General Response: We thank the Referee#2 for your helpful comments. We have addressed all comments and provided point by point response below. The revised manuscript is presented in below Response

(1) The manuscript "Morphology, mixing state, and hygroscopicity of primary biological aerosol particles from Chinese boreal forest" from Li et al. presents a physical and chemical characterisation of aerosol particles collected at a boreal forest site in China. The authors (i) derive an identification of large taxonomic classes (i.e., bacteria and fungi) from the particle's morphology and chemical composition, (ii) analyse the relative abundance of large particle classes as a function of day and night cycles, and (iii) analyse the hygroscopic growth of the collected particles. These results were obtained from transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with energy-dispersive x-ray spectroscopy (EDS) analyses. Ultimately, the authors derive quantitative concentrations of certain bioaerosol classes and speculate on their potential roles in clouds and in precipitation formation.

Most of the paper is based on rather established concepts of bioaerosol cycling and techniques for bioaerosol analysis (i.e., SEM and TEM, hygroscopic growth studies, etc.). In my view, the really new aspects are the analysis of bioaerosol samples from this particular Chinese boreal forest site, which may allow interesting comparisons with other (boreal) forest sites worldwide as well as the quantification of bacterial and fungal spore concentrations. Thus, the aim and focus of the study is clearly a useful one.

However, I am very concerned about the overall quality of the manuscript – formally as well as scientifically. Formally, the paper is (i) not well structured, (ii) the introduction is just a loose collection of previous literature without really motivating the present work, (iii) the summary rather lists speculations than provides rigorous conclusions, and (iv) the language should be improved. Scientifically, crucial aspects of the analysis are poorly or even not at all explained. Moreover, I am sceptical if certain key results of the study are correct. My major points of criticism can be summarized as follows:

Response: We really appreciated the referee's comments. We carefully made the major revisions as the detailed comments as below. (1) We rewrote some parts indicated by red words and added one new experiment based on the referee's comments. (2) We rewrote the introduction part. (3) We rewrote conclusion part replacing the summary. (3) One native speaker was invited to publish the English writing. (4) We specifically explain the experimental procedure. (5) For the suspected part about bacteria, we added one new laboratory experiment to correct it. In the revised manuscript, we carefully draw the conclusions as two referee's and editor's comments.

(2)- The meaning and use of "bioaerosol identification" seems very problematic in this study. The authors state for example "*As a result, P derived from the particle EDS analysis coupled with the morphological features can be used to identify the PBAPs.*" First of all, it is not clear

what the authors exactly mean by "identification". In some case this seems to mean discrimination of biological and non-biological particles, whereas in other cases it seems to mean taxonomic determination.

Response: Thank you to point out this issue. Here P only can classify the biological and non-biological particles. We revised the statement here.

In abstract p28-30 "C, N, O, P, K, and Si were detected in most of the PBAPs, and P represented a major marker to discriminate the PBAPs and non-PBAPs."

(3) Moreover, a fundamental question of this work, which remains unanswered, is to what extent SEM/TEM analysis allows an identification of certain (taxonomic) groups within the total bioaerosol population and which uncertainty this involves. I don't doubt that several aerosol particles can be recognized as biological based on their morphology, surface texture and so on. Also, certain fungal spores (the characteristic ones) can be identified taxonomically based on their appearance as shows in previous studies. However, I am sceptical if any clear discrimination between bacteria and fungal spores (as stated in this study) can be obtained.

Response: Thank you to point out the problem. When we received your comments, we contacted several colleagues who study on the molecular biology, ecology, or disease. Indeed, there is one problem about bacteria classification. In textbook, the bacteria and some fungi might have very similar shape and composition. If there is no any molecular information, they should not be determined. As this reason, I also asked my colleagues to help cultivate one normal bacteria and fungi in laboratory and then we generated them into our TEM grids. Finally, we obtained their morphology and chemical compositions of *Colibacillus* and *Yeast*. Interestingly, we found that they have very similar shape and composition and different size range. The TEM observations from *Colibacillus* and *Yeast* fit our expectation. As the reason, we could have clear boundary to identify bacteria and fungi cell. In the revised manuscript, we named them as the rod-like PBAPs.

Figure 5 TEM image of the rod-like PBAPs collected in forest air and the fungi and bacteria cultivated in laboratory. (a) Morphology of a rod-like PBAP and EDS spectra of its core and main part. The red circles indicate where EDS obtained on rod-like PBAP. (b-e) Various rod-like PBAPs collected in forest air. (f) One *Yeast* particle cultivated in laboratory (e) One *colibacillus* particle cultivated in laboratory.

(4) In both classes, the morphological diversity is large. Many of the "bacteria" that the authors show (e.g., Fig. 2, 4, 5) are pretty large, which rather advocates for fungal spores. In fact, I have the impression that many fungal spores are 'sold' here as bacteria (i.e., see increase of bacteria fraction towards 10 μ m in Fig. 12).

Response: We really appreciated the referee's comments. Please see the above response. Indeed, we made mistake here. We re-analyzed the data and analyzed size distribution and aspect ratio of PBAPs. It is interesting that size distribution of the rod-like PBAPs collected in the forest air displays two typical peaks at 1.4 μ m and 3.5 μ m which likely represent bacteria and fungi.

Figure 6 Size distribution and aspect ratios of rod-like PBAPs, fungal spores, and brochosomes collected in boreal forest air.

(5) To point out some specific examples: (i) Some particles in Fig. 2a, which are classified as "fungi", resemble *Bacillariophyceae* (algae). Note here that the potential presences of algae and archaea is not mentioned/considered at all in the study. Moreover, the terms fungal spores and fungi are not discriminated carefully.

Response: Thank you for your comments. In the revised manuscript, we added definition about the terms fungal spores and fungi.

In context p342-345 "Fungal spores are microscopic biological particles that allow fungi to reproduce, serving a similar purpose to that of seeds in the plant world (Lacey and West, 2006). Spores can be released as a part of the sexual and/or asexual morph (stage) of the lifecycle of a fungus, and many species are able to produce spores from both stages (Despr és et al., 2012)."

Here the referee mentioned the *Bacillariophyceae* as the fungi. In the revised manuscript, we discussed some experts about it. We didn't further use it. TEM observations could not further give specific fungi or bacteria without any molecular support.

(6) (ii) In Fig. 2d, particles that resemble bicellular fungal spores are classified as bacteria. (iii) Also many cells in Fig. 5 resemble – in my view – fungal spores rather than bacteria. I have been in frequent contact with mycologists, who use morphological features for fungal spore taxation. Their procedures follow very careful, iterative, and conservative guidelines for taxonomic identifications/classifications. Diametrically, the approach I see in this work does not refer transparently to any guidelines at all and further appears to be quite 'spontaneous' and suspect. Since the discrimination of bacteria and fungal spores is a core piece of the entire study, I feel that the aforementioned deficits severely challenge the experimental basis of this work.

Response: After we considered the referee's comments, we contacted several professors who

worked on the microorganisms and asked more helps how to identify the bacteria and fungi. As the referee's opinion (*the discrimination of bacteria and fungal spores is a core piece of the entire study*), we must be careful to deal with the problem. Indeed, we could not find any literature to discriminate them through their morphology. To safety draw the conclusion, we did one new experiment. Finally, we found that it is difficult to identify the bacteria from the PBAPs due to the similar shape of fungi (New Figure 5). We also noticed that bacteria and fungi have different size range. However, the difference still is not enough to classify the bacteria and fungi because they have the overlapped size range. In the revised manuscript, we focused on the issue and solved the problem. During the revision, we re-analyzed the data and added new experiment.

Figure S5 Size distribution of Yeast and Colibacillus cultivated in laboratory.

(7) The experimental section is intransparent in terms of central pieces of the analysis. Examples: (i) The "identification" and quantification procedures of the taxation remain unclear. What were the exact criteria/guidelines to discriminate bacteria, fungal spores, and "other biological particles"? What are the uncertainties involved here?

Response: Thank you to point out the problem. During the revision, we further found more literature about the classification of individual PBAPs. The fungal spores and other large biological particles have been reported in many places in the global air and their morphologies have been well documented (Shi et al., 2003;Wittmaack et al., 2005;Coz et al., 2009;Shi et al., 2009;Martin et al., 2010;Huffman et al., 2012;Tamer Vestlund et al., 2014;Afanou et al., 2015;Valsan et al., 2015;Valsan et al., 2016;Priyamvada et al., 2017;Wu et al., 2019). However, there was missing on bacteria. In this study, we added new experiment (Figures 5 and 6).

(8) (ii) How exactly were the brochosoms quantified? Brochosoms tend to occur in (often

quite large) clusters. Did you count clusters or individual brochosom entities to obtain the brochosom number fraction of 24 %?

Response: That is a good question. We correct it.

The brochosomes normally occur in clusters. Some clusters dispersed on the substrate. We mentioned that the number fraction of brochosomes is not comparable with rod-like PBAPs and fungal spores.

(9) (iii) Relevant information in the context of the hygroscopic growth experiments are missing – e.g. uncertainty of RH measurement; how exactly D_0 (the diameter of the bioaerosol particle) was obtained, which is not trivial for a rod-shaped particle; etc.

Response: This is good question. We added more information how to measure particle size. In the revised manuscript, we added the Figure 2 to explain how the hygroscopic growth experiments works. For better understanding, we revised the English as below. Before the experiments, we used NaCl to calibrate our system (Figure S3).

P24-246 "The particle growth factor (GF), an important parameter used to describe the hygroscopic growth of individual particles, is defined as follows:

$$GF(RH) = \frac{D(RH)}{D_0}$$

where D(RH) and D₀ are the diameters of particles at a given RH and at 5% RH, respectively.

Figure 2 Scheme of a custom-made individual particle hygroscopic system to observe hygroscopic growth of individual particles"

Figure S3 Hygroscopic growth of NaCl generated in laboratory

(10) (iv) Do we expect a deformation of the cells upon impaction, which may hamper the morphological characterization?

Response: Because we used small impact with low air flow, these non-liquid particles mostly keep their original shape. I want to mention that some secondary sulfate or nitrate particles under the high RH are deformed due to liquid phase during the impacting on the substrate, other particles still keep original shape. We had reported the changes on the substrate in one recent paper at ACP.

Yu, H., W. Li, Y. Zhang, P. Tunved, M. Dall'Osto, X. Shen, J. Sun, X. Zhang, J. Zhang, and Z. Shi (2019), Organic coating on sulfate and soot particles during late summer in the Svalbard Archipelago, Atmos. Chem. Phys., 19(15), 10433-10446.

Li, W., J. Sun, L. Xu, Z. Shi, N. Riemer, Y. Sun, P. Fu, J. Zhang, Y. Lin, X. Wang, L. Shao, J. Chen, X. Zhang, Z. Wang, and W. Wang (2016), A conceptual framework for mixing structures in individual aerosol particles, J. Geophys. Res., 121(22), 13,784-713,798.

Here we observed the PBAPs. It is no problem to identify them from the other types of non-PBAPs. For example, the Figure 5 shows shape of the cultivated bacteria and fungi, which are not broken on the substrate during the sampling process.

(11) - The caption of Fig. 14 suggest an SEM analysis was conducted prior to the hygroscopic growth experiments. Do you expect to see an authentic/representative hygroscopic response after the harsh treatment with the electron beam and the beam damage involved? I have strong reservations here.

Response: Sorry for the writing problem. We double checked the experiments. In fact, we checked the particle characterization using the optical microscopy before we selected the sample for the hygroscopic experiment.

We firstly did the hygroscopic experiments. After that, we picked up the sample for the further SEM analysis. Therefore, the particles in the sample did not have any beam damage when we did hygroscopic growth. Here we revised the caption.

Figure 14 Hygroscopic growth of NaCl prepared in laboratory and primary biological particles collected in boreal forest air. The up arrows (i.e., RH) represent hydration.

(12) - The study does not translate the results obtained (though questionable) into any meaningful conclusions. The conclusions section is a summary of (i) established and partly trivial statements such as "*The TEM and SEM observations both showed that the morphology of PBAPs were unique and different from that of sulfate, mineral, soot, organics, and metal particles in continental air.*" or "*PBAPs from the natural source may have an important role in precipitation and cloud dynamics in the background areas.*" and (ii) grotesque overstatements such as "*In this study, we establish one full database that includes the morphology and composition of bacteria, fungi, and brochosomes, and it can be used to identify primary biological particles using single particle techniques.*" or "*Our results indicate that significant amounts of PBAPs are emitted from the Khingan Mountain area acting as the "green ocean" [...] in Northeast Asia, and they have an important impact on clouds and climate in Northeast China and in the downwind North Pacific Ocean."*. **Response: Thank the referee's comments. We specifically revised the conclusion.**

In contact D521 552 "The TEM and SEM observations both showed that the more

In context P531-552 "The TEM and SEM observations both showed that the morphology of PBAPs were unique; they differed markedly from that of the sulfate, mineral, soot, organics, and metal particles in continental air. Our results indicate that significant amounts of PBAPs are emitted from the Khingan Mountain area. In this study, we establish detailed information that includes the morphology, size, and composition of rod-like PBAPs, fungal spores, and brochosomes. C, N, O, P, K, and Si were detected in most of the PBAPs, and P represented a major marker to discriminate the PBAPs and non-PBAPs. We found that one type of PBAPs mostly appeared as similar rod-like shapes with an aspect ratio > 1.5 and the dominant sizes ranged from 1 μ m to 5 μ m. The size distribution of the rod-like PBAPs displays two typical peaks at 1.4 μ m and 3.5 μ m, which likely represent bacteria and fungal particles in the forest air. However, our study shows that there was no clear boundary between bacteria and some fungi from their size because of their size range partly overlapped.

