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Abstract.  

Total OH reactivity measurements were conducted during the LANDEX intensive field campaign in a coniferous 

temperate forest located in the Landes area, south-western France, during July 2017. In order to investigate inter-canopy and 20 

intra-canopy variability, measurements were performed inside (6 m) and above the canopy level (12 m), as well as at two 

different locations within the canopy, using a Comparative Reactivity Method (CRM) and a Laser Photolysis-Laser Induced 

Fluorescence (LP-LIF) instrument. The two techniques were intercompared at the end of the campaign by performing 

measurements at the same location. Volatile organic compounds were also monitored at both levels with a proton transfer-

time of flight mass spectrometer and online gas Chromatography instruments to evaluate their contribution to total OH 25 

reactivity, with monoterpenes being the main reactive species emitted in this Pinus pinaster Aiton dominated forest. Total 

OH reactivity varied diurnally, following the trend of BVOCs of which emissions and concentrations were dependent on 

meteorological parameters. Average OH reactivity was around 19.2 s-1 and 16.5 s-1, inside and above the canopy, 

respectively. Highest levels of total OH reactivity were observed during nights with a low turbulence (u* ≤ 0.2 m s-1) leading 

to lower mixing of emitted species within the canopy and thus an important vertical stratification, characterized by a strong 30 

concentration gradient. Comparing the measured and the calculated OH reactivity highlighted an average missing OH 

reactivity of 22 % and 33 %, inside and above the canopy, respectively. A day/night variability was observed on missing OH 

reactivity at both heights. Investigations showed that during day-time, missing OH sinks could be due to primary emissions 

and secondary products linked to a temperature-enhanced photochemistry. Regarding night-time missing OH reactivity, 
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higher levels were seen for the stable and warm night of the 4th-5th, July, showing that these conditions could have been 35 

favorable for the accumulation of long-lived species (primary and secondary species) during the transport of the air mass 

from nearby forests.  

1 Introduction 

The hydroxyl radical OH is considered as the most important initiator of photochemical processes in the 

troposphere during day-time, and the prevailing “detergent” from local to global scales. It controls the lifetime of most trace 40 

gases and contributes to the self-cleansing power or so-called “oxidation capacity” of the atmosphere.  

Even though the main primary source for OH in the lower troposphere is the photolysis of ozone at short wavelengths, the 

OH production and loss processes are numerous and difficult to quantify. Such losses involve several hundreds of chemical 

species and as many reactions to consider. In this respect, a direct measurement of total OH reactivity (ROH) is of great 

interest to better understand the OH chemistry in the atmosphere and to investigate the budget of OH sinks in a particular 45 

environment. ROH is defined as the pseudo first-order loss rate (in s-1) of OH radicals, equivalent to the inverse of the OH 

lifetime. It is the sum of the reaction frequencies of all chemical species reacting with OH, as shown in Eq. (1):  

ROH = ∑ 𝑘𝑂𝐻+𝑋𝑖  . [𝑋𝑖]𝑛
𝑖=1                                                             (1) 

In this equation, a chemical reaction frequency for a species Xi with OH (ROH+Xi) is the product of its rate-coefficient kOH 

with its concentration [Xi]. The measured total OH reactivity can be compared with calculated values based on the sum of 50 

reaction frequencies as shown in Eq. (1) and for which the concentration of Xi has been measured at the same location. Any 

significant discrepancy between measured and calculated OH reactivity explicitly demonstrates missing OH sinks, 

commonly called missing OH reactivity, and points out that potentially important unmeasured reactive species and chemical 

processes associated with these species may affect our understanding of OH atmospheric chemistry.  

Two approaches have been used to measure the total OH reactivity. The first approach derives OH reactivity from 55 

direct measurements of OH decay rates due to its reaction with trace species present in ambient air introduced in a reaction 

tube. OH can be generated and detected differently according to 3 types of techniques: The Flow Tube-Laser Induced 

Fluorescence (FT-LIF, (Hansen et al., 2014; Ingham et al., 2009; Kovacs and Brune, 2001)), the Laser Photolysis-Laser 

Induced Fluorescence (LP-LIF, (Sadanaga et al., 2004; Parker et al., 2011; Amédro, 2012; Stone et al., 2016; Fuchs et al., 

2017)) and the Flow Tube-Chemical Ionization Mass Spectrometry (FT-CIMS, (Muller et al., 2018)). The second approach 60 

is called the Comparative Reactivity Method (CRM) and it consists in an indirect quantification of OH losses from the 

concentration change of a reference molecule that competes with ambient reactive species to react with artificially produced 

OH. The reference substance, pyrrole, is measured with a Proton Transfer Reaction - Mass Spectrometer (PTR-MS, (Sinha et 

al., 2008; Dolgorouky et al., 2012; Michoud et al., 2015)) or with a Gas Chromatograph-Photo Ionization Detector (GC-PID, 

(Nölscher et al., 2012)) or chemical ionization mass spectrometry (CIMS, (Sanchez et al., 2018)). 65 
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Both LP-LIF and CRM techniques were deployed in a Pine forest for this study, the instruments deployed are 

presented in more details below and a general description is provided here. In the LP-LIF method, OH is generated by laser 

pulsed photolysis of ozone in a reaction tube, at typically 266 nm, followed by the rapid reaction of O(1D) with ambient 

water vapor. OH radicals react with ambient reactive species in the reaction tube and the concentration of OH decreases after 

the laser pulse. The air from the reaction tube is continuously pumped into a low-pressure detection cell where the OH decay 70 

is monitored by laser-induced fluorescence at a high time resolution (range of hundreds of μs) (Sadanaga et al., 2004). 

Compared to flow-tube set-ups, lower flow rates of ambient air are needed in the LP-LIF technique (less than 10 L min-1 

compared to several tens of L min-1). In addition, the use of O3 laser photolysis instead of continuous water photolysis by 

lamps at 185 nm for OH generation, the latter being commonly used in FT-LIF or CRM, limits the spurious formation of OH 

from the reaction of HO2 with ambient NO. However, in order to quantify wall loss reactions, an instrument zero has to be 75 

subtracted from all measurements, and a correction may have to be applied for the recycling of OH radicals in the presence 

of high NO levels (Stone et al., 2016; Fuchs et al., 2017). 

In the Comparative Reactivity Method (CRM), ambient air, wet nitrogen and pyrrole are introduced into a glass 

reactor where OH radicals are produced by the photolysis of water vapor. The mathematical expression used to determine 

the OH reactivity of the analyzed sample is derived in terms of the initial concentration of pyrrole (C1), the background 80 

concentration of pyrrole reacting alone with OH (C2) and the concentration of pyrrole after competition with air reactants 

(C3). The CRM exhibits several advantages compared to direct measurements techniques, like the commercial availability of 

PTR-MS and the need of a smaller sampling flow rate of ambient air (few hundreds of mL min-1), which broadens the 

application of the technique to branch and plant enclosure studies. On the other hand, this indirect method requires a raw 

data processing with careful corrections for measurement artefacts related to humidity changes and secondary chemistry that 85 

can impact the pyrrole concentration (Sinha et al., 2008; Michoud et al., 2015).  

A few inter-comparisons were reported in the literature for urban and remote areas (Hansen et al., 2015; Zannoni et 

al., 2015; Sanchez et al., 2018) and chamber experiments (Fuchs et al., 2017) aiming at reproducing ambient conditions 

observed in various environments. The latter, including a large number of OH reactivity instruments (FT-LIF, LP-LIF, 

CRM) and conducted in the SAPHIR atmospheric simulation chamber, allowed to compare the performances of each 90 

technique. Results showed that OH reactivity can be accurately measured for a wide range of atmospherically relevant 

chemical conditions by all instruments. However, CRM instruments exhibited larger discrepancies to calculated OH 

reactivity compared to instruments directly probing OH radicals, and these differences were more important in the presence 

of terpenes and oxygenated organic compounds.  

Over the past two decades, OH reactivity measurements were conducted in various environments at the ground level 95 

using the available techniques: urban and suburban areas, forest areas, marine areas  (Yang et al., 2016; Dusanter and 

Stevens, 2017). A few aircraft measurements have also been carried out to complete ground-based observations (Brune et al., 

2010). Many studies highlighted the interest of investigating OH reactivity in forest areas exhibiting large concentrations of 

biogenic VOCs (BVOCs) since BVOC emissions exceed anthropogenic VOCs by a factor of 10 at the global scale (Guenther 
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et al., 1995). Results showed that our understanding of OH sinks in these environments was incomplete with observations of 100 

large missing OH reactivity ranging between 25 % and 80 %. Total OH reactivity appeared to be impacted by several factors 

such as the forest type and the dominant emitted species, the seasonality, the canopy level as well as specific atmospheric 

conditions (Hansen et al., 2014; Nölscher et al., 2013; Praplan et al., 2019; Sanchez et al., 2018; Zannoni et al., 2016). 

Among these biogenic hydrocarbons, monoterpenes represent a large class of C10H16 compounds, which are mainly 

emitted by conifers as well as broad-leaves trees. They can be oxidized by OH, ozone and the nitrate radical, leading to 105 

atmospheric lifetimes ranging between minutes and days (Atkinson and Arey, 2003). The oxidation of primary BVOCs can 

therefore contribute to the formation of tropospheric ozone and secondary organic aerosols from the local to the regional 

scales, with oxidation products of BVOCs having a potential impact at a larger scale. Regarding coniferous forests, an 

averaged OH reactivity of 6.7 s-1 was observed over a temperate Pine forest located in the southern part of the Rocky 

Mountains in the USA during summer 2008 (Nakashima et al., 2013). Measured OH reactivity exhibited a diurnal variation 110 

with minima during day-time when MBO (2-methyl-3-buten-2-ol) was the main contributor, and maxima during night-time 

when the OH reactivity was dominated by monoterpenes. Approximately 30% of the measured OH reactivity remained 

unexplained and could be related to unmeasured or unknown oxidation products of primary emitted biogenic compounds. 

Another campaign also carried out in a temperate coniferous forest, located in the Wakayama Forest Research Station in 

Japan during summer 2014 (Ramasamy et al., 2016), showed comparable results with an average total OH reactivity of 7.1 s-115 

1. OH reactivity varied diurnally with temperature and light, reaching a maximum at noon-time. Monoterpenes were the main 

drivers of the total OH reactivity in the considered ecosystem, accounting for 23.7 %, followed by isoprene (17.0 %) and 

acetaldehyde (14.5 %). The missing OH reactivity (29.5 % on average) was found to be linked to light and temperature 

dependent unmeasured primary and secondary species. 

