub>4</sub><sup>+</sup> in region 2 was associated with the reduction of NO<sub>3</sub><sup>-</sup> during the period.

The variations of NO<sub>3</sub><sup>-</sup> in regions 3 and 4 were relatively small, and the correlations between NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>-</sup>, with R = 0.42 and 0.40 respectively, were much less significant than those for NH<sub>4</sub><sup>+</sup> vs. SO<sub>4</sub><sup>2-</sup>. Fig. 11 shows that in the EUS and EC, the reduction of NH<sub>4</sub><sup>+</sup> during 1990-2015 was mainly due to the reduction of SO<sub>4</sub><sup>2-</sup> in regions 2-4, but in region 2 the reduction of NO<sub>3</sub><sup>-</sup> also made a substantial contribution to it.

5

## 4.6 Sulfate-nitrate-ammonium (SNA) aerosols

Sulfate, nitrate and ammonium are the major components of the secondary aerosols in the atmosphere in the EUS and EC (Bell et al., 2007; Dabek-Zlotorzynska et al., 2011). Time series of the seasonal means of the total mass of sulfate-nitrate-ammonium aerosols during the warm and cold 10 seasons are shown in Fig. 12. During the cold season, mainly due to the concentrations of NO<sub>3</sub><sup>-</sup> and NH<sub>4</sub><sup>+</sup>, SNA had the highest and second highest seasonal mean concentrations in regions 4 and region 3 respectively, and the lowest seasonal mean concentration in region 1. During the warm season, SNA in regions 2 and 3 was comparable, and a little higher than that in region 4. The trends in regions 2-4 are 15 similar during the warm season and the SNA in regions 2-4 are much higher than that in region 1. Fig. 13 shows that SNA in region 1 during the warm season was higher than that during the cold season until 2007, and the trend was reversed after that. In region 2, SNA was generally higher during the warm season until 2005, and was opposite thereafter. SNA in region 3 was significantly higher during the warm season than cold season until 2007 and the trend was opposite after 2012. Similarly SNA in region 4 was much higher in the warm season until 2008 and was comparable between the warm and 20 cold seasons after 2012. Two points can be derived from the above trends: (1) in the EUS and EC, SNA

during the warm season was mainly due to  $(NH_4)_2SO_4$  /  $NH_4HSO_4$ . When the emission of SO<sub>2</sub> over the region decreased significantly, SNA followed the decreasing trend of SO<sub>4</sub><sup>2-</sup> even though the reduction

in  $NO_3^-$  was not significant; (2) during the cold season, besides  $(NH_4)_2SO_4 / NH_4HSO_4$ ,  $NH_4NO_3$  also made considerable contribution to SNA. As  $SO_4^{2-}$  decreased significantly in both the warm and cold

seasons, but NO<sub>3</sub><sup>-</sup> changed little during the cold season except in region 2, the SNA during the cold

season was getting comparable or even higher than the SNA during the warm season. Pollution of SNA in regions 2 and 3 was more of an issue during the cold season than during the warm season when the emissions of SO<sub>2</sub> were further reduced during 2006-2015.

## 5 5. Summary and conclusion

10

With the implementation of the Title IV of the 1990 Amendments to the CAA in the US in the 1990s, the emissions of SO<sub>2</sub> and NO<sub>x</sub> in the US were reduced from 23.1 million tons/year to 3.7 million tons/year for SO<sub>2</sub> and from 25.2 million tons/year to 11.5 million tons/year for NO<sub>x</sub> from 1990 to 2015. In Canada, comparing to the emission level in 1990, SO<sub>2</sub> and NO<sub>x</sub> emissions in 2015 were reduced by 65% and 25% respectively. In both the US and Canada, the reduction of the emissions was mainly in the eastern regions of the countries. With the significant reductions of SO<sub>2</sub> and NO<sub>x</sub> emissions, the air concentrations of gases SO<sub>2</sub> and HNO<sub>3</sub>, and particles SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub><sup>-</sup> and NH<sub>4</sub><sup>+</sup> had a very different

nonlinear response to the emission reductions, both spatially and temporally.

In this study, we analyzed the air concentrations of SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub><sup>-</sup>, NH<sub>4</sub><sup>+</sup>, HNO<sub>3</sub> and SO<sub>2</sub> measured weekly
by the CASTNET network in the US and daily by the CAPMON network in Canada from 1990 to 2015 to reveal the temporal and spatial changes during the period. Four distinct regions, each with characteristic pattern of air quality in the EUS and EC, were identified: the northeastern US and Eastern Canada (region 1), the Midwest (region 2), the Mid-Atlantic (region 3), and the southeastern US (region 4). In the first 10-year period of 1990-2000, SO<sub>2</sub> and SO<sub>4</sub><sup>2-</sup> decreased by more than 20% except for SO<sub>4</sub><sup>2-</sup> in region 4 during the cold season and SO<sub>2</sub> in region 4 during the warm season. NH<sub>4</sub><sup>+</sup> declined by 12% to 29.8% during both seasons except that region 4 during the cold season had a negligible change. NO<sub>3</sub><sup>-</sup> increased in regions 1-4 during the cold season, and changed little during the warm season. HNO<sub>3</sub> reduced in regions 1-3 by more than 9% during both seasons, and increased in region 4 by 5% and 5.7% during the cold and warm seasons respectively. In a 25-year period of 1990-

25 2015, the reduction of  $SO_4^{2-}$  ranged from 60.1% in region 2 to 62.5% in region 3 during the cold

season, and from 72.7% in region 1 to 78.7% in region 4 during the warm season. The reduction of  $SO_2$  was the most significant among all species, ranging from 83.9% during the warm season in region 4 to 91.2% during the warm season for region 3. During the warm season, the reduction of  $NO_3^-$  was seen in all regions, ranging from 14.3% in region 1 to 57.5% in region 2. However, during the cold season,

- 5 the reduction of NO<sub>3</sub><sup>-</sup> was only seen in region 2 and it was reduced by 30.4%. The change of NO<sub>3</sub><sup>-</sup> was negligible in regions 3 and 4 during the cold season. The reduction of HNO<sub>3</sub> during the warm season was relatively uniform in terms of percentage, ranging from 63.1% to 68.8%. During the cold season, region 2 had the lowest percentage of reduction at 56.0%, and region 1 had the highest at 63.5%. The reduction of NH<sub>4</sub><sup>+</sup> was the most significant during the warm season in terms of both percentage and absolute value. The reduction was ranging from 74.0% to 75.7% in regions 2-4 during the warm
- season, which was 20% more than the corresponding reduction during the cold season. The time series of the seasonal mean concentrations during the warm and cold seasons show that the reduction of each species was not even in time during the period. The reductions of SO<sub>4</sub><sup>2-</sup> and SO<sub>2</sub> mainly occurred during 1990-1995 and 2007-2016 for the warm season, and during 1990-1995 and 2005-2016 for the cold season. The reduction of NO<sub>3</sub><sup>-</sup> was mainly after year 2000.

RSO<sub>4</sub> is a metric indicating the gas-aerosol partition of sulfur in the air, and RNO<sub>3</sub> is indicator of the fraction of HNO<sub>3</sub> being aerosolized. RSO<sub>4</sub> increased by 48.6% to 166.3% during the cold season, and by 0.6% to 58.4% during the warm season. RSO<sub>4</sub> was found to increase quadratically with the decrease of SO<sub>2</sub> for regions 2-4 and the two seasons. The significant increase of RSO<sub>4</sub> during the cold season
explains why the reduction rate of SO<sub>2</sub> was much higher than that of SO<sub>4</sub><sup>2-</sup> during the period, as the reduction of SO<sub>2</sub> was due to not only the emission reduction, but also more SO<sub>2</sub> being converted to SO<sub>4</sub><sup>2-</sup>. A faster reduction of SO<sub>2</sub> was observed for all 4 regions during the cold season, both before and after year 2000, and it was more significant after 2000. During the warm season, the difference in the reduction rate between SO<sub>2</sub> and SO<sub>4</sub><sup>2-</sup> was much less. This is because the increase of RSO<sub>4</sub> during the warm season was much less significant than during the cold season. In regions 1 and 4, RSO<sub>4</sub> only

increased by 0.6% and 12.4% percentage during the warm season. Differences in the reduction rate between SO<sub>2</sub> and SO<sub>4</sub><sup>2-</sup> for these two regions during the warm season were only 1.7% and 5.2% respectively. For regions 1, 3 and 4, RNO<sub>3</sub> increased between 79.2% and 94.9% during the warm season, and between 73.9% and 92.3% during the cold season. For region 2, RNO<sub>3</sub> for the warm and cold seasons were only increased by 8.0% and 12.8% respectively as NH<sub>3</sub> in the region was in excess to neutralize HNO<sub>3</sub>. RNO<sub>3</sub> was found to increase with the decrease of SO<sub>4</sub><sup>2-</sup> quadratically in regions 3 and 4.