The second most plentiful PBAPs were identified as fungal spores with ovoid, sub-globular or elongated shapes with a smooth surface and small protuberances (apiculus) with size at 400 nm - 7 μ m with a mean diameter of 4 μ m. Moreover, we found some large brochosomal clusters

containing hundreds of brochosomes which have sizes from 200-700 nm and shapes like truncated icosahedrons. We estimated that the mass concentration of PBAPs, mineral dust, and remaining particles accounted for 47%, 43%, and 10% of the $PM_{2.5-10}$ mass concentration, respectively, indicating that large boreal forests might represent a major source of PBAPs in the atmosphere. Moreover, there is a higher frequency and concentration of PBAPs at night compared with day. This difference could not be explained by wind speed or temperature, but was explicable by RH, which appears to be critical in enhancing PBAPs emissions from plants at night. The hygroscopic experiment shows that the primary bacterial and fungal particles show weak hygroscopicity."

(13) In my view, the paper is not publishable in the current form and needs a pretty fundamental major revision.

Response: We thank the referee's comments and give us one chance to improve it. Indeed, some critical comments are very helpful for us. As the comments, we further contact several professors who works on the bacterial and fungi. In this part, we did have large improvement in the revised manuscript. We believe that the revised manuscript can meet the criteria.

(14) 1. Introduction:

- In general, the introduction contains some important points. However, the structure and flow of argumentation needs improvement. The text should be more structured from general to detailed information, finally leading to the guiding research question(s) of this work. This might help to highlight the targeted knowledge gap and to emphasize the importance of the study.

- Some information and reference should be placed in more appropriate location in the text. Currently, certain statements occur redundantly. The text should be more structured in content related segments. Resulting segments should be related.

- Linking thoughts between statements/sentences is often missing. Shortening sentences will improve clarity and the flow of reading.

Response: We appreciated the referee's comments. We almost re-wrote the introduction and searched more literature. The revised introduction has been significantly improved. Please see the red words marked in the revised manuscript.

(15) - p.4/l. 53 "key elements", if this term is used, please briefly indicate in which way they are key elements in the life cycle (e.g. dispersal units).Response: We replaced the important to key word here.

(16) - p.4/l. 56 "large proportion" is too imprecise. You can give some numbers here? Response: We added the 25-45% in the sentence from Ebert et al., 2007. We revised the word in the rural and marine air. There are not direct number in the references but they did mention the significant contribution for OC etc. in the air. (17) - p.4/l. 58-59 "Research interest in biological aerosol has been growing significantly in recent decades". To demonstrate the relevance of PBAPs, I suggest to relate this statement to other statements like the fact that bioaerosols can act as CCN or IN like you show in l. 59-60. Response: The sentence was revised as below:

In context "The growing research interest in PBAPs has one of its goals to better understand how PBAPs or their cell fragments influence cloud condensation nuclei (CCN) and ice nuclei (IN) (Morris et al., 2004;Huffman et al., 2013;Ling et al., 2018)."

(18) - P.4/l.68-72 Better structure needed. Try to summarize information and try to avoid redundancy. E.g.: You already gave some information about the abundance at distinct sites (1.56-57).

Response: We deleted this part avoiding the redundancy.

(19)- P.4/l.68 "significantly contribution" – can you further specify this?Response: deleted this sentence as above.

(20) - P.5/l.73 "the sampling" What does that mean? Aerosol sampling methods? Response: deleted the word.

(21)- P.5/l.76-80 The information and mentioned studies in the two sentences again appear unrelated to the present study.

Response: Here we revised these one sentence and deleted one. As the revised sentence, we describe many studies worked on the PBAPs number, mass or compositions. Then we gave the examples what they got details in the different areas. If we deleted all of them, seemly we didn't provide any evidences about the first statement.

(22)- P.5/l.81 "chemical composition" is a bit too specific. In my opinion you rather try to identify present kinds of organisms, domains up to species (plant or animal debris, bacteria, fungi, viruses, etc.) by means of biochemical markers or nucleic acids.

Response: As the referee's comments, we revised the sentence here.

In context P79-83 "To obtain the organisms of PBAPs in the atmosphere, many studies tend to detect biochemical markers (e.g., proteins, fatty acids, sugars) and nucleic acids (i.e., DNA and RNA) to determine their origins such as plant or animal debris, bacteria, fungi, or viruses (Georgakopoulos et al., 2009;Chen and Yao, 2018;Hu et al., 2018;Ling et al., 2018)."

(23) - P.5/1.84-86 "These comprehensive and detailed studies of time- and size-resolved PBAPs and their biochemical markers do not well explain the physical properties (e.g.,

morphology, phase, hygroscopicity, and mixing state) of individual PBAPs in the atmosphere" The sentence is hard to understand. In this context, "studies of time- and size-resolved PBAPs" is not clear.

Response: We rewrote this part.

(24)- P.5/l.87-88 The sentence is nebulous. Response: Changed

(25)- P.5/l.90 What means "actual state"? Response: Changed

(26)- P.6/ 1.98-100 The information about the sodium salt in this sentence is redundant (see p.4/l. 61-63). Also, "fungal fragments sampled from Amazonia contain hygroscopic sodium salts based on an environmental scanning electron microscopy" This sentence is not smooth. Response: We rewrote this part.

(27)- P.6/I. 100-101 "However, whether fungal spores emitted by boreal forests are similar to the fungal spores in central Amazon forests, which contain sodium salts, has not been resolved" Here you should define why it might be important to find out if the fungal spores are similar. Furthermore, you should point out why you think they might be similar, or even not. Is that important or does that lead to the research question of the current paper? You should make clear why that leads to the required analysis (connection to sentence, 1.102-103 "Therefore, the morphology, elemental composition, and mixing state of individual PBAPs (nanometre to micrometre size) collected from other global forests must be analysed").

Response: I noticed that the referee raised some questions on this part. We carefully considered and re-wrote introduction. The part was deleted in the revised manuscript.

(28) 2. Method:

- If microscopic techniques are not introduced in more detail already in the introduction, it would be good to highlight the difference between the two techniques, as well as the respective advantages. For SEM you describe shortly the principle of the method (2.3). You should do that also for TEM (in 2.2) to point out the differences and the advantages. Why you are using two different methods? Also for EDS a short description would be nice.

Response: We add more and describes about the differences of TEM and SEM in the revised part.

In context p169-177 "TEM with a beam of electrons is transmitted through a specimen to form an image. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. Therefore, TEM images display the inner physical structure of individual particles and the mixing state of different components. The TEM system is equipped with an energy-dispersive X-ray spectrometer (EDS, INCA X-Max^N 80T, Oxford Instruments, UK). EDS is an analytical technique used for the elemental analysis or chemical characterization of a sample. It relies on an interaction between X-rays and a sample. EDS spectra show the peaks of different elements and the contribution of each element in the total."

(29) Moreover, you mentioned ESEM within the abstract, but you don't mention it in the method section again.

Response: In this study, we did not use ESEM.

(30)- It is not easy to understand the functional principle of the IPH system. An illustration of the setup might be helpful. Moreover, your experimental steps are not described clearly. The experimental procedure is described incompletely. More information is needed - e.g.: In which steps did your increase or decrease the RH? Which time was needed?

- Moreover, it would be interesting to learn more about the functional principle of the environmental chamber, too. I am wondering if you did some calibrations for the RH measurements?

Response: We add an illustration of the setup.

Sure, we did calibrations before we used it through standard NaCl. Please see the figure S3

Figure 2 Scheme of a custom-made individual particle hygroscopic system in the laboratory to observe hygroscopic growth of individual particles"

Figure S3 Hygroscopic growth of NaCl generated in laboratory

(31) - Finally, in the method section the analysis of the quartz-fibre filters is totally missing. Response: We only used the mass concentration of $PM_{2.5}$ here. We did not use any chemical composition although we analyzed them using IC and OC/EC. That's reason that we did not provide any analysis.

We add one sentence to show it in context p161 "This gravimetric procedure provides the mass concentration of PM_{2.5} and PM₁₀."

(32) - P.7/l. 123-125 "Because boreal forests play a key role in biological aerosol emissions during summer, we collected aerosol samples in August.". What means "key role" here? The sentence states not clear enough why you chose August for sampling time. What did you expect to observe at this specific time period in contrast to other months?

Response: We revised the sentence here.

In context p129-131 "Boreal forests have the highest emissions of biological aerosols during summer. Because there is less rain in late Auguest, we selected 14-21 August, 2016 to collect the bioaerosol samples."

Some studies showed PBAPs concentration in monthly. They found that PBAPs had one highest concentration of PBAPs in boreal forest (e.g., Manninen et al., 2014).

(33)- P.7/I.126-130 The first sentence is definitely too long. You can split the information for a better understanding. You are using two different types of collection substrate. What is the reason? "DKL-2 sample" Can you describe the sampler in more detail? Is it an abbreviation? The sampling times are listed in a confusing way (21:00 vs. 2:00 a.m.)! "every day" – What is the exact sampling period? How many days did you continue the sampling (dates)? Did you use both, copper grids and silicon waver, during each sample event? The size range of collected particles is missing.

Response: We carefully revised the part and provide details.

In context p132-141 "Individual particle samples were collected both on copper (Cu) TEM grids coated with carbon film (carbon type-B, 300-mesh copper; Tianld Co., China) and on silicon membranes (thickness: $500\pm10 \mu m$, size: $3\times3 mm$; LIJINGKEJI, China) by a single-stage cascade impactor called the DKL-2 sampler (Genstar Electronic Technology, China). The collection efficiency of the impactor is 50% for particles with an aerodynamic diameter of 0.1 μm when we assume an aerosol particle density of 2 g cm⁻³. We collected individual particles four times each day at 9:00, 15:00, 21:00, and 02:00 local time. At each sampling event, we first collected TEM grids and then changed to silicon wafers in the sampler. The sampling duration at each time varied from 10 min to 25 min depending on the particle distribution on the substrate. The substrates of the carbon film and silicon wafer both have smooth surfaces with no contamination before we use them to collect aerosol particles."

(34)- P.7/l. 132 "microscopy" Please mention the type of microscope. Response: We added the information

(35)- P.7/l. 133 "suitable" You should define what suitable means.

Response: We added more information.

In context p144-149 "The distribution of aerosol particles on TEM grids was not uniform, with coarser particles occurring near the center and finer particles on the periphery. The quick check by the optical microscopy enabled us to tell whether individual particles were well distributed and whether there was any overlap on the substrate. Whenever the distribution was not even enough or when substantial overlap occurred, we had to discard it and re-collect individual particle samples through adjusting the sampling duration."

(36) - P.7/l. 134 "guarantee" Here the information, how the procedure can guarantee the separation of the particles, is necessarily to be mentioned in the text.Response: We revised the part. Please see our response in 35

(37) - P.7/l. 137-138 Syntax.

Response: Revised

In context p151-153 "The Cu grids and silicon wafers were placed in a dry, clean, and airtight container with 25 °C and 20 \pm 3% RH which minimizes exposure to ambient air and preserves them for subsequent analysis. The detailed sampling and storage procedures are summarized in Figure S1."

(38)- P.8/l. 141-142 Is the placement the same for the first sampling set (DKL-2 sampler,

described on p.7) too? If yes, you should make this clearer or add the placement of DKL-2 sampler.

Response: Revised the part.

(39)- P.8/l. 160 "Particles in 3-5 grids of each sample were analysed...". It should become clearer how many samples were analysed. How many particles were roughly analyzed on every grid? This information is important to show if and in which way the results are representative (as you point out in p.9/l. 161).

Response: We added more information.

In context "After a labor-intensive operation, we analyzed 150-250 individual particles with diameters of 100 nm-10 μ m in each sample. Finally, we successfully analyzed 20 TEM grids in the study."

(40) - P.9/1.161-162 "TEM can determine..." here you speak only about TEM. Actually, it is EDS by means you can determine the elemental composition.Response: We revised them in the whole context.

3. Results and Discussion

(41) - P.10/1.190 Which technique was used here? TEM or SEM?Response: Here we mean TEM. We revised it.

(43)- P.10/1.200 "number fractions of size resolved aerosol particles" How was this measured/determined? Please outline in experimental part.

Reponse: We add more information as below

In context "Once we clearly obtained electron images of different particles, we could then measure particle size and shape factors. In this study, the area, perimeter, shape factor, and equivalent circle diameter (ECD) of individual particles in TEM images are manually or automatically obtained through an image analysis software (RADUS, EMSIS GmbH, Germany). Based on these measurements, we can classify particle types and determine the diameter and shape factor of individual particles among different particle types. Moreover, we statistically analyze the number fractions in different size bins.