In the present study, we report on the measurement of total OH reactivity from a field experiment conducted in the 120 

Landes temperate forest, southwestern France. This work was part of the LANDEX project (LANDEX, i.e. the Landes 

Experiment: Formation and fate of secondary organic aerosols generated in the Landes forest) that aimed at characterizing 

secondary organic aerosol formation observed in this monoterpene-rich environment. The dominant tree species at the site is 

maritime pine, Pinus pinaster Aiton, which is known to be a strong emitter of α and β-pinene, leading to a diurnal 

concentration profile of monoterpenes characterized by maximum values at night and minimum values during day-time 125 

(Simon et al., 1994). Nocturnal new particle formation episodes (NPFs) were reported in this ecosystem, suggesting the 

contribution of BVOC oxidation to the nucleation and growth stages of particles (Kammer et al., 2018).    

Measurements of OH reactivity and trace gases were performed at two heights to cover the inside and above canopy, and at 

two different locations inside the canopy to investigate the intra-canopy variability. Two different instruments were 

deployed: the CRM from LSCE (Laboratoire des Sciences du Climat et de l’Environnement) that measured inside and above 130 

the canopy and the LP-LIF from PC2A (Physicochimie des Processus de Combustion et de l’Atmosphère) that performed 

measurements inside the canopy. The deployment of two different instruments was a good opportunity to (i) compare 

measurements made with both methods in a real biogenic environment after the inter-comparison experiment performed in 
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the SAPHIR chamber and recent improvement of the CRM instrument, (ii) investigate the levels and diurnal variability of 

OH reactivity at two different heights, and (iii) investigate both the OH reactivity budget and the missing reactivity pattern 135 

using a large panel of concomitant trace gas measurements.   

2 Experimental 

2.1 Site description 

The LANDEX intensive field campaign was conducted from the 3rd to the 19th of July 2017 at the Bilos field site in the 

Landes forest, south-western France. The vegetation on the site was dominated by maritime pines (Pinus pinaster Aiton) 140 

presenting an average height of 10 m. The climate is temperate with a maritime influence due to the proximity of the Atlantic 

Ocean. This site is part of the European ICOS (Integrated Carbon Observation System) Ecosystem infrastructure. A more 

detailed description of the site is available in Moreaux et al. (2011) and Kammer et al. (2018). 

2.2 OH reactivity instruments 

The LP-LIF instrument, referred here as UL (University of Lille)-FAGE (Fluorescence Assay by Gas Expansion), measured 145 

the OH reactivity in the canopy, whereas the CRM instrument, referred as LSCE-CRM, alternatively measured the OH 

reactivity at two heights (see Fig. 1(b)). Table 1 summarizes the performance of both instruments. The LP-LIF technique has 

a 3-fold better limit of detection than the CRM, however the CRM has a larger dynamic range since it can measure the OH 

reactivity up to 300 s-1 without sample dilution. The overall systematic uncertainty (1σ) is around 15 % and 35 % for the LP-

LIF and the CRM, respectively. The LSCE-CRM and UL-FAGE characteristics are given in the following paragraphs. 150 

 

Table 1. Performance of the two OH reactivity instruments deployed during the LANDEX campaign.  

Instrument 
LOD*(s-1) 

(3 σ) 
ROH max (s-1) Time resolution (s) 

Uncertainty 

(1 σ) 

LSCE-CRM 3 300 600 35 % 

UL-FAGE 0.9 150** 30-120 15 % 

* LOD: Limit of Detection; ** Without dilution 

 

 155 
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2.2.1 The Comparative Reactivity Method (CRM) and instrument performance  

 

The total OH reactivity was measured during the whole campaign, inside and above the canopy, by the LSCE-CRM 

instrument. This technique, first described by Sinha et al. (2008), is based on measuring the concentration of a reagent 160 

compound (pyrrole) that reacts with OH under different operating conditions (i.e. steps) at the output of the sampling reactor 

by a PTR-MS instrument. The first step consists in introducing pyrrole with dry nitrogen and dry zero air to measure the C1 

level, which corresponds to the pyrrole concentration in absence of OH. C1 accounts for potential photolysis due to photons 

emitted by the mercury lamp used to produce OH. During the second step, dry nitrogen and zero air are replaced by humid 

gases and a pyrrole concentration C2 is measured. C2 is lower than C1 because pyrrole reacts with OH. In the last step, zero 165 

air is replaced by ambient air, which leads to a competition between the reactions of OH with pyrrole and ambient trace 

gases. A C3 concentration, higher than C2, is measured. The difference between C3 and C2 depends on the amount and 

reactivity of reactive species present in ambient air and is used to determine the total OH reactivity from Eq. (2), where it is 

assumed that pyrrole reacts with OH following pseudo-first order reaction kinetics, i.e. [pyrrole] >> [OH]: 

ROH= 
(𝐶3−𝐶2)

(𝐶1−𝐶3)
 . 𝑘𝑝 . 𝐶1                                                             (2) 170 

Where kp is the reaction rate constant of pyrrole with OH (1.2 ×10-10  cm3 molecule-1 s-1 (Atkinson, 1985)). 

This technique requires multiple corrections to derive reliable measurements of total OH reactivity due to: (1) potential 

differences in relative humidity between C2 and C3, leading to different OH levels, (2) the spurious formation of OH in the 

sampling reactor when hydroperoxy radicals (HO2) react with nitrogen monoxide (NO), (3) not operating the instrument 

under pseudo-first order conditions, and (4) dilution of ambient air inside the reactor by the addition of N2 and pyrrole (Sinha 175 

et al., 2008; Michoud et al., 2015). In some CRM systems, corrections for potential NO2 and/or O3 artefacts are also 

considered (Michoud et al., 2015; Praplan et al., 2017). On one hand, NO2 is subject to photolysis leading to NO, which can 

subsequently react with HO2 yielding OH. On the other hand, O3 can also be photolyzed in the reactor, producing O(1D), 

which reacts further with H2O, yielding two OH radicals. 

Intensive laboratory experiments as well as tests during the LANDEX field campaign were performed to characterize these 180 

corrections and assess the performances of the instrument over time. During the LANDEX field campaign, a slightly 

modified version of the CRM-LSCE instrument was used compared to the instrument previously deployed during the 

intercomparison experiment at the SAPHIR chamber (Fuchs et al., 2017). Indeed, this last study showed that the OH 

reactivity measured by all CRM instruments was significantly lower than the reactivity measured by the other instruments in 

the presence of monoterpenes and sesquiterpenes. A potential reason discussed for this discrepancy was the loss of terpenes 185 

in the inlet of the CRM instruments. The LSCE-CRM sampling system was built with ¼” OD non-heated PFA tubing and 

was relying on a Teflon pump to introduce the sample into the reactor. In order to measure the total OH reactivity in a 

monoterpene-rich environment, several technical improvements were made on the previous version of the instrument 
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described by Zannoni et al. (2015). First, all the PFA sampling lines were replaced by 1/8” OD sulfinert lines, continuously 

heated to around 50°C to prevent condensation and minimize sorption processes. Second, temperature sensors were placed at 190 

several locations inside the system to monitor potential variations; the dew point was measured in the flow out through the 

pump to monitor humidity fluctuations, and the pressure was also monitored to make sure that measurements were 

performed at atmospheric pressure. All the flows going in and out of the reactor, the temperature at various places, the 

humidity and the pressure in the reactor were recorded continuously to track potential variations. 

 195 

Ambient air sampling 

 

Ambient air was sampled through two 1/8” OD sulfinert lines collocated on a mast close to the trailer (see Fig. 1(a)). The 

lines lengths were 8 m for the measurements performed inside the canopy and 12 m for those performed above. These lines 

were heated up to 50 °C as it was shown that losses of highly reactive molecules (i.e. β-caryophyllene) were negligible for 200 

temperatures above 20 °C (Kim et al., 2009). 

During sampling, the air flow was driven through one line by two pumps. The first one was a Teflon pump located upstream 

of the reactor and the other one was that from the Gas Calibration Unit (GCU) used to generate humid zero air from ambient 

air. Together, the two pumps allowed air sampling between 1 – 1.2 L min-1, with the excess going to an exhaust. 

 205 

CRM-LSCE system characterization 

 

Several tests were performed before, during and after the campaign to assess the performance of the instrument operated 

during the whole campaign. The PTR-MS was calibrated at the beginning and at the end of the field campaign showing a 

good stability under dry and wet conditions (slope of 15.5 ± 0.9 (1σ)). Regular C1 measurements were made to check the 210 

stability of the initial pyrrole concentration all along the campaign. C1 was 70.7 ± 4.0 (1σ) ppbv. 

Small differences in humidity observed between C2 and C3 were considered while processing the raw data. In order to 

assess this correction, experiments were performed to assess the variability of C2 on humidity by contrasting the change in 

C2 (ΔC2) for various changes in the m/z 37-to-m/z 19 ratio (Δ [m/z 37-to-m/z 19 ratios]), m/z 37 and m/z 19 being 

representative of H3O+(H2O) and H3O+, respectively, and their ratio being proportional to humidity. During this campaign, 215 

three humidity tests were performed by varying the humidity in ambient air samples. These tests were in good agreement and 

showed a linear relationship between ΔC2 (ppbv) and Δ (m/z 37-to-m/z 19 ratio) with a slope of -89.18. The correction was 

applied as discussed in Michoud et al. (2015).  

An important assumption to derive ROH from Eq. (2) is to operate the instrument under pseudo-first-order conditions (i.e. 

[pyrrole] >> [OH]), which is not the case with current CRM instruments. To determine the correction factor for the deviation 220 

from pseudo-first order kinetics, injections of known concentrations of isoprene (kIsoprene+OH = 1 × 10-10 cm3 molecule-1 s-1, 1- 
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120 ppbv) and α-pinene (kα-pinene+OH = 5.33 × 10-11 cm3 molecule-1 s-1, 3 -190 ppbv) (Atkinson, 1985) were performed before 

and after the field campaign since they represent the dominant species in this forest ecosystem. 

The measured OH reactivity obtained from these tests were then compared to the expected OH reactivity, leading to a 

correction factor that is dependent on the pyrrole-to-OH ratio. Therefore, standard OH reactivity experiments were 225 

conducted at different pyrrole-to-OH ratios ranging from 1.7 to 4.0, which encompass the ratio observed most of the time 

during the campaign. These tests led to a correction factor (F) = -0.52 × (pyrrole-to-OH) +3.38.  