5

10

In summary, with the significant reductions of  $SO_2$  and  $NO_x$  emissions in the EUS and EC during 1990-2015,  $SO_4^{2-}$ ,  $SO_2$ ,  $NH_4^+$ , and  $HNO_3$  were reduced significantly by 73.3%, 87.6%, 67.4% and 65.8% for the whole region. The reduction of  $NO_3^-$  was relatively less significant at 29.1%, and it mainly occurred: (1)

after year 2000; (2) in regions 1-4 during the warm season; (3) in region 2 only during the cold season.

## Author contributions

JF carried out the overall analysis and interpretation of the data as well as wrote the manuscript. EC did the initial data and trend analysis. RV provided the supervision of the study and discussed the results.

## 5 **Competing interests**

The authors declare that they have no conflict of interest.

## Acknowledgements

We would like to thank Tom Butler and the anonymous reviewer. Their detailed, insightful and constructive
 suggestions and comments greatly improved the quality of the paper. We also thank Irene Cheng for the
 internal review. The CASTNET and CAPMON data used in this study were provided by Environment and Climate
 Change Canada (ECCC) through the Canadian National Atmospheric Chemistry (NAtChem) Particulate Matter
 and Precipitation Databases.

### References

Aas, W., Mortier, A., Bowersox, V., Cherian, R., Faluvegi, G., Fagerli, H., Hand, J., Klimont, Z., Galy-Lacaux, C., Lehmann, C. M. B., Myhre, C. L., Myhre, G., Olivié, D., Sato, K., Quaas, J., Rao, P. S. P., Schulz, M., Shindell, D.,

5 Skeie, R. B., Stein, A., Takemura, T., Tsyro, S., Vet, R., and Xu, X.: Global and regional trends of atmospheric sulfur, Nature, 9, 953, <u>https://doi.org/10.1038/s41598-018-37304-0</u>, 2019.

Bell, M. L., Dominici, F., Ebisu, K., Zeger, S. L., and Samet, J. M.: Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies, Environ Health Perspect, 115, 989-995, doi:10.1289/ehp.9621, 2007.

10 Bloomer, B. J., Vinnikov, K. Y., Dickerson, R. R.: Changes in seasonal and diurnal cycles of ozone and temperature in the eastern U.S., Atmos. Environ., 44, 2543-2551, <u>https://doi.org/10.1016/j.atmosenv.2010.04.031</u>, 2010.

Butler, T. J., Likens, G. E., Vermeylen, F. M., and Stunder, B. J. B.: The relation between NO<sub>x</sub> emissions and precipitation NO<sub>3</sub><sup>-</sup> in the eastern USA, Atmos. Environ., 37, 2093-2104, <u>https://doi.org/10.1016/S1352-2310(03)00103-1</u>, 2003.

Butler, T. J., Vermeylen, F. M., Rury, M., Likens, G. E., Lee, B., Bowker, G. E., and McCluney, L.: Response of ozone and nitrate to stationary source NO<sub>x</sub> emission reductions in the eastern USA, Atmos. Environ., 45, 1084-1094, https://doi.org/10.1016/j.atmosenv.2010.11.040, 2011.

CAA (Clean Air Act) 1990. The Clean Air Act – Highlights of the 1990 Amendments, <u>https://www.epa.gov/clean-air-act-highlights-1990-amendments</u>, accessed in November 2019.

Chan, E. and Vet, R. J.: Baseline levels and trends of ground level ozone in Canada and the United States, Atmos.
 Chem. Phys., 10, 8629-8647, <u>https://doi.org/10.5194/acp-10-8629-2010</u>, 2010.

Cheng, I., and Zhang, L.: Long-term air concentrations, wet deposition, and scavenging ratios of inorganic ions, HNO3, and SO2 and assessment of aerosol and precipitation acidity at Canadian rural locations, Atmos. Chem. Phys., 17, 4711-4730, <a href="https://doi.org/10.5194/acp-17-4711-2017">https://doi.org/10.5194/acp-17-4711-2017</a>, 2017.

Clarke, J.-F., Edgerton, E. S., Martin, B. E.: Dry deposition calculations for the clear air status and trends network, Atmos. Environ., 31, 3667-3678, <u>https://doi.org/10.1016/S1352-2310(97)00141-6</u>, 1997.

5

15

Dabek-Zlotorzynska, E., Dann, T. F., Martinelango, P. K., Celo, V., Brook, J. R., Mathieu, D., Ding, L., and Austin, C. C.: Canadian National Air Pollution Surveillance (NAPS) PM2.5 speciation program: Metholodology and PM2.5 chemical composition for the years 2003-2008, Atmos. Environ., 45, 673-686, <u>https://doi.org/10.1016/j.atmosenv.2010.10.024</u>, 2011.

Doyle, G. J., Tuazon, E. C., Graham, R. A., Mischke, T. M, Winer, A. M, and Pitts Jr, J. N.: Simultaneous concentrations of ammonia and nitric acid in a polluted atmosphere and their equilibrium relationship to particulate ammonium nitrate, Environ. Sci. Technol., 13, 1416-1419, <u>https://doi.org/10.1021/es60159a010</u>, 1979.

Du E., de Vires, W., Galloway, J. N., Hu., X., and Fang, J. : Changes in wet nitrogen deposition in the United States between 1985 and 2012, Environ. Res. Lett., 9, 095004, https://doi:10.1088/1748-9326/9/9/095004, 2014.

Environment and Climate Change Canada (ECCC, 2019): Canadian Environmental Sustainability Indicators: Air pollutant emissions. Consulted on November 13, 2019. Available at: <a href="https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/airpollutant-emissions.html">www.canada.ca/en/environmental-indicators/airpollutant-emissions.html</a>

EPA 2016: Our Nation's Air: Status and Trends through 2015. https://gispub.epa.gov/air/trendsreport/2016/.

Hand, J. L., Schichtel, B. A., Malm, W. C., and Pitchford, M. L.: Particulate sulfate ion concentration and SO<sub>2</sub> emission trends in the United States from the early 1990s through 2010, Atmos. Chem. Phys., 12, 10353-10365, <a href="https://doi.org/10.5194/acp-12-10353-2012">https://doi.org/10.5194/acp-12-10353-2012</a>, 2012.

EPA 2019: Air Emissions Inventories. Consulted on November 13, 2019. Available at: <u>https://www.epa.gov/air-</u> emissions-inventories/air-pollutant-emissions-trends-data.

Harrison, R. M., and Pio, C. A.: An investigation of the atmospheric HNO3-NH3-NH4NO3 equilibrium relationship in a cool, humid climate, Tellus, 35B, 155-159, <u>https://doi.org/10.3402/tellusb.v35i2.14795</u>, 1982.

Haywood, J. M. and Shine, K. P.: The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget, Geophys. Res. Lett., 22, 603-606, <u>https://doi.org/10.1029/95GL00075</u>, 1995.

5 Heroux M.-E., Anderson H. R., Atkinson, R., Brunekreef, B., Cohen, A., Forastiere, F., Hurley, F., Katsouyanni, K., Krewski, D., Krzyanowski, M., Kunzli, N., Mills, I., Querol, X., Ostro, B., and Walton, H.: Quantifying the health impacts of ambient air pollutants: recommendations of a WHO/Europe project, Int. J. Public Health, 60, 619-627, https://doi.org/10.1007/s00038-015-0690-y, 2015.

Jones, A. M. and Harrison, R. M.: Temporal trends in sulphate concentrations at European sites and

10 relationships to sulphur dioxide, Atmos. Environ., 45, 873-882, https://doi.org/10.1016/j.atmosenv.2010.11.020, 2011.

Kajino, M., Ueda, H., Han, Z., Kudo, R., Inomata, Y., and Kaku, H.: Synergy between air pollution and urban meteorological changes through aerosol-radiation-diffusion feedback—A case study of Beijing in January 2013, Atmos. Environ., 171, 98-110, <u>https://doi.org/10.1016/j.atmosenv.2017.10.018</u>, 2017.

15 Kuklinska, K., Wolska, L., and Namiesnik, J.: Air quality policy in the U.S. and the EU – a review, Atmos. Pollution Res., 6, 129-137, doi:10.5094/APR.2015.015, 2015.

Kunzli, N., Kaiser, R., Medina, S., Studnicka, M., Chanel, O., Filiger, P., Herry, M., Horak Jr, F., Puybonnieux-Texier, V., Quenel, P., Schneider, J., Seethaler, R., Vergnaud, J-C., and Sommer, H.: Public-health imact of outdoor and traffic-related air pollution: A European assessment, The Lancet, 356, 795-801,

20 <u>https://doi.org/10.1016/S0140-6736(00)02653-2</u>, 2000.