"

(44) - P.12/1.226 "a majority" How representative is Figure 2 a and b for the whole sample set?

Response: As the referee#1's comments, we add aspect ratio here which can indicate particle shape change. Here Figure 3 only shows the example.

Figure 6 Size distribution and aspect ratios of rod-like PBAPs, fungal spores, and brochosomes collected in boreal forest air.

(45) - P.13/l.255 "resemble parts of insects" Here is a reference missing? It would be good to describe the features you interpret here.

Response: Thank you to point out it. For the safety, we delete the speculation here.

(46)- P.13/1.257 You should describe in which way the SEM provides "better and more detailed information".

Response: We reworded the part.

(47)- P13/l.260 "Bacterial particles range from ... ". Can this be substantiated with literature? Response: We reworded the part.

(48)- P.13/l. 264 "This is because certain hygrophobic secretions of insects (e.g., leafhoppers) are composed of brochosomal particles, and these secretions function in keeping the insect cuticle dry". An explanation/definition of brochosoms should be given earlier in the text (intro or experimental part).

Response: We tried to revise the sentence. It is difficult to put the sentence in the introduction and experimental part. After we carefully read the part, the information is not necessary for our study. Therefore, we might delete it.

(49)- P.14/1.271-277 Calculations need further clarification.Response: We added the equation in the context.

P417-427 "Assuming a density of ~1 g cm⁻³ for PBAPs (Elbert et al., 2007), 2 g cm⁻³ for mineral dust particles, and 1.4 g cm⁻³ for the remaining particles (e.g., S-OM, OM, and metal) (Rissler et al., 2006), mass concentrations of the three different types of particles with different size bins can be estimated based on the equation:

 $M_i = \frac{\Pi}{6} D_i^{3} \rho_i N_i$

i: particle type (PBAPs, mineral dust, and other remaining particle)
D: particle geometrical diameter in a size bin
N: particle number in a size bin
M: total mass of the analyzed particles in a size bin
ρ: particle density (g cm⁻³)"

(51)- P.14/l.286 Please explain what you mean with "differential removal".

Response: Here the physical coagulation is too complex. For the large difference, we want to say the emission factor controls the variation. Therefore, it is not necessary to use the word here.

(52)- p.16/l. 328-329 "was performed and it showed that bacterial and fungal spores are dominant" This should be clarified in the method section.

Response: Sure, we clarified it in the method section. Please see section 2.4

(53) - P.16/l. 334 "weak". Please put weak in a context of literature data. If different GFs are compared, the RH of the corresponding the GF should be mentioned for meaningful comparison.

Figure 14 Hygroscopic growth of NaCl prepared in laboratory and primary biological particles collected in boreal forest air. The up arrows (i.e., RH) represent hydration.

(54)- P.17/l.342-344 "We integrated the morphological, chemical composition and the low growth factor data of individual PBAPs and further concluded that certain hydrophilic organic species might enhance the PBAP size at higher RH". Meaning of sentence nebulous.

Response: Thanks, the meaning is not clear here. We deleted this sentence here. We found that the sentence is redundancy.

4. Atmospheric implications and conclusion

(55)- In this section, some aspects are explained too detailed and are therefore redundant at this point. Also here it is important to highlight the main message of the results shortly before

you give your conclusion.

Response: As the referee's comments, we carefully revise the section. We deleted the atmospheric implication and only used the conclusion.

(56)- P-17/l. 352-353 "one full database ...". This appears to be overstated.

Response: We deleted the word here.

P535-535 "In this study, we establish detailed information that includes the morphology, size, and composition of rod-like PBAPs, fungal spores, and brochosomes....."

(57)- p.18/l. 360-361 "The growth factor of the bacterial and fungal spores is \sim 1.09 at 94%, suggesting that some hydrophilic organic species might enhance the size of PBAPs at higher RH". Need clarification.

Response: We deleted the sentence which could not affect our conclusion.

(58)- P.18/1. 362-366 This statement lacks context here and seems disconnected from the conclusions.

Response: We deleted these sentences.

(59)- P.18/1.367-368 "green ocean" This term seems pretty inappropriate for the comparatively small boreal forest area.

Response: We deleted it. Here I want to say "the Khingan Mountain area" is the largest boreal forest area in China.

(60)- P18/l. 368.369 "they may have an important impact on clouds and climate in Northeast China and in the downwind North Pacific Ocean". This sentence may be true, but seems pure speculation here as it is not related to the results/conclusions of this work. Response: We deleted the sentence here.

(61)- P.18/1.369-372 This is another long and nebulous sentence that appears quite speculative.Why speculating about "submicron" particles here?Response: We deleted the sentence here.

Figures:

Figure 1: More precise information may help here to get a feeling for the size of the Khingan area.

Response: Thanks. We added the size and air mass back trajectories.

Figure 1 Location of the sampling site and 6-h air mass back trajectories arriving at each sampling time from 14-21 August, 2016 in a boreal forest of the Lesser Khingan Mountain in Northeast China. The map source is Google Earth.

Figure 4: Where exactly were the EDS spectra obtained?

Response: We made circle to indicate where EDS were obtained on particles.

Figure 5 TEM image of the rod-like PBAPs collected in forest air and the fungi and bacteria cultivated in laboratory. (a) Morphology of a rod-like PBAP and EDS spectra of its core and main part. The red circles indicate where EDS impacted the rod-like PBAP. (b-e) Various rod-like PBAPs collected in forest air. (f) One *Yeast* particle cultivated in laboratory (e) One *colibacillus* particle cultivated in laboratory.

Figure 5: The green framing seems rather confusing/distracting than helpful.

Response: We deleted the green framing. Please see above Figure 5

Figure 6: Where exactly was the EDS spectrum obtained?

Response: We made circle to indicate where EDS were obtained on particles.

Figure 6

Figure 7: Colouring micrographs in this way without any obvious reason seems to violate the widely accepted practise among microscopists to keep the images are raw as possible.

Figure 7

Figure 8: Where exactly was the EDS spectrum obtained?

Figure 9: See comment on Fig. 7.

Figure 12: What exactly do we learn from the ratio of PM10 and PM2.5? Reponse: We deleted the Figure. It is not useful.

1	Overview of primary biological aerosol particles from a Chinese
2	boreal forest: insight into morphology, size, and mixing state at
3	microscopic scale
4	Weijun Li ¹ , Lei Liu ¹ , Qi Yuan ¹ , Liang Xu ¹ , Yanhong Zhu ¹ , Bingbing Wang ² , Hua Yu ³ , Xiaokun
5	Ding ⁴ , Jian Zhang ¹ , Dao Huang ¹ , Dantong Liu ¹ , Wei Hu ⁵ , Daizhou Zhang ⁶ , Pingqing Fu ⁵ , Maosheng
6	Yao ⁷ , Min Hu ⁷ , Xiaoye Zhang ⁸ , Zongbo Shi ^{9,5}
7	¹ Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou
8	310027, China
9	² State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences,
10	Xiamen University, Xiamen 361102, China.
11	³ College of Life and Environmental Sciences, Hangzhou Normal University, 310036, Hangzhou, China
12	⁴ Department of Chemistry, Zhejiang University, Hangzhou 310027, China
13	⁵ Institute of Surface-Earth System Science, Tianjin University, 300072, Tianjin, China
14	⁶ Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto,
15	Kumamoto 862-8502, Japan
16	⁷ State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of
17	Environmental Sciences and Engineering, Peking University, Beijing 100871, China
18	⁸ Key Laboratory of Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing,
19	China
20	⁹ School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham
21	B15 2TT, UK
22	*Correspondence to: Weijun Li (liweijun@zju.edu.cn)

23 Abstract:

24 Biological aerosols play an important role in atmospheric chemistry, clouds, climate, and public 25 health. Here, we studied the morphology and composition of primary biological aerosol particles 26 (PBAPs) collected in the Lesser Khingan Mountain boreal forest of China in summertime using 27 transmission electron microscopy (TEM) and scanning electron microscopy (SEM). C, N, O, P, K, 28 and Si were detected in most of the PBAPs, and P represented a major marker to discriminate the 29 PBAPs and non-PBAPs. Of all detected particles > 100 nm in diameter, 13% by number were 30 identified as PBAPs. We found that one type of PBAPs mostly appeared as similar rod-like shapes 31 with an aspect ratio > 1.5 and the dominant sizes ranged from 1 μ m to 5 μ m. The size distribution 32 of the rod-like PBAPs displays two typical peaks at 1.4 µm and 3.5 µm, which likely are bacteria 33 and fungal particles in the forest air. The second most PBAPs were identified as fungal spores with 34 ovoid, sub-globular or elongated shapes with a smooth surface and small protuberances with their 35 dominant size range of 2 - 5 µm. Moreover, we found some large brochosomal clusters containing hundreds of brochosomes with a size range of 200-700 nm and a shape like a truncated icosahedron. 36 The number size distribution of PBAPs coupled with PM_{2.5} and PM₁₀ concentrations were used to 37 38 estimate the total mass concentration of PBAPs, which is approximately 1.9 µg m⁻³ and accounts 39 for 47% of the in situ $PM_{2.5-10}$ mass. Moreover, there is a higher frequency and concentration of 40 PBAPs at night compared with day, suggesting that the relative humidity dramatically enhances the 41 PBAPs emissions in the boreal forest. Our study also showed that the fresh PBAPs displayed weak 42 hygroscopicity with a growth factor of ~1.09 at RH=94%. TEM revealed that about 20% of the rod-43 like PBAPs were internally mixed with metal, mineral dust, and inorganic salts in the boreal forest 44 air. This work for the first time provides the overview of individual PBAPs from nanoscale to 45 microscale in Chinese boreal forest air.

47		
48	Key	r points
49		
50	•	Based on morphology, composition, and size of individual PBAPs, rod-like PBAPs (e.g.,
51		bacteria and fungi), fungal spores, and brochosomes were identified.
52	•	PBAPs emissions tend to occur with high humidity at night rather than during the day.
53	•	Hygroscopic experiments show that most of the PBAPs displayed weak hygroscopicity, and
54		their growth factor was ~1.09 at RH=94%.
55		

56 **1. Introduction**

57	Primary biological aerosol particles (PBAPs) (e.g., bacteria, spores, fungi, viruses, algae, and
58	pollen) are ubiquitous in the Earth's atmosphere and important elements in the life cycle of many
59	organisms and ecosystems (Poschl, 2005;Tunved et al., 2006;Smith et al., 2018). PBAPs are
60	airborne biological materials that are transported from the biosphere to the atmosphere (Huffman et
61	al., 2010), and they can account for a large proportion (25-45%) of the aerosol particle mass in
62	pristine forest air and certain amounts in some rural and marine air (Elbert et al., 2007;Bauer et al.,
63	2008;Hu et al., 2017;May et al., 2018). The growing research interest in PBAPs has one of its goals
64	to better understand how PBAPs or their cell fragments influence cloud condensation nuclei (CCN)
65	and ice nuclei (IN) (Morris et al., 2004;Huffman et al., 2013;Ling et al., 2018). Furthermore, field
66	campaigns have found that abundant biological aerosols occur in cloud ice-crystals, fog/cloud, rain,
67	and snowfall (Amato et al., 2005; Möhler et al., 2007; Christner et al., 2008; Pratt et al., 2009; Prenni
68	et al., 2009;Tobo et al., 2013;Morris et al., 2014;Wilson et al., 2015;Twohy et al., 2016;Hu et al.,
69	2018). These studies addressed the hypothesis that PBAPs indeed influence the hydrological cycle
70	and climate by initiating the formation of clouds and precipitation as CCN and IN or by their
71	bioprecipitation feedbacks.

