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Response to Referee #1 for comments on “Investigation of the global methane budget over 1980-2017 using GFDL-AM4.1” 

by He et al.  

We thank the reviewer for the insightful comments and suggestions on our manuscript. Below, our responses in bold 
text follow the reviewer’s comments shown in plain text. 

 5 

General comments: 

The work describes CH4 budget using an atmospheric chemistry-transport model that is developed at the GFDL. The authors 
have taken in to account all possible causes of variabilities in CH4 budget, such as the emissions and loss due to tropospheric 
hydroxyl (OH). As shown in the manuscript, OH variability is of as much importance as the emissions in explaining the CH4 
growth rate variabilities in different decades in the period of 1980s to 2010s. The manuscript is generally well written. 10 
However, I felt toward the end of the manuscript is a bit of stretch and could be reduced (I have made some suggestions in 
my specific comments). The manuscript can be accepted after a major revision.  

Reply:  
We thank the reviewer for the positive comments. As suggested by the reviewer, we have shortened Section 3 and 
revised the manuscript carefully. Below are our point-by-point responses.  15 
 

Specific comments:  

Line 49 & 62ff: can the growth rate discussions in the introduction be made concise and put together at one place.  

Reply: 
As suggested by the reviewer, we have removed the sentence highlighting past studies on drivers of methane trend 20 
and variability avoid redundancy. However, we keep the sentence on the observed changes in growth rate to motivate 
the study. 
 

Line 80ff: I think there are other prominent inverse modelling results trying to explain the recent regrowth of CH4 
concentrations.  25 

Reply: 
We have revised this sentence and included additional references in the revised manuscript as below: 
 
“The observed renewed growth since 2007 has been explained alternatively through increases in tropical emissions 
(Houweling et al., 2014; Nisbet et al., 2016) such as agricultural emissions (Schaefer et al., 2016; Patra et al., 2016) and 30 
tropical wetland emissions (Bousquet et al., 2011; Maasakkers et al., 2019), increases in fossil fuel emissions (Rice et al., 
2016; Worden et al., 2017), decreases in sources compensated by decreases in sinks due to OH levels (Turner et al., 2017; 
Rigby et al, 2017), or a combination of changes in different sources such as increases in fossil, agriculture, and waste 
emissions with decreases in biomass burning emissions (Saunois et al., 2017).” 
 35 

Line 135-137: This is a quite strange statement. After reading the whole manuscript I do not believe you have tried to 
address these couple of issues to a great extent. May be remove?  

Reply: 
We have removed these sentences as suggested by the reviewer. 
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 40 

Line 156: Not from wetchart? I mean does wetchart not have IAV?  

Reply: 
We use WETCHARTs version 1.0 (Bloom et al., 2017) for wetland emissions. The seasonality and spatial 
distributions are based on ensemble mean. We then repeated the emissions every year. There is also an extend 
ensemble version of WETCHARTs with interannual variability of wetland emissions only for 2001-2015. We did a 45 
sensitivity test with this version to compare with climatological wetland emissions. The results are shown in Figures 
S2 and S3 in the Supplement. We find a better model performance with climatological wetland emissions. Besides, 
with the optimization on wetland emissions, the signal of the initial interannual variability of wetland emissions 
would be lost anyway. Therefore, we keep this version (i.e., climatological wetland emissions) as the starting point for 
wetland emission optimization. 50 
 

Line 206: Not clear if this is after LNOx scaling? please make this statement precise (e.g., Control).  

Reply: 
This magnitude is for standard AM4.1 without scaling. We have revised the sentences in the revised manuscript to 
make it clearer as below. 55 
 
“The climatological global mean LNOx emission simulated by standard AM4.1 is about 3.6 TgN yr-1, within the range of 
2-8 TgN yr-1 estimated by previous studies (e.g., Schumann and Huntrieser, 2007). We additionally apply scaling factors 
(e.g., 0.5 and 2.0) to LNOx emissions, producing LNOx at the lower and upper limits of the estimated range for sensitivity 
simulations described below. ” 60 
 

Line 249ff: "The meridional curve" needed some clarifications here, e.g., selected sites within a latitude band to get the mean 
CH4 at 5 different latitude bands or something like that.  

Reply: 
We have included detailed description in Section 2.2 in the revised manuscript as below: 65 
 
“The global estimates are based on spatial and temporal smoothing of CH4 measurements from 45 surface marine 
boundary layer (MBL) sites. Locations of MBL sites are shown in Figure S1, and information for each MBL site is listed 
in Table S1 in the Supplement. First, the average trend and seasonal cycle are approximated for each sampling site by 
fitting a second-order polynomial and four harmonics to the data. We characterize deviations from this average 70 
behaviour by transforming the residuals to frequency domain, then multiplying by a low pass filter (Thoning et al., 1989; 
Thoning, 2019). Zonal and global averages are determined by extracting values at synchronized times steps from the 
smoothed fits to the data, then fitting another curve as a function of latitude (Tans et al., 1989). We divide these fits into 
sine (latitude) = 0.05 intervals, which define a matrix of zonally averaged CH4 as a function of time and latitude.” 

Line 296: Sometimes the sites like Key Biscayne are sampled by moving the model grids to the ocean side. You might check 75 
that out.  

Reply: 
We thank the reviewer for the suggestion. Moving the model grid to the ocean side reduces the model bias. Similar 
issue also exists at Mace Head site. 
 80 
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Line 315ff: The tropical bias in all HIPPO is a bit strange! Not OH but transport (or emissions)? I am suspecting this because 
the bias due to OH would appear at all altitudes (timescale ∼1yr), because the bias is in the lower troposphere, if the vertical 
transport is slow, you would find more CH4 is accumulated in the lower troposphere (timescale∼week)  

Reply: 
We agree with the reviewer that the bias could be due to transport or emissions, which we already mentioned in the 85 
manuscript at lines 251-253. Also, OH is much higher over tropics than higher latitudes. It is possible that OH over 
tropics are overestimated in the model. Unfortunately, without observations, we are not able to rule out any 
possibilities. 
 

Line 326: do you run CH3CCl3 & SF6?, say within the CCMI framework?  90 

Reply: 
We do not run with CH3CCl3 & SF6. 
 

Line 346ff: suggesting too much emissions in the NH, where most of Anthro emissions are...May be you can test this better 
by site-level comparisons.  95 

Reply: 
We have updated all the plots in the revised manuscript due to a bug fix in the scripts for model evaluation. As shown 
in Figure 4 in the main text, the model is able to capture methane trend very well over high latitudes, with R = 1.0 
and RMSE < 10 ppb in the Northern Hemisphere and RMSE ~ 11 ppb in the Southern Hemisphere. For site-level 
comparisons, which are shown in Figures S4-5, over Northern Hemisphere, the model is able to reproduce methane 100 
DMFs at most of sites with RMSE < 25 ppb and R >0.9 although there are some overestimations at certain sites 
possibly due to overestimations in the local sources. Site-level comparisons are presented at lines 298-319 in the 
revised manuscript. 
 

Line 353ff: I cannot find this 1 year mismatch (please be clear), instead I find a persistent offset during 1984-1991 (how the 105 
major and minor ticks marked in Fig. 5; the labeled ticks only should be major?  

Reply: 
We have updated all the plots in the revised manuscript due to a bug fix in the scripts for model evaluation. As shown 
in Figure 4, the model fails to reproduce methane growth rates during 1984-1991, especially over tropics. This could 
be due in part to the fewer available observations used for emission optimization during this time period. The plots of 110 
methane growth rates are also updated with same major and minor ticks as shown for methane trend plots in Figure 
4. 
 

Line 369: How can you say that? I thought your optimization was not good for this period, because the number of 
observation sites may not have covered the global reasonably well. I mean biased high toward the NH. Could you check how 115 
many SH sites you have data before 1988.  

Reply: 
We agree with the reviewer that we have fewer observations available before 1988 used for emission optimization. 
Over Southern Hemisphere, there are only six sites (i.e., SPO, HBA, PSA, CGO, ASC, and SMO) as shown in Figure 
S5 that at least have one-year data available before 1988, which are much fewer than the number of sites over 120 
Northern Hemisphere. 
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Line 374: Most likely due to an overestimation of China emissions (e.g., Saeki and Patra, GOSL, 2017, and references 
therein) (regional inversion is needed for adjusting such regional emission biases)  

Reply: 125 
We thank the reviewer for the references. We have included them in the revised manuscript as below: 
 
“The overestimates are likely due to overestimation of emissions over Southeast Asia (e.g., Saeki and Patra, 2017, Patra 
et al., 2016, and Thompson et al., 2015), which could affect these remote sites through transport.” 

Line 378: "...which is also a remote site" and remote from China emissions  130 

Reply: 
We agree with the reviewer’s comment. This again suggests an overestimation in the emissions over Southeast Asia. 
We have included this in the revised manuscript as below: 
 
“However, the model predicts surface methane DMF relatively well at Ascension Island (ASC, 8oS, 14.4oW, 85 m), which 135 
is also a remote site without impacts from East Asia.” 
 

Lines 394ff: I am not very sure if the comparison with GOSAT/SCIA are adding any values to this work. Better be kept 
aside for a full paper, unless the reasons for the mean offsets are figured out and discussed. For instance you could compare 
your results with the ACE-FTS data to find out if there is any bias in the stratospheric CH4 as there is no significant offsets 140 
in the tropospheric CH4 is seen in comparison with surface data and HIPPO.  

Reply: 
We have moved the model evaluation against satellite observations  to the Supplement.  
 

Line 426ff: The emission increase in the 1990s is apparently linked to OH increase in AM; which sector can provide this 145 
extra emissions. I think this result is very different from what I have seen in the literature, and thus needing some 
explanation. Surprisingly, the emission increase rate in the 1990s is greater than the recent regrowth period.  

Reply: 
In S0Wopt, the total emission growth during the 1980s is mainly from emission growth from agriculture (0.7 Tg yr-1), 
energy (0.3 Tg yr-1), waste (1.0 Tg yr-1), and wetland (1.8 Tg yr-1), while the total emission growth during the 1990s is 150 
mainly from waste (0.8 Tg yr-1) and wetland (3.7 Tg yr-1). Therefore, these extra emissions in the 1990s are mainly 
from wetland in S0Wopt scenario. 
In S0Aopt, the total emission growth during the 1980s is mainly from emission growth from agriculture (1.4 Tg yr-1), 
energy (0.9 Tg yr-1), and waste (1.4 Tg yr-1), while the total emission growth during the 1990s is mainly from 
agriculture (1.3 Tg yr-1), energy (1.1 Tg yr-1), waste (1.6 Tg yr-1), and biomass burning (0.4 Tg yr-1). Therefore, these 155 
extra emissions in the 1990s are mainly from energy, waste, and biomass burning sectors in S0Aopt scenario. 
The emission increase rate in the 1990s is greater than the recent growth period because OH decreases in the recent 
growth period. When we optimize emissions, we consider the impacts of OH trends. In the recent growth period, OH 
is decreasing, and therefore methane lifetime increases. This amplifies the responses of methane concentrations to the 
changes in the emissions. Therefore, a smaller increase in the emissions during this period can lead to larger increases 160 
in methane concentrations compared to that in the 1990s. 
 

Lines 484ff: The discussions using Fig 9-11 aren’t that interesting as presented. I would recommend the authors to move 
these plots to the supplement or show 1-2 panels in the main text; for example all the 4 panels in Fig 9 & 10 are essentially 
showing very similar distributions. The S0Aopt and S0Wopt are also showing similar behaviour. This is mainly because the 165 
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emission (E)-a priori emissions are the same in both the simulations, and the correction emissions Del-E following 
Anthropogenic or Wetland emission patterns only play minor role. I am actually curious if you could use some of the 
continental sites, e.g., NWR, LEF, SGP or TAP, and use the model-measurement comparisons to say whether the S0Aopt or 
S0Wopt are more realistic.  