NO mixing ratios were lower than 0.5 ppbv (corresponding to the detection limit of the NOx monitor deployed during 

LANDEX) most of the time for the measurement time periods used in this study, and no correction was applied for the 

spurious formation of OH from the HO2+NO reaction. Similarly, for NO2, no correction was applied due to the low ambient 230 

mixing ratio of 1.1 ± 0.8 ppbv. Regarding O3, no dependency was seen for LSCE-CRM, based on previous experiments 

(Fuchs et al., 2017). Therefore, no correction was applied. The correction (D) on the reactivity values due to the dilution was 

around 1.46 during the campaign. Thus, the total OH reactivity may be expressed as: 

ROH final=[ 
(𝐶3−𝐶2(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑))

(𝐶1−𝐶3)
 . 𝑘𝑝 . 𝐶1]. F. D                               (3) 

 235 

Finally, overall uncertainties were estimated at 35 % (1σ) for the measured OH reactivity by the CRM (Zannoni et al., 2015).  

Table 2 reports a summary of the corrections resulting from our tests and their impact on measurements. As shown in Table 

2, the application of (F), for the deviation from pseudo-first order kinetics, induces the largest correction, with an absolute 

increase of 10.4 s-1 on average. Furthermore, this factor (F) has the largest relative uncertainty, with ±36 %, against ±2 % for 

the humidity correction factor.  240 

 

Table 2. Summary of corrections applied to raw reactivity data for LSCE-CRM. Correction coefficients are obtained from experiments 

performed before, during and after the field campaign.  

 

Correction Correction factor Mean absolute change in OH reactivity (s-1) 

Humidity changes 

between C2 and C3 

 

-89.18±2.16 + 2.2 

Not operating the CRM 

under pseudo first order 

conditions 

 

F = (-0.52±0.20)×(pyrrole-to-OH)+ (3.38±0.60) + 10.4 

Dilution D = 1.46 + 2.6 

 245 
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2.2.2 UL-FAGE reactivity instrument 250 

 

Total OH reactivity was measured at a different location inside canopy, from the 13th to the 19th of July, using LP-LIF 

instrument of the PC2A laboratory (UL-FAGE reactivity) which has already been used in several intercomparisons and field 

campaigns (Hansen et al., 2015; Fuchs et al., 2017). The reactivity instrument comprises three parts: the photolysis laser, the 

photolysis cell (reaction tube) and the LIF cell based on FAGE technique. The photolysis laser is used to generate OH 255 

radicals within the photolysis cell by the photolysis of O3 in the presence of water vapor. The photolysis laser is a YAG laser 

(Brilliant EaZy, QUANTEL) with a doubling and a quadrupling stage providing a radiation at 266 nm with a repetition rate 

of 1 Hz. The photolysis beam is aligned at the center of the photolysis cell and is expanded (diameter of 4 cm reaching the 

entrance of the cell) by two lenses (a concave one f=-25 mm and a convex with f=150 mm) in order to increase the 

photolysis volume and to limit the diffusion effect in the photolysis cell. 260 

This photolysis cell is a stainless steel cylinder with an internal diameter of 5 cm and a length of 48 cm. It presents two 

openings on the opposite sides, one as an entrance for the air samples and the second connected to a pressure monitor (Keller 

PAA-41) to measure the pressure inside the cell. Ambient or humid clean air (which is produced by passing a fraction of dry 

synthetic air, purity of 99.8 %, through a water bubbler, called zero air and used to determine the OH reactivity in the 

absence of reacting species) are injected through the first opening with a small flow of synthetic air (about 20 mL min-1) 265 

passing through an ozone generator (Scientech) to generate an ozone concentration of about 50 ppbv in the total flow. The 

ozone concentration is chosen to produce enough OH to have a good signal/noise ratio, but kept low enough to minimize the 

reactions involving O3.  

The sampled mixture is continuously pumped into the FAGE cell (pressure=2.3 Torr) by a dry pump (Edwards, GX 600L) 

and the LIF signal is collected by a CPM (Perkin Elmer MP1982), an acquisition card and a LabView program. The 270 

detection of the fluorescence is synchronized with the photolysis laser pulses by delay generators. The OH reactivity time 

resolution was at the minimum set to be 30 s, meaning that each OH decay was accumulated over 30 photolysis laser shots 

and fitted by a mono-exponential decay. The number of sets of 30 photolysis laser shots accumulated is determined 

according to the signal to noise ratio (S/N) obtained (typically 4). When the S/N is lower, a set of 30 OH decays is added to 

the previous one and so on until reaching the criteria. As the reactivity and the humidity vary along the day, S/N varies as a 275 

function of the ambient species concentrations. In order to check the consistency of the OH reactivity measurements, the 

well-known (CO + OH) reaction rate constant was measured. Different CO concentrations, from 4 × 1013 to 3.7 × 1014 cm-3 

in humid zero air are injected in the photolysis cell, allowing to measure reactivities ranging from 10 to 90 s-1 and to 

determine (using a linear regression: R² = 0.97) a rate constant of kCO + OH = (2.45 ± 0.11) × 10-13 cm3 molecule-1 s-1, in good 

agreement with the reference value of 2.31 × 10-13 cm3 molecule-1 s-1 (Atkinson et al., 2006) at room temperature. Under 280 

these conditions (absence of NO), HO2 formed by the reaction of CO+OH is not recycled in OH and does not interfere with 

the measurements of OH. 
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Ambient air sampling 

 285 

Ambient air was sampled in the canopy at about 5 m through a PFA line (diameter = 1/2 inches), a PFA filter being installed 

at the entrance of the tube to minimize particle or dust sampling. In the photolysis cell, the gas flow was sampled at 7.5 L 

min-1 and the pressure was approximately 740 Torr, i.e. lower than the atmospheric pressure due to the restriction of the flow 

through the Teflon sampling line. For the reactivity measurements in zero air, synthetic air from a cylinder was used and a 

part of the flow (2 L min-1) passed through a bubbler filled with Milli-Q water to reach a water vapor concentration of about 290 

3000 ppmv.  

  

ROH, zero analysis 

 

In order to determine the OH reactivity in ambient air ROH,ambient, it is necessary to subtract the reactivity measured using 295 

"zero air" ROH,zero, which represents the OH losses not related to the gas phase reactions with the species of interest, present 

in the ambient air, but due to wall losses, diffusion, etc., to the reactivity measured.  

ROH,ambient = ROH,measured - ROH,zero                         (4) 

 

Zero air tests were conducted twice a day (in the morning and at night) when the reactivity measurements took place. The 

average of all experiments performed with zero air leads to a mean value of ROH,zero= (4.0 ± 0.5) s-1. This value was therefore 300 

chosen as kzero for the whole campaign. 

 

2.3 Ancillary Measurements and corresponding locations 

Measurements of VOCs (Table 3) were performed at different locations (Fig. 1) by a proton transfer reaction-mass 

spectrometer (PTR-MS) and four on-line gas chromatographic (GC) instruments. Ozone scrubbers (Copper tube impregnated 305 

with KI) and particle filters were added to the inlets of all GC sampling lines. Losses of BVOCs in these ozone scrubbers 

were investigated under similar sampling conditions in the absence and presence of O3 (Mermet et al., 2019, AMTD). The 

scrubbers exhibited less than 5 % losses for most non-oxygenated BVOCs, whereas in the presence of ozone, losses were 

relatively higher for some BVOCs, but remained lower than 15 % (lower than 5 % for α- and β-pinene). High flow rates 

were applied in the sampling lines: 1 L min-1 for GC instruments and 10 L min-1 for the PTR-MS, therefore, the contact time 310 

between ambient BVOCs and the particle filters was extremely short and no significant losses are expected. 

GC-BVOC1 is a gas chromatograph coupled to a flame ionization detector (airmoVOC C6- C12, Chromatotec), 

used by LSCE to monitor high-carbon VOCs (C6- C12) at 12 m height with a time resolution of 30 min. Sampling was 
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undertaken for 10 min. The instrument sampled ambient air with a flow rate of 60 mL min-1. Once injected, the sample 

passed through a capture tube containing the adsorbent Carbotrap C, for VOCs preconcentration at room temperature; the 315 

capture tube is then heated up to 380 °C and the sample is introduced into the separating column (MXT30CE, id = 0.28 mm, 

length = 30 m, film thickness = 1 μm), with hydrogen as the carrier gas. During the campaign, calibrations were performed 

with a certified standard containing a mixture of 16 VOCs (including 8 terpenes) at a concentration level of 2 ppbv (National 

Physical Laboratory, Teddington, Middlesex, UK). Three calibrations were performed 3 times (at the beginning, in the 

middle and at the end of the campaign). As they were showing reproducible results (within 5 % for all the terpenes except 320 

cineole), a mean response factor per VOC was used to calibrate the measurements. Note that limonene and cymene had close 

retention times which lead to overlapping peaks and for this reason, only the sum of both compounds has been reported. For 

further details, refer to Gros et al. (2011). The sampling was done using a 13-m long sulfinert heated line (1/8”) connected to 

an external pump for continuous flushing.  

GC-BVOC2 is an online thermodesorber system (Markes Unity 1) coupled to a GC-FID (Agilent). It was used to 325 

monitor 20 C5-C15 BVOCs, including isoprene, α- and β-pinene, carenes and β-caryophyllene at the 6 m height with a time 

resolution of 90 min. Ambient air was sampled at a flow rate of 20 mL min-1 for 60 min through a sorbent trap (Carbotrap B) 

held at 20 °C by a Peltier cooling system. The sample was thermally desorbed at 325 °C and injected into a BPX5 columns 

(60 m × 0.25 mm × 1 μm) using helium as carrier gas (30 min). Calibrations were performed at the beginning, in the middle 

and at the end of the campaign with a certified standard mixture (NPL, Teddington, Middlesex, UK, 2014) containing 33 330 

VOCs (including 4 BVOCs: α- pinene, β-pinene, limonene and isoprene) at a concentration of 4 ppbv each. The sampling 

was done using a 10 m long sulfinert line (1/4”) heated at 55 °C and connected to an external pump to adjust the sampling 

flow rate at 1 L min-1. The method has been optimized in terms of temperature of the thermodesorption, the column, the 

sampling volume and sampling line including a scrubber. Tests showed a low response for some compounds (i.e. sabinene, 

terpinolene, …), however, the most abundant compounds, were well measured. More details about the optimization and the 335 

tests performed can be found in Mermet et al. (2019, AMTD). 