Previous studies have investigated particle number concentration, size, and composition of primary biological aerosols using online measurement techniques and advanced molecular biological analyses (Wittmaack et al., 2005;Elbert et al., 2007;Fröhlich-Nowoisky et al., 2009;Huffman et al., 2010;Despr és et al., 2012;Crawford et al., 2015;Hu et al., 2017;Therkorn et al., 2017;Zhang et al., 2017;Chen and Yao, 2018). For example, the contribution of fungal spores to total organic carbon was estimated to be approximately 10% in clean and polluted periods in Beijing

78	using an online wideband integrated bioaerosol sensor (WIBS) (Yue et al., 2017); To obtain the
79	organisms of PBAPs in the atmosphere, many studies tend to detect biochemical markers (e.g.,
80	proteins, fatty acids, sugars) and nucleic acids (i.e., DNA and RNA) to determine their origins such
81	as plant or animal debris, bacteria, fungi, or viruses (Georgakopoulos et al., 2009;Chen and Yao,
82	2018;Hu et al., 2018;Ling et al., 2018). Although these previous studies provided comprehensive
83	species or detailed molecular compositions of PBAPs, they still could not reflect the physical
84	properties of individual PBAPs in the atmosphere, such as morphology, size, phase, hygroscopicity,
85	and mixing state. Besides particle composition, the previous studies have proved that the
86	morphology, size, and mixing state of individual particles more or less influence their CCN and IN
87	activities and optical properties (Spracklen et al., 2008;Fröhlich-Nowoisky et al., 2009;Wilson et al.,
88	2015;Li et al., 2016;Ault and Axson, 2017;Riemer et al., 2019). Therefore, it is critical to
89	characterize detailed information of different types of individual PBAPs from their natural sources.
90	In the past decades, several studies have used scanning electron microscopy (SEM) to
91	characterize the morphology and size of individual PBAPs (Nikkels et al., 1996;Wittmaack et al.,
92	2005;Coz et al., 2010;Tamer Vestlund et al., 2014;Valsan et al., 2015;China et al., 2018). They
93	identified fungal spores, brochosome, pollen, and plant or insect debris larger than 2 μ m in the
94	atmosphere. Although the SEM observations adequately characterized the coarse fungal spores,
95	pollen, and plant or insect debris particles, comparable results have not been obtained for fine
96	bacteria and fungal particles, which together account for a large number of suspended particles in
97	ambient air detected by online instruments (Tong and Lighthart, 2000;Després et al., 2012;Afanou
98	et al., 2014; Valsan et al., 2016; Priyamvada et al., 2017; Hu et al., 2018). The reason for this shortfall
99	is likely that SEM could not clearly observe carbonaceous bioaerosols smaller than 1 µm (Li et al.,

100	2016; Ault and Axson, 2017). Posfai et al. (2003) and Patterson et al. (2016) used transmission
101	electron microscopy (TEM) to detect some fine bacteria in marine air. However, there is no study
102	to characterize the morphology, size, and mixing state of individual PBAPs from nanoscale to
103	microscale. For example, many studies directly used SEM images showing the coarse PBAPs (e.g.,
104	fungal spores) in support of their conclusions, but missed large numbers of fine PBAPs (e.g.,
105	bacteria) (Shi et al., 2003;Wittmaack et al., 2005;Coz et al., 2009;Shi et al., 2009;Martin et al.,
106	2010;Huffman et al., 2012;Tamer Vestlund et al., 2014;Afanou et al., 2015;Valsan et al.,
107	2015; Valsan et al., 2016; Priyamvada et al., 2017; Wu et al., 2019). The result might discourage
108	people considering fine bacteria and fungal particles for their atmospheric effects or for their
109	examination of data from some online instruments. Therefore, it is necessary to integrate SEM and
110	TEM to characterize the morphology, size, and mixing state of individual PBAPs from nanoscale to
111	microscale.

Forests are important contributors of primary biological aerosols in the atmosphere (Tunved et 112 al., 2006;Spracklen et al., 2008;Després et al., 2012;Whitehead et al., 2016). Aerosols in large 113 114 forests contain abundant biological particles from plants emitted locally and lesser amounts of 115 anthropogenic pollutants from long-range transport (Tong and Lighthart, 2000;Tunved et al., 2006; Gabey et al., 2010; Martin et al., 2010). We chose the Lesser Khingan Mountains in northeast 116 China, which is its second largest boreal forest. In this study, TEM and SEM both have been 117 employed to characterize the morphology, size, and mixing state of various PBAPs collected over 118 119 the boreal forest. Furthermore, hygroscopic experiments on the primary biological particles have 120 been conducted.

122 **2.** Methods

132

123 2.1 Sampling site and sample collection

124 The sampling site is at the Heilongjiang Liangshui National Nature Reserve (47.32°N, 128.54° 125 E; 350m above sea level) in the center of the Lesser Khingan Mountains of northeast China (Figure 1). The boreal region is characterized by large seasonal variations in temperature, and the flora is 126 127 dominated by Korean pine and spruce species. There are no anthropogenic sources of pollutants, 128 such as villages, industries and vehicles within 80 km of the sampling site. Boreal forests have the 129 highest emissions of biological aerosols during summer. Because there is less rain in late Auguest, 130 we selected 14-21 August, 2016 to collect the bioaerosol samples. 131 Individual particle samples were collected both on copper (Cu) TEM grids coated with carbon

133 500±10 μm, size: 3×3 mm; LIJINGKEJI, China) by a single-stage cascade impactor called the DKL-

film (carbon type-B, 300-mesh copper; Tianld Co., China) and on silicon membranes (thickness:

2 sampler (Genstar Electronic Technology, China). The collection efficiency of the impactor is 50% 134 for particles with an aerodynamic diameter of $0.1 \,\mu m$ when we assume an aerosol particle density 135 of 2 g cm⁻³. We collected individual particles four times each day at 9:00, 15:00, 21:00, and 02:00 136 137 local time. At each sampling event, we first collected TEM grids and then changed to silicon wafers 138 in the sampler. The sampling duration at each time varied from 10 min to 25 min depending on the 139 particle distribution on the substrate. The substrates of the carbon film and silicon wafer both have 140 smooth surfaces with no contamination before we use them to collect aerosol particles. After sample 141 collection, we immediately performed optical microscopy (BST60-100, China) at 100X 142 magnification to determine whether the aerosol distribution on the substrate was suitable for electron 143 microscopy analysis. The distribution of aerosol particles on TEM grids was not uniform, with

144	coarser particles occurring near the center and finer particles on the periphery. The quick check by
145	the optical microscopy enabled us to tell whether individual particles were well distributed and
146	whether there was any overlap on the substrate. Whenever the distribution was not even enough or
147	when substantial overlap occurred, we had to discard it and re-collect individual particle samples
148	through adjusting the sampling duration. In a word, this sampling procedure guarantees that the
149	collected particles were adequately separated and did not overlap each other on the substrate (Li et
150	al., 2016). The Cu grids and silicon wafers were placed in a dry, clean, and airtight container with
151	25 °C and 20±3% RH which minimizes exposure to ambient air and preserves them for subsequent
152	analysis. The detailed sampling and storage procedures are summarized in Figure S1.
153	The daily $PM_{2.5}$ and PM_{10} samples were collected on quartz-fiber filters with a diameter of 90
154	mm through two medium-volume samplers (TH-150, Wuhan Tianhong, China) at a constant flow
155	rate of 100 L min ⁻¹ . The samples were changed at 08:00 a.m. each day. The DKL-2 and TH-150
156	samplers and other monitoring instruments in the field experiment were installed on a building roof
157	15 m above ground. The quartz filters (Whatman, UK) were put in polyethylene boxes immediately
158	after sampling and stored at -5 °C. They were equilibrated at a constant temperature (20 ± 0.5 °C)
159	and humidity (50 \pm 2%) for over 24 h before being weighed with an electronic microbalance
160	(Sartorius-ME5, Germany). This gravimetric procedure provides the mass concentration of $PM_{2.5}$
161	and PM ₁₀ .

Figure 1 Location of the sampling site and 6-h air mass back trajectories arriving at each
sampling time from 14-21 August, 2016 in a boreal forest of the Lesser Khingan Mountain in
Northeast China. The map source is Google Earth.

166 2.2 Transmission electron microscopy analysis

167 Individual aerosol particles collected on Cu grids were analyzed via transmission electron microscopy (TEM, JEM-2100, JEOL Ltd., Japan) at a 200 kV accelerating voltage. TEM with a 168 169 beam of electrons is transmitted through a specimen to form an image. An image is formed from 170 the interaction of the electrons with the sample as the beam is transmitted through the specimen. 171 Therefore, TEM images display the inner physical structure of individual particles and the mixing state of different components. The TEM system is equipped with an energy-dispersive X-ray 172 spectrometer (EDS, INCA X-Max^N 80T, Oxford Instruments, UK). EDS is an analytical technique 173 174 used for the elemental analysis or chemical characterization of a sample. It relies on an interaction between X-rays and a sample. EDS spectra show the peaks of different elements and the 175 176 contribution of each element in the total. EDS semiquantitatively detects the elemental composition 177 of individual particles with an atomic number greater than six (Z > 6). However, Cu peaks in the 178 EDS spectra were not considered because of interference from the copper substrate of TEM grids. 179 We determined the morphology, composition, and mixing state of individual particles through the 180 combination of TEM and EDS. To reduce the damage to particles under the electron beam, the EDS 181 collection duration was limited to 15 s. Individual particles are distributed on TEM grids, with the 182 coarser particles in the center of sampling spot and with the finer particles on the periphery. 183 Therefore, to guarantee that the analyzed particles are representative, five areas are selected from 184 the sampling center to the periphery on each TEM grid. After a labor-intensive operation, we analyzed 150-250 individual particles with diameters of 100 nm-10 µm in each sample. Finally, we 185 186 successfully analyzed 20 TEM grids in the study. TEM/EDS can determine the internal mixing 187 structure of different aerosol components in fine particles and their specific composition. TEM 188 clearly shows the morphology of particles smaller than 2 µm. For some larger particles, we might 189 further carry the scanning electron microscopy (SEM) experiments to determine their morphology. 190 In this study, we did observe one fungi (Yeast) and one bacteria (colibacillus) sample through TEM, 191 which were prepared in biological laboratories (Figure S2). Microscopic observations from the 192 bacteria and fungi samples prepared in the laboratory were helpful to classify PBAPs emitted from 193 the forest.

194 Once we clearly obtained electron images of different particles, we could then measure particle 195 size and shape factors. In this study, the area, perimeter, shape factor, and equivalent circle diameter 196 (ECD) of individual particles in TEM images are manually or automatically obtained through an 197 image analysis software (RADUS, EMSIS GmbH, Germany). Based on these measurements, we 198 can classify particle types and determine the diameter and shape factor of individual particles among 199 different particle types. Moreover, we statistically analyze the number fractions in different size bins. 200 Aspect Ratio is the maximum ratio between the length and width of a bounding box for the 201 measured object. An aspect ratio of 1 (the lowest value) indicates that a particle is not elongated in 202 any direction. The aspect ratio is defined as

203
$$AR = \frac{L_{max}}{W_{max}}$$

204

205 2.3 Scanning electron microscopy analysis

SEM is performed using a type of electron microscope that can determine the particle surface by scanning it with a high-energy beam of electrons in a raster scan pattern. An SEM system (Zeiss Ultra 55) equipped with a field emission gun operating at 5–20 kV was used to obtain detailed information on the surfaces of individual aerosol particles. Moreover, the SEMx was equipped with an energy-dispersive X-ray spectrometry (EDS), which can analyze the chemical composition of

211	individual particles. The SEM/EDS can efficiently obtain the surface morphology, size, and
212	composition of coarse particles without any coating process on the substrate. Finally, we selected
213	six silicon wafers for SEM/EDS analysis (Figure S1). In this study, we used SEM/EDS to observe
214	surface morphology of the coarse particles on silicon wafers and to confirm particle types which
215	cannot be clearly shown in TEM images.
216	2.4 Hygroscopic experiments
217	A custom-made individual particle hygroscopic (IPH) system was used to observe the
218	hygroscopic properties of individual biological particles at different relative humidity (RH)
219	values (Figure 2). After the hygroscopic experiment, an SEM analysis of the sample was employed
220	to primarily check particle types. This allowed us to further understand how PBAPs particles grow
221	at different RH values ranging from 5% to 94%.
222	The scheme of the IPH system is shown in Figure 2, which consisted of four steps;
223	(1) Introducing N_2 gas with a mass flow controller into a chamber;
224	(2) Setting a TEM grid or silicon wafer on the bottom of an environmental microscopic cell
225	(Gen-RH Mcell, UK), which can change the RH and maintain the temperature at 20 $$ °C;
226	(3) Taking images at incremental RH values using an optical microscope (Olympus BX51M,
227	Japan) with a camera (Canon 650D);
228	(4) Obtaining through the RADUS software the PBAPs sizes (i.e., $D(RH)$ and D_0) in the
229	images taken from the optical microscopy manually or automatically The images can be taken
230	at different RHs during hygroscopic experiments and then are input into the RADUS software
231	for size measurement.
232	This IPH system has been tested and has successfully captured the hygroscopic growth of

individual aerosol particles collected on either a silicon wafer or TEM grid in our laboratory
(Sun et al., 2018). Before the IPH system is used for ambient samples, it must be checked
through standard NaCl particles on a silicon wafer made in the laboratory. Figure S3 shows that
the delinquence relitive humidity (DRH) of individual NaCl particles on this silicon wafer is at
76%, similar to the standard DRH at 75±1%. After the procedure, we can replace our collected
samples into the IPH system.

239 The particle growth factor (GF), an important parameter used to describe the hygroscopic

240 growth of individual particles, is defined as follows:

241
$$GF(RH) = \frac{D(RH)}{D_0}$$

where D(RH) and D_0 are the diameters of particles at a given RH and at 5% RH, respectively.

243

244 Figure 2 Scheme of a custom-made individual particle hygroscopic system to observe

245 hygroscopic growth of individual particles

246

247 2.5 Meteorological data and back trajectories

248 Meteorological data, including the relative humidity (RH), temperature, wind speed, and

wind direction, were measured and recorded every 5 min by an automated weather meter

250 (Kestrel 5500, USA). During the sampling period, the relative humidity (RH) and temperature

varied from 40-70% and 22-28 $^{\circ}$ C during the day and 90-100% and 10-15 $^{\circ}$ C during the night,

respectively. The wind speed was 1.5-7.6 m s⁻¹ during the day and 0-1 m s⁻¹ at night (Figure
S4).

