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Abstract. Severe hailstorms have the potential to damage buildings and crops. However, important processes for the prediction

of hailstorms are insufficiently represented in operational weather forecast models. Therefore, our goal is to identify model

input parameters describing environmental conditions and cloud microphysics, such as vertical wind shear and strength of ice

multiplication, which lead to large uncertainties in the prediction of deep convective clouds and precipitation. We conduct

a comprehensive sensitivity analysis simulating deep convective clouds in an idealized setup of a cloud-resolving model.5

We use statistical emulation and variance-based sensitivity analysis to enable a Monte Carlo sampling of the model outputs

across the multi-dimensional parameter space. The results show that the model dynamical and microphysical properties are

sensitive to both the environmental and microphysical uncertainties in the model. The microphysical parameters, lead to larger

uncertainties in the output of integrated hydrometeor mass contents and precipitation variables. In particular, the uncertainty in

the fall velocities of graupel and hail account for more than 65% of the variance of all considered precipitation variables and for10

30-90% of the variance of the integrated hydrometeor mass contents. In contrast, variations in the environmental parameters —

the range of which is limited to represent model uncertainty — mainly affect the vertical profiles of the diabatic heating rates.

Copyright statement. TEXT

1 Introduction

Due to the large damage potential associated with severe convective storms, the forecast of deep convective clouds should15

be as accurate as possible. Thus, numerous studies have been published on simulating deep convective clouds. These have

investigated how environmental parameters like wind shear (e.g., Weisman and Klemp, 1984; Lee et al., 2008; Fan et al., 2009;

Chen et al., 2015; Dennis and Kumjian, 2017), and the aerosol environment, which determines the CCN concentration (e.g.,

Lee et al., 2008; Rosenfeld et al., 2008; Fan et al., 2013), affect the clouds in these simulations.
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In Wellmann et al. (2018) we investigated the impact of simultaneous variations of six parameters describing environmental

conditions. These parameters include CCN and INP concentrations, wind shear, thermodynamic profiles and two parameters

characterizing the trigger mechanism used to initiate convection. The results showed that integrated hydrometeor mass contents

and precipitation are most sensitive to variations of the CCN concentration and the vertical temperature profile. Moreover,

different mechanisms for artificially triggering convection (a warm bubble, a cold pool or a bell-shaped mountain ridge) are5

compared revealing that the sensitivities depend on the choice of the trigger.

In addition to thermodynamic profiles and environmental conditions determining the formation and structure of deep convec-

tive clouds, also microphysical parameterizations have been shown to play a role. White et al. (2017), for example, simulated

three cloud types using the Morrison (Morrison et al., 2005, 2009; Morrison and Milbrandt, 2011) and the Thompson (Thomp-

son et al., 2004, 2008) bulk microphysics schemes varying the cloud droplet number concentration. They found that the use10

of the two schemes causes larger differences than the changes in the number concentration, primarily because of the repre-

sentation of autoconversion of cloud water to rain and of cloud ice to snow. Splinters of ice particles, which can be generated

during the riming process, favor the growth of ice from both the vapor and liquid phase because of their crystal lattice structure

(Houze, 1993). This process of secondary ice production was introduced by Hallett and Mossop (1974) and is thus referred to

as the Hallett-Mossop process. Connolly et al. (2006) simulated a thunderstorm over northern Australia to examine the impact15

of CCN and INP concentrations including variations of the strength of the Hallett-Mossop process. The results show that the

height of the cloud top depends on the strength of the Hallett-Mossop process, whereas the mean precipitation is rather insen-

sitive to these changes. In Johnson et al. (2015) the sensitivity of twelve deep convective cloud properties to uncertainties in

nine microphysical processes was studied in a spectral bin microphysics model, using an emulator approach. They found that

the cloud properties, including accumulated precipitation and maximum precipitation rates, are sensitive to a combination of20

aerosol concentrations and microphysical assumptions in the model.

Additional relevant parameters are the size distributions and the fall speeds of hydrometeors. Igel and van den Heever

(2017b) varied the shape parameter of the cloud droplet size distribution in simulations of non-precipitating shallow cumulus

clouds. They noticed an impact of this variation on the cloud droplet number concentration, the droplet diameter and the cloud

fraction. They found that some of these effects are on the same order of magnitude as aerosol effects. Adams-Selin et al. (2013)25

investigated the effect of graupel size and thus also of the fall speed on deep convection. Their results show that “hail-like”

(large and dense, with a high fall velocity) graupel immediately falls out of the cloud, leading to a reduced convection intensity.

In contrast, smaller and slower falling graupel particles stay longer in the cloud, which results in more persistent convection.

Also the results of Johnson et al. (2015) indicate that the fall speed of graupel is an important parameter influencing the precipi-

tation rate. Moreover, field study observations indicate that hydrometeors may have a broad range of fall velocities (Knight and30

Heymsfield, 1983; Yuter et al., 2006; Heymsfield et al., 2018), which implies that there is large uncertainty in the result of the

model parameterizations of the fall speeds. Gilmore et al. (2004) and Posselt and Vukicevic (2010) varied both the fall speeds

and the densities of hail/graupel and snow, and found that these parameters impact the amount of precipitation significantly.

The development of deep convective clouds is sensitive to both environmental conditions and model parameters, but these35
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sensitivities are usually examined separately. A few studies, including Lee et al. (2008) and Storer et al. (2010), have analyzed

the effect of several parameters, yet the maximum number of considered parameters is three or less. In this study, we combine

various parameters related to both environmental conditions and microphysics into a single comprehensive sensitivity analysis.

In idealized high-resolution model simulations, the selected input parameters are modified and their effect on the model output

is analyzed with a special focus on precipitation and thermodynamic quantities. To our knowledge, the only previous studies5

of multiple (six or more) interacting uncertainties in deep convective clouds are our own previous studies (Johnson et al., 2015;

Wellmann et al., 2018).

In general, the approach usually applied for the analysis of the sensitivity of the model output to changing input parameters

is to vary a chosen parameter in a given range while other parameters are kept constant. This so-called one-at-a-time (OAT)

analysis is applicable if the impact of a single model input is of interest. However, not only the effect of each input parameter10

independently will be assessed in this study, but also the relative contribution of the input parameters and their interactions to

the whole uncertainty of the output is of interest. In reality, severe convective storms form in a wide range of ambient conditions,

where either thermodynamic conditions or dynamic conditions may be the main driver, leading to different organizational forms

of the storms. The gradual and combined variation of various parameters better represents real conditions compared to the OAT

approach. To achieve this, we apply the methods of statistical emulation (O’Hagan, 2004, 2006) and variance-based sensitivity15

analysis (Saltelli, 2008), where the uncertainty of the output is densely sampled and then decomposed into contributions from

the individual model input parameters while simultaneously considering their interactions. Thereby the relative contributions of

each parameter to the uncertainty of the output can be quantified. The applicability of this approach for complex atmospheric

models is demonstrated in Lee et al. (2013) and Johnson et al. (2015). Wellmann et al. (2018) also used this approach to

investigate how environmental conditions impact the model output when simulating deep convective clouds. They quantify20

the contributions of parameters describing environmental conditions to the uncertainties of the integrated hydrometeor mass

contents, precipitation and the size distribution of surface hail. In addition, the emulators are used to examine the sensitivity to

changing CCN concentrations in different regimes of environmental conditions and the results are compared for three trigger

mechanisms of deep convection, i.e. a warm bubble, cold pool and orography.