GC-NMHC is an online GC equipped with two columns and a dual FID system (Perkin Elmer®) that was described 

in detail elsewhere (Badol et al., 2004). It was used to monitor 65 C2-C14 non-methane hydrocarbons (NMHC), including 

alkanes, alkenes, alkynes and aromatics, at the 12 m height with a time resolution of 90 min. Ambient air was sampled at a 

flow of 15 mL min-1 for 40 min through a Nafion membrane and through a sorbent trap (Carbotrap B and Carbosieve III) 340 

held at -30°C by a Peltier cooling system. The trap was thermodesorbed at 300°C and the sample was introduced in the GC 

system. The chromatographic separation was performed using two capillary columns with a switching facility. The first 

column used to separate C6-C14 compounds was a CP-Sil 5 CB (50 m × 0.25 mm × 1 μm), while the second column for C2-

C5 compounds was a plot Al2O3/Na2SO4 (50 m × 0.32 mm × 5 μm). Helium was used as carrier gas. Calibrations were 

performed at the beginning, middle and end of the campaign with a certified standard mixture (National Physical Laboratory 345 

(NPL), Teddington, Middlesex, UK, 2016) containing 30 VOCs at a concentration level of 4 ppbv each. The sampling was 
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done using a 13 m long sulfinert line (1/4”) heated at 55 °C and connected to an external pump for continuous flushing at 2 L 

min-1.  

GC-OVOC is an online GC-FID (Perkin Elmer®) used to monitor 16 C3-C7 oxygenated VOCs (OVOCs), including 

aldehydes, ketones, alcohols, ethers, esters and six NMHCs (BVOCs and aromatics). A detailed description can be found in 350 

Roukos et al. (2009). The measurements were performed at the 12 m height with a time resolution of 90 min. Ambient air 

was sampled at a flow rate of 15 mL min-1 for 40 min through a water trap (cold finger, -30 °C) and a quartz tube filled with 

Carbopack B and Carbopack X held at 12.5 °C. VOCs were thermally desorbed at 280 °C and injected into a CP-Lowox 

columns (30 m × 0.53 mm × 10 μm) using helium as carrier gas. Calibrations were performed 3 times during the campaign 

using a standard mixture (Apel Riemer, 2016) containing 15 compounds. This mixture was diluted with humidified zero air 355 

(RH = 50 %) to reach VOC levels of 3-4 ppbv. The sampling was done with the same sampling system than the GC-NMHC. 

Sulfinert material chosen for all GCs sampling lines and used in LSCE-CRM sampling system, is recommended by 

ACTRIS, 2014. High flows were set in the lines (residence time of less than 8 s), that were heated up to 50 °C to minimize 

the losses of potential reactive species. Filters and scrubbers were changed twice for the GC-BVOC1 and one time for the 

other GC instruments.  360 

The PTR-MS (PTR-QiToFMS, IONICON Analytic GmbH) sequentially measured trace gases at 4 levels (L1=12 

m, L2=10 m, L3=8 m, L4=6 m) with a cycle of 30 minutes (6 min at each level and 6 min of zero air). The drift tube was 

operated at a pressure of 3.8 mbar, a temperature of 70 °C and a E/N ratio of 131 Td. Four identical sampling lines of 15 

meters were used to sample ambient air at each height. The lines (PFA, 1/4” OD) were heated at 50 °C and were constantly 

flushed at 10 L min-1 using an additional pump and rotameters. Indeed, Kim et al. (2009) tested losses of β-caryophyllene in 365 

similar operating conditions. Authors varied the temperature from zero to 40 °C showing that losses of β -caryophyllene are 

negligible above 20 °C. The residence time was lower than 2 s. 

Teflon filters were used to filter particles at the entrance of the sampling lines. The PTR-MS drawn ambient air at a flow rate 

of 300 mL min-1 from the different lines using Teflon solenoid valves and a 1.5-meter-long inlet (PEEK, 1/16” OD) heated at 

60 °C. Zero air was generated using a Gas Calibration Unit (GCU, IONICON Analytic GmbH) containing a catalytic oven 370 

and connected to L1. Ion transmissions were calibrated over the 21-147 Da mass range every 3 days using the GCU unit and 

a certified calibration mixture provided by IONICON (15 compounds at approximately 1 ppmv, including methanol, 

acetaldehyde, acetone, aromatic compounds, chlorobenzenes, etc.). Measurements of methanol, acetonitrile, acetaldehyde, 

acetone, isoprene, methacrolein + methylvinylketone + fragment ISOPOOH, methylethylketone, sum of monoterpenes, sum 

of sesquiterpenes, acetic acid, nopinone and pinonaldehyde, obtained from levels 1 and 4 corresponding to the levels where 375 

OH reactivity measurements were performed, are discussed in this article. Sesquiterpenes, acetic acid, nopinone and 

pinonaldehyde measurements were not corrected for fragmentation in the drift tube and we cannot rule out the detection of 

other isomers at these masses such as glycolaldehyde for acetic acid measurements. 

Inorganic traces gases (O3 and NOx) were measured by commercial analyzers deployed by IMT-Lille-Douai (L1 to 

L4 for O3) and EPOC (L4 for NOx). The nitrate radical (NO3) was measured using an IBB-CEAS instrument (Incoherent 380 
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Broad Band Cavity Absorption Spectroscopy) developed by the LISA (Laboratoire Interdisciplinaire des Systèmes 

Atmosphériques) research group and deployed for the first time on site during the LANDEX field campaign. Meteorological 

parameters such as temperature, relative humidity, global radiation, vertical turbulence, wind speed and wind direction were 

monitored using sensors already available at the ICOS measurement site. More details can be found in Kammer et al., 2018. 

 385 

 

Table 3. Summary of supporting measurements performed inside and/or above the canopy. 

 

 

 390 

 

 

 

 

 395 

Instrument Resolution time (min) Measured species 

GC-BVOC1 30 α-pinene, β-pinene, myrcene, Δ-carene, p-cimene, limonene + cymene, cineol 

 

GC-BVOC2 90 α-pinene, β-pinene, myrcene, limonene, camphene, sabinene, α-phellandrene, 3-carene, 

p-cymene, ocimene, 1,8-cineol(=eucalyptol), α- terpinene, γ-terpinene, terpinolene 

isoprene§, nopinone§, linalool§, β-caryophyllene§ 
§ These compounds were not considered in the calculation of the weighted k rate constant for the reaction of 

monoterpenes with OH. Nopinone, linalool and β-caryophyllene had relatively low contributions to OH 

reactivity, that were around 0.02, 0.37 and 0.18 s-1 on average, respectively. Maximum contributions did not 

exceed 2.2 s-1 for linalool and 1.5 s-1 for β-caryophyllene.  

 

GC-NMHC 90 ethane, ethylene, propane, propene, isobutane, butane, acetylene, trans-2-butene, cis-2-

butene, isopentane, pentane, 1,3-butadiene, 2-methyl-butene + 1-pentene, cyclopentene 

or terpene, hexene, hexane, 2,4-dimethylpentane, benzene, 3,3-dimethylpentane, 2-

methylhexane, isooctane, heptane, toluene, octane, ethylbenzene, m+p-xylenes, 

styrene, o-xylene, nonane, 4-ethyltoluene, 2-ethyltoluene, 1,2,4-trimethylbenzene, 1,3-

dichlorobenzene, undecane, isopropylbenzene, n-propylbenzene 

 

GC-OVOC 90 furan, tert-amylmethylether, 2-butanone, ethanol, isopropanol, butanol+2-hexanone, 

benzaldehyde 

 

PTR- MS 6 min every 30 min at 

each level 

methanol, acetonitrile, acetaldehyde, acetone, isoprene, 

methacrolein+methylvinylketone+fragment ISOPOOH, methylethylketone, sum of 

monoterpenes, sum of sesquiterpenes*, acetic acid*, #, nopinone*, pinonaldehyde* 
*Fragmentation was not corrected for and reported concentrations are likely lower limits, 

 #potential interferences from isomeric compounds such as glycolaldehyde  
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2.4 OH reactivity calculation 

As different instruments were available to quantify VOCs at different locations (Fig. 1 and Table 3), a selection of the 

data used to calculate the OH reactivity (Eq. (1)) was made, based on data availability for the different instruments (Table 415 

S1). Since measurements from the PTR-MS instrument covers the whole campaign and were performed at the same heights 

than OH reactivity measurements, these measurements, including methanol, acetonitrile, acetaldehyde, acetone, isoprene, 

methacrolein+methylvinylketone+fragment ISOPOOH, methylethylketone and the sum of monoterpenes, were selected to 

calculate the OH reactivity and to evaluate the potential missing OH reactivity at both levels. However, using only this set of 

data presents some limitations: 420 

1) The PTR-MS only measures the sum of monoterpenes (m/z 137+ m/z 81), while the detected monoterpenes are speciated 

by the GCs. 

2) It was observed that isoprene measurements at m/z 69 were disturbed by the fragmentation of some terpenic species 

(Kari et al., 2018; Tani, 2013), which led to a significant impact on the night-time measurements when isoprene was 

low. 425 

3) Some NMHCs and OVOCs measured by GC at the 12 m height were not measured by the PTR-MS. This requires to 

assess the contribution of these additional species to the total OH reactivity for both heights.  

Figure 1. Deployment of instruments at the measurement site. Left side (a) corresponds to the 

horizontal deployment, the right side (b) represents the different sampling levels with respect to the 

average trees’ height. 
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To overcome these limitations, several tests were made to evaluate the reliability of the PTR-MS data to calculate the OH 

reactivity. 430 

 

1) In order to use the sum of monoterpenes measured by the PTR-MS to calculate the total OH reactivity, it was necessary 

to determine a weighted rate constant for the reaction of monoterpenes with OH. After checking the consistency 

between the two GCs (BVOC1 and BVOC2, see supplementary material S2) and comparing the sum of monoterpenes 

measured by each GC to the PTR-MS measurements (simultaneous measurements at the same height - Fig. S2(b) and 435 

(c)), the weighted rate constant was calculated as the sum of the rate constants of each OH + monoterpene reaction 

multiplied by the average contribution of each specific monoterpene to the sum. The contribution of each monoterpene 

was calculated by dividing the concentration of the 8 speciated monoterpenes that were measured by both GCs (α-

pinene, β-pinene, myrcene, Δ-carene, p-cimene, limonene + cymene, cineol), by their total concentration (Fig. S3(a)). 