To determine the regional transport of air masses, 6-h back trajectories of air masses were generated using a Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model at the forest sampling station during 14-21 August, 2016. Based on the sampling times of each day at 09:00, 15:00, 21:00, and 02:00 (midnight) local time, we performed 31 air mass back trajectories. Here we selected an altitude of 500 m as the end point of each back trajectory (Figure 1). Figure 1 shows that all the back trajectories in the past 6-h had been transported over the Lesser Khingan Mountain forest.

261 **3. Results and Discussion**

262 **3.1** Morphology and elemental composition of PBAPs

263 Among the 4,122 analyzed aerosol particles with diameters of 100 nm-10 µm analyzed by TEM/EDS, individual particles are classified into five groups based on their morphology and 264 265 composition: S-OM (mixture of sulfate (S), organics (OM)), OM, mineral dust, and PBAPs (Figure 266 3). S can be used to indicate secondary sulfates; abundant C and minor O with transparent color constitute the coating of the sulfate core and represent secondary organic matter; and irregular 267 particles containing Si, Al, Ca, minor Fe, and Ti normally indicate mineral dust particles. 268 269 Moreover, previous studies have found that elemental P in individual particles and their associated 270 unique morphologies can be used to identify PBAPs by electron microscopy (Poschl, 2005; Wittmaack et al., 2005). Thirteen percent of particles were PBAPs, and low magnification 271 272 TEM and SEM images both revealed that abundant PBAPs occurred in the samples (e.g., Figure 3a-

273 **b**).

274	The number fractions of size-resolved aerosol particles show that secondary S-OM and OM
275	particles were the dominant particle groups in the fine mode (< 1 μ m) while PBAPs and mineral
276	particles dominated the coarse mode ($\geq 1 \ \mu m$) (Figure 4a). Moreover, we noticed that the number
277	fractions of PBAPs in each sample collected at night were much higher than those collected during
278	the day. Abundant fine secondary sulfate and organic particles from photochemical formation were
279	observed during the day. Figure 4b shows that the average number fraction of PBAPs was 2.5% in
280	the samples collected during the day and as high as 30.0% at night. If we further calculated the
281	number concentration of PBAPs in Figure 4b, the PBAPs concentration significantly increased by
282	approximately seven times from daytime to nighttime, although the non-PBAPs concentration
283	decreased.
284	Based on the morphology and size of the PBAPs, we definitely identified fungal spores and
285	brochosomes, and plant or insect debris, all of which have been widely reported before (Wittmaack
286	et al., 2005;Huffman et al., 2012;Afanou et al., 2014;Valsan et al., 2015;Priyamvada et al., 2017).

287 Besides these PBAPs, we also found many special rod-like PBAPs with a dominant size range of 1

- 5 μm. Pollen was not found in our samples, which may be because large pollen emissions occur in
spring and early summer instead of late summer (August) in boreal forests (Manninen et al., 2014).

Figure 3 Low magnification SEM and TEM images of individual particles collected from the forest air.

(a) low magnification SEM image of rod-like PBAPs (red arrows) and fungal spores (green); (b) low
magnification TEM image of rod-like PBAPs particles and secondary sulfate (S-rich) particles; (c) SEM
image of a rod-like particle; (d) TEM image of a mineral dust particle (e) TEM image of an organic
matter (OM) particle; and (f) TEM image of OM coating on S-rich particles. The color in (a) was
artificially painted on the original SEM images.

Figure 4 Number fractions of different types of particles in different size bins and their total number fraction (a); and number fractions of primary biological aerosol particles (PBAPs) and non-PBAPs during the day and night (b). The number of analyzed particles is listed above each column. D and N are daytime and nightime.

302

309	bacterial particles in marine air using TEM. In this study, we found that the rod-like PBAPs (Figure
310	5a-e) have a morphology similar to bacteria reported by Posfai et al. (2003). These rod-like PBAPs
311	were stable under the electron beam during the TEM analysis, and they contained C, N, O, P, and K
312	with minor Mg, Si, S, Ca and Fe (Figure 5a). These rod-like PBAPs have a size range of 300 nm-7
313	μm with the dominant size range of 1-5 μm with two typical peaks at 1.4 μm and 3.5 μm (Figure
314	6a). Figure 6b further shows that the aspect ratio of 85% of these particles is larger than 1.5.
315	In nature, many fine fungi normally displayed similar composition and rod-like shape. To better
316	compare and confirm differences of bacteria and fungi observed in TEM, we cultured Colibacillus
317	and Yeast in the laboratory to represent bacteria and fungi. Then we sprayed the solution of
318	Colibacillus and Yeast onto TEM grids. After drying these samples, we observed the morphology
319	and size of <i>Colibacillus</i> and <i>Yeast</i> through the TEM (Figure 5f-g and Figure S5). Indeed, TEM/EDS
320	show very similar rod-like shape and composition between Colibacillus and Yeast particles on the
321	substrate, although the Yeast particles with a size range at 1-8 μ m with a mean diameter at 4.3 μ m
322	are larger than Colibacillus (300 nm-2.5 µm with mean diameter of 1.3 µm) (Figure S5). It is
323	interesting that the size distribution of the rod-like PBAPs collected in the forest air displays two
324	typical peaks at 1.4 μ m and 3.5 μ m, which probably represent bacteria and fungi. Despr és et al.
325	(2012) stated that bacteria mostly have diameters of 1-2 μ m and fungi of 1–10 μ m in the atmosphere.
326	Although we can indicate the bacteria and fungi based on their sizes, the clue could not be used to
327	precisely identify bacteria and fungi through electron microscopy due to their overlapped size range.
328	Figure 6b shows 85% of particles with larger aspect ratios (> 1.5), suggesting most of these PBAPs
329	particles have typical rod-like shape. Although their identification is tentative, we called all these
330	similar rod-like bacteria and fungal particles "rod-like PBAPs" here.

Figure 5 TEM image of the rod-like PBAPs collected in forest air and the fungi and bacteria cultivated in laboratory. (a) Morphology of a rod-like PBAP and EDS spectra of its core and main part. The red circles indicate where EDS impacted the rod-like PBAP. (b-e) Various rod-like PBAPs collected in forest air. (f) One *Yeast* particle cultivated in laboratory (e) One *colibacillus* particle cultivated in laboratory.

338 Figure 6 Size distribution and aspect ratios of rod-like PBAPs, fungal spores, and brochosomes

339 collected in boreal forest air.

341	Fungal spores are microscopic biological particles that allow fungi to reproduce, serving a
342	similar purpose to that of seeds in the plant world (Lacey and West, 2006). Spores can be released
343	as a part of the sexual and/or asexual morph (stage) of the lifecycle of a fungus, and many species
344	are able to produce spores from both stages (Despr és et al., 2012). Fungal spores have been reported
345	in many places in the global air and their morphologies have been well documented (Shi et al.,
346	2003;Wittmaack et al., 2005;Coz et al., 2009;Shi et al., 2009;Martin et al., 2010;Huffman et al.,
347	2012;Tamer Vestlund et al., 2014;Afanou et al., 2015;Valsan et al., 2015;Valsan et al.,
348	2016; Priyamvada et al., 2017; Wu et al., 2019). In this study, the fungal spores generally appeared
349	as ovoid (Figure 7a), sub-globular (Figure 7b-c) or elongated shapes with a smooth surface and
350	small protuberances (apiculus) (Figures 8a-f). Figure 7d shows that their composition mainly
351	consists of C, O and Si, followed by minor N, Mg, P, S, K and Fe. The size range of the observed
352	fungal spores varied roughly between 400 nm and 7 μ m (Figure 6a). The size distribution of fungal
353	spores further showed a dominant size range of 2 - 5 μm and one peak at 4 $\mu m.$ The number fraction
354	of fungal spores at all aspect ratios is generally lower than 0.15, suggesting that there is no typical
355	shape from either roundness or elongation for fungal spores in the boreal forest. SEM images clearly
356	display that several typical fungal spores with diameters of 3.7-6.5 µm do not have well-defined
357	shapes and that their surfaces have regular strips or regular protuberances (Figure 8). Similar fungal
358	spores have been reported in forest air (Wittmaack et al., 2005; Valsan et al., 2015). Compared with
359	the rod-like PBAPs, fungal spores normally have a rougher surface (Figures 6-7), larger size, and
360	much higher Si and lower N. Therefore, the fungal spores can easily be identified based on their
361	morphology among the PBAPs through the TEM and SEM analysis.

Figure 7 TEM/EDS showing the morphology and composition of various fungal spores. (a) a
spindle fungal spore; (b) a fungal spore with protuberances; (c) a fungal spore with protuberances;
and (d) EDS spectrum showing the composition of fungal spore. The red circle indicates where EDS
impacted the particle.

Figure 8 SEM images showing the shape, size, and surface properties of fungal spores. Size
represents the diameter of fungal spores. (a-d) Surfaces of three spindle fungal particles with a layer
of strips. (e-f) Surfaces of two fungal spores with protuberances.

368

Brochosomes are hollow spherical particles produced by leafhoppers (Cicadelliae) (Wittmaack, 2005). TEM and SEM observations both found abundant brochosomes in the samples. The low-magnification SEM images showed that there are large brochosomal clusters on the substrate, each containing tens or hundreds of single brochosomes (Figure S6). Wittmaack (2005) 377 found that most of the brochosomes normally occur as large clusters and reported that each cluster contains up to 100,000 brochosomes. In this study, TEM and SEM both produce clear images 378 showing the structure of the brochosome (Figures 9-10). Interestingly, the outline of each 379 380 brochosome approximates a truncated icosahedron and the brochosome particles likely have unique inner structures, such as C60 Buckminster fullerenes (Figures 9a-b and 10). Compared with the rod-381 382 like PBAPs, chemical composition of the brochosomal particles show extremely high Si and low P in addition to major C and O and minor N, Na, S, K and Fe (Figure 9c). A single brochosome has a 383 384 size range of 200-700 nm with a mean diameter of 350 nm. The aspect ratio of individual brochosomes is close to 1, suggesting that they are spherical (Figure 6b). Because the brochosomes 385 might be dispersed from their clusters when they impact on the substrate,, it is not meaningful to 386 compare the number fraction of brochosomes with the rod-like PBAPs and fungal spores. 387

388

389 Figure 9 TEM images of brochosomes and the composition of (a) a single brochosome and brochosome

aggregations; (b) high-resolution TEM image showing the inner structure of one brochosome; (c) EDS

391 spectrum showing the chemical composition of the brochosomes.

392

393 Figure 10 SEM images of brochosomes. (a) Single brochosome and their aggregations. Some 394 brochosomal particles are associated with primary biological species. (b) High-resolution SEM image 395 showing the surface properties of the brochosomal particles.

The TEM and SEM images both show a few elongated large particles at 8-20 µm among the biological particles. EDS shows that these particles mainly contained C, O, and Si but no detectable P in some of these biological particles as shown in Figures 11-12. We speculate that these biological particles were plant or insect debris. For example, Wittmaack et al. (2005) suggested that the spaghetti-type biological particles from Figure 11a-d are likely epicuticlar wax fragments of plants. The SEM images as shown in Figure 12 clearly displayed the surface morphology of the large particles.

405 Figure 11 TEM images showing the morphology of the primary biological particles. (a) One elongated 406 particle with thorns; (b) one circular particle; (c-d) two elongated particles; and (e) one long spindle 407 particle

409 Figure 12 SEM image showing the morphology and surface properties of three elongated biological

410 particles.

428

412 In this study, we classified PBAPs but also efficiently obtained the number fraction of rod-like PBAPs and fungal spores in coarse mode particles (> 1 μ m). The results from the electron 413 414 microscopy analysis further estimated that PBAPs, mineral dust, and the remaining particles accounted for 50%, 25%, and 25% of the coarse mode, respectively. Assuming a density of ~1 g 415 cm⁻³ for PBAPs (Elbert et al., 2007), 2 g cm⁻³ for mineral dust particles, and 1.4 g cm⁻³ for the 416 417 remaining particles (e.g., S-OM, OM, and metal) (Rissler et al., 2006), mass concentrations of the 418 three different types of particles with different size bins can be estimated based on the equation: $M_i = \frac{\Pi}{6} D_i^3 \rho_i N_i$ 419 *i*: particle type (PBAPs, mineral dust, and other remaining particle) 420 421 D: particle geometrical diameter in a size bin N: particle number in a size bin 422 M: total mass of the analyzed particles in a size bin 423 424 ρ : particle density (g cm⁻³) 425 In the equation, N_i and D_i both can be obtained through the measurement of individual particles 426 in TEM images. Finally, we estimated that the mass concentration of PBAPs, mineral dust, and 427 remaining particles accounted for 47%, 43%, and 10% of PM_{2.5-10}, respectively. The results suggest

- that PBAPs significantly contributed to mass concentration of PM_{2.5-10} in summertime in the boreal
- forest air. During the sampling period, we measured the daily mass concentrations of PM_{2.5} of ~6.0 429
- μ g m⁻³ and PM₁₀ of ~10.0 μ g m⁻³. The number size distribution of PBAPs coupled with the mass 430
- 431 concentrations of $PM_{2.5}$ and PM_{10} were used to estimate the total mass concentration of PBAPs

432 using the result from the above equation. We estimated that the PBAPs contributed ~1.9 μ g m⁻³ to 433 the concentration of PM_{2.5-10} of 4.0 μ g m⁻³.