Here, we focus on the warm bubble as the trigger mechanism as it is frequently used in idealized studies, but we extend25

the set of uncertain input parameters to include not only environmental conditions but also microphysical parameters. Conse-

quently, we compare the impact of environmental conditions and microphysics to quantify the individual contributions of the

various parameters to the forecast uncertainty of precipitation-related quantities including hail. We also consider the vertical

profiles of the diabatic heating rates in our analysis. This analysis and the choice of output variables are based on the results of

the first author’s PhD thesis (Wellmann, 2019) wherein more detailed descriptions are given.30

A general description of the model setup and the input parameters is given in section 2, followed by an explanation of the

methods of statistical emulation and variance-based sensitivity analysis in section 3. The considered output variables are de-

scribed in section 4 and the results of the sensitivity analyses are presented in section 5. Conclusions are found in section

6.35
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2 Model Setup

For the simulations in this study, the limited-area numerical weather prediction model COSMO (Consortium for Small-Scale

Modeling) (Baldauf et al., 2011; Schättler et al., 2016) developed by Deutscher Wetterdienst (DWD) and the COSMO con-

sortium is used. Identical to Wellmann et al. (2018), we run COSMO in a convection-resolving idealized setup covering a

domain of 700× 500 grid points with a horizontal grid spacing of 1 km. This grid spacing was shown to be sufficient for the5

simulation of precipitation and hydrometeor mass content of idealized supercells, although vertical transport and timing differ

from simulation at higher resolutions (Potvin and Flora, 2015; Huang et al., 2018). There are 64 vertical levels extending to

a height of 23 km. These levels follow the transformation given in Gal-Chen and Somerville (1975) such that they are denser

near the ground and further apart with increasing height (approximately 300 m vertical distance at 5 km altitude and 400 m

vertical distance at 10 km altitude). Variables are written out and analysed on interpolated z-levels with 250 m vertical distance10

up to 3 km and 500 m vertical distance above. Open boundary conditions are used to prevent a simulated hailstorm from in-

fluencing itself via reflection at the boundaries. Moreover, we switch off the radiation scheme and neglect the Coriolis force

in the simulations. The initial temperature and humidity profiles (which are also used when air is advected into the domain

through the boundaries) are based on those of Weisman and Klemp (1982) to maintain atmospheric conditions favoring the

development of deep convection. According to their profile, the maximum specific humidity qv0 is chosen to be 12 g kg−115

at the lowest level. The vertical wind profile is comparable to the hodograph of quarter-circle shear introduced by Weisman

and Rotunno (2000). Furthermore, the model uses the two-moment bulk microphysics scheme by Seifert and Beheng (2006),

including a saturation adjustment approach (i.e. bringing relative humidity back to exactly 100% within one time step when

supersaturation with respect to water occurs), predicting both the mass mixing ratios and the number densities of six hydrome-

teor classes (cloud droplets, rain, cloud ice, snow, graupel and hail). In our simulations, deep convection is triggered by a warm20

bubble as this mechanism is widely used in atmospheric modeling. The bubble is released at ∆x= 80 km and ∆y = 200 km at

model initialization. We run the simulations for six hours with a time step of ∆t= 6 s, where the first hour of the simulations is

regarded as spin up and thus excluded from the analysis. During this simulation period, the clouds do not reach the boundaries

of the domain. We consider only cloudy grid points (where the vertically integrated mass content of any hydrometeor type is

> 0) in our analysis of the vertically integrated hydrometeor mass contents. Exemplary vertical and horizontal cross sections25

of the idealized convective cloud simulated with this configuration are shown in Wellmann et al. (2018, their Fig. 3). Typically,

the cloud contains more graupel than hail at upper levels, but hail persists longer below the melting level and (in addition to

rain) only hail, not graupel, reaches the ground.

30

We have taken a staged approach to our analysis of the effects of uncertain inputs on model output uncertainty for COSMO.

We first explored the effects of the environmental conditions (section 2.1), and the full analysis for this study is given in Well-

mann et al. (2018). Building on this work, we used the same approach to consider the corresponding effects of microphysical

parameters in isolation (section 2.2). We then constructed a further final ensemble (section 2.3) using only the key inputs of
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the setup with variation of environmental conditions and the new setup with variations in microphysical parameters, in order to

enable a comparison of the relative importance of environmental and microphysical uncertainties for model output uncertainty.

Note that as the results depend crucially on the ranges over which the parameters are varied, these have to be chosen carefully

and taken into account when comparing to other studies.

2.1 Setup 1 - Varying environmental conditions5

The input parameters of interest in this study are assigned to either describe environmental conditions, microphysics or both,

where the parameter ranges relate to observations and model uncertainty. Regarding the environmental conditions, CCN con-

centration, INP concentration, wind shear, vertical temperature profile, and characteristics of the warm bubble, in terms of

temperature perturbation and horizontal radius, are perturbed. An overview of these parameters and their respective ranges is

given in Table 1. These parameters are referred to as Setup 1 (S1).10

Table 1. Overview of the uncertain input parameters and their ranges regarding environmental conditions (Setup 1). The parameters marked

by ∗ are included in Setup 3 which combines environmental conditions and microphysical parameters.

input min max units

CCN concentration ∗ 100 4000 cm−3

INP concentration ∗ 0.01 10 scaling factor

wind shear (Fshear) ∗ 0.3333 0.6666 scaling factor

potential temperature at the ground 299 301 K

θ0 (WK profile) ∗

temperature perturbation ∆T 2 5 K

horizontal radius Rhor 5 15 km

CCN, essential for the formation of cloud droplets, affect the dynamics and microphysics of the clouds (Rosenfeld et al.,

2008; Tao et al., 2012; Fan et al., 2013, e.g.,). The cloud droplet activation scheme implemented in COSMO is based on

grid-scale supersaturation and empirical power law activation spectra and uses look-up tables introduced by Segal and Khain

(2006). Moreover, the vertical profile of the aerosol concentration has its maximum in the lowest 2 km above the ground and

follows an exponential decrease with a scale height of 1 km towards higher altitudes. We vary the maximum CCN concentration15

between 100 cm−3 and 4000 cm−3 simulating both clean and polluted conditions. INPs affect the number of ice particles in

the cloud as they support the formation of cloud ice (Houze, 1993), comparable to CCN generating cloud droplets. For INP

changes, a scaling factor is applied to three microphysical processes. These processes are the deposition nucleation of cloud

ice, the immersion freezing of cloud droplets and the immersion freezing of rain. The heterogeneous ice nucleation scheme of

Huffman and Vali (1973) is implemented for the formation of cloud ice, while a stochastic model following the measurements20

of Bigg (1953) is used for the freezing of cloud droplets and rain. In this study, the scaling factor is varied between 0.01 and
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10 on a logarithmic scale. This range is chosen according to DeMott et al. (2010) representing the range of INP concentrations

measured in different field campaigns. We apply the same value of the scaling factor to all three processes.

According to several observational and modeling studies, directional shear is most important for the organization of convec-

tion (Weisman and Rotunno, 2000; Davies-Jones, 2015; Dennis and Kumjian, 2017). Therefore, we choose the initial vertical

profile of the wind velocity to be constant in all simulations, whereas a scaling factor Fshear determines the initial vertical5

profile of the wind direction (WD):

WD(z) =

 270◦−Fshear · 90◦(1 + z
6000 m ) ,z ≤ 6000 m

270◦ ,z > 6000 m
(1)

Depending on the choice of Fshear, the wind direction near the ground is set. It linearly turns towards western directions

with increasing height until a straight westerly flow is reached at a height of 6 km. For example, Fshear = 0 represents westerly

wind at all heights and Fshear = 1 specifies southerly wind near the ground. Here, we vary Fshear only between 0.3333 and10

0.6666, corresponding to a wind direction at the ground between 210◦ and 240◦, which reflects the typical error range of the

operational COSMO forecast of the wind direction (Felix Fundel, personal communication, 2017).