The weighted rate constant is defined as: 440 

𝒌𝑶𝑯,𝒘𝒆𝒊𝒈𝒉𝒕𝒆𝒅 = ∑ 𝒌𝑶𝑯+ 𝑿𝒊

𝒊

 𝑭𝒊 
(5) 

 

Where 𝐹𝑖 represents the contribution of each individual species to the total concentration of monoterpenes, and 𝑘𝑂𝐻+ 𝑋𝑖
 the 

corresponding rate constant with OH. The reaction rate constant of the different trace species quantified in the field were 

taken from the literature (Atkinson et al., 2006). The OH reactivity of monoterpenes measured by PTR-MS was calculated 

according to the following equation: 
 445 

𝑹𝑶𝑯−𝒎𝒐𝒏𝒐𝒕𝒆𝒓𝒑𝒆𝒏𝒆𝒔 = 𝒌𝑶𝑯,𝒘𝒆𝒊𝒈𝒉𝒕𝒆𝒅 × [𝑴𝑻] (6) 

 

 

where [MT] represents the sum of monoterpenes measured by PTR-MS.  

The calculated OH reactivity inside and above the canopy (Fig. S3(b) and (e)) from (i) the use of the weighted OH reaction 

rate constant and the total concentration of monoterpenes measured by GC and (ii) the use of individual species and their 

associated rate constants are in relatively good agreement as shown by the scatter plots. A slope of 0.95, R2=0.99 has been 

obtained using the monoterpenes measured with the GC-BVOC1 at 12 m (Fig. S3(c)); a slope of 0.94, R2=1.0 using the same 450 

8 compounds commonly monitored with GC-BVOC1 but measured at 6 m with GC-BVOC2 (Fig. S3(f)). When replacing 

the total concentration of monoterpenes measured by GCs by the PTR-MS measurements, slopes of 1.22 and 1.19 were 

obtained at 12 and 6 m heights, respectively (Fig. S3(d) and S3(g)). This increase in the slope values is likely due to an 

underestimation of the total monoterpene concentration by the GC instruments since these instruments only measured the 

most abundant monoterpenes present at the site. We cannot rule out a small overestimation of monoterpenes by the PTR-MS 455 

since fragments from other species such as sesquiterpenes could be detected at the monoterpene m/z. However, this 



16 

 

interference should be negligible due to the low concentration of ambient sesquiterpenes. These results are in agreement with 

the scatter plots comparing the sum of monoterpenes measured by GC and by PTR-MS (slopes of 1.29 and 1.10 at the 12 and 

6 m heights, respectively, see Fig. S2(b) and S2(c)). Thus, the PTR-MS data was used to calculate the OH reactivity from 

monoterpenes for both heights, with a weighted reaction rate constant of 76 × 10-12 cm3 molecule -1 s-1 at the 12 m height and 460 

77.9 × 10-12 cm3 molecule -1 s-1 at the 6 m height.  

2) As mentioned above, some monoterpenes have been observed to fragment at m/z 69.0704, which would result in an 

interference for isoprene measurements. In order to use the PTR-MS data for this species (only instrument measuring 

isoprene at 12 m), the contribution of monoterpenes to m/z 69 has been estimated by comparing the GC-BVOC2 and 

PTR-MS measurements of isoprene performed at 6 m. This comparison showed that approximately 4 % of the 465 

monoterpene concentration measured by PTR-MS had to be subtracted to that measured at m/z 69.0704 to get a good 

agreement between the PTR-MS and GC-BVOC2 measurements of isoprene as shown in Fig. S4(a). 

 

3) A large range of NMHCs and OVOCs were measured at the 12 m height only by GC-NMHC and GC-OVOC (Table 3). 

Butanol (from SMPS exhausts) was also checked and found to be negligible at 12 m and highly and rapidly variable at 6 470 

m (short peaks). NO and NO2 were only measured at the 6 m height. Mean NO mixing ratio was below the LOD for the 

measurement period and NO2 was around 1.1 ± 0.8 ppbv on average. Thus, it was chosen not to take these species into 

account in the OH reactivity calculations. However, sensitivity tests were performed, in order to compute their relative 

contribution to OH reactivity (See sect. 3.5 and Fig. S5 and S6). Regarding methane and carbon monoxide, an 

estimation was made seen their relatively low k reaction rate coefficient with OH, taking mean concentration values of 475 

2000 ppbv and 150 ppbv, respectively.  

The above limitations are summarized in Table S7 (supplementary material). Data used to calculate the OH 

reactivity has been resampled to 1 min, based on a linear interpolation (see Table 3 for the respective time resolution of the 

different instruments). This time base was chosen to be comparable to the time resolution of the UL-FAGE reactivity 

instrument, in order to keep the dynamics in OH reactivity variability.  480 

 

 

 

 

 485 
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3. Results 

Measurements performed by both instruments at the same location were first compared to evaluate the agreement between 

the two techniques. The horizontal variability of total OH reactivity (same height) is also discussed. A second part of the 

result section is dedicated to a description of the total OH reactivity variability on the vertical scale with some 

meteorological parameters. A comparison between measured and calculated OH reactivity for both the 6 and 12 m heights as 490 

well as a description of the BVOC contributions to the measured OH reactivity are then presented. Finally, we discuss the 

missing OH reactivity observed during this campaign and its possible origin. 

 

3.1.1 Inter-comparison of LSCE-CRM and UL-FAGE OH reactivity measurements at the same location  

The direct comparison between LSCE-CRM and UL-FAGE reactivity instruments was done during the last two 495 

days of the campaign (Fig. 2). The sampling line of LSCE-CRM was moved to be collocated to the sampling line of UL-

FAGE. Both instruments were measuring at the same location inside the canopy level, above the UL container at 5 m height. 

In this way the comparison between both instruments was made possible while minimizing the variabilities which could be 

related to the heterogeneity in ambient air. During this period, similar values were measured by both instruments, as shown 

in Fig. 2, with total OH reactivity ranging between 5 and 69 s-1. The lowest values were observed during day-time.  500 

 

 

 

 

 505 

 

 

 

 

 510 

 

 

 

 

When OH reactivity measurements from LSCE-CRM are plotted versus OH reactivity measurements from UL- 515 

FAGE (Fig. 3), the linear regression exhibits a R2 of 0.87. Applying the orthogonal distance regression technique, which 

takes into account the uncertainties on LSCE-CRM and UL-FAGE measurements, a slope of 1.28 ± 0.02 and an intercept of 

Figure 2. Time series of total OH reactivity measured by UL-FAGE (dark blue) and 

LSCE-CRM (light blue) instruments from the 18th to 19th of July 2017, at the same 

location inside canopy. 
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0.96 ± 0.23 s-1 are obtained. These results indicate that both instruments respond similarly (within 30 %) to changes in OH 

reactivity with a relatively low intercept. This intercept can be due to an overestimation of LSCE-CRM measurements or an 

underestimation of the UL-FAGE measurements or both. Nevertheless, it stays within the range of uncertainties. It is worth 520 

noting that the higher points of OH reactivity observed in Fig. 3 correspond to the period from 19h30 to 20h (local time) of 

the 18th, July when the ambient relative humidity increased quickly by 20 % which was not seen on previous days and may 

have interfered with LSCE-CRM OH reactivity measurements.  

 

 525 

 

 

 

 

 530 

 

 

 

 

 535 

 

3.1.2 LSCE-CRM and UL-FAGE OH reactivity measurements at two different locations inside the canopy 

From the 13th to 15th midday of July (1st period) and from the 17th midday to 18th midday (2nd period), the two 

instruments were sampling at the same height but from different horizontal locations within the canopy (with sequential 

within/above canopy measurements for CRM during the second period). The horizontal distance between the two inlets was 540 

around 10 m as shown in Fig. 1. Similar trends in OH reactivity are seen between the two datasets, even if the first period 

was associated with a clear vertical stratification (Fig. 4, green frame), leading to higher concentrations of monoterpenes 

within the canopy, whereas the second period was characterized by a higher vertical mixing (mean u* ≈ 0.3 m s-1), leading to 

similar concentrations of monoterpenes at the two heights (Fig. 4, dashed green-yellow frame). These observations are 

linked to the vertical turbulence which influences BVOC levels inside and above the canopy, resulting in a more or less 545 

important vertical stratification, as discussed in section 3.2.    

Figure 3. Measured reactivity by LSCE- CRM instrument as function of the 

measured reactivity by UL- FAGE when both instruments were measuring at the 

same location within the canopy (data resampled with a time resolution of 1 

min). Errors bars represent the overall systematic uncertainty (1σ) that is around 

15 % and 35 % for LP- LIF and the CRM, respectively.  
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At the same height but different horizontal locations, the linear regression of LSCE- CRM data plotted against UL-

FAGE data (not shown) indicates a good correlation with a R2 of 0.87. Using the orthogonal distance regression technique, 

both data sets show a good agreement with a slope of 1.28 ± 0.02 and an intercept of -2.63 ± 0.15 (1st and 2nd period). 

Compared to the results at the same location (vertical and horizontal), the slopes and the correlation coefficients are the 550 

same. Only the intercept differs slightly (-2.63 ± 0.15 compared to 0.96 ± 0.23). This change could be related to air mass 

inhomogeneities which could be systematically less reactive at one location compared to the other one. From these 

observations, we can conclude that reactivity measurements performed at different horizontal locations are consistent and 

that inhomogeneities in ambient air can lead to differences on the order of several s-1. 

 555 
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3.2 Measured OH reactivity and meteorological parameters 

Figures 5(a) and 5(b) show the variability of total OH reactivity measured inside and above the canopy by LSCE-

CRM and UL-FAGE, together with global radiation, temperature and friction velocity. Considering the whole campaign, the 

Figure 4. (a) Time series of total OH reactivity measured by UL-FAGE and LSCE-CRM instruments from the 13th to 18th of 

July 2017 (upper graph). Dark blue symbols represent the measured reactivity by UL-FAGE, green, yellow and blue symbols 

represent the measured reactivity by LSCE-CRM inside canopy, above canopy and inside canopy at the same location as the 

UL-FAGE instrument, respectively. The lower graph (b) shows the sum of monoterpenes (MTs) and isoprene measured with 

the PTR-MS, in the field for the same period. Dark blue and light blue dots correspond to isoprene concentrations at 6 and 12 

m height, respectively. Orange and yellow dots represent monoterpenes concentrations at 6 and 12 m height, respectively.   
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measured OH reactivity at both heights shows a diurnal trend ranging between LOD (3 s-1) and 99 s-1 inside canopy and 575 

between LOD and 70 s-1 above canopy, with maximum values of OH reactivity mostly recorded during nights. These OH 

reactivity levels are larger than other measurements performed in forested environments (Yang et al., 2016, Dusanter and 

Stevens, 2017), with maximum values of approximately 80 s-1 reported for the tropical forest (Edwards et al., 2013). 