Reply: 170 
We thank the reviewer for these suggestions. We have moved Figures 9-11 to Figures S7-10 in the Supplement. We 
also include site-level comparisons in the revised manuscript at lines 286-309. Despite the differences in the relative 
contributions of individual sources in S0Aopt and S0Wopt, due to the mixed-source effect and transport, the 
performance by S0Wopt and S0Aopt are very similar at most of sites. It is difficult to tell which one is more realistic 
in general. However, we do see general higher CH4 concentrations in S0Aopt than S0Wopt over the Northern 175 
Hemisphere. 
As shown in the Supplement Figure S4-5, over tropics, S0Wopt is in general better with smaller biases at KUM, 
POCN20, POCN25, and MID, which suggests overestimations in the Southeast Asian emissions. Also, anthropogenic 
emissions may be underestimated in S0Wopt at WLG and NWR and overestimated at TAP site based on the 
comparisons of S0Aopt and S0Wopt, whereas wetland emissions may be overestimated in S0Wopt at LEF site. 180 
 

Line 519: Such high correlations are a bit surprising, if I see the lines in Fig. 12. For example AGR show -ve trend, yet show 
positive correlation. How is that possible?  

Reply: 
The high correlation is mainly for periods of 1983-1998 and 2007-2014. In Figure 12 (now Figure 7 in the revised 185 
manuscript), the negative trend for AGR during 1999-2006 is very weak (i.e., -0.2 ppb/yr), almost no significant 
trend. The correlation here is more dominated by the interannual variability than linear trend. The positive 
correlation therefore suggests the interannual variability of CH4AGR agrees with that of total CH4. 
 

Line 633: This is similar to the essential conclusion in some other publications as well, where ENE and Animals were made 190 
responsible for the post-2006 CH4 growth rate. I guess it is extremely difficult to separate emissions from Animals and 
Wetlands by 13C signature in CH4.  

Reply: 
We agree with the reviewer’s comments that rely on methane 13C signatures only is not able to distinguish emissions 
from animals and wetlands.  195 
 

Lines 638ff: I am curious if inconsistency between the tropospheric OH and CH4-loss by OH are arising from the spin-up. 
Did you spun-up the simulations using different OH from the 1970s?  

Reply: 
In our spin-up simulations, we drive the model with 1979 emissions for 50 spin-up years. During spin-up, OH changes 200 
every year based on the simulated chemistry. We used the spun-up atmospheric conditions for all the production 
runs, including low-OH and high-OH cases. In other words, we use the same initial conditions for low and high OH 
cases. As OH is short-lived species, the initial condition of OH has little impact on OH concentrations and trends. 
Based on our model tests, we find a very close relationship between tropospheric OH and lighting NOx. The changes 
in CH4-OH loss are not only affected by changes in OH but also CH4. Decreases in OH levels during 2008-2015 does 205 
necessary lead to decreases in CH4-OH loss as CH4 is increasing during this time period. 
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Response to Referee #2 for comments on “Investigation of the global methane budget over 1980-2017 using GFDL-AM4.1” 
by He et al.  
We thank the reviewer for the insightful comments and suggestions on our manuscript. Below, our responses in bold 
text follow the reviewer’s comments shown in plain text. 210 
 
The author presents an analysis of the methane global budget using an atmospheric chemistry model over almost 4 decades 
(1980-2017) and considering changes in both emissions and sinks. As conclusion, they provide likely scenarios of changes in 
sources and sinks of methane explaining the methane growth different periods of these past decades.  
GENERAL COMMENT  215 
The manuscript is well written and organize, and quite easy to follow. The methodology and different steps are well 
explained. Understanding the methane budget and particularly its changes is crucial to establish pathways for emission 
reduction. As a result, this study contributes significantly to the debate. 
 
Reply: 220 
We thank the reviewer for the positive comments. 
 
However part of the result section is quite lengthy and may be shortened and more straightforward– see specific comments 
below. The comparisons to the observation (surface and satellite) as done here, do not really help in discriminating better 
scenarios.  225 
 
Reply: 
We thank the reviewer for the suggestions. We have revised the manuscript and shortened the result section. 
 
Regarding the abstract and conclusion of the paper: there might not be a single driver of the recent methane growth, but a 230 
combination of different increasing/decreasing sources/sinks (Saunois et al., 2017). Different studies (as cited) may appear in 
disagreement as only the major driver (one source) is highlighted (in the abstract, title or conclusion) but considering the 
uncertainty of the estimates, this could be a combination – with high uncertainty on the relative contributions; but this does 
not mean that there are no agreement between studies. One of the objective is to “investigate the possible driverS” of the 
methane changes. So why keeping a single source as a driver? Why not considering the combination and trying to estimate 235 
the relative contribution? Also, testing different initial emissions would further strengthen the resulting range.  
 
Reply: 
We agree with the reviewer that it is more likely a combination of different drivers instead of one single driver that 
lead to recent methane growth, which is also indicated by the model results discussed in the manuscript. The more 240 
important question is the relative contributions from these drivers, which, as mentioned by the reviewer, is highly 
uncertain. We have included additional discussions in the revised manuscript regarding the relative contributions. 
However, as mentioned in the manuscript, we need additional observational constraints (e.g., methane isotopes, 
ethane) to better quantify the relative contributions, which is the next step of the work.  
With different initial emissions, the optimized methane emissions totals would be similar but spatial distribution and 245 
seasonality could be different. We did one sensitivity test with time-varying wetland emissions (i.e., S0Origtswet) as 
shown in Figures S2 and S3 in the Supplement. Using time-varying wetland emissions does not alter our results much. 
Based on the results comparison in Figures S2 and S3, which suggest better performance by climatological wetland 
emissions (i.e., S0Orig), we decide to start with this wetland emission. 
As this manuscript is more focused on global totals, even with different initial emissions (e.g., different wetland 250 
emissions), after the emission optimization, the impacts would be very small on global averages, but could be large on 
regional scales. Also, the relative contributions would be different. However, the Aopt and Wopt sensitivities 
conducted in this work provide extreme scenarios for the contributions from anthropogenic sources and wetland 
sources. As mentioned earlier, additional observational constraints could be applied to refine the resulting ranges. 
 255 
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Finally, I would recommend publication in ACP after major revisions addressing the general and specific comments 
highlighted in this review.  
 
Reply: 
We thank the reviewer for the suggestions. We have revised the manuscript and addressed the comments point by 260 
point below. 
 
SPECIFIC COMMENTS  
Section 1 – Introduction  
Lines 38 to 42. Removes those lines: it’s stated later and better near the end of the section.  265 
 
Reply: 
We have removed these lines in the revised manuscript. 
 
Line 43- 47. Add a general reference here (e.g. Saunois et al. (2016)).  270 
 
Reply: 
We have added the reference in the revised manuscript. 
 
Line 60-67. There have been other studies that tried to highlight some more likely scenarios combining changes from 275 
individual sources. E.g., Saunois et al., (2017) suggested a combination (with relative contributions) of changes from the 
different methane sources contributing to the renewed growth (increasing from fossil, agriculture and waste emissions, 
decrease of biomass burning, . . .). 
 
Reply: 280 
We have included the statement of combined changes in sources with the reference in the revised manuscript as 
below: 
 
“The observed renewed growth since 2007 has been explained alternatively through increases in tropical emissions 
(Houweling et al., 2014; Nisbet et al., 2016) such as agricultural emissions (Schaefer et al., 2016; Patra et al., 2016) and 285 
tropical wetland emissions (Bousquet et al., 2011; Maasakkers et al., 2019), increases in fossil fuel emissions (Rice et al., 
2016; Worden et al., 2017), decreases in sources compensated by decreases in sinks due to OH levels (Turner et al., 2017; 
Rigby et al, 2017), or a combination of changes in different sources such as increases in fossil, agriculture, and waste 
emissions with decreases in biomass burning emissions (Saunois et al., 2017).” 
 290 
Section 2 – Methodology and data  
Line 125. “BMB emissions contribute to IAV”. . . because wetland emissions are considered constant in the study. Wetland 
emissions contribute a lot to methane emission IAV (Kirschke et al., 2013).  
 
Reply: 295 
We have clarified this statement in the revised manuscript as below: 
 
“Although wetlands are in reality a major contributor to interannual variability in methane emissions (Bousquet et al., 
2006; Kirschke et al., 2013), our use of climatological wetland emissions causes the interannual variability in our 
methane emissions to be dominated by BMB emissions.” 300 
 
Line 151. “. . . largely underestimate. . .”. What is largely here? Please quantify.  
 
Reply: 
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We have evaluated the model results with initial emission inventories, which is shown in Figure S2 in the Supplement. 305 
The simulated methane DMF is about 126 ppb lower than observed CH4 DMF from NOAA GMD surface 
observations (with RMSE = 120 ppb).  
 
Line 153. “optimization simulations”? The optimization approach is described later (from line 169), but this description 
should directly follow the first mentioning of “optimization approach”. Which observations are used for this “optimization”? 310 
surface marine boundary layer – described after? Please specify and put Section 2.3 Observation before Section Simulation 
Design.  
 
Reply: 
Thank you for the suggestion. We have reordered the sections such that the section on Observations appears before 315 
Simulation Design.  
 
Line 174. The relative contributions from the different sectors are also kept as in the initial emission set up, and depend on it. 
As a result this highly depend on the initial set of emissions. Testing other set of initial emissions would really be valuable to 
assess the uncertainty related to the set up and strengthen the results. EDGARv4.3.2 instead of CEDS for example. Other 320 
wetland emissions including IAV. . .  
 
Reply: 
We agree that our results depend on the individual contributions in the initial emission inventories. Using different 
initial emission inventories may help assess the associated uncertainties of individual sector contributions to a certain 325 
degree, but to better quantify the individual contributions and assess the uncertainties, we could apply additional 
observational constraints, which is our next step of the study. 
 
Methane anthropogenic emissions from EDGARv4.3.2 are about 5-9% lower than CEDS anthropogenic emissions, 
mainly due to lower emissions from energy sector (Janssens-Maenhout et al., 2019). The share of ENE to total 330 
anthropogenic emissions in EDGARv4.3.2 (i.e., 33%) are also lower than those in CEDS (i.e., 38%), but both increase 
after 2006. We are unable to test EDGARv4.3.2 emissions in this work but will consider it for future work.  
 
To address the reviewer’s point about wetland emissions with IAV, we performed a test simulation with wetland 
emissions including IAV for 2001-2015 (i.e., S0Origtswet) based on an extended ensemble version of WetCharts 335 
(Bloom et al., 2017) as shown in Figures S2 and S3. The results from this simulation are very similar to those from 
climatological wetland emissions (i.e., S0Orig). We expect that optimization of wetland emissions will cause the 
original IAV in emissions to be lost. 
 
Line 180. DeltaE include IAV missing from the initial emissions. In the case of SAopt, this is attributed to anthropogenic 340 
emissions, is that realistic?  
 
Reply: 
The IAV of methane emissions are mainly dominated by that from wetland and biomass burning. However, IAV 
could also exist in anthropogenic emissions due to the dependence of microbial methane sources, such as rice paddies, 345 
on soil temperature and precipitation (e.g., Knox et al., 2016). The optimization to match observations resulted in 
higher IAV in total emissions than in the initial emissions. Because the purpose of S0Aopt is to investigate the role of 
changes in total anthropogenic emissions (anthro plus BB) rather than individual sectors, we applied this IAV to all 
sectors which we acknowledge introduces some unrealistic IAV in the anthropogenic emissions. We chose this 
experimental construct to limit the number of sensitivity simulations.  350 
 
 
Line 184. The reader would probably want to have fast access to FigS2. . Indeed all the discussion is on emissions from 
SAopt and SWopt and not on the initial emissions. That would be better to combine Fig1 and Fig S2  
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 355 
Reply: 
We have combined these figures as new Fig 1 in the revised manuscript. 
 