The vertical profile of the potential temperature is implemented according to Weisman and Klemp (1982):

θ(z) =

 θ0 + (θtrθ0)
(
z
ztr

)5/4
,z ≤ ztr

θ0 exp
(

g
cpTtr

(z− ztr)
)

,z > ztr
(2)

It is based on the near-surface potential temperature θ0 initially set to 300 K, along with the tropopause height ztr and the15

tropopause temperature Ttr. In our study, θ0 takes values between 299 K and 301 K representing the typical error range of the

operational temperature forecast of the COSMO model (Felix Fundel, personal communication, 2017). This variation of θ0

impacts the entire tropospheric profile and corresponds to a change of the convective available potential energy (CAPE) from

1210 J kg−1 to 1347 J kg−1.

The warm bubble is characterized by a temperature perturbation ∆T and a radius Rhor. Its maximum temperature per-20

turbation ∆T is located in the center of the bubble and varies between 2 K and 5 K. The horizontal radius ranges between

Rhor = 5 km and Rhor = 15 km, while the vertical extent is fixed at Rz = 1400 m. The variation of ∆T and the radius alter

the strength of the trigger as different buoyancy gradients arise.

As the wind shear and the temperature are part of the operational forecast, their parameter ranges are the only ones that can

be related to typical forecast errors. The ranges of the remaining parameters cover a wide variety of atmospheric conditions25

since there is no information from a forecast. These specifications are identical to those of the sensitivity analysis related to

typical forecast errors in Wellmann et al. (2018).

2.2 Setup 2 - Varying microphysical parameters

The microphysical parameters analyzed in Setup 2 (S2) are the fall velocities of rain, graupel and hail, the strength of the ice

multiplication and the shape parameter of the size distribution of cloud droplets. In addition, the CCN and INP concentrations30

are included in this set of input parameters. Table 2 summarizes the input parameters of Setup 2 and their considered ranges.
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Table 2. Overview of the uncertain input parameters and their ranges regarding cloud microphysics (Setup 2). The parameters marked by ∗

are included in Setup 3 which combines environmental conditions and microphysical parameters.

input min max units

CCN concentration ∗ 100 4000 cm−3

INP concentration ∗ 0.01 10 scaling factor

fall velocity of rain (aR) 0.3 1.7 scaling factor

fall velocity of graupel (aG)∗ 0.3 1.7 scaling factor

fall velocity of hail (aH )∗ 0.7 1.3 scaling factor

ice multiplication 0.1 · 108 7 · 108 kg−1

shape parameter 0 8 -

The fall velocities of the precipitating hydrometers rain, graupel and hail are implemented in the model following mainly

empirical equations based on measurements that describe the relation between the size or other characteristics of the parti-

cles and their fall velocities (Locatelli and Hobbs, 1974; Knight and Heymsfield, 1983). This uncertainty propagates in the

microphysics scheme as the fall velocity impacts collision processes such as accretion and riming. To assess the uncertainty,

scaling factors are multiplied with the fall velocities of rain (aR), graupel (aG) and hail (aH ). The ranges of the scaling factors5

are chosen based on the measurements of Yuter et al. (2006) and Knight and Heymsfield (1983) which suggest a spread of

about 70% around the mean of the fall velocities of rain and graupel and a spread of about 30% of the fall velocity of hail,

respectively. The production of ice splinters during the riming process introduced by Hallett and Mossop (1974) is a source of

secondary ice particles. As their measurements show a large spread (Hallett and Mossop (1974), Fig. 2), we vary the splintering

coefficient in the COSMO model describing the number of secondary ice particles per kg rime between 0.1 · 108 kg−1 and10

7 · 108 kg−1 to represent the range of their measurements. The size distribution of the hydrometeors has a substantial impact

as various microphysical processes such as condensation or sedimentation depend on this. Thus, uncertainties in the size distri-

butions have several possibilities to affect the processes in the microphysics scheme. By modifying the shape parameter of the

cloud droplet size distribution, we assess the variation of the model output due to these input uncertainties. In the two-moment

scheme of COSMO, the size of the cloud droplets is described by a generalized Γ-distribution (Seifert and Beheng, 2006),15

where µ and ν are shape parameters of the distribution (see also Section 4.3). The default values are µ= 0.3333 and ν = 0.0,

respectively. Here, µ is kept at its initial value, while ν is varied between 0 and 8 similar to Igel and van den Heever (2017a,

b) who based their choice on the results of several measurement campaigns. This variation of the shape parameter changes the

size distribution between broad distributions with lower number concentrations and narrow distributions with higher number

concentrations.20
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2.3 Setup 3 - Combined varying environmental conditions and microphysical parameters

Based on the results of the sensitivity analysis for hydrometeor and precipitation variables in setups S1 and S2, where the sets

of environmental conditions and the cloud microphysics parameters are treated separately (Fig. 5 of Wellmann et al. (2018)

and Fig. 1 of this manuscript), the input parameters of this combined Setup 3 (S3) are chosen such that the most important

parameters of both environmental conditions and microphysics (those that contribute most to output uncertainty across the5

selected output variables) are considered in addition to the CCN and INP concentrations. The less important input parameters

of S1 and S2 have not been reconsidered in order to limit the computational effort for conducting S3. For the variations of the

environmental conditions, the parameters identified to affect the uncertainty most are the vertical wind shear and the potential

temperature θ0 (Wellmann et al., 2018). The relevant parameters of the microphysics setup are the fall velocity of graupel and

the fall velocity of hail (section 4). Detailed descriptions of these input parameters were already given in sections 2.1 and 2.2,10

and the same parameter ranges are used. The parameters included in S3 are marked by ∗ in Tables 1 and 2.

3 Methods

We identify the parameters leading to the uncertainty in each model output via a variance-based approach, which is a global

sensitivity analysis meaning that all of the multi-dimensional parameter space is sampled (Saltelli, 2008).The output uncer-

tainty is decomposed into contributions from each input parameter individually and also contributions from interactions of the15

parameters (see section 3.2). However, a large number of simulations is required to infer those contributions, which is not fea-

sible for a complex numerical weather prediction model such as COSMO because of the high computational cost. Instead, we

employ the approach of statistical emulation to build a surrogate model based on a set of training data. The emulator represents

the relationship between a set of input parameters and a specific model output substantially reducing the number of model runs

required to generate the data necessary for the variance-based sensitivity analysis. The following two sections give a summary20

of the emulator approach using Gaussian processes and the variance-based sensitivity analysis. More detailed descriptions of

these methods are given in O’Hagan (2004, 2006); Saltelli et al. (1999); Johnson et al. (2015) and Wellmann et al. (2018).