Lee, B.: Highlights of the Clean Air Act Amendments of 1990, J. of Air and Waste Management Asso., 41, 16-19, <a href="https://doi.org/10.1080/10473289.1991.10466820">https://doi.org/10.1080/10473289.1991.10466820</a>, 1991.

Lee C., Martin, R. V., van Donkellar, A., Lee, H., Dickerson, R. R., Hains, J. C., Krotkov, N., Richter, A., Vinnikov, K., and Schwab, J. J.: SO<sub>2</sub> emissions and lifetimes: Estimates from inverse modeling using in situ and global, space based (SCIAMACHY and OMI) observations, J. Geophys. Res., <u>https://doi.org/10.1029/2010JD014758</u>, 2011.

Lövblad, G., Tarrason, L., Tørseth, K., and Dutchak, S.: EMEP Assessment, Part I, European Perspective,

5 Norwegian Meterological Institute, Oslo, Norway, available at: http://emep.int/publ/reports/2004/assessment\_2004.html, 2004.

Mann, H. B.: Non-parametric tests against trend, Econometrica, 13, 245–59, https://doi.org/ 10.2307/1907187, 1945.

Makar, P. A., Moran, M. D., Zheng, Q., Cousineau, S., Sassi, M., Duhamel, A., Besner, M., Davignon, D., Crevier,

 L.-P., and Bouchet, V. S. : Modelling the impacts of ammonia emissions reductions on North America air quality, Atmos. Chem., Phys, 9, 7183-7212, <u>https://doi.org/10.5194/acp-9-7183-2009</u>, 2009.

Napolitano, S., Stevens, G., Schreifels, J., and Culigan, K.: The NOx Budget Trading Program: A collaborative, innovative approach to solving a regional air pollution problem, Elec. J., 20, 65-76, <a href="https://doi.org/10.1016/j.tej.2007.09.005">https://doi.org/10.1016/j.tej.2007.09.005</a>, 2007.

15 National Climate Assessment, U.S. Global Change Research Program, 2014. Consulted on November 13, 2019. Available at: <u>https://nca2014.globalchange.gov/report/regions/midwest/graphics/temperatures-are-rising-midwest</u>.

Penner, J., Hegg, D., Andreae, M., Leaitch, D., Pitari, G., Annegarn, H., Murphy, D., Nganga, J., Barrie, L., Feichter, H: IPCC, Climate Change 2001: Aerosols and Indirect Cloud Effects, IPCC Third Assessment Report, Cambridge

20 University Press, Cambridge, UK, pp. 289–348, 2001.

Pitari, G., Visioni, D., Mancini, E., Cionni, I., Di Genova, G., and Gandolfi, I. : Sulfate aerosols from non-explosive volcanoes: Chemical-radiative effects in the troposphere and lower stratosphere, Atmosphere, 7(7), 85, <a href="https://doi.org/10.3390/atmos7070085">https://doi.org/10.3390/atmos7070085</a>, 2016.

Reid, N., Misra, P. K., Bloxam, R., Yap, D., Rao, S. T., Civerolo, K., Brankov, E., and Vet, R. J.: Do We Understand Trends in Atmospheric Sulfur Species?, J. Air. Waste. Manage., 51, 1561-1567, <u>https://doi.org/10.1080/10473289.2001.10464384</u>, 2001.

Shah, V., Jaeglé, L., Thornton, J. A., Lopez-Hilfiker, F.D., Lee, B. H., Schroder, J. C., Campuzano-Jost, P., Jimenez, J.

L., Guo, H., Sullivan, A. P., Weber, R. J., Green, J. R., Fiddler, M. N., Bililign, S., Campos, T. L., Stell, M.,
 Weinheimer, A. J., Montzka, D. D., and Brown, S. S.: Chemical feedbacks weaken the wintertime response of particulate sulfate and nitrate to emissions reductions over the eastern United States, P. Natl. Acad. Sci. USA., 115, 8110-8115, <a href="https://doi.org/10.1073/pnas.1803295115">https://doi.org/10.1073/pnas.1803295115</a>, 2018.

Sickles II, J. E. and Shadwick, D. S.: Changes in air quality and atmospheric deposition in the eastern United States: 1990-2004, J. Geophys. Res., 112, D17301, <u>https://doi.org/10.1029/2006JD007843</u>, 2007.

10

Sickles II, J. E. and Shadwick, D. S.: Air quality and atmospheric deposition in the eastern US: 20 years of change, Atmos. Chem. Phys., 15, 173-197, <u>https://doi.org/10.5194/acp-15-173-2015</u>, 2015.

WHO (World Health Organization), 2006: WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide, Global update 2005, Summary of risk assessment, Geneva (2006), p. 22.

Yao, X. and Zhang, L.: Trends in atmospheric ammonia at urban, rural, and remote sites across North America,
 Atmos. Chem. Phys., 16, 11465-11475, <u>https://doi.org/10.5194/acp-16-11465-2016</u>, 2016.

Yoshizumi, K. and Hoshi, A.: Size distributions of ammonium nitrate and sodium nitrate in atmospheric aerosols, Environ. Sci. Technol., 19, 258-261, <u>https://doi.org/10.1021/es00133a007</u>, 1985.

Yu, H., Kaufman, Y. K., Chin, M., Feingold, G., Remer, L. A., Anderson, T. L., Balkanski, Y., Bellouin, N., Boucher,

 O., Christopher, S., DeCola, P., Kahn, R., Koch, D., Loeb, N., Reddy, M. S., Schulz, M., Takemura, T., and Zhou, M.: A review of measurement-based assessments of the aerosol direct radiative effect and forcing, Atmos. Chem. Phys., 6, 613-666, <u>https://doi.org/10.5194/acp-6-613-2006</u>, 2006.

Zhang, L., Vet, R., Wiebe, A., Mihele, C., Sukloff, B., Chan, E., Moran, M. D., and Iqbal, S.: Characterization of the size-segregated water-soluble inorganic ions at eight Canadian rural sites, Atmos. Chem. Phys., 8, 7133-7151, <a href="https://doi.org/10.5194/acp-8-7133-2008">https://doi.org/10.5194/acp-8-7133-2008</a>, 2008.

Zhang, Y., West, J. J., Mathur, R., Xing, J., Hogrefe, C., Roselle, S. J., Bash, J. O., Pleim, J. E., Gan, C.-M., and

5 Wong, D. C.: Long-term trends in the ambient PM<sub>2.5</sub>- and O<sub>3</sub>-related mortality burdens in the United States under emission reductions from 1990 to 2010, Atmos. Chem. Phys., 18, 15003-15016, <a href="https://doi.org/10.5194/acp-18-15003-2018">https://doi.org/10.5194/acp-18-15003-2018</a>, 2018.

Zhuang, H., Chan, C. K., Fang, M., and Wexler, A. S.: Size distributions of particulate sulfate, nitrate, and ammonium at a coastal site in Hong Kong, Atmos. Environ., 33, 843-853, <u>https://doi.org/10.1016/S1352-2310(98)00305-7</u>, 1999.