Line 200. At which frequency are the observations considered? Frequency of the sampling of the model? Monthly?  
 360 
Reply: 
Since the frequency of the model output is monthly, the observations are also monthly-based. 
 
Section 3 Results and discussions.  
Line 241. Testing different wetland emission data sets – with different seasonality may help to quantify the influence of 365 
wetland emission seasonality on the observed bias. OH influence could be seen in simulation S2 with higher OH: is S2 
performing better?  
 
Reply: 
We agree that different wetland emission datasets can help assess the impacts of wetland emission seasonality on the 370 
observed bias. We did a sensitive test with time-varying wetland emissions (i.e., S0Origtswet) for 2001-2015 as shown 
in Figures S2 and S3 in the Supplement. In terms of seasonality, we did not find much difference between S0Orig and 
S0Origtswet. In a future study, we plan to simulate wetland emissions in the land model (LM4.1) coupled to AM4.1 to 
better capture the spatial and temporal variability of wetland emissions than prescribed emissions.  
 375 
The S2 performance is similar to S0 as we re-optimized methane emissions based on higher OH case. Higher OH case 
does not change the spatial and temporal variability of OH but only the magnitude of OH levels.  
 
Line 244. Is it reasonable to state that SWopt perform a bit better that SAopt? So far no comparison is made between the two 
simulations.  380 
 
Reply: 
As we optimize the global total emissions instead of spatial distribution, globally, the performance of Wopt and Aopt 
is very similar to each other, however there are regional differences because of the differences in the spatial 
distribution of emissions. For example, in the Southern Hemisphere, Wopt performance is very similar to Aopt. In 385 
the Northern Hemisphere, Wopt performs better than Aopt at KUM, POCN20, ASK, and TAP sites, while it 
performs worse at KEY, WIS, and UTA. It is really site-specific. We have included site-specific comparisons between 
S0Wopt and S0Aopt in the revised manuscript as below: 
 
“S0Aopt and S0Wopt simulate very similar surface methane DMF and their comparison with NOAA-GMD observations 390 
at individual sites show both simulations to be biased low over Southern Hemisphere sites, but the low bias decreases 
northward (Figure S5 in the Supplement). The simulations are biased moderately high (with RMSEs up to ~ 40 ppb) over 
tropical regions (e.g., POCS15, POCS10, SMO, POCS05, POCN00, CHR, and POCN05). These sites are mainly remote 
sites and surface methane DMF represents background methane levels. The overestimates are likely due to 
overestimation of emissions over Southeast Asia (e.g., Saeki and Patra, 2017, Patra et al., 2016, and Thompson et al., 395 
2015), which could affect these remote sites through transport. However, the model predicts surface methane DMF 
relatively well at Ascension Island (ASC, 8oS, 14.4oW, 85 m), which is also a remote site without impacts from East Asia. 
The high biases over the tropics suggest a need to improve regional emissions (e.g., Southeast Asia). Moderate 
overestimates also occur at Mahe Island (SEY, 4.7oS, 55.5oE), a location that could be affected by air masses from 
polluted areas over the tropics and Northern Hemisphere. Over middle and high latitudes of the Northern Hemisphere, 400 
both S0Aopt and S0Wopt simulate surface methane DMF relatively well at most sites, except at Key Biscayne (KEY, 
25.7oN, 80.2oW), Tae-ahn Peninsula (TAP, 36.7oN, 126.1oW), Park Falls (LEF, 45.9oN, 113.7oW), and Mace Head 
(MHD, 53.3oN, 9.9oW). KEY, MHD, and TAP are sampled under onshore winds, whereas LEF are affected by local 
sources and model transport. The high biases at these sites could be due in part to model sampling bias (e.g., model grid 
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box overlapping land while samples are collected at coast with onshore winds) and uncertainties in local emissions (e.g., 405 
possible overestimation in the emissions over East Asia). On the other hand, both S0Wopt and S0Aopt are able to capture 
monthly variations in methane at most of the sites except at LEF, where R = 0.4 for S0Wopt and 0.5 for S0Aopt, 
respectively. In general, both S0Wopt and S0Aopt are able to reproduce the surface methane DMF and capture the trend 
at most sites (e.g., with R greater than 0.5 at 98% of total sites and with RMSE less than 30 ppb at 74% of total sites). As 
shown in Figure S5, S0Aopt in general better estimates methane trends and growth over low latitudes of the Southern 410 
Hemisphere (e.g., SMO) and middle/high latitudes of the Northern Hemisphere (e.g., ASK, KEY, WIS, UTA, NWR, UUA, 
LEF, CBA, STM, and ALT) than S0Wopt. Based on the site-level comparisons between S0Wopt and S0Aopt, 
anthropogenic emissions over Southeast Asia are likely overestimated in both S0Aopt and S0Wopt, while they could be 
underestimated at WLG and NWR in S0Wopt but be reasonably well represented in S0Aopt.” 
 415 
Line 253: The reasons of the biases compared to HIPPO are exactly the same as those seen with surface observations. See 
comment for line 241.  
 
Reply: 
Please see reply to comment for line 241. 420 
 
Line 255. 2% difference with the updated GFDL-AM4.1, using optimized emissions. How much was the difference when 
using initial emissions? How much better is it compared to the previous version of GFDL-AM4.1?  
 
Reply: 425 
With initial emissions, the simulated methane profiles are about 12% lower than HIPPO measurements. For the 
standard version of GFDL-AM4.1, which uses prescribed methane concentrations, the simulated methane profiles are 
about 5% higher than HIPPO measurements in the Southern Hemisphere and 4% lower in the Northern 
Hemisphere. 
 430 
Line 264. Isn’t it by construction? As total emissions are optimized using surface marine boundary layer observations. . .  
 
Reply: 
The match of global means is certainly by design, but not that for latitude bands. As shown in Figure 4 in the main 
text, the model is still able to capture methane trends and variability at different latitude bands. We have revised the 435 
sentences as below: 
 
 “S0Wopt and S0Aopt are also able to reproduce global annual mean surface methane DMF (with root-mean-square-
error (RMSE) = 10.4 ppb in S0Wopt and 11.6 ppb in S0Aopt) over 1983-2017, which is expected from emission 
optimization. Meanwhile, both simulations are able to reproduce the methane timeseries very well (with R = 1.0 in both 440 
S0Wopt and S0Aopt) over different latitude bands as shown in Figure 4.” 
Line 274. Not clear about the 1-year mismatch. There is not always a 1-year delay between spikes. . .  
 
Reply: 
We corrected a bug in the scripts for model evaluation and updated all the relevant plots. We then updated results 445 
and discussions in the revised manuscript as below: 
 
 “Table 3 summarizes methane growth rates during 1984-1991, 1992-1998, 1999-2006, and 2007-2017. S0Aopt and 
S0Wopt simulate very similar methane growth rates as their emission totals are the same. During 1984-1991, both S0Aopt 
and S0Wopt slightly overestimate methane growth rates by ~2 ppb yr-1, possibly due to fewer available observations used 450 
for emission optimization during this time period than afterwards. After 1991, the simulated methane growth rates are in 
general comparable to the observations (with annual mean difference within ±1 ppb yr-1). The major discrepancies in the 
simulated methane growth rates and observations occur over the tropics and high northern latitudes as shown in Figure 
4. Over the tropics, both S0Aopt and S0Wopt overestimate methane growth rates (by about 5-10 ppb yr-1) during 1984-



11 
 

1990 when there were limited observations available, but are able to reproduce methane growth rates relatively well 455 
afterwards. Agreement of the methane growth rate is worse in the Northern Hemisphere than in the Southern 
Hemisphere, especially at high northern latitudes, mainly due to the large bias during 1984-1988 and a slight shift in 
peak growth (or peak decrease) during 1997-2005. The number of observational MBL sites does not provide adequate 
coverage of the globe, especially in the 1980s, which could have different impacts on the Northern and Southern 
Hemisphere when optimizing global total emissions. In general, S0Aopt estimates slightly better methane growth rates 460 
than S0Wopt, especially over 30-90o N. The biases in methane growth rates also suggest a need to refine regional 
emissions.” 
 
Line 275-281. Are those numbers necessary in the text? What is the point? That could be summarize in a Table for the full 
numbers and in the text summarize to “SWopt performs better over this period while SAopt performs better over that 465 
period”. The differences in growth rate are much lower than their own range of uncertainty.  
 
Reply: 
As suggested by the reviewer, we have summarized the growth rates in the table and revised these sentences in the 
revised manuscript (see reply to comment line 274). 470 
 
Line 283. Does it imply that the results (following results on the emissions changes) are less robust for this region? This is 
unfortunate as most of the methane emissions occur in the NH.  
 
Reply: 475 
We corrected a bug in the scripts for model evaluation and updated all the relevant plots. After the correction, both 
Aopt and Wopt are able to reproduce methane growth rates despite there is a slight mismatch (~1-2 years) during 
1998-2008. But compared to other regions, the correlation is slightly worse over 30-90o N. This suggests a need to 
improve/optimize regional emissions. 
 480 
Line 286. Indeed. Related to wetland emissions? Is it related to the missing IAV in wetland initial emissions?  
 
Reply: 
Many reasons could lead to such biases over 30-90N. Uncertainties in the IAV of both wetland and anthropogenic 
emissions could lead to such bias. The biases also suggest a need to improve/optimize regional emissions.  485 
 
Line 301. Could the bias model sampling be overcome/reduced? Does the bias change with the grid box choice for coastal 
sites?  
 
Reply: 490 
Yes. If we move the grid box to the ocean side, the bias is reduced significantly. For example, at KEY and MHD sites, 
the RMSEs are reduced from ~90 ppb to 33 ppb and from ~50 ppb to 20 ppb, respectively. 
 
Line 306-319. The model observation comparison using GOSAT and SCHIAMACHY is not really helpful. As the model is 
optimized against surface observations, it’s saying that surface observation and satellite data see similar trends (but are offset 495 
by latitudinal biases), that biases exist in the satellite data (latitudinal biases), and that uncertainties in the transport model 
(especially in the stratosphere but not only) can explain the difference between model and satellite columns. Nothing new for 
an atmospheric model assessment, and this comparison does not discriminate one simulation from the other. This part may 
be removed and put in the supplementary material.  
 500 
Reply: 
As suggested by the reviewer, we have moved this part to the Supplement. 
 
Line 325. By construction?  
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 505 
Reply: 
Yes. Both simulations reproduce the global growth rates by design. But the model with optimized emissions is still 
able to reproduce the growth rates at different latitude bands. 
 
Line 332-333. This sentence should be removed and put in Section2.  510 
 
Reply: 
As suggested by the reviewer, we have moved this sentence to Section2. 
 
Line335_336. This sentence could be removed with causes of interannual variability put in sentence of line 329-330.  515 
 
Reply: 
As suggested by the reviewer, we have combined these sentences as below: 
 
“As shown in Figure 5, the optimized emissions in general increase during 1980-2017, with an annual mean of 580±34 520 
Tg yr-1 (mean±standard deviation) and show much larger interannual variability during 1991-1993 and 1997-2000, 
which is likely due to the strong El Niño events during 1991-1992 and 1997-1998 as well as the Mt Pinatubo eruption in 
1991 (Dlugokencky et al., 1996; Bousquet et al., 2006; Bândă et al., 2016).” 
 
Also 1991-1992 high IAV is also related to Mt Pinatubo eruption (decrease in CH4) (ref. e.g., Banda et al., 2016, 525 
https://www.atmos-chemphys.net/16/195/2016/; Dlugokencky, E. J. et al. Changes in CH4 and CO growth rates after the 
eruption of Mt Pinatubo and their link with changes in tropical tropospheric UV flux. Geophys. Res. Lett. 23, 2761–2764 
(1996); 21. Bousquet, P. et al. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 
443, 439–443 (2006)).  
 530 
Reply: 
We thank the reviewer for providing the references. We have included these references into the revised manuscript. 
 