3.1 Gaussian process emulation

First, a set of uncertain input parameters including their respective ranges has to be defined. Depending on the number of

input parameters, a choice of input combinations of the parameters is selected within the parameter uncertainty space. As the25

emulator is required to predict the model output equally well across the k-dimensional parameter space, the input combinations

have to be well-spaced and offer a good coverage. This is ensured by the use of maximin Latin hypercube sampling (Morris

and Mitchell, 1995) to select these input combinations. We perform COSMO simulations for these input combinations and use

them along with the corresponding outputs to train the emulators (training data). We used 15k input combinations to train the

emulator, with k the number of input parameters, which is 6 in S1, 7 in S2 and 6 in S3. Furthermore, 10 simulations were30
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added to the training datasets of S1 and S3 to increase the quality of the emulator fit. Thus, per Setup, 100 (S1 and S3) or 105

(S2) simulations were run to generate the training data.

The extension of a Gaussian distribution to an infinite number of variables is referred to as a Gaussian process (Rasmussen,

2004). A Gaussian process is defined by a mean function m(x) = h(x)Tβ and a covariance structure V (x,x′) = σ2c(x,x′)

where x = (x1, . . . ,xk) is a possible input combination, h(x) contains the regression coefficients for the mean functional form,5

c(x,x′) is a correlation function and β and σ2 are unknown coefficients. The specifications of the mean and the covariance

reflect prior beliefs about the form of the emulator. We assume a linear trend for the mean function and use the Matérn

correlation structure as it copes better with a slight roughness in the output surface (Rasmussen and Williams, 2006). These

choices have been discussed in more detail by Lee et al. (2011), and have since then be used by a number of studies (Johnson

et al., 2015; Igel et al., 2018; Wellmann et al., 2018; Glassmeier et al., 2019). Following the Bayesian paradigm, the a priori10

assumptions are updated using the training data by optimizing the marginal likelihood. The fitted emulator is then given by

the resulting posterior specification of the Gaussian process (O’Hagan, 2004, 2006). Once an emulator is constructed, it needs

to be validated to ensure an accurate estimation of the model output (Bastos and O’Hagan, 2009). For this, an additional

45 simulations with other input parameter combinations were conducted per setup. When comparing the emulator results to

the results of the validation simulations, only a small number of outliers (up to 3) outside the 95% confidence intervals are15

accepted. In addition, a test for robustness of the choice of the training dataset has been conducted by interchanging the training

dataset with parts of the validation data. The validated emulator is then able to predict (with a certain error as constrained by the

validation) the output at all points in the multi-dimensional parameter uncertainty space that were not included in the training

set and thus replaces the costly simulations of the NWP model.

3.2 Variance-based sensitivity analysis20

Variance-based sensitivity analysis aims to decompose output variance into contributions from the uncertain input parameters.

These include both contributions from each individual parameter and contributions from interactions of the parameters. The

decomposition of the variance V can be written as (Oakley and O’Hagan, 2004)

V =
∑
i

Vi +
∑
i<j

Vij + . . . +V1...k (3)

assuming independence between the input parameters. Vi are the individual contributions from each parameter, Vij denotes25

the contribution with respect to the interaction of two parameters, i and j, up to V1...k describing the joint interaction of all

parameters together. To accomplish this decomposition, we use the extended Fourier amplitude sensitivity test (FAST) by

Saltelli et al. (1999) where the k-dimensional parameter space is transformed to 1D Fourier space. Thus, the whole parameter

space can be sampled by a monodimensional curve in the Fourier space. However, as several thousand runs would be necessary

to get a space-filling curve, emulators are crucial for the required model output (Oakley and O’Hagan, 2004). A measure for the30

contribution from each parameter to the output uncertainty is given by the so-called main effect Si = Vi

V , which we obtain by

normalizing the variance contribution of the parameter Vi with the overall variance V in the output. Thus, the output variance

could be reduced by the percentage given by Si if there was no uncertainty in the input i. Consequently, the difference between
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the overall variance and the sum of the contributions of the individual parameters describes the amount of variance that arises

from interactions of the parameters (interaction effect).

4 Sensitivity Analysis for variations of the microphysics (S2)

In the analysis, we consider several output variables for which emulators are derived as described above. These output variables,

including vertically integrated hydrometeor mass contents, precipitation, diabatic heating rates and the size distribution of5

surface hail, will be described in more detail in this section. The results of the sensitivity analysis are shown for variations

of the microphysical parameters only (S2). Similar analyses for variations of the environmental conditions (S1) have been

discussed in Wellmann et al. (2018).

4.1 Hydrometeor mass contents and precipitation

The output variables of the model have to be reduced to 0 dimensions in order to be represented by the emulators. We are10

interested in the variables that are linked to severe weather at the surface (as precipitation maxima and hail), but also in the

in-cloud processes causing them, and therefore in the microphysical properties of the cloud. To reduce the dimensionality of

the output, the composition of the cloud is described by the vertically integrated mass content of each hydrometeor class that

includes cloud water, hail, ice, snow, graupel and rain. The spatial and temporal mean is taken for the considered vertically

integrated hydrometeor mass contents (all in kg m−2).15

The set of considered precipitation variables include the amount of hail at the ground per output interval of 15 minutes, the

precipitation rate of hail and the total precipitation rate (all in kg m−2 s−1) and the accumulated total precipitation (in kg m−2).

Precipitation is analyzed similarly to the hydrometeor mass contents, but maximum values in space and time are considered

instead of mean values. An exception is the amount of hail at the ground, for which both mean and maximum values are

analyzed.20

The results of the variance-based sensitivity analysis are shown as a bar plot in Fig. 1, where the hydrometeor mass contents

are depicted on the left hand side and precipitation on the right hand side. Each bar represents one output variable, and the

different colors denote the contributions from the input parameters to the output uncertainty (Main Effect). If there is blank

space above the bar, this means that the first-order main effects are not able to explain all of the output uncertainty and that

there are contributions from interactions of the input parameters.25

Fig. 1 reveals that of the investigated parameters, the graupel fall velocity factor aG is the largest contributor to the output

uncertainties of most of the integrated hydrometeor mass contents. For example, the uncertainty of the integrated cloud water

content could be reduced by 43% and the uncertainty of the integrated graupel content could even be reduced by 88%, if

aG was known exactly. The second most important parameter is the CCN concentration, which contributes especially to the

uncertainties of cloud water (in the microphysics scheme used here, primarily via an impact on autoconversion and thus on30

the partitioning between cloud and rain water) and snow content. In contrast, neither aG nor the CCN concentration are the
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Figure 1. Bar plot of the main effect for vertically integrated hydrometeor mass contents (left) and precipitation (right) of cloudy grid points

when only microphysical parameters are varied.

dominant parameters regarding the integrated hail content. Instead the strength of the ice multiplication is the largest contributor

for that output variable (38% of the output uncertainty).

The output uncertainties of the considered precipitation variables are all dominated by contributions from the CCN con-

centration (13%− 47%) and the fall velocity of hail, modified by the scaling factor aH (29%− 49%). For the maximum total

precipitation, the scaling factor for the fall speed of graupel, aG, is also relevant. This is in line with the expectation that for5

for cases of strong convection, cold phase processes (including riming onto graupel) dominate precipitation formation, as was

shown e.g. by Schneider et al. (2019).