10

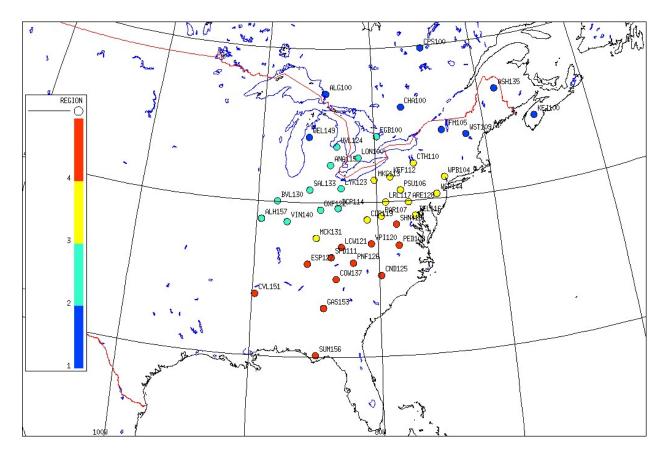
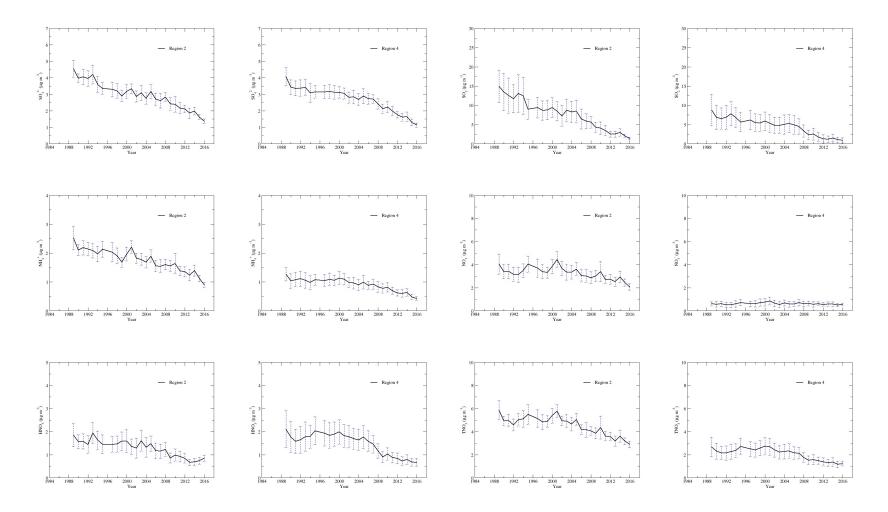
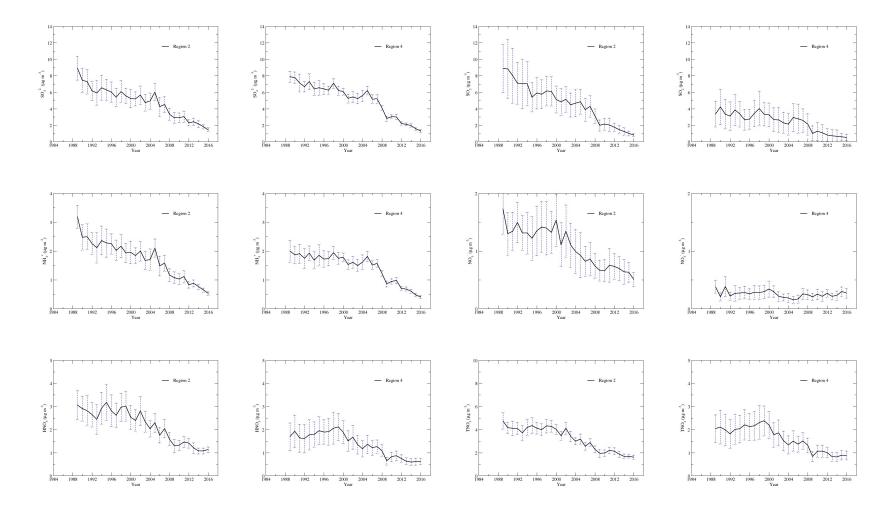
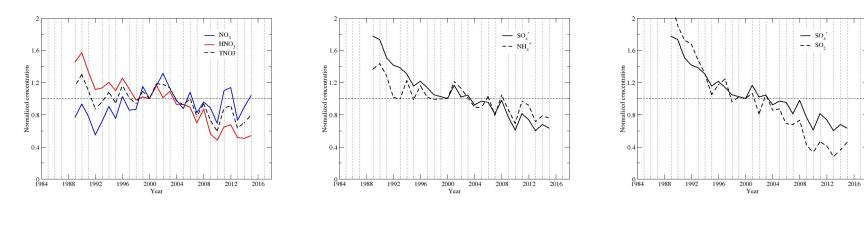
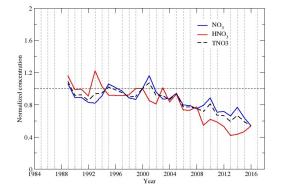




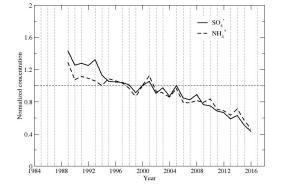

Fig. 1. Clustered sites of CASTNET and CAPMoN in regions 1-4.

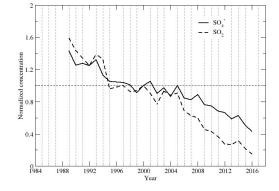




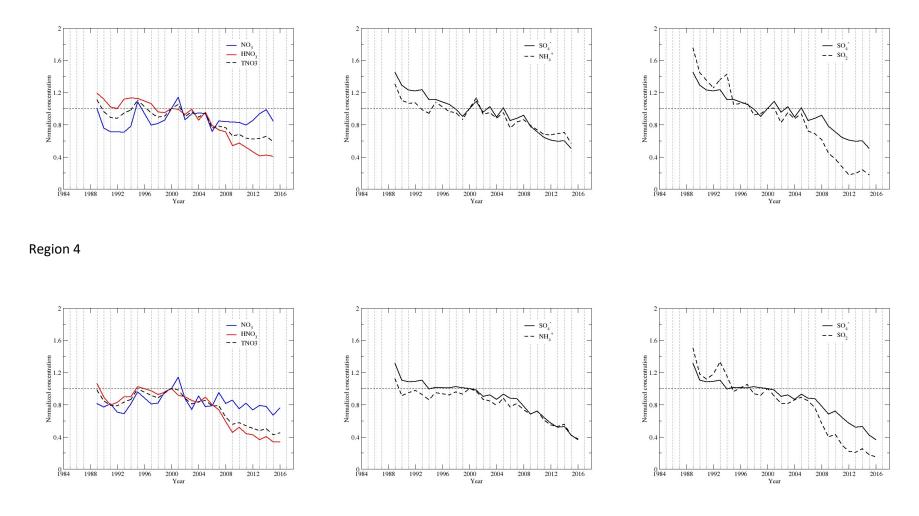

(a) Cold season



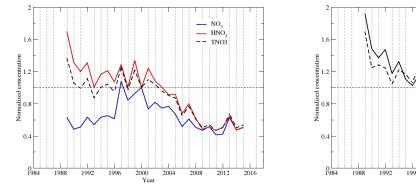


#### (b) Warm season

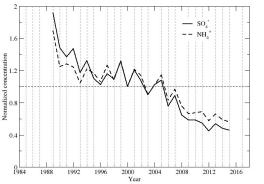

Fig. 2 Time series of the regionally averaged seasonal mean concentrations during the cold (a) and warm (b) seasons for each species in region 2 (Midwest) and region 4 (Southeast). The vertical dash line represents the standard deviation of the regionally averaged seasonal mean concentration. The regionally averaged seasonal mean concentrations in regions 2 and 4 during the cold season were not generated for year 1996 because of insufficient number of measurements.

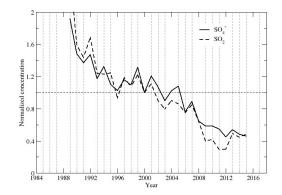



Region 2

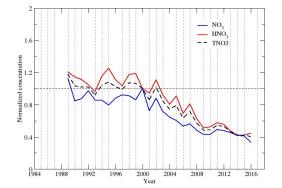


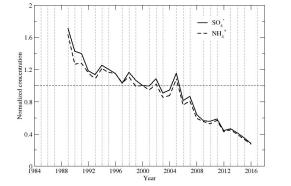


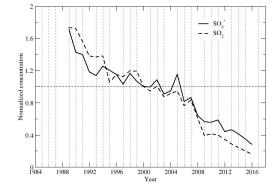





- so<sub>4</sub>




(a) Cold Season






Region 2







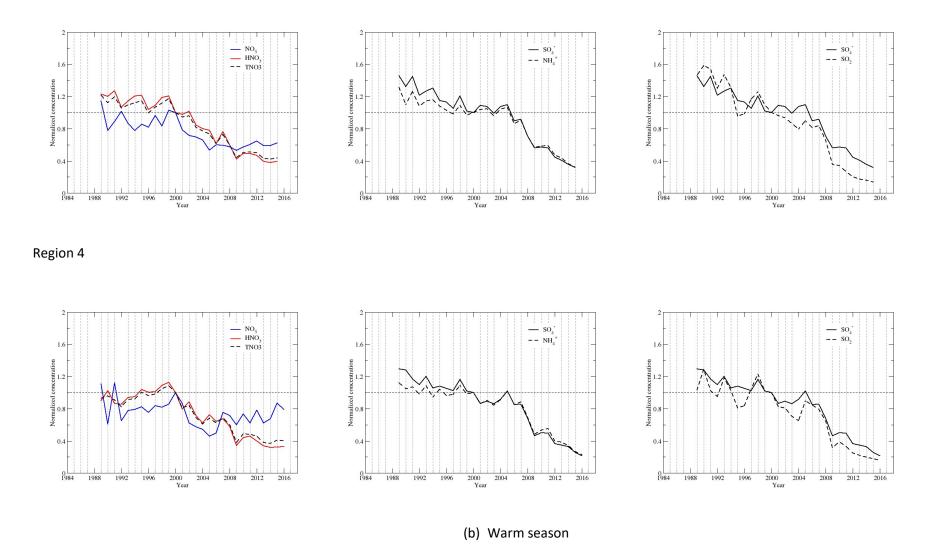



Fig. 3 Time series of the regional seasonal mean concentrations normalized to year 2000 for each species during the cold (a) and warm (b) seasons.