Line 343. Is it possible to overplot Naus et al. OH level on Figure 8?  
 535 
Reply: 
We have included OH anomaly from Naus et al. (2019) in the Figure 6 in the revised manuscript.  
 
Table 3. Single values are provided for the emission estimates while several simulations were performed. The authors 
compare their initial emission to the literature – which could have been done in Section2. However they stated that there 540 
initial emission were underestimate and then all the paper is on the optimized emissions. So Table 3 should compare their 
optimized emissions with the literature!  
 
Reply: 
Table 3 includes numbers for optimized emissions as reflected in rows of DE and sum of sources. Also, for DE and 545 
sum of sources, we include estimated ranges based on different OH levels as well. To address the reviewer’s comment, 
we have included estimated ranges for individual sectors based on the Aopt and Wopt under different OH levels, 
which is now shown in Table 4 in the revised manuscript. 
 
Line 351-353. Total natural emissions from bottom-up estimates are much lower than top-down because there are not 550 
constrained and just an “addition” from independent individual source estimates, knowing the large uncertainty of each 
natural source. . . The initial emissions should be much comparable to top-down estimates, as the large source from 
freshwater is not included in the initial emissions (about 100Tg in the bottom up methane budget).  
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Reply: 555 
We thank the reviewer for the explanation. We have included this discussion in the revised manuscript as below: 
 
“Since there is no observational constraint on bottom-up estimates, total natural emissions are simply summed over 
independent individual sources, which could be overestimated in the bottom-up approach considering the relatively large 
uncertainties in each individual source. In addition, in the bottom-up estimate from Kirschke et al. (2013) and Saunois et 560 
al. (2016), some other natural sources, such as freshwater, are not included in the initial emission inventories in this 
work; however, they are likely double counted in the bottom-up estimates (e.g., high-latitude inland waters are likely also 
considered as wetland areas) as pointed out in Saunois et al. (2019).” 
 
Line 353-354. Not really, see comment above. The difference between the initial emission of this study and the bottom-up 565 
estimate from Kirschke et al and Saunois et al., is mainly driven by source not included in the initial emission set up 
(freshwater), and probably double counted in the bottom-up budget. Estimates for other natural sources from Kirschke et al., 
2013 and Saunois et al., 2016 should be added. This is also due to the use of a climatological value for wetland emissions 
from the 2000s applied to the whole period. As IAV and trends are missing in the initial emissions, some signal is lost 
compared to estimates reported by Kirschke et al. and Saunois et al.  570 
 
Reply: 
We thank the reviewer for the explanation. We have included this discussion in the revised manuscript (see reply 
above) . 
 575 
Line 356. Remove Saunois et al., 2016 as the study starts in 2000.  
 
Reply: 
Removed. 
 580 
Line 358 and following. Well, that would be better to show the range of total anthropogenic and wetland optimized 
emissions and to compare these ones with the literature. Table 3. It also presents values for the more recent period. These 
values may be compared with the updated global methane budget recently released in ESSDD Saunois et al., 2019 
(https://www.earth-syst-sci-data-discuss.net/essd-2019-128/)  
 585 
Reply: 
We have updated Table 3 (now Table 4) with values from Saunois et al. (2019). 
 
Section 3.3.1. These results are quite expected knowing the distribution of anthropogenic emissions and wetland emissions. 
There are interesting but could be more when compared against observations. If the surface methane DMF and growth rate 590 
observed values at each sites are over plotted on these spatial distributions, does it help in discriminating which optimized 
emissions fit the best?  
 
Reply: 
The overlay plots have been generated as shown in Figure S7 and Figure S9 in the Supplement. But S0Aopt and 595 
S0Wopt gives very similar methane DMF and growth rates. We included site-level comparisons in Section 3.1. As also 
suggested by the other reviewer, we have removed this part into the Supplement. 
 
Line 400-401. By construction?  
 600 
Reply: 
For global trends, the match of model simulations with observations are by design. 
 
Line 406. .. are KEPT constant. . .  
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 605 
Reply: 
We have corrected this in the revised manuscript as below: 
 
“Since wetland emissions and other natural emissions are kept constant every year in S0Aopt, with increases in OH levels 
during 1983-1998, all tagged natural tracers show a weak decreasing trend.” 610 
 
Line 432 and line 437. How can we explain higher sink? 
 
Reply: 
Although concentrations of tracer CH4WET decrease, with the increases in OH levels during 1999-2006, CH4WET 615 
sinks also increase, which could be higher than wetland emissions. Also, during this time period, CH4WET 
decreasing trend is very week (e.g., -0.6 ppb/yr). During 2007-2017, wetland emissions are lower compared to 1999-
2006 (see Figure 1) while OH levels are higher. Therefore, the decreasing trend (e.g., -4.6 ppb/yr) is much larger 
compared to 1999-2006. 
 620 
Line 453. Indeed. . .Is testing a different initial inventory an option? It would help, confirming or infirming some results. . .  
 
Reply: 
See reply to General comments above. 
 625 
Line 454. Other sectors (than wetland?) 
 
Reply: 
Yes. For S0Wopt, except wetland, which is optimized, all other sources are based on the initial emission inventories. 
 630 
Section3.3.2: could this section be shortened? It’s quite hard to follow. . . Instead of describing each simulation in detail 
(with numbers etc..), would it be shorter to conclude for each period, which sector(s) drive the changes (increase. . .) and if 
the two simulations agree or not? And keep the details and numbers for the supplementary. . ..  
 
Reply: 635 
We thank the reviewer for the suggestion. We have shortened and revised this section as Section 3.3 in the revised 
manuscript. 
 
Line 457 and following. The two sensitivity tests may be presented in Section 2 as well. And included in the above 
discussion..  640 
 
Reply: 
As suggested by the reviewer, we have included two sensitivity tests in Section 2 as well as in Section3.3. 
 
Section 3.4 Sensitivity to OH.  645 
How does the model compare with the other CCMI models? (see Zhao et al., 2019 Fig 4 and 7. https://www.atmos-chem-
physdiscuss.net/acp-2019-281/acp-2019-281.pdf)  
 
Reply: 
In general, our OH trend is within the range of OH trends in Zhao et al. (2019). From 1980 to 2000, OH in AM4.1 650 
increases by 4.7%, comparable to 4.6±2.4% in Zhao et al. (2019). During 2000-2010, OH anomaly varies from -0.29 
mole cm-3 to 0.34 molec cm-3. 
 
TECHNICAL COMMENTS Line 87. 1980-2017 instead of 1980-2014 
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 655 
Reply: 
Thanks, corrected. 
 
 
References: 660 
Bloom, A. A., Bowman, K. W., Lee, M., Turner, A. J., Schroeder, R., Worden, J. R., Weidner, R., McDonald, K. C., 
and Jacob, D. J.: A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport 
models (WetCHARTs version 1.0), Geosci. Model Dev., 10, 2141-2156, https://doi.org/10.5194/gmd-10-2141-2017, 
2017. 
 665 
Knox, S. H., Matthes, J. H., Sturtevant, C., Oikawa, P. Y., Verfaillie, J., and Baldocchi, D.: Biophysical controls on 
interannual variability in ecosystem-scale CO2 and CH4 exchange in a California rice paddy, J. Geophys. Res. 
Biogeosci., 121, 978–1001, doi:10.1002/2015JG003247, 2016. 
 
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., Bergamaschi, P., Pagliari, 670 
V., Olivier, J. G. J., Peters, J. A. H. W., van Aardenne, J. A., Monni, S., Doering, U., Petrescu, A. M. R., Solazzo, E., 
and Oreggioni, G. D.: EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–
2012, Earth Syst. Sci. Data, 11, 959–1002, https://doi.org/10.5194/essd-11-959-2019, 2019. 
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Abstract. Changes in atmospheric methane abundance have implications for both chemistry and climate as methane is both a 

strong greenhouse gas and an important precursor for tropospheric ozone. A better understanding of the drivers of trends and 685 

variability in methane abundance over the recent past is therefore critical for building confidence in projections of future 

methane levels. In this work, the representation of methane in the atmospheric chemistry model AM4.1 is improved by 

optimizing total methane emissions (to an annual mean of 580±34 576±32 Tg yr-1) to match surface observations over 1980-

2017. The simulations with optimized global emissions are in general able to capture the observed global trend, variability, 

seasonal cycle, and latitudinal gradient of methane. Simulations with different emission adjustments suggest that increases in 690 

methane sources (mainly from energy and waste sectors) balanced by increases in methane sinks (mainly due to increases in 

OH levels) lead to methane stabilization (with an imbalance of 5 Tg yr-1) during 1999-2006, and that increases in methane 

sources (mainly from agriculture, energy, and waste sectors) combined with little change in sinks (despite small decreases in 

OH levels) during 2007-2012 lead to renewed methane growth (with an imbalance of 14 Tg yr-1 for 2007-2017). Compared to 

1999-2006, both methane emissions and sinks are greater (by 31 Tg yr-1 and 22 Tg yr-1, respectively) during 2007-2017. Our 695 

tagged tracer analysis indicates that anthropogenic sources (such as agriculture, energy, and waste sectors) are more likely 

major contributors to the renewed growth in methane after 2006. A sharp increase in wetland emissions (a likely scenario) 

with concomitant sharp decrease in anthropogenic emissions (a less likely scenario), would be required starting in 2006 to 

drive the methane growth by wetland tracer. Our results also indicate that the energy sector is more likely a major contributor 

to the methane renewed growth after 2006 than wetland, as increases in wetland emissions alone are not able to explain the 700 

renewed methane growth with constant anthropogenic emissions. In addition, a significant increase in wetland emissions would 

be required starting in 2006, if anthropogenic emissions declined, for wetland emissions to drive renewed growth in methane, 

which is a less likely scenario. Simulations with varying OH levels indicate that 1% change in OH levels could lead to an 

annual mean of ~ 4 Tg yr-1 difference in the optimized emissions and 0.08 year difference in the estimated tropospheric methane 

lifetime. Continued increases in methane emissions along with decreases in tropospheric OH concentrations during 2008-2015 705 

prolong methane lifetime and therefore amplify the response of methane concentrations to emission changes. Uncertainties 

still exist in the partitioning of emissions among individual sources and regions. 
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1 Introduction 

Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with a global warming potential 28-

34 times that of carbon dioxide (CO2) over a 100-year time horizon (Myhre et al., 2013). Methane is also a precursor for 710 

tropospheric ozone (O3) - both an air pollutant and greenhouse gas - influencing ozone background levels (Fiore et al., 2002). 

Controlling methane has been shown to be a win-win for both climate and air quality (Shindell et al., 2012). From a 

preindustrial level of 722±25 ppb (Etheridge et al., 1998; Dlugokencky et al., 2005), methane has increased by a factor of ~2.5 

to a value of 1857±1 ppb in 2018 1850±1 ppb in 2017 (Dlugokencky et al., 2018), mostly due to anthropogenic activities 

(Dlugokencky et al., 2011). The global network of surface observations over the past 3-4 decades indicates that methane went 715 

through a period of rapid growth from the 1980s to 1990s, nearly stabilized from 1999 to 2006, and then renewed its rapid 

growth. Studies of the drivers of observed changes in methane trends and variability have focused on the contributions from 

changes in methane sources and sinks. Here, we apply a prototype of the new generation NOAA Geophysical Fluid Dynamics 

Laboratory chemistry-climate model, GFDL-AM4.1 (Zhao et al., 2018a, b; Horowitz et al., manuscript in preparation) with an 

improved representation of methane, toestimate methane budget during 1980-2017 and explore the contributions of methane 720 

sources and sinks to its observed trends and variability during 1980-2017.  