4.2 Heating rates

Deep convective clouds usually cover a large area and thus are able to influence the surrounding atmosphere. Furthermore,

diabatic processes cause a redistribution of energy such as heating due to condensation and freezing or cooling due to evapo-10

ration and melting. To examine how the simulated storm impacts the temperature profile, we interpret the vertical profiles of

the diabatic heating rates. Joos and Wernli (2011) separate the associated temperature changes into contributions from phase

transitions between the different hydrometeors such that it can be described as

∂T

∂t
=
Lv
cp

(SC +SR) +
Ls
cp

(SI +SG +SH +SS) (4)

where Lv and Ls are the latent heat of vaporization and sublimation and cp is the specific heat capacity of dry air for isobaric15

processes. The terms Sx specify the conversion processes producing cloud water (C), rain (R), ice (I), graupel (G), hail (H)
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or snow (S) that include phase transitions and therefore either supply or subtract energy from the surrounding air. Thus, the

heating rate ∂T
∂t

∣∣
x

related to each hydrometeor class x is defined as

∂T

∂t

∣∣∣∣
x

=
Lv,s
cp

·Sx (5)

whereLv is chosen for transitions between vapor and liquid,Ls for transitions between vapor and ice andLs−Lv for transitions

between liquid and ice. The spatial mean of the heating rates is calculated for each particle class in each layer. The temporal5

means of these profiles are predicted using separate emulators for each vertical level.

In order to obtain statistically robust results and to minimize the effect of single extreme events, emulators are used to

generate 10,000 realizations of the vertical profiles of the heating rates covering the whole parameter space. Subsequently,

mean and standard deviation are calculated over all profiles together. Using this method, we are able to link changes of the

total heating rate to the individual hydrometeor classes. Furthermore, the standard deviation is a measure of how much the10

heating rates react to variations of the input parameters. Fig. 2 shows the domain mean vertical profiles of the heating rates

(left), where the shadings denote the standard deviation, and the corresponding main effects for the total heating rate in the

considered vertical levels (right). Simulations with a near-identical model setup were analyzed by Barrett et al. (2019), and we

refer to the hydrometeor profiles shown in their Fig. 3 and their process rate analysis for the rain water budget to support the

interpretation of our results.15
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Figure 2. Left: Vertical profiles of the mean diabatic heating rates by each hydrometeor class and the mean total diabatic heating rate for

variations of the microphysics. The shaded areas denote the standard deviation. Right: Bar plot of the corresponding main effect for the total

heating rate. Note the different axis tick spacing below and above 3km.
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Close to the ground the total heating rate is negative because of the cooling caused by evaporation of rain. As there is a strong

increase of the heating due to the formation of cloud water, the total heating rate becomes positive above a height of about

1.3 km and reaches its maximum of 5.7 K h−1 at z = 5 km. At higher altitudes, there are additional positive contributions

from the formation of graupel and ice. However those are smaller than the contribution from the cloud water such that the

total heating rate decreases and is less than 1 K h−1 above 10 km. In general, the profiles are quite robust to variations of5

the input parameters as the standard deviation is rather small (max. 20% and on average less than 5% of the absolute value

for the total heating rate). The bar plot of the main effect (Fig. 2, right) reveals that the fall velocity of graupel (aG) is the

most important contributor to the output uncertainty of the total heating rate. In the height between 3 km and 4 km there are

also major contributions from the fall velocity of rain (aR). CCN concentration contributes only modestly to uncertainty at

these levels, although the heating rate by condensation is very strong here. This is probably linked to the fact that a saturation10

adjustment scheme is used for water vapor condensation, which is thus insensitive to droplet number and size. Below 2.5 km,

coinciding with the largest cooling due to the evaporation of rain, aG is again the major driver of uncertainty. As shown by

Barrett et al. (2019), roughly half of the surface rain in this model setup originates from cold rain processes involving riming.

Therefore here the graupel (and also hail) fall speed parameters contribute substantially to the uncertainty of the latent heating

rate at levels below 2 km, although there is no graupel present at these altitudes.15

Corresponding to the heating by the formation of ice between 7 km and 10 km, there are large contributions to the output

uncertainty from the INP concentration in this height. Above, the output uncertainty of the total heating rate is dominated by the

CCN concentration and the fall velocity of graupel. This is probably linked to the indirect effect of CCN and riming efficiency

on the amount of supercooled water transported to the homogeneous freezing level. Furthermore, graupel is produced at these

levels in our model as a result of the freezing of rain drops, and the graupel fall speed factor thus impacts the gravitational sink20

of the (small) graupel particles present at these altitudes.

4.3 Size distribution of surface hail

The size distribution of hailstones reaching the ground is of interest regarding the damage potential of hail events. For the size

distributions of hydrometeors, a generalized Γ-distribution is implemented in the two-moment scheme of Seifert and Beheng

(2006):25

dN

dx
=Axν exp(−λxµ) (6)

where N is the number concentration, x represents the particle mass and ν and µ are parameters of the Γ-distribution (cf.

section 2.2). The coefficients A and λ are given by gamma distributions and the number and mass concentration, respectively

(Seifert and Beheng, 2006). To obtain a measure for the number of particles per diameter, the term dN
dx is transformed to

dN
dD by a conversion from mass x to particle diameter D. The spatio-temporal mean of the size distribution of surface hail is30

represented by emulators of the number concentration at ten fixed diameters. To constrain the parameter space and thus limiting

the regimes describing different environmental or microphysical conditions to a feasible amount, each of the uncertain input

parameters is assigned two discrete values where both a lower and a higher value are chosen (Table 3). These two values are
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denoted by "-" and "+". Hereby, the outer bounds of the environmental parameters Fshear and θ0 from S1 are taken as "-" and

"+", as they are already limited to the typical range of forecast errors. For all other parameters, the lower and higher values are

subjectively chosen to be representative, but not extreme, and encompass therefore a smaller range than examined in S1, S2

and S3. The considered regimes emerge from all possible combinations of these parameter values.

Table 3. Input values representing both lower and higher values of the parameter ranges used to analyze the size distribution of hail. Param-

eters marked with ∗ are part of setup 1, ◦ relates to setup 2 and † to setup 3.

input lower value (-) higher value (+) units

CCN concentration ∗◦† 500 3000 cm−3

IN concentration ∗◦† 0.1 10 scaling factor

wind shear (Fshear) ∗† 0.3333 0.6666 scaling factor

potential temperature θ0 ∗† 299 301 K

temperature perturbation ∆T (WB) ∗ 2 5 K

radius of warm bubble Rhor
∗ 7 13 km

fall velocity of rain aR ◦ 0.5 1.5 scaling factor

fall velocity of graupel aG ◦† 0.5 1.5 scaling factor

fall velocity of hail aH ◦† 0.8 1.2 scaling factor

ice multiplication ◦ 0.7 · 108 6.3 · 108 kg−1

shape parameter ◦ 2 6 -

The size distribution of surface hail is simulated using the emulators for all possible combinations of the high and low input5

parameter values for each setup (128 combinations in S2, 64 combinations in S1 and S3). The aim of this approach is to

attribute the minimum and maximum hail size distributions to specific parameter combinations. Fig. 3 (left) shows the mean

size distributions of surface hail from all combinations and the corresponding main effect for variations of the microphysics

only using S2. The size distributions with the lowest and highest number concentrations are marked in a different color such

that a separation into three groups is visible.10

The distributions in the two groups with either very low or very high number concentrations share common features regarding

the combination of the input parameters. The lowest number concentrations of hail (over the entire size distribution) are found

for regimes with a low value of the fall velocity of hail and a high value for the strength of the ice multiplication. These

distributions show maximum number concentrations of 0.06− 0.15 mm−1 m−3 at a diameter of 7.5 mm. In contrast, the

highest concentrations of 6.38 mm−1 m−3 at a diameter of 5 mm are simulated for a high value of the fall velocity of hail.15

Thus, the fall velocity of hail and the strength of the ice multiplication are the most important controlling parameters of the

size distribution.