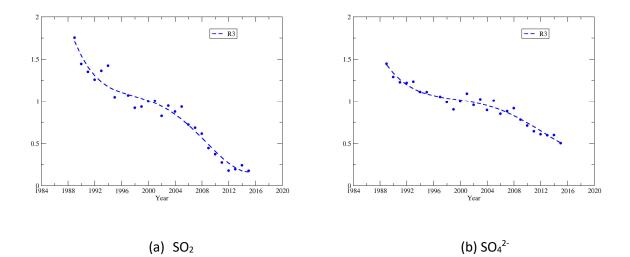
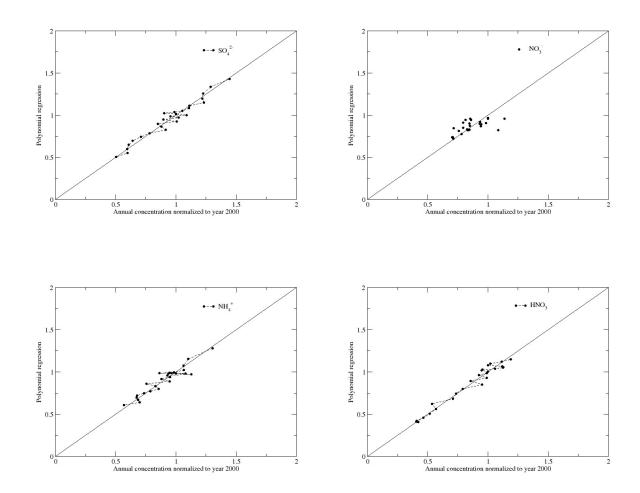
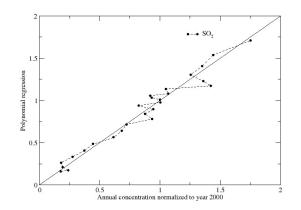
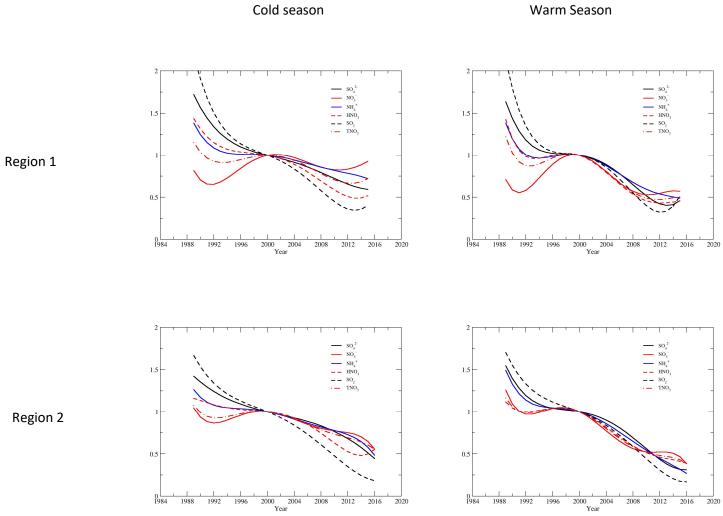
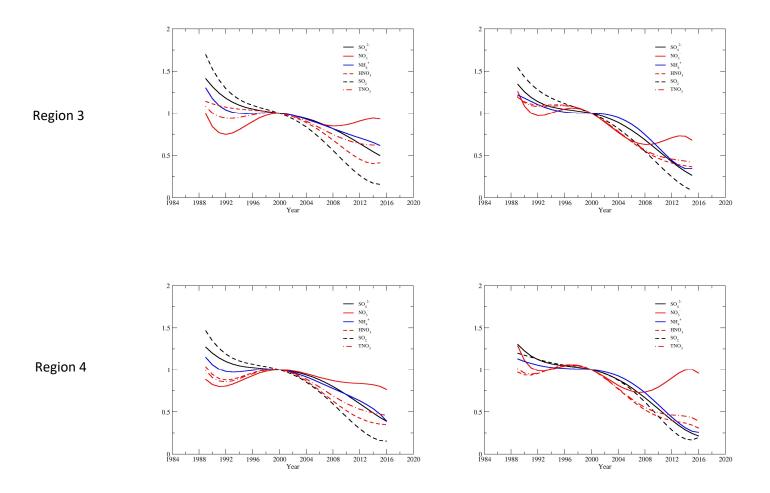
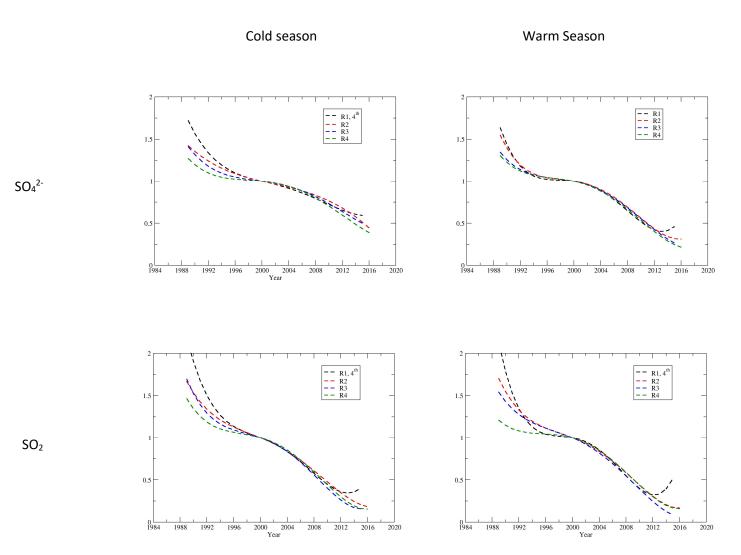
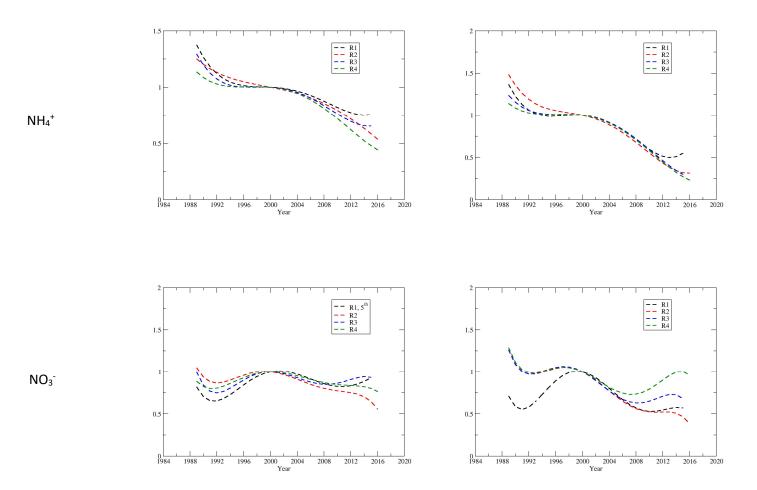
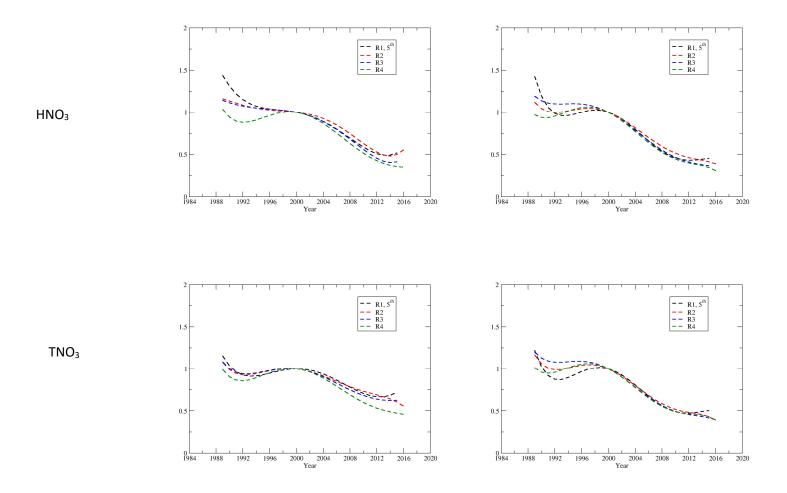




Fig. 4 Examples of  $4^{th}$  Polynomial regressions of SO<sub>2</sub> (a) and SO<sub>4</sub><sup>2-</sup> (b) for region 3 during the cold season.