434	Thirteen percent of all detected particles by number collected from the boreal forest air are
435	PBAPs. Such a high fraction of PBAPs has not been reported in urban and rural air in China (Shi et
436	al., 2003;Shi et al., 2009;Li et al., 2016). We noticed that the number concentration of PBAPs was
437	much higher at night than during the day (Figure 3b). A shallow nocturnal boundary layer can lead
438	to a slight increase in the number concentration of coarse particles near the ground (Graham et al.,
439	2003), but this increase cannot explain the large difference in the relative number fraction of PBAPs
440	(12 times larger at night than during the day) (Figure 3b). Alternately, the relative emission strength
441	of PBAPs from the forest between day and night likely induced the difference of the relative number
442	fractions.
443	It is well documented that meteorological conditions such as RH, wind speed, and temperature
444	can affect PBAPs emission in the forests (Harrison et al., 2005; Whitehead et al., 2016). In particular,
445	the wind speed is especially important in promoting PBAPs emission into air. During the sampling
446	period, the average wind speeds at 5 min intervals had a range from 0 to 7.5 m/s with a mean value
447	of 0.75 m/s. 89% of the measured wind speeds were lower than 2 m/s (Figure S4). Therefore, we
448	conclude that no large consistent wind speeds occurred during the sampling period. Furthermore,
449	we compared all the air mass back trajectories in the past 6-h over the Lesser Khingan Mountain
450	forest at each sampling time (Figure 1). There are similar lengths of these back trajectories,
451	suggesting that wind speeds above the forest canopy had only small changes during the sampling
452	period. Therefore, the result from the ground-based measurements of wind speeds is consistent with

453 air mass back trajectories. Here, we can exclude wind speeds during the sampling period as one

454 important factor to dominate PBAPs emissions during day and night in the boreal forest. High
455 temperatures normally increase the PBAPs emissions from the plants in the daytime (Harrison et
456 al., 2005). However, we observed contrasting results that more PBAPs occurred in nighttime instead
457 of daytime (Figure S4). Therefore, we also exclude temperatures during the sampling period as a
458 cause of the vastly different PBAPs emissions at day and night in the boreal forest.

459 Besides wind speed and temperature, RH is an important meteorological variable that 460 influences PBAPs emissions from plants (Harrison et al., 2005;Huffman et al., 2012). In this study, 461 we found large differences of RH between day and night (Figure S4). The elevated RH near 100% 462 at night (Figure S1) appears to be an important factor that increases the emissions of PBAPs. This 463 result is consistent with the conclusion of Elbert et al. (2007), who showed that PBAPs in a boreal forest are generally most abundant in samples collected at night when the RH is close to 100%. A 464 465 similar phenomenon has been observed in different forests, such as the Amazon rainforest (Huffman et al., 2012; Whitehead et al., 2016), a montane ponderosa pine forest in North American 466 (Crawford et al., 2014), a semi-arid forest in the southern Rocky Mountains of Colorado (Gosselin 467 468 et al., 2016), and a semi-rural site in southwestern Germany (Toprak and Schnaiter, 2013). These 469 studies above found that a nighttime peak of number concentrations of fluorescent biological aerosol particles is consistent with nocturnal sporulation driven by the increased RH. Moreover, Troutt and 470 471 Levetin (2001) explained that the increase in PBAP concentrations is caused by the increase in 472 basidiospores concentrations with RH, and they showed that a clear diurnal rhythm occurs and peaks 473 at 04:00-06:00 LT. Furthermore, the number ratio (4.6 at nighttime and 4.0 at daytime) of rod-like 474 PBAPs vs fungal spores and their number concentrations increased from daytime to nighttime 475 (Figure S7). These results all suggest that higher RH can promote the emissions of rod-like PBAPs

478 **3.3 Mixing state of rod-like PBAPs**

479 Our study shows that rod-like PBAPs contain bacteria and fungi in the boreal forest air. Although approximately 80% of rod-like PBAPs were externally mixed particles in the boreal forest 480 air, we still found that 20% of rod-like PBAPs were internally mixed particles. TEM observations 481 482 show that the rod-like PBAPs were frequently internally mixed with mineral, metal, organics, and 483 inorganic salts. We noticed that irregular mineral dust particles significantly changed the shape of 484 the rod-like PBAPs (Figure 13a-c). The EDS analysis shows that the internally mixed mineral particles contain certain amounts of C, O, and P in addition to Si, Al, or Ca (Figure 13a-c), 485 suggesting that many rod-like PBAPs were associated with mineral dust particles. 486

487 In this study, we found that some nanoscale metal particles were internally mixed with rod-like PBAPs. Figure 13d-f further shows that these metals were spherical and contained Mn, Si and/or 488 Fe. As in previous studies, these nanosize metal particles were emitted from industrial activities or 489 490 power plants instead of natural soil (Li et al., 2017). TEM observations show that these metallic 491 particles were mainly attached to the surface of rod-like PBAPs. Moreover, some rod-like PBAPs 492 were coated by inorganic salts (e.g., K-P in Figure 13g and S-rich in Figure 13i) and organics. The 493 shape of the rod-like PBAPs might change following the aging process during long-range transport 494 (Figure 13), although the elemental P or its associated ionic components ($H_2PO_4^-$ and PO_3^-) did not 495 change (Pratt et al., 2009). Pratt et al. (2009) detected H₂PO₄⁻ and PO₃⁻ in individual cloud ice-496 crystal residues to identify PBAPs using aerosol time-of-flight mass spectrometry. Although one study indicates that a few mineral dust or fly ash particles contain trace inorganic P, these particles 497

do not contain abundant organics and their number is low in the air (Zawadowicz et al., 2017).

499 Therefore, TEM/EDS is an efficient tool to identify fine bacteria or fungi from non-PBAPs collected

500 in the atmosphere. Moreover, it significantly reveals the mixing state of individual PBAPs, a key to

501 understand their possible CCN and IN activity over the boreal forest air in the future.

502

Figure 13 TEM showing the internally mixed rod-like PBAPs. (a-c) Internal mixture of mineral and rodlike PBAP; (d-f) Internal mixture of metal and rod-like PBAP; (g) Internal mixture of inorganic salts and
rod-like PBAP; (h) Internal mixture of organics and rod-like PBAP; and (i) Internal mixture of S-rich
salts and rod-like PBAP.

507

508 3.4 Hygroscopicity of PBAPs

509 In this study, we conducted an experiment to observe the hygroscopic growth of fresh PBAPs.

510 In the hygroscopic experiment, the PBAPs all take up water and grow by up to 88% during hydration,

and they lose water and return to the dry particle size (reduction of 83%) during dehydration (Figure

512 14). The growth factor of the PBAPs is ~1.09 at RH=94% based on the particle diameter change,
513 which is much lower than growth factor of NaCl at ~2.3 (Figure 14). These results show that the
514 fresh PBAPs have extremely weak hygroscopicity.

515 Recent studies found that fungal fragments collected in Amazon forests displayed strong 516 hygroscopic properties (China et al., 2016; China et al., 2018) and were internally mixed with certain amounts of sodium salts. However, we found weak hygroscopic growth of 1.09, whereas this value 517 was in the range of 1.05-1.3 for bacteria and fungal spores in previous studies (Reponen et al., 518 519 1996;Lee et al., 2002). However, the result is much lower than the value of 2.30 at RH=94% for 520 NaCl (Figure 2a) and 1.60 at RH 94% for ammonium sulfate (Sun et al., 2018). This comparison suggests that fresh PBAPs display extremely weak hygroscopicity and do not contain any sodium 521 522 salt in the boreal forest (Figure 2a). Overall, our results indicate that PBAPs from the substantial

biological emissions from the Khingan Mountain boreal forest are weakly hygroscopic in nature.

523

525 Figure 14 Hygroscopic growth of NaCl prepared in laboratory and primary biological particles
526 collected in boreal forest air. The up arrows (i.e., RH) represent hydration.

527

528 4. Conclusions

529 The TEM and SEM observations both showed that the morphology of PBAPs were unique;530 they differed markedly from that of the sulfate, mineral, soot, organics, and metal particles in

531	continental air. Our results indicate that significant amounts of PBAPs are emitted from the Khingan
532	Mountain area. In this study, we establish detailed information that includes the morphology, size,
533	and composition of rod-like PBAPs, fungal spores, and brochosomes. C, N, O, P, K, and Si were
534	detected in most of the PBAPs, and P represented a major marker to discriminate the PBAPs and
535	non-PBAPs. We found that one type of PBAPs mostly appeared as similar rod-like shapes with an
536	aspect ratio > 1.5 and the dominant sizes ranged from 1 μ m to 5 μ m. The size distribution of the
537	rod-like PBAPs displays two typical peaks at 1.4 μ m and 3.5 μ m, which likely represent bacteria
538	and fungal particles in the forest air. However, our study shows that there was no clear boundary
539	between bacteria and some fungi from their size because of their size range partly overlapped.
540	The second most plentiful PBAPs were identified as fungal spores with ovoid, sub-globular or
541	elongated shapes with a smooth surface and small protuberances (apiculus) with size at 400 nm - 7
542	μ m with a mean diameter of 4 μ m. Moreover, we found some large brochosomal clusters containing
543	hundreds of brochosomes which have sizes from 200-700 nm and shapes like truncated
544	icosahedrons. We estimated that the mass concentration of PBAPs, mineral dust, and remaining
545	particles accounted for 47%, 43%, and 10% of the $PM_{2.5-10}$ mass concentration, respectively,
546	indicating that large boreal forests might represent a major source of PBAPs in the atmosphere.
547	Moreover, there is a higher frequency and concentration of PBAPs at night compared with day. This
548	difference could not be explained by wind speed or temperature, but was explicable by RH, which
549	appears to be critical in enhancing PBAPs emissions from plants at night. The hygroscopic
550	experiment shows that the primary bacterial and fungal particles show weak hygroscopicity.
551	

552	Author Contributions: WL designed the study. WL, LL, QY, LX, and HY collected
553	aerosol particles. WL, QL, LL, LX, YZ, BW, XD, and JZ contributed laboratory
554	experiments and data analysis. WL prepared the manuscript with contributions from
555	all the coauthors. BW, DH, DL, WH, DZ, PF, MY, MH, XZ, and ZS commented and
556	edited the paper.
557	
558	Competing interests: The authors declare no competing financial interests
559	
560	Acknowledgments

- 561 We appreciate Peter Hyde's comments and proofreading. We appreciate Min Yue and Jiachang
- 562 Lian (Zhejiang Univ.) providing the Yeast and Colibacillus cultures. Huijun Xie (Shandong
- 563 Univ.) is thanked for discussions. This work was funded by the National Natural Science
- 564 Foundation of China (9184430003, 41622504 and 41575116), Zhejiang Provincial Natural
- 565 Science Foundation of China (LZ19D050001), and Zhejiang University Education Foundation
- 566 Global Partnership Fund. All the data are presented in the paper.