Methane is emitted into the atmosphere from both anthropogenic activities (e.g., agriculture, energy, industry, transportation, 

waste management, and biomass burning) and natural processes (e.g., wetland, termites, oceanic and geological processes, and 

volcanoes), and is removed from the atmosphere mainly by reaction with hydroxyl radical (OH) in the troposphere, with less 

contributions to destruction by reactions with excited atomic oxygen (O(1D)) and atomic chlorine (Cl) in the stratosphere and 725 

uptake by soils (Saunois et al., 2016). Measurements of the global distribution of surface methane beginning in 1983 have 

revealed that atmospheric methane approached steady state during 1983-2006 and renewed its growth since then. During 1983-

2006, methane growth rates decreased from 12 ppb yr-1 during 1984-1991 to 5 ppb yr-1 during 1992-1998 (Nisbet et al., 2014; 

Dlugokencky et al., 2018) and to 0.7±0.6 ppb yr-1 during 1999-2006 (Dlugokencky et al., 2018). After 2006, renewed methane 

started increasing again growth started with a growth rate of 5.7±1.2 ppb yr-1 in 2007-2013 and reached 12.6 ± 0.5 ppb yr-1 in 730 

2014 and 10.0 ± 0.7 ppb yr-1 in 2015 (Nisbet et al., 2016; Dlugokencky et al., 2018). Investigations of the drivers of the 

observed methane trend and interannual variability have mainly focused on the changes in the global methane budget. While 

anthropogenic activities are widely considered responsible for the long-term methane increase since pre-industrial times 

(Dlugokencky et al., 2011), there is no consensus on the drivers for the methane stabilization during 1999-2006 and renewed 

growth since 2007. Previous studies have attributed the stabilization during 1999-2006 to the combined effects of alternatively 735 

increased anthropogenic emissions with decreased wetland emissions (Bousquet et al., 2006a), decreased fossil fuel emissions 

(Dlugokencky et al., 2003; Simpson et al., 2012; Schaefer et al., 2016) or rice paddies emissions (Kai et al., 2011), stable 

emissions from microbial and fossil fuel sources (Levin et al., 2012), or variations of methane sinks (Rigby et al., 2008; 

Montzka et al., 2011; Schaefer et al., 2016). The observed renewed growth since 2007 has been explained alternatively through 

increases in wetland emissions (Dlugokencky et al., 2009; Bousquet et al., 2011; Nisbet et al., 2016), increases in tropical 740 
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emissions (Houweling et al., 2014; Nisbet et al., 2016), such as agricultural emissions (Schaefer et al., 2016; Patra et al., 2016) 

and tropical wetland emissions (Bousquet et al., 2011; Maasakkers et al., 2019), increases in fossil fuel emissions (Rice et al., 

2016; Worden et al., 2017), and decreases in sources compensated by decreases in sinks due to OH levels (Turner et al., 2017; 

Rigby et al, 2017), or a combination of changes in different sources such as increases in fossil, agriculture, and waste emissions 

with decreases in biomass burning emissions (Saunois et al., 2017). These different explanations reflect limitations in our 745 

understanding of recent changes in methane and its budget.  

Previous work has generally combined observations of methane and its isotopic composition (δ13CH4)δ13C with isotopic source 

signatures weighted by their emissions with inverse models (top-down), process-based models (bottom-up), or box models to 

estimate methane emissions and sinks and their variability (Bousquet et al., 2006a; Monteil et al., 2011; Rigby et al., 2012; 

Bloom et al., 2012; Kirschke et al., 2013; Ghosh et al., 2015; Schwietzke et al., 2016; Schaefer et al., 2016; Nisbet et al., 2014, 750 

2016; Dalsøren et al., 2016; Turner et al., 2017; Rigby et al., 2017). Inverse models use observations to derive emissions, but 

usually prescribe climatological OH, O(1D), and Cl levels or loss rates (e.g., Rice et al., 2016; Tsuruta et al., 2017). Box 

models, on the other hand, use methane observations together with those of other proxy chemicals (e.g., 13C/12C ratio, ethane, 

carbon monoxide, methyl chloroform) to provide information on the global methane budget (e.g., Schaefer et al., 2016; Turner 

et al., 2017), but lack information on spatial variability or regional characteristics. With process-based models (e.g., wetlands) 755 

and inventories representing different source types (e.g., fossil fuel emissions) to drive chemistry transportchemical transport 

models, the bottom-up approach is able to estimate the methane budget for all individual sources and sinks. However, without 

observational constraints, there is considerable uncertainty in the total methane emissions derived from a combination of 

independent bottom-up estimates (Saunois et al., 2016).  

Bottom-up global Earth System Models (ESMs) that realistically simulate the physical, chemical, and biogeochemical 760 

processes, as well as interactions and feedbacks among these processes, are useful tools to characterize the global methane 

cycle and quantify the global methane budget and impacts on composition and climate. Dalsøren et al. (2016) investigated the 

evolution of atmospheric methane by driving a chemistry transportchemical transport model with bottom-up emissions. While 

their model results are able to match the observed time evolution of methane without emission adjustments, surface methane 

is largely underpredicted in their study. Ghosh et al. (2015) optimized bottom-up emissions data to investigate methane trends; 765 

however, OH trends and interannual variability were not considered in their chemistry transportchemical transport model. 

Here, we apply a prototype of the full-chemistry version of the Geophysical Fluid Dynamics Laboratory (GFDL) new-

generation Atmospheric Model, version 4.1 (AM4.1, Zhao et al., 2018a, b; Horowitz et al., manuscript in preparation) to 

investigate the evolution of methane over 1980-20142017. Our main objectives are to improve the representation of methane 

in GFDL-AM4.1, to comprehensively evaluate the model performance of methane predictions with an improved representation 770 

of methane budget, and to investigate possible drivers of the methane trends and variability. This paper is structured as follows: 

Section 2 describes the modeling approach, emission inventories, and observations used for model evaluation. Results of the 

model evaluation, global methane budget analysis, and model sensitivities are presented in Section 3. Finally, Section 4 

summarizes the results and discusses the implication of these results. 
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2 Methodology and data 775 

2.1 Model description and initialization 

We use a prototype version of the new generation NOAA Geophysical Fluid Dynamics Laboratory GFDL chemistry-climate 

model, GFDL-AM4.1 (Zhao et al., 2018a, b; Horowitz et al., manuscript in preparation). A detailed description of the physics 

and dynamics in AM4.1 is provided by Zhao et al. (2018a, b). The version of AM4.1 with full interactive chemistry used in 

this work is described by Schnell et al. (2018). In its standard form, this model setup consists of a cubed sphere finite-volume 780 

dynamical core with a horizontal resolution of ~100 km with 49 vertical levels extending from the surface up to ~80 km. The 

model’s lowermost level is approximately 30 m thick. The chemistry and aerosol physics in this model have been updated 

from the previous version (GFDL-AM3; Naik et al., 2013), as described by Mao et al. (2013a, b) and Paulot et al. (2016). 

There are a total of 102 advected gas tracers and 18 aerosol tracers, 44 photolysis reactions, and 205 kinetic gas-phase reactions 

included in the chemical mechanism in this version of AM4.1 to represent tropospheric and stratospheric chemistry. 785 

The standard AM4.1 configuration uses global annual-mean methane concentrations as a lower boundary condition to simulate 

the atmospheric distribution of methane. Although the model simulates reasonable global-mean methane abundances, large 

biases exist in the simulated latitudinal distribution and seasonal cycle. This modeling framework also does not allow for the 

full characterization of the drivers of methane trends and variability. To overcome this issue, we updated AM4.1 to be driven 

by methane emissions. Table 1 provides information on the methane emission datasets used in this work. Surface emissions 790 

from anthropogenic sources - including agriculture (AGR), energy production (ENE), industry (IND), road transportation 

(TRA), residential, commercial, and other sectors (RCO), waste (WST), and international shipping (SHP)- are from the 

Community Emissions Data System (CEDS, version 2017-05-18, Hoesly et al., 2018) developed in support of the Coupled 

Model Intercomparison Project Phase 6 (CMIP6) for 1980-2014. Emissions for 2015-2017 are from a middle-of-the-road 

scenario of Shared Socioeconomic Pathways targeting a forcing level of 4.5 W m-2 (SSP2-4.5), developed in support of the 795 

ScenarioMIP experiment within CMIP6 (Gidden et al., 2018). Biomass burning (BMB) emissions are from van Marle et al. 

(2017) for 1980-2014 and from SSP2-4.5 for 2015-2017, and are vertically distributed over seven ecosystem-dependent 

altitude levels between the surface and 6 km above the surface, following the methodology of Dentener et al. (2006). 

Anthropogenic and biomass burning emissions are represented by monthly gridded emissions including seasonal and 

interannual variability. Natural emissions include wetland (WET) emissions from the WetCHARTs version 1.0 inventory 800 

(Bloom et al., 2017), ocean (OCN) emissions from Brasseur et al. (1998) with near-shore methane fluxes from Lambert and 

Schmidt (1993) and Patra et al. (2011), termites (TMI) from Fung et al. (1991), and mud volcanoes (VOL) from Etiope and 

Milkov (2004) and Patra et al. (2011). Wetland emissions and ocean emissions are climatological monthly means without 

interannual variability. The remaining natural emissions are based on a climatological annual mean (repeated every month 

without seasonal variability). Trends in the total emissions and emissions from major sectors over 1980 to 2017 are shown in 805 

Figure 1. Trends in total emissions are primarily driven by trends in ENE, AGR, and WST emissions. , while DespiteAlthough 

wetlands are the dominant driver of emissions could contribute a lot to the interannual variability ofin methane emissions 
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(Bousquet et al., 2006[VN1]; Kirschke et al., 2013), due to the climatological wetland emissions used in this work, the 

interannual variability in our of methane emissions dataset is primarily driven by BMB emissions because we use 

climatological mean wetland emissionsin the initial methane inventories.contribute to interannual variability.  Anthropogenic 810 

and biomass burning emissions of other short-lived species also follow CEDS and SSP2-4.5 inventories. Natural emissions of 

other short-lived species are from Naik et al. (2013). Biogenic isoprene emissions are calculated interactively following 

Guenther et al. (2006). 

The methane sinks considered in AM4.1 include oxidation by OH radicals, Cl, and O(1D), and dry deposition. Since tThe 

model does not represent tropospheric halogen chemistry, it does not consider removal of methane by Cl in the troposphere, a 815 

sink that remains poorly constrainedwhich has been shown to be extremely minor (Hossaini et al., 2016[VN2]; Gromov et al., 

2018; Wang et al., 2019[VN3]). The dry deposition flux of methane is calculated estimated based on a monthly climatology of 

deposition velocities (Horowitz et al, 2003) calculated by a resistance-in-series scheme (Wesely, 1989; Hess et al., 2000) and 

used to mimic methane loss by soil uptake, which accounts for about 5% of the total methane sink (Kirschke et al., 2013; 

Saunois et al., 2016).  820 

In this work, we included 12 additional methane tracers tagged by source sector to attribute methane from agriculture 

(CH4AGR), energy (CH4ENE), industry (CH4IND), transportation (CH4TRA), residents (CH4RCO), waste (CH4WST), 

shipping (CH4SHP), biomass burning (CH4BMB), ocean (CH4OCN), wetland (CH4WET), termites (CH4TMI), and mud 

volcanoes (CH4VOL). The tracers are emitted from corresponding sources, and undergo the same chemical pathways and 

dynamics as the full CH4 tracer. For analysis, we combine CH4IND, CH4TRA, CH4RCO, and CH4SHP as other 825 

anthropogenic tracers (i.e., CH4OAT), and combine CH4OCN, CH4TMI, and CH4VOL as other natural tracers (i.e., 

CH4ONA). 