The predominant meteorological parameter that had a role on OH reactivity levels was the friction velocity. It traduces the 

vertical turbulence intensity that was high during the day (mean day-time u* ≥ 0.4 m s-1) and lower during most nights (mean 580 

night-time u* ≤ 0.2 m s-1). Based on this parameter, night-time OH reactivity (between 21:00 and 06:00 local time of the 

next day) was separated in 3 classes: 

- Class S: Stable atmospheric conditions (mean u* ≤ 0.2 m s-1) 

- Class U: Unstable atmospheric conditions (mean u* ≥ 0.4 m s-1) 

- Class SU: Stable and unstable conditions during the same night.  585 

The lower vertical turbulence intensity, observed for “S” nights as well as for some hours of “SU” nights, led to a lower 

boundary layer (Saraiva and Krusche, 2013) and a significant nocturnal stratification within the canopy, with higher 

concentrations of primary compounds within the canopy (Fig. 5(c)). These stable atmospheric conditions, together with no 

photochemical oxidation of BVOCs, resulted in higher total OH reactivity during these nights due to higher BVOCs 

concentration even though their emissions are lower compared to day-time (Simon et al., 1994). 590 

Another important parameter to consider is ambient temperature, which is known to enhance BVOCs emissions during the 

day when stomata are open, and which also plays a role for night-time emissions due to permeation, even though stomata are 

closed in the dark (Simon et al., 1994). Considering temperature, 2 sub-classes can be added to night-time OH reactivity 

classification: the sub-class “Wn” corresponding to warm nights (nights with mean T ≥ 18.9 °C which is the mean night-time 

temperature over the whole campaign) and the sub-class “Cn” that includes cooler nights (nights with mean T < 18.9 °C). 595 

Thus, comparing “S/Wn” nights and “S/Cn” nights, it can be seen that, for similar turbulent conditions, the magnitude of the 

measured OH reactivity was temperature dependent. Indeed, higher OH reactivity values were linked to higher ambient 

temperatures: nights of the 4th-5th, 6th-7th and 16th-17th of July (S/Wn) were characterized by an average temperature of 21 °C 

compared to 16.6 °C for the nights with lower OH reactivity (S/Cn).  

 600 

 

 

 

 

 605 
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Figure 5. Variability of measured OH reactivity by LSCE-CRM and UL- FAGE, inside and above the canopy with (a) global radiation 

(black), (b) temperature (red), friction velocity (green) and with c) monoterpenes and isoprene concentrations. Yellow stripes indicate 

stable night-time atmospheric conditions (S nights with mean u* ≤ 0.2 m s-1) and blue stripes indicate unstable night-time conditions (U 

nights with mean u* ≥ 0.4 m s-1). Class SU includes nights with stable and unstable atmospheric conditions (blue + yellow stripes). Wn 

and Wd stand for warm nights and warm days respectively. Cn and Cd stand for cooler nights and cooler days respectively. Red dashes 

and black dashes indicate the temperature thresholds to distinguish warm and cool days and nights, respectively. Green dashes indicate 

the friction velocity threshold to distinguish stable and unstable nights.  
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Regarding the period when measurements were done simultaneously at both heights (15 th to 18th of July, LSCE-CRM above 

canopy and UL-FAGE within canopy), we can analyze the effect of turbulence on the above-within canopy differences. For 610 

the night of the 16th-17th of July (S/Wn) when the vertical turbulence was relatively low, total OH reactivity measured above 

the canopy (LSCE-CRM) was lower than the one measured inside the canopy by a mean factor of 1.6 (UL-FAGE reactivity) 

despite similar general trends. For the night of the 17th-18th of July (SU/Wn), stable atmospheric conditions started to settle at 

the beginning of the night (20h30 local time) inducing a similar stratification to that observed on the previous nights. 

However, this situation did not last the whole night since these stable conditions were disturbed by higher turbulences 615 

around 21h00. This led to a decrease in OH reactivity values going to similar levels inside and above the canopy. A similar 

event occurred during the night of the 18th-19th of July, where three OH reactivity peaks showed up, not correlated neither 

with variation of turbulence intensity nor with temperature changes. However, it is worth noting that during this night, an 

intense wind, rain and thunders occurred, which could have led to the observed bursts of BVOCs (Nakashima et al., 2013), 

leading to distinct peaks of BVOCs and total OH reactivity and thus relatively high total OH reactivity compared to other 620 

nights from the same class. 

 Total OH reactivity also increased during the day, although on a lower extent than during night-time, and reached a 

day-time maximum of up to 74.2 s-1 inside the canopy and 69.9 s-1 above the canopy, following the same trends than 

temperature and solar radiation. Temperature appeared to be an important driving factor of total OH reactivity during day-

time hours, therefore, day-time OH reactivity was divided into 2 classes: Class “Wd” with warm conditions (mean day-time 625 

T ≥ 24 °C) and class “Cd” with cooler temperatures (mean day-time T < 24 °C) indicated on Fig. 5. The solar radiation also 

played a role on day-time OH reactivity since it is responsible of initiating the emission of some compounds like isoprene, 

that is light and temperature dependent. Thus with the first rays of sunlight, the emission and the concentration of isoprene 

increased leading to an increase in total OH reactivity. 

Examining BVOC profiles (Fig. 5 (c)), we can see how the variability of primary BVOC concentrations can explain 630 

the day/night variability of total OH reactivity. Indeed, monoterpenes, which are the main emitted compounds in this 

ecosystem, were influenced by vertical turbulence and night-time temperature, exhibiting a diurnal profile with maxima 

during stable nights and minima during day-time. Under stable atmospheric conditions (class S), monoterpenes concentration 

started to increase at the beginning of the night (between 20h and 21h local time) corresponding to the time of the day when 

the turbulence intensity started to drop and the nocturnal boundary layer started to build up. Maximum mixing ratios were 635 

reached in the middle of the night, corresponding to a lower dilution in the atmosphere and a lower oxidation rate (low OH 

concentrations, nitrate radical mixing ratios lower than the LOD (3ppt/min) most of the time, and BVOC’s chemistry with 

ozone generally slower than during day-time (Fuentes et al., 2002)). Finally, the monoterpenes concentration dropped as 

soon as the first sunlight radiations broke the stable nocturnal boundary layer inducing lower levels of OH reactivity. Under 

these conditions, the concentration of monoterpenes inside the canopy was higher than above the canopy, showing a clear 640 

stratification, consistent with differences seen on total OH reactivity at the different heights. On the contrary, during 
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turbulent night hours (Class U and SU), the concentration of monoterpenes was lower inside the canopy and similar to that 

observed above, leading to lower and closer night-time OH reactivity at both measurements heights.  

At the end, even though BVOC emissions are more intense during the day (Simon et al., 1994), the higher 

turbulence observed compared to night-time led to a faster mixing within the canopy and thus similar levels of isoprene and 645 

monoterpenes inside and above the canopy. These day-time levels were lower than those observed at night for monoterpenes 

and higher for isoprene, the latter being light and temperature dependent.  

To conclude, these observations show that on one hand, lower turbulence inducing stable atmospheric conditions 

during the night explains the observed stratification in terms of monoterpenes levels and thus in terms of OH reactivity levels 

within the canopy, when on the other hand, higher turbulence during day-time leads to higher mixing within the canopy and 650 

a vertical homogeneity, with similar BVOCs concentrations and OH reactivity levels at both heights. Diurnal average values 

of total OH reactivity, for inside and above canopy measurements are given in Table S9.  

 

3.3 Measured and calculated ROH within and above the canopy 

Figure 6 shows that there is a good co-variation of the measured total OH reactivity by the CRM instrument with 655 

the values calculated from the PTR-MS data (22- 24 % (2σ)). However, a certain fraction of the measured total OH reactivity 

remains unexplained by the considered compounds (Table 3). Diurnal variations of OH reactivity were observed within the 

canopy, during the major part of the campaign, with maximum values recorded during most nights and averages of 19.2 ± 

12.8 s-1 and 19.3 ± 16.3 s-1 measured by the LSCE-CRM and UL-FAGE instruments, respectively. This diurnal cycle was 

also observed above canopy where the average total OH reactivity was 16.5 ± 12.3 s-1, which is higher than observations 660 

made in other temperate coniferous forests (Ramasamy et al., 2016) where the reported OH reactivity ranges from 4-13 s-1 

(campaign average). 

During the first part of the campaign (3rd – 10th of July), when the LSCE-CRM was measuring alone inside the 

canopy, total OH reactivity varied between LOD (3 s-1 at 3σ) and 76.9 s-1, while the calculated reactivity ranged between 1.4 

and 60 s-1. During the second period (13th – 15th and 17th –  18th of July), similar maxima were recorded by the LSCE- CRM 665 

(74.2 s-1) and the UL- FAGE instruments (78.9 s-1), when both were measuring at two different locations within the canopy.  

Regarding the calculated OH reactivity, it varied between 2.6 and 59.3 s-1. During this same period, the FAGE instrument 

measured alone within the canopy from the 15th to the 17th of July and recorded total OH reactivity values ranging between 

3.6 and 99.2 s-1, however the PTR-MS data were not taken into account for the period going from the 16th 15:00 to the 17th 

12:00 due to an electrical failure. Finally, during the last two days (18th- 19th of July), total OH reactivity showed a particular 670 

behavior as mentioned in section 3.2. It started to increase in the afternoon, reached a maximum at the beginning of the night 

that was suddenly broken by turbulences and showed three peaks during the night corresponding to more stable conditions 

observed for both the measured and calculated reactivity.  
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Regarding above canopy measurements, the measured OH reactivity varied between LOD and 35.7 s-1 between the 

10th and the 12th of July, whereas the calculated reactivity varied between 1.2 and 14.5 s-1. A similar trend was observed for 675 

the second period of measurements performed above the canopy (15th - 18th of July) during which higher OH reactivity was 

recorded with a maximum of 69.9 s-1
,
 which is 1.7 times higher than the calculated OH reactivity (40.8 s-1).  