569 **References:**

- Afanou, K. A., Straumfors, A., Skogstad, A., Nilsen, T., Synnes, O., Skaar, I., Hjeljord, L., Tronsmo, A.,
 Green, B. J., and Eduard, W.: Submicronic Fungal Bioaerosols: High-Resolution Microscopic
 Characterization and Quantification, Appl. Environ. Microb., 80, 7122-7130, 10.1128/aem.01740-14,
- **573** 2014.
- 574 Afanou, K. A., Straumfors, A., Skogstad, A., Skaar, I., Hjeljord, L., Skare, Ø., Green, B. J., Tronsmo, A.,
- and Eduard, W.: Profile and Morphology of Fungal Aerosols Characterized by Field Emission Scanning
- 576 Electron Microscopy (FESEM), Aerosol Sci. and Tech., 49, 423-435, 10.1080/02786826.2015.1040486,
- **577** 2015.
- 578 Amato, P., Ménager, M., Sancelme, M., Laj, P., Mailhot, G., and Delort, A.-M.: Microbial population in
- cloud water at the Puy de Dôme: Implications for the chemistry of clouds, Atmos. Environ., 39, 41434153, https://doi.org/10.1016/j.atmosenv.2005.04.002, 2005.
- Ault, A. P., and Axson, J. L.: Atmospheric Aerosol Chemistry: Spectroscopic and Microscopic Advances,
 Anal. Chem., 89, 430-452, 10.1021/acs.analchem.6b04670, 2017.
- Bauer, H., Schueller, E., Weinke, G., Berger, A., Hitzenberger, R., Marr, I. L., and Puxbaum, H.:
 Significant contributions of fungal spores to the organic carbon and to the aerosol mass balance of the
 urban atmospheric aerosol, Atmos. Environ., 42, 5542-5549,
 https://doi.org/10.1016/j.atmosenv.2008.03.019, 2008.
- 587 Chen, H., and Yao, M.: A high-flow portable biological aerosol trap (HighBioTrap) for rapid microbial
 588 detection, J. Aerosol Sci., 117, 212-223, https://doi.org/10.1016/j.jaerosci.2017.11.012, 2018.
- 589 China, S., Wang, B., Weis, J., Rizzo, L., Brito, J., Cirino, G. G., Kovarik, L., Artaxo, P., Gilles, M. K.,
- and Laskin, A.: Rupturing of Biological Spores As a Source of Secondary Particles in Amazonia, Environ.
 Sci. Technol., 50, 12179-12186, 10.1021/acs.est.6b02896, 2016.
- 592 China, S., Burrows, S. M., Wang, B., Harder, T. H., Weis, J., Tanarhte, M., Rizzo, L. V., Brito, J., Cirino,
- G. G., Ma, P.-L., Cliff, J., Artaxo, P., Gilles, M. K., and Laskin, A.: Fungal spores as a source of sodium
 salt particles in the Amazon basin, Nat. Commun., 9, 4793, 10.1038/s41467-018-07066-4, 2018.
- 595 Christner, B. C., Cai, R., Morris, C. E., McCarter, K. S., Foreman, C. M., Skidmore, M. L., Montross, S.
- 596 N., and Sands, D. C.: Geographic, Seasonal, and Precipitation Chemistry Influence on the Abundance
- and Activity of Biological Ice Nucleators in Rain and Snow, P. Natl. Acad. Sci., 105, 18854-18859, 2008.
- 598 Coz, E., Gómez-Moreno, F. J., Pujadas, M., Casuccio, G. S., Lersch, T. L., and Art íñano, B.: Individual
- 599 particle characteristics of North African dust under different long-range transport scenarios, Atmos. 600 Environ 43, 1850, 1863, 10, 1016/i atmoscony, 2008, 12, 045, 2000
- 600 Environ., 43, 1850-1863, 10.1016/j.atmosenv.2008.12.045, 2009.
- Coz, E., Art frano, B., Clark, L. M., Hernandez, M., Robinson, A. L., Casuccio, G. S., Lersch, T. L., and
 Pandis, S. N.: Characterization of fine primary biogenic organic aerosol in an urban area in the
 northeastern United States, Atmos. Environ., 44, 3952-3962,
 https://doi.org/10.1016/j.atmosenv.2010.07.007, 2010.
- 605 Crawford, I., Robinson, N. H., Flynn, M. J., Foot, V. E., Gallagher, M. W., Huffman, J. A., Stanley, W.
- 606 R., and Kaye, P. H.: Characterisation of bioaerosol emissions from a Colorado pine forest: results from
- the BEACHON-RoMBAS experiment, Atmos. Chem. Phys., 14, 8559-8578, 10.5194/acp-14-8559-2014,
 2014.
- 609 Crawford, I., Ruske, S., Topping, D. O., and Gallagher, M. W.: Evaluation of hierarchical agglomerative
- cluster analysis methods for discrimination of primary biological aerosol, Atmos. Meas. Tech., 8, 4979-
- **611** 4991, 10.5194/amt-8-4979-2015, 2015.
- 612 Despr &, V., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A., Buryak, G., Fröhlich-Nowoisky, J.,

- Elbert, W., Andreae, M., Pöschl, U., and Jaenicke, R.: Primary biological aerosol particles in the 613 614 atmosphere: a review, Tellus B, 64, 15598, 10.3402/tellusb.v64i0.15598, 2012.
- Elbert, W., Taylor, P. E., Andreae, M. O., and Pöschl, U.: Contribution of fungi to primary biogenic 615
- 616 aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions, Atmos. 617 Chem. Phys., 7, 4569-4588, 10.5194/acp-7-4569-2007, 2007.
- 618 Fröhlich-Nowoisky, J., Pickersgill, D. A., Després, V. R., and Pöschl, U.: High diversity of fungi in air 619 particulate matter, P. Natl. Acad. Sci., 106, 12814-12819, 10.1073/pnas.0811003106, 2009.
- 620 Gabey, A. M., Gallagher, M. W., Whitehead, J., Dorsey, J. R., Kaye, P. H., and Stanley, W. R.:
- Measurements and comparison of primary biological aerosol above and below a tropical forest canopy 621
- 622 using a dual channel fluorescence spectrometer, Atmos. Chem. Phys., 10, 4453-4466, 10.5194/acp-10-623 4453-2010, 2010.
- Georgakopoulos, D. G., Despr &, V., Fröhlich-Nowoisky, J., Psenner, R., Ariya, P. A., Pósfai, M., Ahern, 624
- 625 H. E., Moffett, B. F., and Hill, T. C. J.: Microbiology and atmospheric processes: biological, physical and 626 chemical characterization of aerosol particles, Biogeosciences, 6, 721-737, 10.5194/bg-6-721-2009, 2009. 627
- Gosselin, M. I., Rathnayake, C. M., Crawford, I., Pöhlker, C., Fröhlich-Nowoisky, J., Schmer, B., 628
- 629 Després, V. R., Engling, G., Gallagher, M., Stone, E., Pöschl, U., and Huffman, J. A.: Fluorescent
- 630 bioaerosol particle, molecular tracer, and fungal spore concentrations during dry and rainy periods in a
- 631 semi-arid forest, Atmos. Chem. Phys., 16, 15165-15184, 10.5194/acp-16-15165-2016, 2016.
- 632 Graham, B., Guyon, P., Maenhaut, W., Taylor, P. E., Ebert, M., Matthias-Maser, S., Mayol-Bracero, O.
- L., Godoi, R. H. M., Artaxo, P., Meixner, F. X., Moura, M. A. L., Rocha, C. H. E. D. A., Grieken, R. V., 633
- Glovsky, M. M., Flagan, R. C., and Andreae, M. O.: Composition and diurnal variability of the natural 634 635 Amazonian aerosol, J. Geophy. Res., 108, 4765, doi:10.1029/2003JD004049, 2003.
- 636
- Harrison, R. M., Jones, A. M., Biggins, P. D. E., Pomeroy, N., Cox, C. S., Kidd, S. P., Hobman, J. L.,
- 637 Brown, N. L., and Beswick, A.: Climate factors influencing bacterial count in background air samples,
- Int. J. Biometeorol. 49, 167-178, 10.1007/s00484-004-0225-3, 2005. 638
- 639 Hu, W., Murata, K., Fukuyama, S., Kawai, Y., Oka, E., Uematsu, M., and Zhang, D.: Concentration and
- 640 Viability of Airborne Bacteria Over the Kuroshio Extension Region in the Northwestern Pacific Ocean:
- 641 Data From Three Cruises, J. Geophy. Res., 122, 12,892-812,905, 10.1002/2017JD027287, 2017.
- Hu, W., Niu, H., Murata, K., Wu, Z., Hu, M., Kojima, T., and Zhang, D.: Bacteria in atmospheric waters: 642 643 Detection, characteristics and implications, Environ., 179. 201-221, Atmos. https://doi.org/10.1016/j.atmosenv.2018.02.026, 2018. 644
- 645 Huffman, J. A., Treutlein, B., and Pöschl, U.: Fluorescent biological aerosol particle concentrations and
- 646 size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe,
- 647 Atmos. Chem. Phys., 10, 3215-3233, 10.5194/acp-10-3215-2010, 2010.
- 648 Huffman, J. A., Sinha, B., Garland, R. M., Snee-Pollmann, A., Gunthe, S. S., Artaxo, P., Martin, S. T.,
- Andreae, M. O., and Pöschl, U.: Size distributions and temporal variations of biological aerosol particles 649
- 650 in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques
- during AMAZE-08, Atmos. Chem. Phys., 12, 11997-12019, 10.5194/acp-12-11997-2012, 2012. 651
- 652 Huffman, J. A., Prenni, A. J., DeMott, P. J., Pöhlker, C., Mason, R. H., Robinson, N. H., Fröhlich-
- 653 Nowoisky, J., Tobo, Y., Després, V. R., Garcia, E., Gochis, D. J., Harris, E., Müller-Germann, I., Ruzene,
- 654 C., Schmer, B., Sinha, B., Day, D. A., Andreae, M. O., Jimenez, J. L., Gallagher, M., Kreidenweis, S. M.,
- 655 Bertram, A. K., and Pöschl, U.: High concentrations of biological aerosol particles and ice nuclei during
- 656 and after rain, Atmos. Chem. Phys., 13, 6151-6164, 10.5194/acp-13-6151-2013, 2013.

- 657 Lacey, M. E., and West, J. S.: The Air Spora: A Manual for Catching and Identifying Airborne Biological
- 658 Particles, Springer: Dordrecht, The Netherlands, 2006.
- 659 Lee, B. U., Kim, S. H., and Kim, S. S.: Hygroscopic growth of E. coli and B. subtilis bioaerosols, J.
- 660 Aerosol Sci., 33, 1721-1723, https://doi.org/10.1016/S0021-8502(02)00114-3, 2002.
- Li, W., Shao, L., Zhang, D., Ro, C.-U., Hu, M., Bi, X., Geng, H., Matsuki, A., Niu, H., and Chen, J.: A
- review of single aerosol particle studies in the atmosphere of East Asia: morphology, mixing state, source,
- and heterogeneous reactions, J. Clean. Prod., 112, Part 2, 1330-1349, 2016.
- Li, W., Xu, L., Liu, X., Zhang, J., Lin, Y., Yao, X., Gao, H., Zhang, D., Chen, J., Wang, W., Harrison, R.
- M., Zhang, X., Shao, L., Fu, P., Nenes, A., and Shi, Z.: Air pollution–aerosol interactions produce more
 bioavailable iron for ocean ecosystems, Sci. Adv., 3, e1601749, 2017.
- 667 Ling, M. L., Wex, H., Grawe, S., Jakobsson, J., Löndahl, J., Hartmann, S., Finster, K., Boesen, T., and
- Šantl-Temkiv, T.: Effects of Ice Nucleation Protein Repeat Number and Oligomerization Level on Ice
 Nucleation Activity, J. Geophy. Res., 123, 1802-1810, 10.1002/2017JD027307, 2018.
- Möhler, O., DeMott, P. J., Vali, G., and Levin, Z.: Microbiology and atmospheric processes: the role of
 biological particles in cloud physics, Biogeosciences, 4, 1059-1071, 10.5194/bg-4-1059-2007, 2007.
- 672 Manninen, H. E., Back, J., Sihto-Nissila, S. L., Huffman, J. A., Pessi, A. M., Hiltunen, V., Aalto, P. P.,
- Hidalgo, P. J., Hari, P., Saarto, A., Kulmala, M., and Petaja, T.: Patterns in airborne pollen and other
 primary biological aerosol particles (PBAP), and their contribution to aerosol mass and number in a
 boreal forest, Boreal Environ. Res., 19, 383-405, 2014.
- 676 Martin, S. T., Andreae, M. O., Artaxo, P., Baumgardner, D., Chen, Q., Goldstein, A. H., Guenther, A.,
- Heald, C. L., Mayol-Bracero, O. L., McMurry, P. H., Pauliquevis, T., Pochl, U., Prather, K. A., Roberts,
- 678 G. C., Saleska, S. R., Silva Dias, M. A., Spracklen, D. V., Swietlicki, E., and Trebs, I.: Sources and
- properties of Amazonian aerosol particles, Rev. Geophys., 48, RG2002, 10.1029/2008rg000280, 2010.
- 680 May, N. W., Olson, N. E., Panas, M., Axson, J. L., Tirella, P. S., Kirpes, R. M., Craig, R. L., Gunsch, M.
- 581 J., China, S., Laskin, A., Ault, A. P., and Pratt, K. A.: Aerosol Emissions from Great Lakes Harmful

Algal Blooms, Environ. Sci. Technol., 52, 397-405, 10.1021/acs.est.7b03609, 2018.

- Morris, C. E., Georgakopoulos, D. G., and Sands, D. C.: Ice nucleation active bacteria and their potential
 role in precipitation, J. Phys. IV France, 121, 87-103, 2004.
- 685 Morris, C. E., Conen, F., Alex Huffman, J., Phillips, V., Pöschl, U., and Sands, D. C.: Bioprecipitation: a
- feedback cycle linking Earth history, ecosystem dynamics and land use through biological ice nucleators
 in the atmosphere, Global Change Biol., 20, 341-351, 10.1111/gcb.12447, 2014.
- Nikkels, A. H., Terstegge, P., and Spieksma, F. T. M.: Ten types of microscopically identifiable airborne
 fungal spores at Leiden, The Netherlands, Aerobiologia, 12, 107, 10.1007/bf02446602, 1996.
- 690 Patterson, J. P., Collins, D. B., Michaud, J. M., Axson, J. L., Sultana, C. M., Moser, T., Dommer, A. C.,
- 691 Conner, J., Grassian, V. H., Stokes, M. D., Deane, G. B., Evans, J. E., Burkart, M. D., Prather, K. A., and
- 692 Gianneschi, N. C.: Sea Spray Aerosol Structure and Composition Using Cryogenic Transmission
- Electron Microscopy, ACS Central Sci., 2, 40-47, 10.1021/acscentsci.5b00344, 2016.
- Poschl, U.: Atmospheric aerosols: Composition, transformation, climate and health effects, Angew.
 Chem. Int. Edit., 44, 7520-7540, 10.1002/anie.200501122, 2005.
- Posfai, M., Li, J., Anderson, J. R., and Buseck, P. R.: Aerosol bacteria over the southern ocean during
 ACE-1, Atmos. Res., 66, 231-240, 2003.
- 698 Pratt, K. A., DeMott, P. J., French, J. R., Wang, Z., Westphal, D. L., Heymsfield, A. J., Twohy, C. H.,
- 699 Prenni, A. J., and Prather, K. A.: In situ detection of biological particles in cloud ice-crystals, Nat. Geosci.,
- 700 2, 398-401, 2009.