Initially the model was spun up in a 50-year run with repetitive 1979 emissions until stable atmospheric burdens of methane 

and tagged tracers were obtained. After the spin-up, several sets of simulations were conducted for 1980-2017 to quantify the 

methane budget and investigate the impacts of changes in methane sources and sinks on methane abundance (see Section 2.23). 830 

All model simulations are forced with interannually-varying sea surface temperatures and sea ice from Taylor et al. (2000), 

prepared in support of the CMIP6 Atmospheric Model Intercomparison Project (AMIP) simulations. Horizontal winds are 

nudged to the National Centers for Environmental Prediction (NCEP) reanalysis (Kalnay et al., 1996) using a pressure-

dependent nudging technique (Lin et al., 2012). 

2.2 Observations 835 

We evaluate the simulated methane dry-air mole fraction (DMF) against a suite of ground-based and aircraft observations to 

thoroughly evaluate the model simulated spatial and temporal distribution of methane. To evaluate surface CH4, we use 

measurements from a globally distributed network of air sampling sites maintained by the Global Monitoring Division (GMD) 

of the Earth System Research Laboratory at the National Oceanic and Atmospheric Administration (NOAA) (Dlugokencky et 

al., 2018). The global estimates derived from surface measurements are based on a number of sites at remote marine sea level 840 
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locations with well-mixed marine boundary layer (MBL) to represent background methane. The locations of MBL sites are 

shown in Figure S1 and the information for each MBL site is listed in Table S1 in the Supplement. A function fit consisting 

of yearly harmonics and a polynomial trend, with fast fourier transform and low pass filtering of the residuals are applied to 

the monthly mean methane DMF to approximate the long-term trend and average seasonal cycle at each MBL site (Thoning 

et al., 1989; Thoning, 2019). We divide the sine (latitude) at 0.05 interval[VN4]s and calculate methane DMF at each latitude 845 

band based on the selected sites within that latitude band. A meridional curve (Tans et al., 1989) was fitted through these band 

values to get the latitudinal distribution of methane. The same sampling and processing approach (Thoning et al., 1989; Tans 

et al., 1989) is applied to the simulated monthly mean methane DMF to calculate global and zonal averages to facilitate 

consistent model-observation comparison. Besides the comparison with global estimates from MBL sites, we also evaluate the 

model performance at variousindividual GMD sites to investigate regional emission representations. For site specific 850 

evaluation, we sample the model grid cell at the location of the corresponding site and at the model layer with height closest 

to the altitude of the corresponding site. 

To investigate background tropospheric methane variability, we compare the simulated vertical profiles with aircraft 

measurements from the High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-

Pole observation (HIPPO) campaigns from January 2009 to September 2011 (Wofsy et al., 2012). A total of 787 profiles were 855 

flown during the 5 campaigns with continuous profiling between approximately 150 m and 8500 m altitudes, but also including 

many profiles up to 14 km altitude. For each HIPPO mission, we spatially sample the model consistent with the observations 

and average the model for the months of the campaign to create climatological monthly means. 

2.2 3 Simulation design 

We conduct several sets of hindcast simulations for 1980-2017, as listed in Table 2, to quantify the methane budget and 860 

investigate the contributions of sources and sinks to the trend and variability of methane. The model simulation using the initial 

methane emissions inventory (Einit) described in Section 2.1 was found to largely underestimate the methane burdenDMF by 

126 ppb (see Figures S2 and S3 in the Supplement). Assuming that this mismatch is due to a bias in the simulated methane 

budget, we can either increase methane sources or decrease methane sinks to match the observations. We perform several 

optimization simulations that explore the sensitivity of methane to uncertainties in emissions of methane and levels of OH, the 865 

dominant sink for methane. Because OH trends and variability depend on a number of factors, including temperature, water 

vapor, O3, and emissions of nitrogen oxide (NOx), carbon monoxide (CO), and volatile organic compounds (VOCs), it is not 

straightforward to perturb OH. Previous work has shown that interannual variability of global OH is highly correlated with 

NOx from lightning (Fiore et al., 2006; Murray et al., 2013). Therefore, we apply a scaling factors to lightning NOx (LNOx) 

emissions to indirectly adjust OH levels without influencing its variability. The LNOx emissions are calculated interactively 870 

based on Horowitz et al. (2003) as a function of subgrid convection parameterized in the model. The climatological global 

mean LNOx emission simulated by standard AM4.1 is about 3.6 TgN yr-1, within the range of 2-8 TgN yr-1 estimated by 
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previous studies (e.g., Schumann and Huntrieser, 2007). We lateradditionally apply scaling factors (e.g., 0.5 and 2.0) to LNOx 

emissions to be at lower and upper limits of the estimated range for sensitivity simulations described below. 

Here, we test the sensitivity of simulated methane to three assumptions: 1) standard OH levels simulated by AM4.1 (referred 875 

as “S0”); 2) low OH levels via applying a scaling factor of 0.5 to the default LNOx emission calculations (referred as “S1”); 

3) high OH levels via applying a factor of 2 to the default LNOx emission calculation (referred as “S2”). For each OH option, 

we begin with initial methane emissions and then optimize global total emissions as described below to match simulated 

methane with surface observations. Different OH levels could lead to different estimations of the optimized total emissions, 

which provides a measure of uncertainties in our optimized total methane emissions.  880 

The estimations of optimized emissions are based on the comparisons of simulated surface methane with NOAA-GMD 

MBLsurface observations. We apply a simple mass balance approach to optimize global total methane emissions, following 

the methodology of Ghosh et al. (2015). We calculate an increment ΔE by which global emissions need to be modified for 

each year. Unlike inverse modeling studies such as (Houweling et al., 2017), we do not optimize emissions for each grid cell. 

Instead, we uniformly scale emissions for particular sectors (as described below) globally for each year by the rate of the 885 

optimized emission total (Eopt = Einit + ΔE) to the initial emissions (Einit). We assume that the spatial distribution of methane 

emissions from the initial emission inventories are the best available information we have. Considering the large uncertainties 

in the anthropogenic and wetland emissions, we perform two simulations in which we achieve the optimized emission totals 

by scaling either anthropogenic and biomass burning sources, including biomass burning sector only (referred to as “Aopt”) 

or the wetland sector only (referred to as “Wopt”) for the standard (S0) LNOx scenario. The purpose of conducting these 890 

simulations is to investigate the impact of optimizing emissions from different sectors on methane predictions. For the Aopt 

case, eight anthropogenic sectors (i.e., AGR, ENE, IND, TRA, RCO, WST, SHP, and BMB) are uniformly scaled by the ratio 

of ΔE to total anthropogenic emissions, keeping the fractions of individual sources unchanged. For the Wopt case, wetland 

emissions are rescaled to increase this source by ΔE. For S1 and S2 scenarios, we apply ΔE to wetland sector only. The total 

Eopt emissions are the same for both Aopt and Wopt cases. Time series of methane optimized total emissions and emissions 895 

from major sectors from S0Aopt and S0Wopt over the 1980 to 2017 period are shown in Figure S2 1in the Supplement. 

Based on evidence from δ13CH4, recent studies suggest increasing wetland emissions may be responsible for the renewed 

growth of methane (Dlugokencky et al., 2009; Nisbet et al., 2016). We perform two additional sensitivity simulations to test 

the possibility of wetland emissions driving the renewed methane growth during 2006-2014. One simulation is driven by the 

emissions with repeating 2006 S0Aopt anthropogenic and biomass burning emissions for 2006-2014 but adjusting wetland 900 

emissions to ensure that the total methane emissions are the same as in S0Wopt (or S0Aopt), which would imply that the 

increases in methane emissions are only due to the increases in wetland emissions. This sensitivity simulation is referred to as 

“S0A06”. Another sensitivity simulation is driven by the emissions combined ofa combination of emissions for S0Aopt and 

S0Wopt as follows: S0Aopt emissions for 1980-2005 and S0Wopt emissions for 2006-2014. This simulation is referred to as 

“S0Comb”.  905 
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2.3 Observations 

We evaluate the simulated methane dry-air mole fraction (DMF) against a suite of ground-based and aircraft observations and 

satellite retrievals of column-averaged CH4 to thoroughly evaluate the model simulated spatial and temporal distribution of 

methane. To evaluate surface CH4, we use measurements from a globally distributed network of air sampling sites maintained 

by the Global Monitoring Division (GMD) of the Earth System Research Laboratory at the National Oceanic and Atmospheric 910 

Administration (NOAA) (Dlugokencky et al., 2018). The global estimates derived from surface measurements are based on a 

number of sites at remote marine sea level locations with well-mixed marine boundary layer (MBL) to represent background 

methane. The locations of MBL sites are shown in Figure S1 and the information for each MBL site is listed in Table S1 in 

the Supplement. A function fit consisting of yearly harmonics and a polynomial trend, with fast fourier transform and low pass 

filtering of the residuals are applied to the monthly mean methane DMF to approximate the long-term trend and average 915 

seasonal cycle at each MBL site (Thoning et al., 1989; Thoning, 2019). A meridional curve (Tans et al., 1989) was fitted 

through these site values to get the latitudinal distribution of methane. The same sampling and processing approach (Thoning 

et al., 1989; Tans et al., 1989) is applied to the simulated monthly mean methane DMF to calculate global and zonal averages 

to facilitate consistent model-observation comparison. Besides the comparison with global estimates from MBL sites, we also 

evaluate the model performance at various GMD sites to investigate the contributions from local sources. For site specific 920 

evaluation, we sample the model grid cell at the location of the corresponding site and at the model layer with height closest 

to the altitude of the corresponding site. 

Due to the sparseness of the ground-based observational sites, especially over continental regions, we also evaluate simulated 

methane against satellite retrievals to reveal information on regional characteristics. Total column-averaged methane DMFs 

are evaluated against satellite retrievals from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography 925 

(SCIAMACHY) instrument on board the European Space Agency’s environmental research satellite ENVISAT (Frankenberg 

et al., 2011) for January 2003 to April 2012 and the Thermal And Near Infrared Sensor for carbon Observations – Fourier 

Transform Spectrometer (TANSO-FTS) instrument onboard the Japanese Greenhouse gases Observing SATellite (GOSAT) 

(Kuze et al., 2016) for April 2009 to December 2016. We compare monthly mean satellite retrievals with simulated monthly 

mean methane. Retrieval-specific averaging kernels are also applied to simulated monthly mean methane to calculate simulated 930 

column-averaged methane DMF.  

To investigate background tropospheric methane variability, we compare the simulated vertical profiles with aircraft 

measurements from the High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-

Pole observation (HIPPO) campaigns from January 2009 to September 2011 (Wofsy et al., 2012). A total of 787 profiles were 

flown during the 5 campaigns with continuous profiling between approximately 150 m and 8500 m altitudes, but also including 935 

many profiles up to 14 km altitude. For each HIPPO mission, we spatially sample the model consistent with the observations 

and average the model for the months of the campaign to create climatological monthly means. 
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3 Results and discussions 

3.1 ObservationsModel evaluation 

The detailed model evaluation for S0Aopt and S0Wopt are discussed below. We first evaluate the mean climatological spatial 940 

distribution and seasonal variability simulated by the model and then evaluate the trends and variability.  