The corresponding plot of the main effect (Fig. 3, right) confirms the impact of the fall velocity of hail (aH ) and the strength

of the ice multiplication together to be responsible for large parts of the output uncertainty of the number concentration at
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Figure 3. Left: Size distributions of hail at z = 0 m for variations of the microphysics. The shading illustrates regimes of the size distributions

controlled by the fall velocity of hail. Right: Bar plot of the corresponding main effect for the number concentration of the size distribution

of surface hail. Here, hail is defined according to the hydrometeor class in COSMO.

all considered diameters except at D ≤ 25 mm. These two parameters contribute more than 50% to the output uncertainty for

these diameters. At the largest considered diameters, an increased contribution from the CCN concentration comes into play,

while smaller diameters are significantly impacted by the graupel fall speed. This may be linked to the two formation pathways

of hail in COSMO, namely through freezing of rain (of which the size is impacted by the CCN concentration) and through

riming of graupel. A strong CCN impact on large hail particles was also found in two previous case studies (Loftus and Cotton,5

2014; Khain et al., 2011), and related to CCN impacts on hail embryo sizes and the availability of supercooled liquid water for

riming.

5 Comparison of the three setups

In the next step we analyze the impact of the input parameters on the uncertainty of the output variables of hydrometeor mass

contents and precipitation by comparing the results for the three different setups with changes of 1) environmental conditions10

only, 2) microphysical parameters only and 3) both environmental conditions and microphysical parameters (S1 - S3, see

sections 2.1-2.3). If the results of S3 resemble more those of S1, then the impact of the parameters describing the environmental

conditions is more dominant. Correspondingly, the microphysical parameters are more dominant if S3 resembles S2.
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5.1 Hydrometeor mass contents and precipitation

To compare the main effects of the three emulator studies, the results are combined in a bubble plot (Fig. 4) where the con-

tribution of each considered input parameter to the output uncertainty is represented by the size of a circle. The circles of the

different sets of input parameters are placed in columns next to each other labeled by S1, S2 and S3.
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Figure 4. Bubble chart of the contributions from all input parameters of the different emulator studies to the output uncertainty of cloud and

precipitation variables. The main effects of all input parameters given on the y-axis are depicted as circles where the size corresponds to the

value of the main effect. The different columns labeled with S1, S2 and S3 represent the results of each emulator study (S1: environmental

conditions, S2: microphysics, S3: both environmental conditions and microphysics; see sections 2.1-2.3). The numerical values for this figure

are listed in Tables A1 and A2.

The CCN (100 to 4000 cm−3) and INP (factor 0.01 to 10) concentrations are changed within the same range in all setups5

such that the results from three separate ensembles can be compared. The contributions from the CCN concentration variations

to the output uncertainty of the integrated cloud water and the integrated snow content in S3 are similar to those in S1. For the

other variables, the contribution in S3 is rather comparable to the contribution in S2, while the contribution in S1 is larger. This

trend is also consistent for the precipitation output. Here, the contribution from the CCN concentration uncertainty decreases

from S1 to S3 such that the results of S3 are closer to those of S2.10

The contributions from the INP concentration variations are mostly larger in S1 than in S2 for both integrated hydrometeor

mass contents and precipitation. The main effects in S3 are a combination of S1 and S2, but the results are closer to those of

S2 than to those of S1. Thus, the main effect of the INP concentration is smaller if other microphysical parameters are used as
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input, possibly because other ice phase processes (secondary ice formation, riming) can suppress the sensitivity of a cloud to

primary ice formation.

The behavior of the wind shear is quite consistent for the considered output variables. Its contribution is in general small,

except if the intergrated rain water content is the target output variable. It is always larger in S1 than in S3, meaning that the

wind shear has a larger impact on the output uncertainty, if only the environmental conditions are varied. Similarly, the (already5

small) impact of θ0 is reduced in S3; compared to the effect of cloud microphysics its impact is diminished.

The main effect of the fall velocity of graupel is larger for the cloud variables than for precipitation. Furthermore, in most of

the cases the fall velocity of graupel has a similar effect on the output uncertainty in S3, such that aG is still important in cases

when parameters describing the environmental conditions are also part of the input parameters.

When looking at the hydrometeor mass contents, the contribution from the fall velocity of hail to the output uncertainty10

is negligible except for the integrated hail and rain contents. However, it is the largest contributor to the uncertainty of the

precipitation variables, presumably reflecting that hail itself and melted hail constitute a major part of the total precipitation.

Here, its impact is larger in S3 compared to S2 for all variables so that its importance expands when also environmental

conditions are involved.

The other input parameters (∆T , radius, aR, the ice multiplication factor and the shape parameter) are only used in one of15

the setups so that a direct comparison of different setups is not possible. They are included in Fig. 4 for completeness.

Summarizing, we find that the uncertainty of the integrated hydrometeor mass contents and the precipitation mainly emerges

from the uncertainty of the microphysics, in particular from the fall velocity of graupel for the hydrometeor mass contents

and from the fall velocity of hail for precipitation. The contributions from the parameters characterizing the environmental

conditions are rather small in S3.20

In the literature, the focus of sensitivity studies is mainly on the effect of CCN concentrations on clouds, but there are

also studies examining the effect of other parameters such as wind shear, temperature perturbation or shape parameter of

the cloud droplet size distribution. For example, Brooks (1992) analyses the effect of the warm bubble characteristics on

deep convection. He finds that variations of ∆T cause only minor differences in precipitation, and the updrafts are strongest

for medium horizontal radii of the bubble. The effect of the horizontal radius on the precipitation is not mentioned. Our25

results are in good agreement with the findings of this work. Both ∆T and the radius of the bubble hardly contribute to the

output uncertainty of the precipitation variables, and also the impact on the hydrometeor mass contents is rather small (Fig. 4).

Regarding vertical wind shear, Dennis and Kumjian (2017) observe a significant effect of the wind shear on the hail production.

Here, the contribution of the wind shear to the output uncertainties of hail variables is rather small. However, it is expected

to see a larger impact when the wind shear does not have to compete with the more dominant effects of other parameters.30

Furthermore, in our study the parameter range of the wind shear is chosen to reflect typical forecast errors and not a broad

range of atmospheric conditions. This results in a smaller impact of the wind shear variation compared to the setup of Dennis

and Kumjian (2017).

The impact of CAPE on deep convection is analyzed by Storer et al. (2010). In their study, the updraft strength and the total

accumulated precipitation are very sensitive to changes in CAPE, while the integrated amount of cloud water does not depend35
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strongly on CAPE. Furthermore, they conclude that the impacts of CAPE and CCN concentration can be comparable. Fig. 4

confirms that the contribution from θ0 to the uncertainty of the integrated cloud water in S1 and S3 is not dominant. Yet, in total

the effect of the two parameters is not similar as the contributions from the CCN concentration are clearly larger. This is caused

by the chosen parameter range of θ0 limited to typical forecast errors and thus not comparable to the parameter range assumed

by Storer et al. (2010). Igel and van den Heever (2017b) examine shallow cumulus clouds for different shape parameters of the5

cloud droplet size distribution and notice an effect on the droplet concentration, but not on the mass mixing ratios. The results

of our study agree with their work, as the shape parameter is only of minor importance for the integrated cloud variables. With

respect to the impact of CCN variation, our findings are in qualitative agreement with the works of Fan et al. (2013) and Yang

et al. (2017), for instance. Fan et al. (2013) find an increase of approximately 30% of the upper tropospheric cloud cover due

to changes of the CCN concentration from 280 to 1680 cm−3 (which is smaller than our parameter range). Yang et al. (2017)10

find clear differences in the vertically integrated condensate mixing ratio, such as an increase of ice from 6 to 18g kg−1, for

increasing CCN from 300 to 5000 cm−3 (similar to our parameter range). This is comparable to the significant influence of the

CCN concentration on the output uncertainty of the hydrometeor mass contents found here.