 

 

3.4. Contribution of VOCs (PTR-MS) to calculated OH reactivity within and above the canopy 680 

Figure 7 shows the breakdown of trace gases to the calculated OH reactivity during day-time and night-time at the 

two heights, taking into account the whole measurement period (campaign average). We note that primary BVOCs 

(monoterpenes, isoprene) are by far the main contributors to the calculated OH reactivity, representing 92- 96 % of the 

calculated OH reactivity on average.  

Monoterpenes exhibited the most prominent contribution to the calculated OH reactivity. These species had a similar 685 

contribution within and above the canopy, but significant differences between day-time (68- 65 %) and night-time (92- 89 

%). Next to monoterpenes, isoprene had a maximum contribution during day-time and represented on average 25- 27 % of 

the calculated OH reactivity, followed by acetaldehyde (3 %) and MACR + MVK + ISOPOOH (2- 3 %) at both 

measurements heights. However, during night-time, isoprene accounted for only 4- 6 % of the OH reactivity measured 

within and above the canopy, acetaldehyde contributing for approximately 2 % and MACR + MVK + ISOPOOH around 1 690 

%.  

 

 

 

Figure 6. Variability of measured ROH (LSCE-CRM) and calculated ROH (PTR-MS) at 6 and 12 m height.  
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 695 

Thus, we can conclude that no substantial difference in the atmospheric chemical composition existed between the two 

sampling heights, even when we only consider stable nights (monoterpenes relative contribution is around 92 % inside and 

above the canopy).  
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3.5 Description and investigation of potential missing OH reactivity during the LANDEX campaign 

The missing OH reactivity was calculated as a difference between the total OH reactivity measured by LSCE-CRM, since it 

was operated over the whole campaign and at both heights, and the OH reactivity calculated from PTR-MS data. It is worth 

noting that a scatter plot of the LSCE-CRM and UL-FAGE data led to a slope of 1.28 and an intercept of 0.96 s-1 (section 720 

3.1.1), indicating higher OH reactivity values measured by the CRM instrument. Considering OH reactivity values measured 

by the CRM instrument may therefore maximize the missing OH reactivity. In the following, the analysis on the missing OH 

reactivity was performed when it was higher than both the LOD of 3 s-1 (3σ) and 35% of the measured OH reactivity 

(uncertainty on the CRM measurements, see section 2.2).   

Figure 7. The components of calculated OH reactivity within and above the canopy during day-time and night-time.  
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Figure 8 shows a) the variability of the missing OH reactivity within and above the canopy, together with ambient 725 

temperature, b) friction velocity (red), and ozone mixing ratios within (yellow) and above (blue) the canopy. The ozone 

variability is discussed below as ozone chemistry can dominate night-time chemistry of BVOCs observed at this site (σ-

pinene, β-pinene) (Fuentes et al., 2002; Kammer et al., 2018).  

The concentration of OH was 4.2×106 molecules cm-3 on average during day-time with a maximum of 4.3×107 molecules 

cm-3 and around 1.5×106 molecules cm-3 on average during night-time (data available between the 13th and the 19th, July). 730 

However, a potential artefact on OH radical’s measurements leading to a possible overestimation of OH radical’s 

concentrations, could not be ruled out. Regarding ozone, its mixing ratio showed a diurnal cycle with maximum values 

during the day (max ≈ 60 ppbv, mean ≈ 29 ppbv), that were similar within and above the canopy due to efficient mixing, and 

lower levels during nights, with an average of 18 ppbv inside canopy, while levels higher by 1 - 10 ppbv on average, above 

the canopy. Considering OH and O3 average mixing ratios, the α-pinene lifetime was estimated to be 1.2 hours and 4 hours, 735 

respectively, during the day, and 3.6 hours and 5.8 hours, respectively, during the night. At maximum OH and O3 mixing 

ratios during day-time, the α-pinene lifetime was reduced to 7.4 min and 2 hours, respectively. Thus, OH chemistry remained 

dominant compared to ozonolysis of main emitted compounds on this site (i.e. α-pinene). An article on the reactivity of 

monoterpenes with OH, ozone and nitrate for this campaign is in preparation (Mermet et al., in preparation). 

 740 
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Figure 8. Missing OH reactivity inside and above the canopy together with (a) temperature, (b) friction velocity (red), ozone 

mixing ratios inside (yellow) and above (blue) the canopy, (c) relative humidity (clear blue), MACR+ MVK+ ISOPOOH (dark 

blue) and acetic acid (green) inside the canopy, (d) Nopinone (yellow) and pinonaldehyde (purple) inside the canopy and (e) 

sesquiterpenes inside (blue) and above (green) the canopy.  
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When comparing measurements of OH reactivity with calculations based on PTR-MS data (see Table 3), an average of 38 % 

(7.2 s-1) and 48 % (6.1 s-1), remained unexplained inside and above the canopy, respectively.  755 

Considering other measurements performed inside the canopy (6 m) and not included in the OH reactivity calculations, such 

as NO, NO2, ozone and butanol (leakage from SMPS), and assuming constant concentrations of CO (150 ppbv) and methane 

(2000 ppbv), their contribution can reach 3.0 s-1 on average (maximum around 7 s-1) at this level. This said, the mean missing 

OH reactivity was finally around 4.2 s-1 (22 %) inside canopy for the whole measurement period.  

Regarding other measurements performed above canopy, online chromatographic instruments (Table 3) provided 760 

information on other oxygenated VOCs (7 compounds) and non-methane hydrocarbons (36 compounds). These compounds 

could explain 0.48 s-1 on average (0.43 s-1 from NMHC and 0.05 s-1 from OVOC measured by GC) of the missing OH 

reactivity between the 10th and the 12th of July. However, after the 14th of July, the GC measuring OVOC stopped working, 

but NMHCs alone could account for 0.5 s -1 of missing OH reactivity on average. While O3 was measured at 12 m, no NOx 

measurement were performed at this height, however, their contribution at the 6 m height was 0.3 s-1 on average, suggesting 765 

only a small contribution to the missing OH reactivity. Methane and CO were also considered, assuming the same mixing 

ratios as inside. Finally, looking at butanol measured by the PTR-MS at the 12 m height, a maximum mean contribution of 

0.3 s-1 was assessed for the nights of 10th-11th of July. Hence, considering OVOCs, NMHC, O3, CO, CH4 and butanol, the 

mean missing OH reactivity above the canopy level was around 4.3 s-1 (33 %). However, this missing fraction exhibited a 

diurnal variability at both heights, that is worth discussing in details. A summary of mean missing OH reactivity values at 770 

both heights, is presented in Table 4. 

 

Table 4. Summary of the measured OH reactivity and the missing OH reactivity inside and above the canopy, during the day and the 

night, taking into account only PTR-MS data or all the data available at each height for OH reactivity calculations. These averages are 

calculated for the periods when CRM, PTR-MS and others instruments data are available. 775 

 

Mean Measured ROH  

(s-1) 

Mean Missing ROH considering  

PTRQi-ToFMS data (s-1) 

Mean Missing ROH considering  

PTRQi-ToFMS data +  

other measurements (s-1) 

Inside 19.1 7.2 4.2 

Day 16.8 7.3 4.7 

Night 22.0 7.1 3.6 

Stable cool nights 20.5 5.5 < LOD 

Stable warm nights 41.6 10.7 6.7 

Unstable cool nights 7.9 4.5 < LOD 

Unstable warm nights 13.5 6.8 3.6 

Above 12.8 6.1 4.3 

Day 10.7 5.1 3.3 

Night 15.5 7.5 5.6 

Stable cool nights 14.8 7.5 5.7 

Stable warm nights ___ ___ ___ 

Unstable cool nights ___ ___ ___ 

Unstable warm nights 20.5 7.1 5.2 
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- Day-time missing OH reactivity 

Analyzing the behavior of missing OH reactivity during day-time for inside canopy measurements, Fig. 9 shows that it 

increases exponentially with temperature. Indeed, the average missing OH reactivity was around 7.5 s-1 for “Wd” days, after 

taking into account other available measurements at this height (NO, NO2, O3, butanol and estimated CO and CH4), whereas 780 

no missing reactivity was seen for cooler days (< LOD). As reported in Di Carlo et al. (2004), the missing OH reactivity was 

fitted with an equation usually used to describe temperature-dependent emissions of monoterpenes (Guenther et al., 1993): 

E(T) = E (293) exp(β(T-293)), where E(T) and E(293) represent the emission rate at a given temperature T and at 293K, 

respectively. In this equation, E(T) was substituted to MROH(T) and E (293) by MROH (293) with MROH representing the 

missing OH reactivity (Hansen et al., 2014). The value of β determined from the fit of the data for the 6 m height (day-time), 785 

is around 0.17, higher than the values attributed to monoterpenes emissions from vegetation (0.057 to 0.144 K -1). Higher β-

values were also obtained by Mao et al. (2012), Hansen et al. (2014) and Kaiser et al. (2016), where they suggested that day-

time missing reactivity is mostly linked to secondary oxidation products. However, the use of β factor must be made with 

caution, as the missing OH reactivity can be influenced by processes that do not affect BVOCs emissions (i.e. the boundary 

layer height and the vertical mixing). Furthermore, we cannot exclude the possibility of light and temperature dependent 790 

emissions. Indeed, Kaiser et al. (2016) also investigated the temperature dependency of day-time missing OH reactivity in an 

isoprene-dominated forest, reporting that part of the missing emissions could be characterized by a light and temperature 

dependence, knowing that temperature increases with increasing solar radiation. Regarding above canopy, most 

measurements were performed during cool days. Thus, it was not possible to analyze the temperature dependence of above 

canopy day-time missing OH reactivity.  795 
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Figure 9. Day-time missing OH reactivity binned by ambient 

temperature for the 6 m height for temperatures ranging from 292 and 

308 K. Error bars represent the standard deviation on missing OH 

reactivity calculated for each temperature bin. 
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 810 

Another way to investigate the origin of missing OH reactivity is by examining its covariability with compounds such as 

acetic acid as well as MACR+MVK+ISOPOOH, knowing that MACR and MVK are oxidation products of isoprene. First, 

for higher day-time missing OH reactivity observed for Wd days (within and above the canopy), Fig. 8(c) shows that the 

missing reactivity increases with acetic acid (mixing ratio up to 5 ppbv). Acetic acid can be directly emitted by the trees and 

the soil (Kesselmeier and Staudt, 1999) and could also be an oxidation product of BVOCs, including isoprene (Paulot et al., 815 

2011). This compound showed a diurnal cycle similar to that of isoprene (Fig. 5(c)), and was not used to calculate the OH 

reactivity. Despite its relatively low reactivity with OH, this compound showed a maximum calculated OH reactivity during 

Wd days that was, on average (0.07 s-1), 4 times higher than that of Cd days. Thus it could explain, with other compounds 

exhibiting a similar temporal behavior, part of the missing OH reactivity seen during warm days. MACR+ MVK + 

ISOPOOH showed a general trend with higher values during the day and lower values during the night, suggesting that 820 

oxidation products of isoprene could be responsible of the day-time missing OH reactivity. These levels were generally 

higher for Wd days than for Cd reflecting a higher yield of secondary products and a more intense photochemistry during 

warm days. 