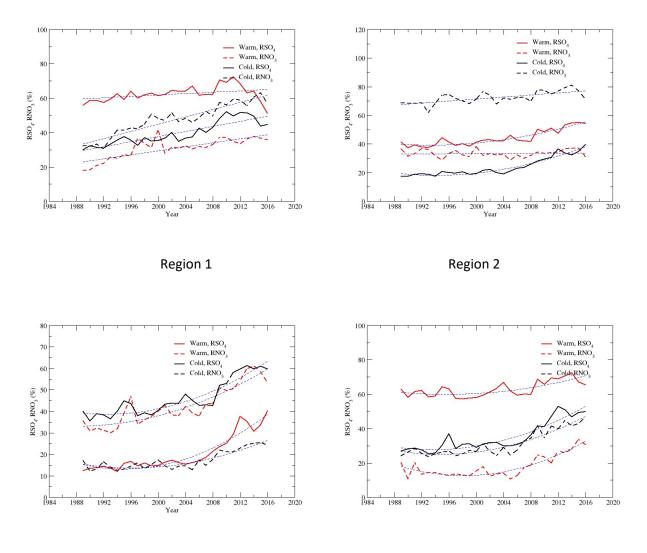







Fig. 5 Comparisons of the normalized seasonal mean concentrations with the ones regressed with polynomial regressions for  $SO_4^{2^-}$ ,  $SO_2$ ,  $NH_4^+$ ,  $NO_3^-$  and  $HNO_3$  for region 3 during the cold season. The dot lines link the seasonal mean concentrations from 1990 to 2016 for species except for  $NO_3^-$  to show the temporal trends.





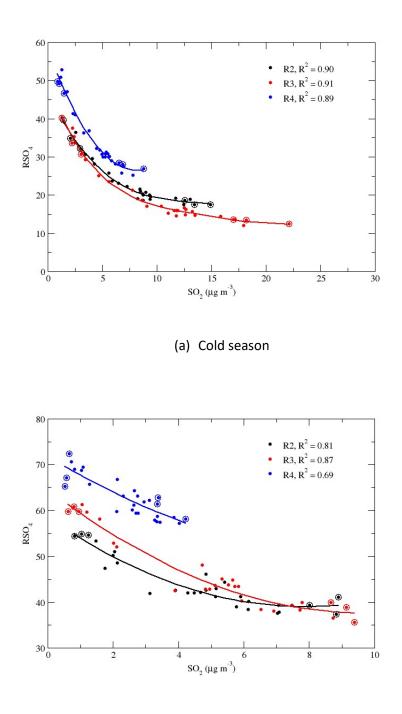

(a) Long-term trends for different species in each region








(b) Long-term trends for different region and each species


Fig. 6 Long-term trends derived with  $4^{th}$  order polynomial regressions for  $SO_4^{2^-}$ ,  $SO_2$  and  $NH_4^+$ , and  $5^{th}$  order polynomial regressions for  $NO_3^-$ ,  $HNO_3$  and TNO3 during the warm and cold seasons.



Region 3

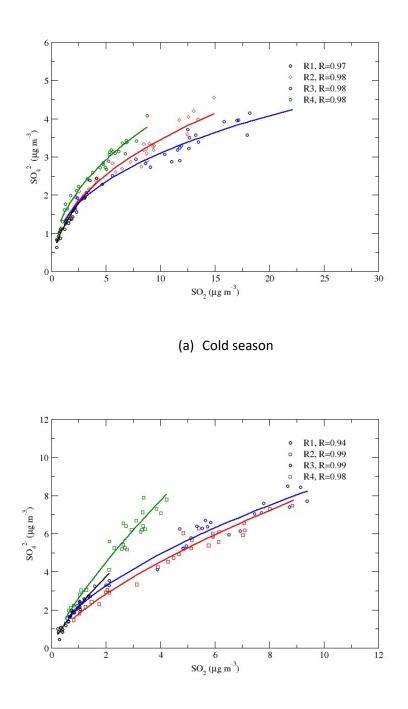

Region 4

Fig. 7 Time series of  $RSO_4$  and  $RNO_3$  for regions 1-4 during the cold and warm seasons.



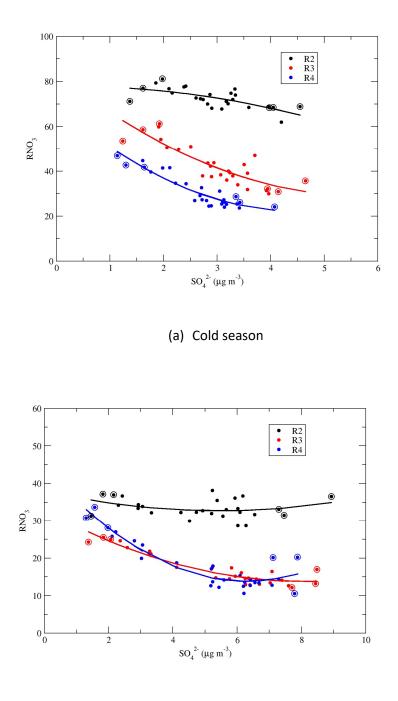

(b) Warm season

Fig. 8 Correlations of the seasonal means during the cold and warm seasons: RSO<sub>4</sub> vs. SO<sub>2</sub> for regions 2-4.
4<sup>th</sup> order polynomial and quadratic regressions were applied for the cold and warm seasons respectively.
R2, 3 and 4 refer to regions 2, 3 and 4. The dots with circles represent the seasonal means in the first and last 3 years.



(b) Warm season

Fig. 9 Correlations of the seasonal means during the cold and warm seasons:  $SO_4^{2-} vs. SO_2$  for regions 1-4. R1, 2, 3 and 4 refer to regions 1-4.



(b) Warm season

Fig. 10 Correlations of the seasonal means during the cold and warm seasons:  $RNO_3 vs. SO_4^{2-}$  for regions 2-4. The dots with circles represent the seasonal means in the first and last 3 years.

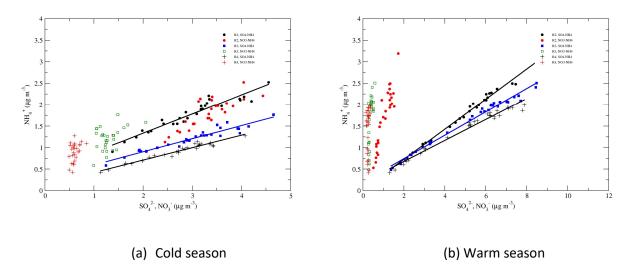



Fig. 11 Correlations of NH<sub>4</sub><sup>+</sup> vs. SO<sub>4</sub><sup>2-</sup> and NH<sub>4</sub><sup>+</sup> vs. NO<sub>3</sub><sup>-</sup> during the cold and warm seasons. R2, 3 and 4 refer to regions 2, 3 and 4.

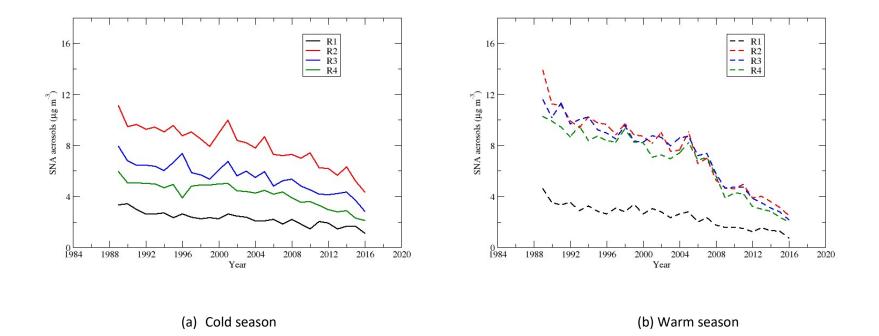
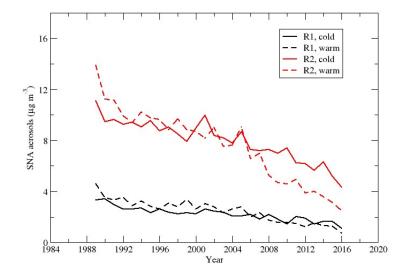
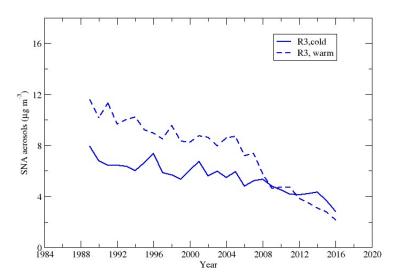





Fig. 12 Time series of the seasonal means of sulfate-nitrate-ammonium aerosols during the cold and warm seasons.





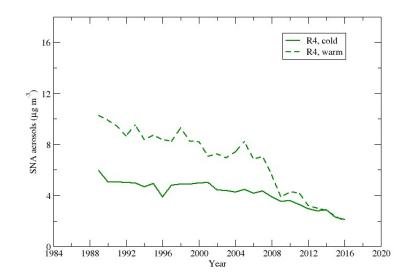



Fig. 13 Time series of the seasonal means of sulfate-nitrate-ammonium aerosols in regions 1-4.