5.2 Heating rates

In this study, the diagnostics of diabatic heating rates are implemented similar to Joos and Wernli (2011) (see section 4.2). The15

mean profile and the standard deviation of 10,000 randomly generated realizations are illustrated in Fig. 5.

Figure 5. Vertical profiles of the mean total diabatic heating rate (left) and the mean heating rates for each hydrometeor class (right). The

shaded areas left denote the standard deviation, which is also indicated by a horizontal bar at one selected altitude.

There is diabatic cooling of about −1 K h−1 near the ground in all setups due to the evaporation of rain. Between 1.25 and

1.5 km height the rate becomes positive and increases until its maximum is reached at a height of 4.5 km. The maximum values

of the heating rate vary between 5.7 K h−1 for setup 2 and 5.9 K h−1 for S1 and S3. Above, the total heating rate decreases
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slowly up to 8 km. Between 8 and 10 km there is a stronger decrease of the heating rate such that its value is close to 0 K h−1

at higher altitudes.

Up to 4 km above the ground, the profiles of the mean heating rates are almost identical for the three considered setups.

Also the standard deviations are small and almost negligible which means that near the ground the total heating rate is rather

insensitive to changes of the input parameters, both environmental conditions and microphysical parameters. However, above5

4 km the profiles of S1 and S2 deviate from each other. The maximum of the total heating rate reached in S1 is slightly higher

and the standard deviation enlarges to approximately 1 K h−1 while the standard deviation of S2 remains at values of 0.5 K

h−1. The difference of the mean profile can be attributed to different contributions from the formation of cloud water that is

smaller in S2 (Fig. 5, right). Here, the profile of S3 shows higher values and thus resembles the profile of S1. Another slight

deviation of the profiles of S1 and S2 occurs in a height of 8− 10 km. At this point, the profile of S2 shows values that are up10

to 0.6 K h−1 larger than those of S1. Moreover, the standard deviation of S2 is increased to 0.7 K h−1 at these altitudes. This

increase of the total heating rate in S2 is caused by an enhanced contribution from the formation of cloud ice at these altitudes

as can be seen in Fig. 5, right. At this height, the profile of S3 is almost identical to that of S1. Above 10 km the heating rates

of all setups are close to each other showing only limited effects of the variations of the input parameters. Furthermore, the

standard deviation of the profile of S3 is comparable to the standard deviation of S1, yet it is reduced by about 0.2 K h−1 in15

the middle troposphere. Therefore, variations of the environmental conditions have a larger impact on the total heating rate

than variations of microphysical parameters. This dominance of the environmental conditions is also obvious in Fig. 5 (right).

Near the ground, the total heating rate is determined by the cooling due to evaporation of rain, while in the mid-troposphere

the largest contributions stems from the formation of cloud water mainly caused by the use of saturation adjustment in the

microphysics scheme. At higher altitudes the hydrometeors of the ice phase, especially graupel and cloud ice, contribute the20

most to the total heating rate. For all hydrometeors, the profiles of S3 (dotted) are close to those of S1 (solid), whereas the

profiles of S2 (dashed) differ. Thus, the environmental conditions dominate the impact on the vertical profiles of the heating

rates for both the total heating rate and the individual heating rate contributions from each hydrometeor class.

Condensation of cloud water, which is a substantial contributor to the total heating rate in the lower and middle troposphere,

is parameterized via a saturation adjustment scheme in our model. Nevertheless, it yields a large contribution to output uncer-25

tainty of the diabatic heating in all three setups. This effect might be even larger if a time-dependent treatment of condensation

was used. Wang et al. (2013), for example, find that there are discrepancies of the results between models including saturation

adjustment and those explicitly calculating diffusional growth of cloud droplets. These differences are mainly characterized

by an overestimation of the condensation in the lower troposphere affecting the diabatic heating rates. In addition, Lebo et al.

(2012) also state that saturation adjustment artificially increases condensation. This increase appears to be quite strong as it is30

also represented by the emulators. Therefore, modified results of the sensitivity studies are expected for the heating rates, if the

saturation adjustment is replaced by more realistic calculations.
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5.3 Size distribution of surface hail

In this section, we analyze the impact of variations of environmental conditions and microphysical parameters on the size

distribution of surface hail. As described in section 4.3, each input parameter is assigned two discrete values and the size

distribution is predicted by the emulators for all possible combinations. In Fig. 6 both the distributions with the lowest and

highest number concentrations are illustrated for each setup. Consequently, all other distributions are found in-between which5

is indicated by the shading. The combinations of the parameters producing the extreme distributions, and thus the controlling

input parameters of the size distributions, are given in the legend.

Figure 6. Size distributions of hail at z = 0 m. The shading illustrates the number concentrations covered by all possible combinations of

input parameters for each setup. The solid lines indicate the distributions with the highest number concentration while the dashed line repre-

sents the distributions with the lowest number concentration of each setup. The corresponding combination of controlling input parameters

is given in the legend.

For S1, the size distribution with the lowest number concentration (dashed blue line) has its maximum of 4× 10−4 mm−1

m−3 at a hail diameter of 5 mm. The maximum of the distribution with the highest number concentration (continuous blue

line) is also found at the same diameter but with a number concentration of 3.4×10−3 mm−1 m−3. For this setup (in which the10

environmental conditions are modified), the controlling parameters are the CCN and INP concentrations and θ0. Low number

concentrations of hail arise for higher values of these parameters and high number concentrations of hail for lower values.

The maximum of the size distribution with low number concentrations of S2 (dashed red line) is only a fourth of the

concentration of S1 while for the distributions with the highest number concentration (continuous red line) it is almost twice

the amount. Hence, the spread of all distributions is larger.15

For S2, the low (dashed red line) and high (continuous red line) hail size distributions are smaller and larger, respectively, than

those for S1, leading to a larger spread in the distributions. The fall velocity of hail and the strength of the ice multiplication are

the two microphysical parameters that mainly determine the number concentration of surface hail. Low number concentrations
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are found for a low value of the fall velocity of hail combined with a high value for the strength of the ice multiplication and

vice versa.

When both the environmental conditions and the microphysics are perturbed, the lower limit of the size-resolved number

concentration of hailstones approximately doubles compared to S1. The distribution with the highest number concentration has

similar concentrations as S2. The combination of high INP concentrations and high fall velocities of graupel produce a low5

number concentration of surface hail whereas low fall velocities of graupel (presumably resulting in more time for riming of

graupel and growth to hail) and high fall velocities of hail (possibly by leaving less time for melting below the cloud) lead to

high number concentrations.