3.1.1 Climatological evaluation 

Figure 2 shows the model bias and correlation coefficient of simulated climatological mean surface methane DMF against 

NOAA GMD surface observations (Dlugokencky et al., 2018) for the 1983-2017. The mean seasonal cycle at individual GMD 

sites is shown in Figure S3 S4 in the Supplement. GMD sites with at least 20 years of observational records are selected for 945 

model climatological evaluation. The information of these sites is shown in Table S2 in the Supplement. As shown in Figure 

2a, simulations with optimization of either anthropogenic (S0Aopt) or wetland (S0Wopt) emissions are generally able to 

reproduce surface methane DMF with model biases within ±30 ppb at most sites. Both S0Wopt and S0Aopt simulate methane 

DMF relatively well over the Southern Hemisphere. Going from south to north, the low bias in methane DMF decreases and 

becomes a high bias over the tropics. Simulated methane in both S0Aopt and S0Wopt are moderately high biased over the 950 

tropical Pacific Ocean (by up to ~ 40 ppb), indicating possible overestimation of methane emissions over the tropics and 

possible underestimations in tropical OH levels. Large positive biases occur at Key Biscayne (KEY, 25.7 N, 80.2 W) and Mace 

Head (MHD, 53.3 N, 9.9 W) for both S0Wopt and S0Aopt, likely due to a model sampling bias, with model grid box 

overlapping land while samples are collected with onshore winds. Over middle and high latitudes of Northern Hemisphere, 

the simulated surface methane DMF shows low and high biases at individual sites, possibly due in part to uncertainties in the 955 

local emissions. As shown in Figure 2b, both S0Aopt and S0Wopt are able to capture the methane seasonal cycle at most sites 

(with a correlation coefficient (R) larger than 0.5 for about 80% of sites). Both S0Aopt and S0Wopt are able to reproduce the 

methane seasonal cycle over the Southern Hemisphere. However, both S0Aopt and S0Wopt show poor performance in the 

seasonal cycle over the Southern tropical Pacific Ocean, with R < 0.5 (e.g., POCS10 and POCS15 in Figure S3 S4 in the 

Supplement), but show good performance in the seasonal cycle over the Northern tropical Pacific Ocean, with R = 0.9 (e.g., 960 

POCN05, POCN10, and POCN15 in Figure S3 S4 in the Supplement). Poor performance also exists at a few sites in middle 

and high northern latitudes (e.g., AZR, UUM, LEF, MHD, and ICE shown in Figure S3 S4 in the supplementSupplement), 

mainly due to overestimates of methane during summer. The major differences in simulated methane seasonal cycles between 

S0Aopt and S0Wopt occur over Northern Hemisphere, with slightly better performance by S0Wopt over Pacific Ocean and 

by S0Aopt over continental sites (e.g., UUM, WLG, UTA, and NWR). Uncertainties in the seasonality of methane emissions, 965 

OH abundances, and long-range transport could lead to biases in the seasonal cycle. In general, both S0Aopt and S0Wopt are 

able to capture the methane latitudinal gradient (e.g., R = 0.9). This suggests that the spatial distribution of methane in 

emissions is reasonable on the large scale despite uncertainties in representing local sources.  



25 
 

To investigate background tropospheric methane variability, Figure 3 shows the bias in the simulated vertical distribution of 

methane with respect to HIPPO observations for the S0Aopt and S0Wopt simulations. S0Aopt and S0Wopt simulations 970 

produce very similar methane profiles. Both S0Aopt and S0Wopt match observed methane profiles very well over Southern 

Hemisphere. Compared to HIPPO measurements, methane in both simulations is consistently high over the tropical Pacific 

Ocean (by up to ~ 50 ppb) from the surface to 700 mb during all HIPPO campaigns. These biases decrease with altitude and 

decrease with latitude except for summer. In the Northern Hemisphere, both S0Wopt and S0Aopt simulations capture the 

observed methane from near the surface to 700 mb, but are generally biased low, except in summer when they are biased high, 975 

especially at mid-latitudes. Mid-latitude background methane is affected by both high-latitude and low-latitude air masses on 

synoptic scales. Biases over these regions could result from many processes (e.g., overestimation of the summer emissions, 

insufficient OH levels, and model transport). In general, the relative differences between the simulated methane profiles and 

HIPPO measurements are within 2% over most regions, demonstrating the capability of the improved GFDL-AM4.1 for 

simulating tropospheric methane. 980 

3.1.2 Trend evaluation 

As described in Section 2.32, we applied a function fit consisting of yearly harmonics and a polynomial trend, with fast fourier 

transform and low pass filtering of the residuals to the monthly mean methane DMF (Thoning et al., 1989; Thoning, 2019) to 

estimate the long-term trend and growth rates discussed below. The comparisons of simulated global mean background surface 

methane trends and growth rates to NOAA-GMD observations are shown in Figures 4 and 54. Both S0Wopt and S0Aopt 985 

predict similar global mean surface methane DMF, trend, and growth rates, since the global methane budget (emissions and 

sinks) is the same in the two simulations. S0Wopt and S0Aopt are also able to reproduce the global annual mean surface 

methane DMF (with root-mean-square-error (RMSE) = 8.310.4 ppb in S0Wopt and 11.68.9 ppb in S0Aopt) over 1983-2017, 

which is expected from emission  and optimization. Meanwhile, both simulations are able to capture the methane trend very 

well (with R = 1.0 in both S0Wopt and S0Aopt) over different latitude bands as shown in Figure 4., especially over the Southern 990 

Hemisphere. In general, the RMSE for S0Wopt is lower than that for S0Aopt, except over the southern tropics. The major 

discrepancies in the surface methane DMF between model simulations and observations are mainly over the low northern 

latitudes,  (0-30o N), especially the tropics (Figure 4d), where the RMSE is greater than 20 ppb. Over the high northern latitudes, 

both S0Aopt and S0Wopt reproduce overestimates background methane DMF very well with RMSE less than 10 by about 20-

30 ppb during 1984-1998, whereas S0Wopt performs better over this period. After 1998, S0Aopt reproduces the maximum 995 

methane DMF very well, while S0Wopt slightly underestimates methane DMF by up to 10 ppb. Over the high southern 

latitudes, both S0Aopt and S0Wopt underestimate background methane DMF by up to 35 ppb in the 1980s, which could be 

due in part to the fewer observational sites in the Southern Hemisphere used for emission optimization during this time period. 

In general, tThe agreement between the simulated and observed global methane trends increases our confidence in the 

optimized methane emission trends used in this work. 1000 
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As shown in Figure 5, both simulations are in general able to reproduce the observed global methane growth rate (with R = 

0.8 in both S0Wopt and S0Aopt), despite a slight mismatch (~1-year) during 1997-2007. Table 3 summarizes methane growth 

rates during 1984-1991, 1992-1998, 1999-2006, and 2007-2017. S0Aopt and S0Wopt simulate very similar methane growth 

rates as their emission totals are the same. During 1984-1991, both S0Aopt and S0Wopt slightly overestimate methane growth 

rates by ~ 2 ppb yr-1, possibly due to fewer available observations used for emission optimization during this time period than 1005 

afterwards. After 1991, the simulated methane growth rates are in general comparable to the observations (with annual mean 

difference within ±1 ppb yr-1). Global methane simulated by S0Aopt shows rapid growth during 1984-1991 (13.5±2.1 ppb yr-

1, annual mean ± standard deviation), slower growth during 1992-1998 (4.8±2.6 ppb yr-1), a relative stabilization during 1999-

2006 (1.2±4.7 ppb yr-1), and renewed growth during 2007-2017 (6.1±2.8 ppb yr-1). The simulated global methane growth rates 

by S0Wopt show similar trends (13.5±2.1 ppb yr-1 during 1984-1991, 4.7±3.3 ppb yr-1 during 1992-1998, 1.3±4.8 ppb yr-1 1010 

during 1999-2006, and 6.1±2.8 ppb yr-1 during 2007-2017). The simulated growth rates during 1984-1991 are slightly higher 

than the NOAA-GMD estimates (11.6±1.3 ppb yr-1), while the simulated growth rates during 1992-1998, 1999-2006, and 

2007-2017 are within the ranges of NOAA-GMD estimates (5.6±3.5 ppb yr-1, 0.7±3.1 ppb yr-1, 6.9±2.6 ppb yr-1, respectively). 

The major discrepancies in the simulated methane growth rates and observations occur over the tropics and high northern 

latitudes as shown in Figure 4. Over the tropics, both S0Aopt and S0Wopt overestimate methane growth rates (by about 5-10 1015 

ppb yr-1) during 1984-1990 when there were limited observations available, but are able to reproduce methane growth rates 

relatively well afterwards. Agreement of the methane growth rate is worse in the Northern Hemisphere than in the Southern 

Hemisphere, especially at the high northern latitudes, where R is smaller than 0.5. Over 30-90oN, , mainly due to the large bias 

during 1984-1988 and a slight shift in peak growth (or peak decrease) during 1997-2005. The number of observational MBL 

sites does not cover the globalglobe reasonably well, especially in the 1980s, which could have different impacts on the 1020 

Northern and Southern Hemisphere when optimizing global total emissions. In general, S0Aopt estimates slightly better 

methane growth rates than S0Wopt, especially over 30-90o N. The biases in methane growth rates also suggest a need to refine 

regional emissions.  

neither S0Aopt nor S0Wopt is able to reproduce methane growth rates during 1984-1989 and there is a slight mismatch (~1-2 

years) in methane growth rates afterwards. These biases indicate larger uncertainties in the methane emissions at high Northern 1025 

Hemisphere than in other regions. 

S0Aopt and S0Wopt simulate very similar surface methane DMF and their cComparisons of simulated surface methane DMF 

to with NOAA-GMD observations at individual sites are show both simulations to be biased low over Southern Hemisphere 

sites, but the low bias decreases northward (shown in Figure S4 S5 in the supplementSupplement). S0Aopt and S0Wopt 

simulated very similar methane DMF. Both simulations tend to be biased low over Southern Hemisphere sites, but the low 1030 

bias decreases northward. The simulations are moderately high biased (with RMSEs up to ~ 40 ppb) over tropical regions (e.g., 

POCS15, POCS10, SMO, POCS05, POCN00, CHR, and POCN05). These sites are mainly remote sites and surface methane 

DMF represents background methane levels. The overestimations are likely due to an overestimation in the emissions over 

Southeast Asia (e.g., Saeki and Patra, 2017, Patra et al., 2016, and Thompson et al., 2015), which could affect these remote 
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sites through transport. However, the model predicts surface methane DMF relatively well at Ascension Island (ASC, 8oS, 1035 

14.4oW, 85 m), which is also a remote site without impacts from East Asia. The high biases over tropics suggest a need to 

improve regional emissions (e.g., Southeast Asia). The ASC is at higher altitude than other remote sites. This indicates that 

the model tends to overestimate background methane DMF at the surface, but is able to capture background methane at higher 

levels. Moderate overestimates also occur at Mahe Island (SEY, 4.7oS, 55.5oE), a location that could be affected by airmasses 

from polluted areas over the tropics and Northern Hemisphere. Over middle and high latitude Northern Hemisphere, both 1040 

S0Aopt and S0Wopt simulate surface methane DMF relatively well at most sites, except at Key Biscayne (KEY, 25.7oN, 

80.2oW), Tae-ahn Peninsula (TAP, 36.7oN, 126.1oW), Park Falls (LEF, 45.9oN, 113.7oW), and Mace Head (MHD, 53.3oN, 

9.9oW). KEY and MHD are remote sites and sampled under onshore winds, whereas TAP and LEF are affected by local 

sources and model transport. The high biases at these sites could be due in part to model sampling bias (e.g., model grid box 

overlapping land while samples are collected at coast with onshore winds) and uncertainties in local emissions (e.g., possible 1045 

overestimation in the emissions over East Asia). On the other hand, both S0Wopt and S0Aopt are able to capture monthly 

variations in methane at most of the sites except at LEF, where R = 0.4 for S0Wopt and 0.5 for S0Aopt, respectively. In general, 

both S0Wopt and S0Aopt are able to reproduce the surface methane DMF and capture the trend at most sites (e.g., with R 

greater than 0.5 at 98% of total sites and with RMSE less than 30 ppb at 74% of total sites). As shown in Figure S5, S0Aopt 

in general estimates better methane trends and growth over low latitudes of the Southern Hemisphere (e.g., SMO) and 1050 

middle/high latitudes of the Northern Hemisphere (e.g., ASK, KEY, WIS, UTA, NWR, UUA, LEF, CBA, STM, and ALT) 

than S0Wopt. Based on the site-level comparisons between S0Wopt and S0Aopt, the anthropogenic emissions over Southeast 

Asia are likely overestimated in both S0Aopt and S0Wopt, while they could be underestimated at WLG and NWR sites in 

S0Wopt but be reasonabley well represented in S0Aopt.  