Table 1. Characteristics of 4 regions based on 3-year averages of 1989-1991 during the cold season.

| Region | Characteristics of region                                                                                                                                                                                                                                                                                    |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | SO <sub>2</sub> < 6.4 $\mu$ g $\mu$ <sup>-3</sup> for all sites; in average the region had the lowest seasonal mean concentrations of SO <sub>4</sub> <sup>2-</sup> , NO <sub>3</sub> <sup>-</sup> , NH <sub>4</sub> <sup>+</sup> , HNO <sub>3</sub> , and SO <sub>2</sub> .                                 |
| 2      | NO <sub>3</sub> <sup>-</sup> > 2.5 $\mu$ g m <sup>-3</sup> and RNO <sub>3</sub> > 54.0% for all sites; AVE_NO <sub>3</sub> <sup>-</sup> = 4.2 $\mu$ g m <sup>-3</sup> ; AVE_SO <sub>2</sub> = 13.6 $\mu$ g m <sup>-3</sup> ; AVE_RNO <sub>3</sub> = 68.5%.                                                   |
| 3      | NO <sub>3</sub> <sup>-</sup> < 2.2 $\mu$ g m <sup>-3</sup> , RNO <sub>3</sub> < 47% and SO <sub>2</sub> > 15.2 $\mu$ g m <sup>-3</sup> for all sites;<br>AVE_NO <sub>3</sub> <sup>-</sup> = 1.2 $\mu$ g m <sup>-3</sup> ; AVE_SO <sub>2</sub> = 19.2 $\mu$ g m <sup>-3</sup> ; AVE_RNO <sub>3</sub> = 32.3%. |
| 4      | SO <sub>2</sub> < 11.7 $\mu$ g m <sup>-3</sup> and NO <sub>3</sub> <sup>-</sup> < 0.7 $\mu$ g m <sup>-3</sup> for all sites; AVE_NO <sub>3</sub> <sup>-</sup> = 0.6 $\mu$ g m <sup>-3</sup> ; AVE_SO <sub>2</sub> = 7.2 $\mu$ g m <sup>-3</sup> ; AVE_RNO <sub>3</sub> <sup>-</sup> = 28.3%.                 |

Table 2. Changes of the regionally averaged air concentrations of pollutants ( $\mu g m^{-3}$ ), RSO<sub>4</sub> (%) and RNO<sub>3</sub> (%) between 1989-1991 and 1999-2001 for regions 1-4.

| (a) ( | Cold season |  |
|-------|-------------|--|
|-------|-------------|--|

| Region |             | SO4 <sup>2-</sup> | NO <sub>3</sub> <sup>-</sup> | NH4 <sup>+</sup> | HNO <sub>3</sub> | SO <sub>2</sub> | TNO <sub>3</sub> | RSO <sub>4</sub> | RNO₃  |
|--------|-------------|-------------------|------------------------------|------------------|------------------|-----------------|------------------|------------------|-------|
|        | 1989 - 1991 | 2.29              | 0.37                         | 0.57             | 0.74             | 3.62            | 1.1              | 31.13            | 32.53 |
|        | 1999 - 2001 | 1.46              | 0.49                         | 0.44             | 0.54             | 1.91            | 1.01             | 35.7             | 48.58 |
| 1      | Δ           | -0.83             | 0.12                         | -0.13            | -0.2             | -1.71           | -0.09            | 4.57             | 16.05 |
|        | $\Delta$ %  | -36.2%            | 32.4%                        | -22.8%           | -27.0%           | -47.2%          | -8.2%            | 14.7%            | 49.3% |
|        | 1989 - 1991 | 4.19              | 3.62                         | 2.27             | 1.66             | 13.65           | 5.25             | 17.92            | 68.49 |
|        | 1999 - 2001 | 3.14              | 3.86                         | 1.95             | 1.51             | 8.87            | 5.35             | 19.77            | 71.93 |
| 2      | Δ           | -1.05             | 0.24                         | -0.32            | -0.15            | -4.78           | 0.1              | 1.85             | 3.44  |
|        | $\Delta$ %  | -25.1%            | 6.6%                         | -14.1%           | -9.0%            | -35.0%          | 1.9%             | 10.3%            | 5.0%  |
|        | 1989 - 1991 | 4.24              | 1.21                         | 1.56             | 2.31             | 19.2            | 3.49             | 13.11            | 32.76 |
|        | 1999 - 2001 | 3.21              | 1.48                         | 1.35             | 2.05             | 12.35           | 3.5              | 15.27            | 40.13 |
| 3      | Δ           | -1.03             | 0.27                         | -0.21            | -0.26            | -6.85           | 0.01             | 2.16             | 7.37  |
|        | $\Delta$ %  | -24.3%            | 22.3%                        | -13.5%           | -11.3%           | -35.7%          | 0.3%             | 16.5%            | 22.5% |
|        | 1989 - 1991 | 3.57              | 0.55                         | 1.09             | 1.81             | 7.24            | 2.33             | 28.29            | 25.14 |
|        | 1999 - 2001 | 3.09              | 0.77                         | 1.1              | 1.9              | 5.52            | 2.66             | 30.36            | 28.31 |
| 4      | Δ           | -0.48             | 0.22                         | 0.01             | 0.09             | -1.72           | 0.33             | 2.07             | 3.17  |
|        | $\Delta$ %  | -13.4%            | 40.0%                        | 0.9%             | 5.0%             | -23.8%          | 14.2%            | 7.3%             | 12.6% |

#### (b) Warm season

| Region |             | SO4 <sup>2-</sup> | NO <sub>3</sub> <sup>-</sup> | $NH_4^+$ | HNO₃   | SO <sub>2</sub> | TNO <sub>3</sub> | RSO <sub>4</sub> | RNO₃   |
|--------|-------------|-------------------|------------------------------|----------|--------|-----------------|------------------|------------------|--------|
|        | 1989 - 1991 | 2.93              | 0.14                         | 0.73     | 0.62   | 1.56            | 0.75             | 57.71            | 19     |
|        | 1999 - 2001 | 2.16              | 0.23                         | 0.62     | 0.53   | 0.94            | 0.73             | 62.18            | 33.52  |
| 1      | Δ           | -0.77             | 0.09                         | -0.11    | -0.09  | -0.62           | -0.02            | 4.47             | 14.52  |
|        | $\Delta$ %  | -26.3%            | 64.3%                        | -15.1%   | -14.5% | -39.7%          | -2.7%            | 7.7%             | 76.4%  |
|        | 1989 - 1991 | 7.9               | 1.46                         | 2.72     | 2.93   | 8.58            | 4.34             | 39.3             | 33.68  |
|        | 1999 - 2001 | 5.33              | 1.32                         | 1.91     | 2.65   | 5.37            | 3.93             | 40.73            | 33.76  |
| 2      | Δ           | -2.57             | -0.14                        | -0.81    | -0.28  | -3.21           | -0.41            | 1.43             | 0.08   |
|        | $\Delta$ %  | -32.5%            | -9.6%                        | -29.8%   | -9.6%  | -37.4%          | -9.4%            | 3.6%             | 0.2%   |
|        | 1989 - 1991 | 8.2               | 0.47                         | 2.33     | 2.79   | 9.11            | 3.22             | 37.98            | 13.91  |
|        | 1999 - 2001 | 6.04              | 0.48                         | 1.91     | 2.4    | 6.06            | 2.84             | 40.7             | 15.74  |
| 3      | Δ           | -2.16             | 0.01                         | -0.42    | -0.39  | -3.05           | -0.38            | 2.72             | 1.83   |
|        | $\Delta$ %  | -26.3%            | 2.1%                         | -18.0%   | -14.0% | -33.5%          | -11.8%           | 7.2%             | 13.2%  |
|        | 1989 - 1991 | 7.61              | 0.32                         | 1.92     | 1.74   | 3.67            | 2.04             | 60.76            | 16.99  |
|        | 1999 - 2001 | 5.85              | 0.31                         | 1.69     | 1.84   | 3.1             | 2.12             | 58.29            | 15.22  |
| 4      | Δ           | -1.76             | -0.01                        | -0.23    | 0.1    | -0.57           | 0.08             | -2.47            | -1.77  |
|        | $\Delta$ %  | -23.1%            | -3.1%                        | -12.0%   | 5.7%   | -15.5%          | 3.9%             | -4.1%            | -10.4% |

