Supplemental Materials

Morphology, mixing state, and hygroscopicity of primary biological aerosol particles from a Chinese boreal forest

Weijun Li¹, Lei Liu¹, Qi Yuan¹, Liang Xu¹, Yanhong Zhu¹, Bingbing Wang², Hua Yu³, Xiaokun Ding⁴, Jian Zhang¹, Dao Huang¹, Dantong Liu¹, Wei Hu⁵, Daizhou Zhang⁶, Pingqing Fu⁵, Maosheng Yao⁷, Min Hu⁷, Xiaoye Zhang⁸, Zongbo Shi⁹,⁵

¹Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China

²State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.

³College of Life and Environmental Sciences, Hangzhou Normal University, 310036, Hangzhou, China

⁴Department of Chemistry, Zhejiang University, Hangzhou 310027, China

⁵Institute of Surface-Earth System Science, Tianjin University, 300072, Tianjin, China

⁶Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan

⁷State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China

⁸Key Laboratory of Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing, China

⁹School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK

*Correspondence to: Weijun Li (liweijun@zju.edu.cn)
Figure S1 Meteorological data during the sampling including Wind speed and direction, Temperature, and relative humidity (RH).

Figure S2 Particle number and relative abundance of bacteria and fungi particles in the samples collected in daytime and nighttime.