Comparing the results of the different setups, the distribution with the lowest number concentration of S3 is similar to the

corresponding distribution of S1. Especially for small diameters the two distributions show similar number concentrations. In10

contrast, the distribution with the highest number concentration of S3 (continuous green line) resembles the distribution of S2

as high number concentrations are reached that are comparable to S2. Furthermore, the spread between the distribution with

the lowest and the highest number concentration is smaller in S1 and larger in S2 such that the spread of S3 is situated in-

between. Moreover, the controlling parameters identified in S3 include parameters from both environmental conditions (INP)

and microphysics (aG, aH ).15

Summarizing, the environmental conditions and the microphysical parameters (with the spread of input parameters chosen in

this study) have a comparable impact on the size distribution of surface hail. While the microphysical input parameters mainly

determine the maximum number concentration, the environmental conditions substantially influence the minimum number

concentration. In general, microphysical input parameters cause a larger spread of the number concentrations of surface hail

than the inputs related to environmental conditions.20

The results above should not be regarded as definite number concentrations of surface hail, as a bulk model is used here,

and several studies note that the representation of hydrometeor sizes is more accurate in bin schemes (Dennis and Kumjian,

2017; Lee et al., 2008). To approach this issue, Loftus and Cotton (2014) introduce a modified microphysics setup where a

three-moment scheme is implemented for an improved prediction of hail. They find that increasing the CCN concentration

induces an increase of the hail sizes, but a decrease of the number of hailstones. The CCN concentration is identified as the25

controlling parameter of the size distribution in this study as well, but not for all considered setups. Because Loftus and Cotton

(2014) investigated the effect of the CCN concentration only, it is possible that in our study the effect of the CCN concentration

is covered by larger impacts of other input parameters such as the fall velocity of hail. Thus, the classification of the controlling

parameters of the size distribution of hail is assumed to be appropriate although a bulk microphysics scheme is used. Further

studies similar to Loftus and Cotton (2014), incorporating modifications of the microphysics scheme and the variation of not30

only one but several parameters, are necessary to confirm these findings.
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6 Summary & Conclusions

In our study, we have investigated how changes in the environmental conditions and cloud microphysics impact deep convection

with a focus on the integrated hydrometeor mass contents, precipitation, diabatic heating rates and the hail size spectrum.

The COSMO model was used to simulate deep convective clouds in an idealized setup, where convection was triggered by

an artificial warm bubble. This rather simple setup was required to allow a large number of simulations in which environmental5

conditions and microphysical parameters are modified. The straightforward approach for analyzing the sensitivity of the model

output to changes in the input parameters is to vary a chosen parameter in a given range, while the other parameters are kept

constant. However, instead of this one-at-a-time analysis, we employed statistical emulation and variance-based sensitivity

analysis where the contributions of the input parameters to the uncertainty of the output are quantified. The emulator approach

offers a convenient tool for the identification of relevant parameters without the requirement of running a large number of10

extensive model simulations. COSMO simulations were used to train the emulators, while the variance-based sensitivity was

based on the predictions from the emulators allowing for an identification of not only the impact of each parameter indepen-

dently, but also their interactions which cannot be captured by one-at-a-time analyses. In total, we evaluated three sets of input

parameters. First, a set describing environmental conditions such as potential temperature and vertical wind shear was used.

Note that the range of variation of these parameters is designed to mimic typical forecast errors and is therefore smaller than15

in earlier studies, which have encompassed a wider range of possible conditions. The second set of input parameters focused

on cloud microphysics consisting of parameters such as the shape parameter of the cloud droplet size distribution or the fall

velocity of hydrometeors. The third set combined influential parameters of both environmental conditions and microphysics.

For all sets of input parameters, the integrated hydrometeor mass contents, precipitation, size distribution of surface hail and

diabatic heating rates were examined with respect to output uncertainty or response to variations of the input.20

The analysis of the integrated hydrometeor mass contents reveals that the CCN concentration is an important parameter con-

tributing to the output uncertainty if only the environmental conditions are varied, whereas the fall velocity of graupel provides

a large contribution if only microphysical parameters are varied. These parameters are crucial for the efficiency of warm and

cold rain formation, respectively. The decomposition of the output variance given variations of both environmental and mi-25

crophysical parameters is similar to variations of the microphysical parameters only, implying that regarding the integrated

hydrometeor mass contents, the uncertainty in the microphysical parameters is more dominant in causing uncertainty in the

output. Similarly, the CCN and INP concentrations are relevant parameters for the uncertainty of the precipitation output when

environmental conditions are considered, while the CCN concentration and the fall velocity of hail dominate when microphys-

ical parameters are analyzed. The study combining both sets of input parameters shows a large contribution by the fall velocity30

of graupel to the output uncertainty of the hydrometeor loads, and by the fall velocity of hail to the output uncertainty of the

precipitation variables. Consequently, variations of the microphysical parameters are the prevailing source of uncertainty of the

integrated hydrometeor mass contents and precipitation compared to variations of the environmental conditions.
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We analyzed the variability of the vertical profiles of the diabatic heating rates by using emulators to predict the profiles

of 10,000 randomly generated realizations covering the whole parameter space. The mean profiles for the three sets are almost

identical, with the exception of a deviation of the set with variations in microphysical parameters in the middle and upper

troposphere. The variability is similar for the set with variations of environmental conditions only and the set with combined

microphysical and environmental changes. The good agreement between the results of these two sets of input parameters is5

also confirmed by the component-wise analysis of the heating rates where the contribution from each hydrometeor class to

the total heating rate is considered separately. Thus, comparing the impact of environmental conditions and the microphysics

on the diabatic heating rates, the effect of the environmental conditions is dominant. This is in contrast to the result of the

integrated hydrometeor mass contents and precipitation where the impact of the microphysical parameters is prevalent.

10

We have assigned two discrete values to each of the input parameters and then used the emulators to predict the hail size

distribution for all possible combinations of the input parameters to understand how the surface hail is affected by variations of

the environmental conditions and the microphysics. The parameters controlling the size distribution are the CCN concentration,

the INP concentration and the vertical temperature profile for variations of the environmental conditions and the fall velocity

of hail and the strength of the ice multiplication for variations of the microphysics. The controlling parameters of the combined15

input parameters are the INP concentration and the fall velocities of graupel and hail. The range of number concentrations

in which the size distributions are found in this combined set is a compromise of the two sets considering environment and

microphysics separately where the distribution with the lowest number concentration is close to the results for variations of

the environmental conditions and the distribution with the highest number concentration is close to the results for variations of

the model microphysics. Accordingly, both the environmental conditions and the microphysics affect the size distribution of20

surface hail comparably.

In conclusion, the aim of this work was to identify the sources of forecast uncertainty and to determine whether the varia-

tion of the environmental conditions or the variation of the microphysical parameters leads to larger model output uncertainty.

It can be expected that our results (in particular regarding the microphysical parameters) depend to some extent on the mi-25

crophysics scheme of our model. However, the overarching aim of this study was not to emphasize the impact of a specific

parameter, but to quantify the relevance of environmental versus microphysical uncertainty in general. We expect that these

results are less dependent on the microphysics scheme. In addition, future studies should address how far the results of our

idealized simulations are transferable to real cases. For our choices of input parameter ranges, the impact of the environmen-

tal conditions versus cloud microphysics depends on the output of interest: The uncertainty in the output of the integrated30

hydrometeor mass contents and the precipitation is affected more by variations of the microphysics, while variations of the

environmental conditions cause more uncertainty in the prediction of the vertical profiles of the diabatic heating rates. Further,

a comparable impact of environmental conditions and microphysics on the size distribution of surface hail is found. Therefore,

depending on the parameter of interest, the forecast uncertainty could be reduced by either an improved observational network
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and data assimilation providing a more accurate description of the environmental conditions or a revised microphysics scheme,

in particular a revised parameterization of the fall velocity of graupel and hail.
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