 

- Night-time missing OH reactivity 825 

On average the highest night-time missing OH reactivity inside canopy (13.1 s-1) was observed on the stable/ warm 

night of the 4th- 5th, July. Whereas, during stable/cool and unstable/warm nights, no significant missing OH reactivity was 

found (< LOD). Interestingly, the stable/warm night of the 6th-7th, July, did not show a significant missing OH reactivity, 

meaning that the missing fraction inside canopy during night, was not only influenced by meteorological parameters, even if, 

as shown before, BVOCs concentrations and total OH reactivity were. So what was the difference between these two nights 830 

with similar meteorological conditions?  

Checking monoterpenes’ oxidation products variabilities (nopinone and pinonaldehyde), both nights exhibited higher 

concentration levels of these species, however their contribution to OH reactivity remained relatively low, and did not 

exceed 1 s-1, on average for both nights, keeping in mind that this is a lower limit of their contribution (since the reported 

measurements do not account for potential fragmentation in the PTR-MS). Thus, only a small fraction of the missing fraction 835 

can be explained by these species. Interestingly, isoprene, acetic acid and MVK+ MACR+ISOPOOH exhibited higher 

concentration levels during the night of the 4th- 5th, July, which was not the case for the 6th-7th, July night. Indeed, these 

species marked relatively high nocturnal/ inside canopy levels. When looking at air masses backward trajectories (Fig. 10), 

the 4th-5th night was characterized by an air mass originally coming from the ocean, which spent at least 48 hours above the 

continent before reaching the site. This could have led to the enrichment of the air mass with species emitted by the widely 840 

spread Landes forests and their oxidation products. Thus, the significant missing OH reactivity observed during the 

mentioned night is likely related to unconsidered compounds of biogenic origin characterized by a similar behavior to that of 
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isoprene, acetic acid and MVK+MACR+ISOPOOH, which accumulated in the stable nocturnal boundary layer. In contrast, 

air masses spent approximately 12-18 hours above the continent during the 6th-7th of July, with more time above the ocean. 

Marine air masses are generally known to be clean, with relatively low levels of reactive species. Even though, the night of 845 

the 5th-6th, July shows similar air mass backward trajectories to the night of the 4th-5th, the higher turbulence during this night 

prevents the accumulation of reactive species (including long-lived oxidation products) due to a higher boundary layer 

height, lowering the reactivity and the missing OH reactivity (Fig. 10).   
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Regarding above canopy measurements (10th- 12th and 15th- 18th, July), the night-time average missing OH reactivity was 5.6 

s-1 (all the nights were characterized by stable/ cool atmospheric conditions). Monoterpenes oxidation products had similar 870 

concentration levels above and inside canopy. Their maximum contribution was around 0.4 s-1 on average for the SU/W 

night of the 17th-18th, July. Therefore, these monoterpenes night-time oxidation products are only responsible for a small 

fraction of the missing OH reactivity observed above canopy during the night. Sesquiterpenes (SQT) exhibited a similar 

temporal trend than monoterpenes, showing higher mixing ratios during night-time. Interestingly, sesquiterpenes mixing 

ratios were higher inside the canopy compared to above and the difference was significant during stable nights. O3 mixing 875 

ratios during these nights decreased to very low levels. Plotting the ratio SQT(above)/MTs(above) with the ratio 

Figure 10. Air masses backward trajectories for the 4th-5th and the 6th- 7th, July nights. Red lines represent air 

masses arriving around mid-night UTC (around 02:00 local time), to the site. The time difference between 2 

points is 6 hours.  
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SQT(inside)/MTs(inside) shows a good linear correlation with a slope of 0.73 and an R2 of 0.6. Knowing that sesquiterpenes 

are highly reactive with ozone (Ciccioli et al., 1999), which can dominate the chemistry during dark hours, this observation 

suggests that a larger fraction of these species (≈30 %) could be consumed by ozonolysis above canopy, leading to the 

formation of unidentified secondary compounds. However, sesquiterpenes were present at relatively low concentrations 880 

(max of 0.25 ppbv and 0.11 ppbv, inside and above canopy, respectively). Assuming that all sesquiterpenes are β-

caryophyllene and considering that 30 % are transformed into first generation oxidation products through ozonolysis 

reactions, the maximum mixing ratio of these products would be around 0.07 ppbv each assuming a yield of 1. However, it 

was reported by Winterhalter et al. (2009) that oxidation products of β-caryophyllene were much less reactive (100 times) 

than their precursor. Thus, the contribution of sesquiterpenes night-time oxidation products to the missing OH reactivity is 885 

likely negligible.  

Finally, it is worth noting that Holzinger et al. (2005) reported the emission of highly reactive BVOCs in a coniferous forest, 

which is 6-30 times the emission of monoterpenes in the studied Ponderosa pine forest. This large fraction of BVOCs is 

subject to oxidation by ozone and OH leading to unidentified, non-accounted for secondary molecules. These oxidation 

products can participate to the growth of new particles. Indeed, new particle formation episodes were recently reported on 890 

this site (Kammer et al., 2018).  

To summarize, higher day-time missing OH reactivity was observed for warm days (Wd), inside and above the 

canopy, exhibiting a dependency on temperature profiles and showing that trace gases leading to the missing OH reactivity 

could be linked to an enhancement of primary species as well as secondary products formation.  Regarding night-time 

missing OH reactivity, higher levels were seen for the stable and warm night of the 4th-5th, July, showing that these 895 

conditions could have been favorable for the accumulation of long-lived species (primary and secondary species) during the 

transport of the air mass from nearby forests.  

4 Conclusion 

During summer 2017, total OH reactivity measurements were conducted as part of the LANDEX field campaign, in the 

Landes maritime pine forest (France). During this campaign, two instruments (LSCE-CRM and UL-FAGE) were deployed 900 

to measure total OH reactivity inside and above the canopy as well as at two different locations inside the canopy level. The 

comparison between both instruments, based on measurements done at the same location at the end of the campaign, showed 

a good agreement within instruments uncertainties (slope of 1.28 on a linear correlation plot). Measuring at two different 

locations demonstrated a good horizontal homogeneity inside the canopy, even during episodes of vertical stratification that 

was observed during some nights.  905 

Total OH reactivity recorded an average of 19.2 s-1 at 6 m height, 1.2 times higher than that observed above the canopy level 

at 12 m height. It varied similarly at both heights, following a diurnal cycle with two maxima, one during day-time following 



33 

 

isoprene’s profile and a higher one during night-time when monoterpenes concentrations reached their maxima. The later 

were the main emitted compounds in this forest ecosystem.  

The variability of BVOC concentrations and OH reactivity were strongly dependant on meteorological parameters. Day-time 910 

OH reactivity was linked to ambient temperatures and light, two parameters governing the emissions of temperature and/ or 

light dependent compounds (like isoprene), whereas night-time OH reactivity was influenced by night-time temperatures and 

vertical turbulence intensity. Indeed, low turbulence, high temperature and lower oxidation rates than during day-time, led to 

higher concentrations of monoterpenes and thus higher OH reactivity during stable and warm nights. In addition, higher 

differences in BVOCs levels and total OH reactivity were observed between the two studied heights particularly during 915 

stable nights. 

Furthermore, monoterpenes showed to be the main contributors to total OH reactivity during both day-time and night-time. 

These species accounted for more than 60 % of the OH reactivity during day-time, followed by isoprene (25- 27 %), 

acetaldehyde (3%) and MAC+ MVK+ ISOPOOH (2- 3 %). However, the contributions of isoprene and OVOCs were much 

lower at both levels during the night, leading to a higher contribution of monoterpenes, which was slightly more important 920 

inside the canopy level due to the stratified conditions.   

An investigation of the missing OH reactivity indicated averages of 22 % and 33 %, inside and above the canopy, 

respectively, over the whole campaign, when comparing the measured OH reactivity to the calculated one from PTR-MS and 

other available measurements. However, it showed some diurnal variability at both heights. During day-time, higher missing 

OH reactivity was observed on warmer days inside and above the canopy. Plotted against temperature, inside canopy 925 

missing OH reactivity showed a dependency on temperature. The analysis suggested that the missing OH reactivity may be 

due to unmeasured primary emitted compounds and oxidation products. In this context, OH reactivity measurements from a 

Pinus pinaster Aiton branch enclosure, could be of great interest to verify the contribution of unaccounted/unmeasured 

BVOCs emissions to OH reactivity as done by Kim et al. (2011), for red oak and white pine branch enclosures. Furthermore, 

higher levels of isoprene oxidation products on warmer days also suggest that the missing reactivity could be due to the 930 

formation of unmeasured oxidation products. Regarding the night-time period, the highest missing OH reactivity was found 

inside canopy for the 4th-5th, July night. This night was characterized by higher levels of isoprene and its oxidation products, 

compared to the night of the 6th-7th, July with similar atmospheric conditions. Air masses backward trajectories showed a 

continental origin for this night, suggesting that species, emitted by the largely spread Landes forest, could have been 

imported to the site and accumulated due to the stable nocturnal boundary layer. These species, unmeasured by the deployed 935 

analytical instruments and hence not considered in OH reactivity calculations, could explain the higher missing OH fraction 

for the 4th-5th, July night. The investigation of sesquiterpenes and monoterpenes oxidation products (nopinone and 

pinonaldehyde) measured by PTR-MS highlighted their small contribution in terms of OH reactivity. They only explained a 

small fraction of the observed missing OH reactivity inside and above canopy during night. Finally, seen the time needed 

and the data required, no modeling study was performed, however, it would be interesting to run a box model in order to get 940 

more insights into the origin of the missing OH reactivity. 
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