Table 3. Changes of the regionally averaged air concentrations of air pollutants ( $\mu$ g m<sup>-3</sup>), RSO<sub>4</sub> (%) and RNO<sub>3</sub> (%) between 1989-1991 and 2014-2016 for the eastern US and Eastern Canada. Red color in (a) indicates the 3-year average concentrations still exceeding 1.0  $\mu$ g m<sup>-3</sup> in 2014-2016. Red color in (b) and (c) indicates reduction/increase rates exceeding 50%.

|             |             | SO4 <sup>2-</sup> | NO <sub>3</sub> <sup>-</sup> | $NH_4^+$ | HNO₃   | SO <sub>2</sub> | TNO <sub>3</sub> | RSO <sub>4</sub> | RNO <sub>3</sub> |
|-------------|-------------|-------------------|------------------------------|----------|--------|-----------------|------------------|------------------|------------------|
|             | 1989 - 1991 | 5.44              | 1.1                          | 1.78     | 1.96   | 8.73            | 3.02             | 33.6             | 31.72            |
|             | 2014 - 2016 | 1.45              | 0.78                         | 0.58     | 0.67   | 1.08            | 1.43             | 50.6             | 51.91            |
| All seasons | Δ           | -3.99             | -0.32                        | -1.2     | -1.29  | -7.65           | -1.59            | 17               | 20.19            |
|             | $\Delta$ %  | -73.3%            | -29.1%                       | -67.4%   | -65.8% | -87.6%          | -52.6%           | 50.6%            | 63.7%            |
|             | 1989 - 1991 | 3.73              | 1.58                         | 1.49     | 1.76   | 11.71           | 3.31             | 21.41            | 40.98            |
|             | 2014 - 2016 | 1.4               | 1.21                         | 0.68     | 0.66   | 1.5             | 1.86             | 42.33            | 61.04            |
| Cold season | Δ           | -2.33             | -0.37                        | -0.81    | -1.1   | -10.21          | -1.45            | 20.92            | 20.06            |
|             | $\Delta$ %  | -62.5%            | -23.4%                       | -54.4%   | -62.5% | -87.2%          | -43.8%           | 97.7%            | 49.0%            |
|             | 1989 - 1991 | 7.02              | 0.66                         | 2.06     | 2.18   | 6.15            | 2.81             | 47.86            | 21.29            |
| Warm        | 2014 - 2016 | 1.6               | 0.41                         | 0.53     | 0.75   | 0.75            | 1.15             | 60.4             | 34.32            |
| season      | Δ           | -5.42             | -0.25                        | -1.53    | -1.43  | -5.4            | -1.66            | 12.54            | 13.03            |
|             | $\Delta$ %  | -77.2%            | -37.9%                       | -74.3%   | -65.6% | -87.8%          | -59.1%           | 26.2%            | 61.2%            |

(a) All regions in the eastern US and Eastern Canada

| Region |             | SO4 <sup>2-</sup> | NO <sub>3</sub> <sup>-</sup> | NH4 <sup>+</sup> | HNO <sub>3</sub> | SO <sub>2</sub> | TNO <sub>3</sub> | RSO <sub>4</sub> | RNO <sub>3</sub> |
|--------|-------------|-------------------|------------------------------|------------------|------------------|-----------------|------------------|------------------|------------------|
|        | 1989 - 1991 | 2.93              | 0.14                         | 0.73             | 0.62             | 1.56            | 0.75             | 57.71            | 19.0             |
|        | 2014 - 2016 | 0.8               | 0.12                         | 0.28             | 0.21             | 0.4             | 0.33             | 58.03            | 37.04            |
| 1      | Δ           | -2.13             | -0.02                        | -0.45            | -0.41            | -1.16           | -0.42            | 0.32             | 18.04            |
|        | $\Delta$ %  | - <b>72.7%</b>    | -14.3%                       | -61.6%           | -66.1%           | -74.4%          | -56.0%           | 0.6%             | 94.9%            |
|        | 1989 - 1991 | 7.9               | 1.46                         | 2.72             | 2.93             | 8.58            | 4.34             | 39.3             | 33.68            |
|        | 2014 - 2016 | 1.83              | 0.62                         | 0.66             | 1.08             | 1.03            | 1.68             | 54.85            | 36.38            |
| 2      | Δ           | -6.07             | -0.84                        | -2.06            | -1.85            | -7.55           | -2.66            | 15.55            | 2.7              |
|        | $\Delta$ %  | - <b>76.8%</b>    | -57.5%                       | -75.7%           | -63.1%           | -88.0%          | -61.3%           | 39.6%            | 8.0%             |
|        | 1989 - 1991 | 8.2               | 0.47                         | 2.33             | 2.79             | 9.11            | 3.22             | 37.98            | 13.91            |
|        | 2014 - 2016 | 1.77              | 0.3                          | 0.6              | 0.87             | 0.8             | 1.16             | 60.15            | 24.92            |
| 3      | Δ           | -6.43             | -0.17                        | -1.73            | -1.92            | -8.31           | -2.06            | 22.17            | 11.01            |
|        | $\Delta$ %  | - <b>78.4</b> %   | -36.2%                       | -74.2%           | -68.8%           | -91.2%          | -64.0%           | 58.4%            | 79.2%            |
|        | 1989 - 1991 | 7.61              | 0.32                         | 1.92             | 1.74             | 3.67            | 2.04             | 60.76            | 16.99            |
|        | 2014 - 2016 | 1.62              | 0.27                         | 0.5              | 0.61             | 0.59            | 0.86             | 68.29            | 30.8             |
| 4      | Δ           | -5.99             | -0.05                        | -1.42            | -1.13            | -3.08           | -1.18            | 7.53             | 13.81            |
|        | $\Delta$ %  | - <b>78.7%</b>    | -15.6%                       | -74.0%           | -64.9%           | -83.9%          | -57.8%           | 12.4%            | <b>81.3%</b>     |

## (b) Regions 1-4 during the warm season

# (c) Regions 1-4 during the cold season

| Region |             | SO4 <sup>2-</sup> | NO <sub>3</sub> <sup>-</sup> | $NH_4^+$       | HNO₃   | SO <sub>2</sub> | TNO₃   | RSO <sub>4</sub> | RNO <sub>3</sub> |
|--------|-------------|-------------------|------------------------------|----------------|--------|-----------------|--------|------------------|------------------|
|        | 1989 - 1991 | 2.29              | 0.37                         | 0.57           | 0.74   | 3.62            | 1.1    | 31.13            | 32.53            |
|        | 2014 - 2016 | 0.87              | 0.44                         | 0.32           | 0.27   | 0.75            | 0.71   | 46.25            | 62.54            |
| 1      | Δ           | -1.42             | 0.07                         | -0.25          | -0.47  | -2.87           | -0.39  | 15.12            | 30.01            |
|        | $\Delta$ %  | - <b>62.0%</b>    | 18.9%                        | -43.9%         | -63.5% | - <b>79.3%</b>  | -35.5% | 48.6%            | 92.3%            |
|        | 1989 - 1991 | 4.19              | 3.62                         | 2.27           | 1.66   | 13.65           | 5.25   | 17.92            | 68.49            |
|        | 2014 - 2016 | 1.67              | 2.52                         | 1.16           | 0.73   | 2.19            | 3.24   | 35.18            | 77.29            |
| 2      | Δ           | -2.52             | -1.1                         | -1.11          | -0.93  | -11.46          | -2.01  | 17.26            | 8.8              |
|        | $\Delta$ %  | - <b>60.1%</b>    | -30.4%                       | -48.9%         | -56.0% | -84.0%          | -38.3% | <b>96.3%</b>     | 12.8%            |
|        | 1989 - 1991 | 4.24              | 1.21                         | 1.56           | 2.31   | 19.2            | 3.49   | 13.11            | 32.76            |
|        | 2014 - 2016 | 1.59              | 1.25                         | 0.77           | 0.86   | 2.17            | 2.09   | 34.91            | 57.95            |
| 3      | Δ           | -2.65             | 0.04                         | -0.79          | -1.45  | -17.03          | -1.4   | 21.8             | 25.19            |
|        | $\Delta$ %  | - <b>62.5</b> %   | 3.3%                         | - <b>50.6%</b> | -62.8% | -88.7%          | -40.1% | <b>166.3%</b>    | 76.9%            |
|        | 1989 - 1991 | 3.57              | 0.55                         | 1.09           | 1.81   | 7.24            | 2.33   | 28.29            | 25.14            |
|        | 2014 - 2016 | 1.36              | 0.55                         | 0.51           | 0.71   | 1.13            | 1.25   | 48.53            | 43.71            |
| 4      | Δ           | -2.21             | 0                            | -0.58          | -1.1   | -6.11           | -1.08  | 20.24            | 18.57            |
|        | $\Delta$ %  | -61.9%            | 0.0%                         | -53.2%         | -60.8% | -84.4%          | -46.4% | 71.5%            | 73.9%            |