- 701 Prenni, A. J., Petters, M. D., Kreidenweis, S. M., Heald, C. L., Martin, S. T., Artaxo, P., Garland, R. M.,
- Wollny, A. G., and Poschl, U.: Relative roles of biogenic emissions and Saharan dust as ice nuclei in the
 Amazon basin, Nat. Geosci., 2, 402-405, 2009.
- Priyamvada, H., Singh, R. K., Akila, M., Ravikrishna, R., Verma, R. S., and Gunthe, S. S.: Seasonal variation of the dominant allergenic fungal aerosols One year study from southern Indian region,
- 706 Scientific Reports, 7, 11171, 10.1038/s41598-017-11727-7, 2017.
- 707 Reponen, T., Willeke, K., Ulevicius, V., Reponen, A., and Grinshpun, S. A.: Effect of relative humidity
- on the aerodynamic diameter and respiratory deposition of fungal spores, Atmos. Environ., 30, 3967-
- 709 3974, https://doi.org/10.1016/1352-2310(96)00128-8, 1996.
- Riemer, N., Ault, A. P., West, M., Craig, R. L., and Curtis, J. H.: Aerosol Mixing State: Measurements,
 Modeling, and Impacts, Rev. Geophys., 57, https://doi.org/10.1029/2018RG000615,
 10.1029/2018rg000615, 2019.
- 713 Rissler, J., Vestin, A., Swietlicki, E., Fisch, G., Zhou, J., Artaxo, P., and Andreae, M. O.: Size distribution
- and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia, Atmos.
 Chem. Phys., 6, 471-491, 10.5194/acp-6-471-2006, 2006.
- 716 Shi, Z., Shao, L., Jones, T. P., Whittaker, A. G., Lu, S., Berube, K. A., He, T., and Richards, R. J.:
- 717 Characterization of airborne individual particles collected in an urban area, a satellite city and a clean air
- 718 area in Beijing, 2001, Atmos. Environ., 37, 4097-4108, 2003.
- Shi, Z., He, K., Xue, Z., Yang, F., Chen, Y., Ma, Y., and Luo, J.: Properties of individual aerosol particles
 and their relation to air mass origins in a south China coastal city, J. Geophy. Res., 114,
 doi:10.1029/2008JD011221, 2009.
- 722 Smith, D. J., Ravichandar, J. D., Jain, S., Griffin, D. W., Yu, H., Tan, Q., Thissen, J., Lusby, T., Nicoll,
- 723 P., Shedler, S., Martinez, P., Osorio, A., Lechniak, J., Choi, S., Sabino, K., Iverson, K., Chan, L., Jaing,
- 724 C., and McGrath, J.: Airborne Bacteria in Earth's Lower Stratosphere Resemble Taxa Detected in the
- 725 Troposphere: Results From a New NASA Aircraft Bioaerosol Collector (ABC), Front. Microbiol. 9,
- **726** 10.3389/fmicb.2018.01752, 2018.
- Spracklen, D. V., Bonn, B., and Carslaw, K. S.: Boreal forests, aerosols and the impacts on clouds and
 climate, Philos. T. R. Soc. A., 366, 4613-4626, 10.1098/rsta.2008.0201, 2008.
- 729 Sun, J., Liu, L., Xu, L., Wang, Y., Wu, Z., Hu, M., Shi, Z., Li, Y., Zhang, X., Chen, J., and Li, W.: Key
- Role of Nitrate in Phase Transitions of Urban Particles: Implications of Important Reactive Surfaces for
 Secondary Aerosol Formation, J. Geophy. Res., 123, 1234-1243, 10.1002/2017JD027264, 2018.
- 732 Tamer Vestlund, A., Al-Ashaab, R., Tyrrel, S. F., Longhurst, P. J., Pollard, S. J. T., and Drew, G. H.:
- 733 Morphological classification of bioaerosols from composting using scanning electron microscopy, Waste
- 734 Manage., 34, 1101-1108, https://doi.org/10.1016/j.wasman.2014.01.021, 2014.
- 735 Therkorn, J., Thomas, N., Scheinbeim, J., and Mainelis, G.: Field performance of a novel passive
- bioaerosol sampler using polarized ferroelectric polymer films, Aerosol Sci. Tech., 51, 787-800,
 10.1080/02786826.2017.1316830, 2017.
- 738 Tobo, Y., Prenni, A. J., DeMott, P. J., Huffman, J. A., McCluskey, C. S., Tian, G., Pöhlker, C., Pöschl, U.,
- and Kreidenweis, S. M.: Biological aerosol particles as a key determinant of ice nuclei populations in a
- 740 forest ecosystem, J. Geophy. Res., 118, 10,100-110,110, 10.1002/jgrd.50801, 2013.
- 741 Tong, Y., and Lighthart, B.: The Annual Bacterial Particle Concentration and Size Distribution in the
- 742 Ambient Atmosphere in a Rural Area of the Willamette Valley, Oregon, Aerosol Sci. Techn., 32, 393-
- **743** 403, 10.1080/027868200303533, 2000.
- 744 Toprak, E., and Schnaiter, M.: Fluorescent biological aerosol particles measured with the Waveband

- 745 Integrated Bioaerosol Sensor WIBS-4: laboratory tests combined with a one year field study, Atmos.
- 746 Chem. Phys., 13, 225-243, 10.5194/acp-13-225-2013, 2013.
- 747 Troutt, C., and Levetin, E.: Correlation of spring spore concentrations and meteorological conditions in
- 748 Tulsa, Oklahoma, Int. J. Biometeorol., 45, 64-74, 10.1007/s004840100087, 2001.
- 749 Tunved, P., Hansson, H.-C., Kerminen, V.-M., Ström, J., Maso, M. D., Lihavainen, H., Viisanen, Y.,
- Aalto, P. P., Komppula, M., and Kulmala, M.: High Natural Aerosol Loading over Boreal Forests, Science,
- 751 312, 261-263, 10.1126/science.1123052, 2006.
- 752 Twohy, C. H., McMeeking, G. R., DeMott, P. J., McCluskey, C. S., Hill, T. C. J., Burrows, S. M., Kulkarni,
- 753 G. R., Tanarhte, M., Kafle, D. N., and Toohey, D. W.: Abundance of fluorescent biological aerosol
- particles at temperatures conducive to the formation of mixed-phase and cirrus clouds, Atmos. Chem.
 Phys., 16, 8205-8225, 10.5194/acp-16-8205-2016, 2016.
- 756 Valsan, A. E., Priyamvada, H., Ravikrishna, R., Després, V. R., Biju, C. V., Sahu, L. K., Kumar, A.,
- Verma, R. S., Philip, L., and Gunthe, S. S.: Morphological characteristics of bioaerosols from contrasting
 locations in southern tropical India A case study, Atmos. Environ., 122, 321-331,
 https://doi.org/10.1016/j.atmosenv.2015.09.071, 2015.
- 760 Valsan, A. E., Ravikrishna, R., Biju, C. V., Pöhlker, C., Després, V. R., Huffman, J. A., Pöschl, U., and
- 761 Gunthe, S. S.: Fluorescent biological aerosol particle measurements at a tropical high-altitude site in
- southern India during the southwest monsoon season, Atmos. Chem. Phys., 16, 9805-9830, 10.5194/acp16-9805-2016, 2016.
- 764 Whitehead, J. D., Darbyshire, E., Brito, J., Barbosa, H. M. J., Crawford, I., Stern, R., Gallagher, M. W.,
- Kaye, P. H., Allan, J. D., Coe, H., Artaxo, P., and McFiggans, G.: Biogenic cloud nuclei in the central
 Amazon during the transition from wet to dry season, Atmos. Chem. Phys., 16, 9727-9743, 10.5194/acp16-9727-2016, 2016.
- 768 Wilson, T. W., Ladino, L. A., Alpert, P. A., Breckels, M. N., Brooks, I. M., Browse, J., Burrows, S. M.,
- 769 Carslaw, K. S., Huffman, J. A., Judd, C., Kilthau, W. P., Mason, R. H., McFiggans, G., Miller, L. A.,
- 770 Nájera, J. J., Polishchuk, E., Rae, S., Schiller, C. L., Si, M., Temprado, J. V., Whale, T. F., Wong, J. P. S.,
- Wurl, O., Yakobi-Hancock, J. D., Abbatt, J. P. D., Aller, J. Y., Bertram, A. K., Knopf, D. A., and Murray,
- B. J.: A marine biogenic source of atmospheric ice-nucleating particles, Nature, 525, 234, 10.1038/nature14986, 2015.
- Wittmaack, K.: Brochosomes produced by leafhoppers-a widely unknown, yet highly abundant species
 of bioaerosols in ambient air, Atmos. Environ., 39, 1173-1180,
 https://doi.org/10.1016/j.atmosenv.2004.11.003, 2005.
- Wittmaack, K., Wehnes, H., Heinzmann, U., and Agerer, R.: An overview on bioaerosols viewed by
 scanning electron microscopy, Sci. Total Environ., 346, 244-255,
 https://doi.org/10.1016/j.scitotenv.2004.11.009, 2005.
- 780 Wu, L., Li, X., Kim, H., Geng, H., Godoi, R. H. M., Barbosa, C. G. G., Godoi, A. F. L., Yamamoto, C.
- 781 I., de Souza, R. A. F., Pöhlker, C., Andreae, M. O., and Ro, C. U.: Single-particle characterization of
- aerosols collected at a remote site in the Amazonian rainforest and an urban site in Manaus, Brazil, Atmos.
- 783 Chem. Phys., 19, 1221-1240, 10.5194/acp-19-1221-2019, 2019.
- 784 Yue, S., Ren, H., Fan, S., Wei, L., Zhao, J., Bao, M., Hou, S., Zhan, J., Zhao, W., Ren, L., Kang, M., Li,
- 785 L., Zhang, Y., Sun, Y., Wang, Z., and Fu, P.: High Abundance of Fluorescent Biological Aerosol Particles
- in Winter in Beijing, China, ACS Earth Space Chem., 1, 493-502, 10.1021/acsearthspacechem.7b00062,
 2017.
- 788 Zawadowicz, M. A., Froyd, K. D., Murphy, D. M., and Cziczo, D. J.: Improved identification of primary

- biological aerosol particles using single-particle mass spectrometry, Atmos. Chem. Phys., 17, 7193-7212,
- 790 10.5194/acp-17-7193-2017, 2017.
- 791 Zhang, D., Murata, K., Hu, W., Yuan, H., Li, W., Matsusaki, H., and Kakikawa, M.: Concentration and
- 792 Viability of Bacterial Aerosols Associated with Weather in Asian Continental Outflow: Current
- 793 Understanding, Aerosol Sci. Engin., 1-12, 10.1007/s41810-017-0008-y, 2017.

Supplemental Materials

Overview of primary biological aerosol particles from a Chinese boreal forest: insight into morphology, size, and mixing state at microscopic scale

Weijun Li¹, Lei Liu¹, Qi Yuan¹, Liang Xu¹, Yanhong Zhu¹, Bingbing Wang², Hua Yu³, Xiaokun Ding⁴, Jian Zhang¹, Dao Huang¹, Dantong Liu¹, Wei Hu⁵, Daizhou Zhang⁶, Pingqing Fu⁵, Maosheng Yao⁷, Min Hu⁷, Xiaoye Zhang⁸, Zongbo Shi^{9,5}

¹Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China

²State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.

³College of Life and Environmental Sciences, Hangzhou Normal University, 310036, Hangzhou, China ⁴Department of Chemistry, Zhejiang University, Hangzhou 310027, China

⁵Institute of Surface-Earth System Science, Tianjin University, 300072, Tianjin, China

⁶Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto,

Kumamoto 862-8502, Japan

⁷State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China

⁸Key Laboratory of Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing, China ⁹School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK

*Correspondence to: Weijun Li (liweijun@zju.edu.cn)

Figure S1 The sampling procedures of substrate, sampler, storage, and analyzed technique.

Figure S2 The *Yeast* and the *colibacillus* particles cultivated in laboratory. TEM image showing morphology and EDS showing compositions.

Figure S3 Hygroscopic growth of NaCl generated in laboratory

Figure S4 Meteorological data during the sampling including Wind speed and direction, Temperature, and relative humidity (RH).

Figure S5 Size distribution of Yeast and Colibacillus cultivated in laboratory.

Figure S6 SEM images of brochosomes.

Figure S7 Particle number and relative abundance of rod-like PBAPs and fungal spores in the

samples collected in daytime and nighttime.