Unlike the evaluation of global mean surface methane DMF, which is based on observations from a number of sites with well-1055 

mixed MBLs, the evaluation of global mean column-averaged methane DMF against satellite retrievals mainly covers 

continents, considering the impacts from polluted areas and the contributions from the troposphere and the stratosphere. 

Simulated monthly mean column-averaged methane DMF are compared with satellite retrievals (e.g., SCIAMACHY and 

GOSAT) in Figure 6. The averaging kernels of SCIAMACHY and GOSAT are individually applied to the model to calculate 

column-averaged methane abundances. Both simulations are able to capture the monthly variation of methane with R greater 1060 

than 0.9, but underestimate column-averaged methane, with RMSE of about 21 ppb and 29 ppb when compared to 

SCIAMACHY and GOSAT retrievals, respectively. The biases increase poleward in both SCIAMACHY and GOSAT 

comparisons; large uncertainty exists in the satellite retrievals over high latitudes (e.g., > 70o) due to large solar zenith angles 

and potential high cloud cover. The underestimates are mainly due to biases in the middle/upper troposphere and stratosphere 

(as shown in Figure 3). The differences in the column-averaged methane abundances between satellite retrievals and model 1065 

simulations are mostly within 2% except in polar regions where there are large uncertainties in the satellite retrievals. Both 

simulations are also able to capture the latitudinal distribution of the column-averaged methane DMF with R close to 1. 
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3.2 Global methane budget 

Figure 7 5 shows time series of optimized total emissions, global sink, and global burden of methane based on S0Wopt. 

Since global totals in S0Aopt and S0Wopt simulations are very close to each other, we only show the budget for S0Wopt. As 1070 

depicted in Figure 75, the simulated global methane burden steadily increases from 1980 to 1992, with a growth rate of 39 

Tg yr-1. During 1993-1998, the global methane burden growth slows down with a growth rate of 16 Tg yr-1. The growth rates 

simulated by the model agrees well with the observed growth rates during 1984-1997 as shown in Figure 5a. The simulated 

growth rate in global methane burden decreases to 4 Tg yr-1 during 1999-2006 while it increases to 16 Tg yr-1 during 2007-

2017 and reaches over 20 Tg yr-1 during 2014-2016. The changes in the global burdens are due to the imbalance between 1075 

methane sources and sinks. As shown in Figure 75, the optimized emissions in general increase during 1980-2017, with an 

annual mean of 576±32 Tg yr-1 (mean±standard deviation) and show much larger interannual variability during 1991-1993 

and 1997-2000. The larger interannual variabilities during 1991-1993 and 1997-2000, which areis likely due to the strong El 

Niño events during 1991-1992 and 1997-1998 as well as Mt Pinatubo eruption in 1991 (Dlugokencky et al., 1996; Bousquet 

et al., 2006b; Bândă et al., 2016).. Although there is an overall increasing trend in total global emissions, growth in annual 1080 

mean emissions has increased from the 1980s (with an annual emission growth rate of 3.9 Tg yr-1) to the 1990s (4.4 Tg yr-1), 

but decreased to 0.3 Tg yr-1 during 2000-2006, and increased again to 2.3 Tg yr-1 during 2007-2017. The estimations of 

optimized emissions are based on the comparisons of simulated surface methane with surface observations. The interannual 

variability of the optimized emissions is mainly resultedmainly results from the interannual variability of simulated OH 

levels during emission optimization. Uncertainties in the interannual variability of simulated OH levels and therefore 1085 

methane sinks could lead to uncertainties in the interannual variability of the optimized emissions. The larger interannual 

variabilities during 1991-1993 and 1997-2000 are likely due to the strong El Niño events during 1991-1992 and 1997-1998.  

Unlike methane emissions, the methane sink increases during 1980-2007, with relative stabilization during 2008-2014 but a 

resumed increase during 2015-2017. The annual mean methane sink during 1980-2017 is 560±44 Tg yr-1 (mean±standard 

deviation). The trends in methane sink are affected by the changes in both methane and OH levels (assuming that other sinks 1090 

are minor). Figure 8 6 shows the tropospheric OH anomalies with respect to 1998-2007. An interesting finding is that AM4.1 

predicts higher OH levels during 2008-2014 than 1998-2007 by 3.1%, whereas recent previous studies applying multispecies 

inversion with a box-model framework (e.g., Rigby et al., 2017; Turner et al., 2017) suggest a decline in OH levels after 2007. 

However, a recent study by Naus et al. (20182019) found a shift to positive OH trend over 1994-2015 after applying bias 

corrections based on a 3-D CTM chemical transport model to a similar box model setup. In addition, OH levels simulated by 1095 

AM4.1 decrease from 2013 to 2015 but increase again afterwards, leading to an increase in methane sinks during 2015-2017. 

As shown in Figure 75, higher methane sources than sinks during 1980-1998 lead to an increase in methane burden. A relative 

balance between methane sources and sinks during 1999-2006 leads to the methane stabilization. Compared to 1999-2006, 

both methane sources and sinks are higher during 2007-2017, but methane sources outweigh sinks after 2007 leading to 

renewed methane growth.  1100 
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Table 3 4 provides a summary of decadal mean methane budget for 1980-2017. Compared to Kirschke et al. (2013) and Saunois 

et al. (20162019), the total natural sources from the initial emission inventories (203 Tg yr-1) are at the lower range of top-

down estimates during this period, except for the 1990s, when they are slightly higher than top-down estimates but still much 

lower than the bottom-up estimates. This mainly results from wetland emissions in the initial emission inventories that are 

slightly higher than top-down estimates but much lower than bottom-up estimates during 1990s. Since there is no observational 1105 

constraint on bottom-up estimates, the total natural emissions are simply summed over independent individual sources, which 

could be overestimated in the bottom-up approach considering the uncertainties in each individual source. In addition, in the 

bottom-up estimate from Kirschke et al. (2013) and Saunois et al. (2019), some other natural sources, such as freshwater, are 

not included in the initial emission inventories in this work; however, they are likely double counted in the bottom-up estimates. 

The natural sources estimated in this work (e.g., 203-297 Tg yr-1) are much comparable to previous top-down estimates (e.g., 1110 

150-273 Tg yr-1), [VN5]which demonstrates the confidence in the natural source estimates.  

The total anthropogenic sources from the initial emission inventories are overall within the range of top-down or bottom-up 

estimates, except for 1980-1989, when they are lower than the estimates in Kirschke et al. (2013) and Saunois et al. (2016). 

The low values in the 1980s result mainly from low estimated sources from agriculture and waste sectors in the CEDS 

inventory. With the optimized global total emissions, the total sources used in this work and the total sinks estimated by AM4.1 1115 

are either in the range of top-down or bottom-up estimates by previous studies. As a result, the imbalance between total sources 

and total sinks estimated in this work are overall within the range of estimates by previous studies although we find a smaller 

imbalance than previous estimates for the 2000s and afterwards. The atmospheric growth rates simulated by the model 

(sampled identically as for observations) are also comparable to the observed atmospheric growth rates. 

3.3 Source tagged tracersSensitivity to sector optimization 1120 

3.3.1 Spatial distribution 

As described in Section 2.2, the emission optimization is conducted for anthropogenic sectors (i.e., S0Aopt) and wetland sector 

(i.e., S0Wopt). Although global total methane emissions are the same for S0Aopt and S0Wopt, they have different allocations 

for anthropogenic and wetland sectors and different spatial distributions as well. Here we analyze the sensitivity of sector 

optimization on the spatial distribution of simulated methane concentrations. Figures 9 and 10 show the spatial distributions 1125 

of the differences in the methane emissions and surface methane abundance between S0Aopt and S0Wopt during the four 

periods (i.e., 1980-1989, 1990-1999, 2000-2006, and 2007-2017). Surface methane is always lower in Aopt than Wopt in the 

tropics (e.g., 15o S-10o N) during the four periods. This is mainly due to much lower wetland emissions in S0Aopt than in 

S0Wopt (Figure 10), which dominates total emissions over these regions (e.g., tropical South America and Central Africa). 

There is not much difference in surface methane over low and high southern latitudes (e.g., 15-90o S) between the two 1130 

simulations. This agreement is mainly because larger anthropogenic emissions in S0Aopt compensate smaller wetland 

emissions, producing only small differences in the total emissions, within 0.1 Tg yr-1 (Figure 10). Unlike the Southern 
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Hemisphere, surface methane concentrations are in general higher in S0Aopt than S0Wopt in the Northern Hemisphere, 

especially over the Eastern U.S. and Eurasia, due to much higher anthropogenic emissions in S0Aopt. The lower surface 

methane values in S0Aopt over northern Canada are due to much lower wetland emissions in S0Aopt.  1135 

Figure 11 shows the methane growth rates simulated by Aopt and Wopt during the four time periods. Global mean methane 

growth rates simulated by Aopt and Wopt are very consistent during the four periods, with growth rates decreasing from 1980s 

to 1990s, stabilizing during 2000-2006, and increasing after 2007. During the 1980s and 1990s, methane growth rates in both 

S0Aopt and S0Wopt increase over most of the globe except a decrease over Russia, due to significant decreases in 

anthropogenic emissions (mainly from the energy sector) in the former Soviet Union, consistent with previous studies 1140 

(Dlugokencky et al., 2011). During 2000-2006, methane growth rates increase significantly over East Asia in both S0Aopt and 

S0Wopt while they decrease over tropical South America and Central Africa in S0Wopt but not in Aopt. This is mainly due 

to decreases in wetland emissions in the S0Wopt case, while wetland emissions are constant for each year in Aopt case. After 

2007, both Aopt and Wopt suggest large increases in methane growth rates over East Asia (mainly due to increases in 

anthropogenic emissions) by up to ~38 ppb yr-1 with smaller increases elsewhere (< 7 ppb yr-1), with noticeable increases also 1145 

over the Arctic ( > 7 ppb yr-1). The relatively large methane growth over the Arctic is mainly due to increases in anthropogenic 

methane from lower latitudes. 

As discussed in Sections 3.1 and 3.2, the similarity in S0Aopt and S0Wopt simulation results suggests that for 3-dimensional 

chemistry transport models, reasonable estimates of total global methane emissions are critical for global methane predictions, 

despite the uncertainties in the spatial distribution of the emissions and in the estimates of individual sources, which are more 1150 

important for regional methane predictions. At the same time, accurate estimates of individual sources are necessary to attribute 

the methane trend and variability into individual sources. 

3.3.2 Source tagged tracers 

In this section, we apply Mann-Kendall (M-K) test to estimate the linear trend (different from long-term trend discussed in 

Section 3.1.2) of global mean source tagged tracers and total methane for 1983-1998, 1999-2006, and 2007-2017 to investigate 1155 

possible drivers in total methane trends. Figure 12 compares the trends of source tagged tracers and total methane from S0Aopt 

and S0Wopt during 1983-1998, 1999-2006, and 2007-2017. As shown in Figure 12, both S0Aopt and S0Wopt are in general 

able to capture the methane trends during different time periods. For S0Aopt, globally, total methane shows an increasing trend 

of 10.5 ppb yr-1 during 1983-1998, slightly greater than observations (8.8 ppb yr-1), but correlated very well with the 

observations (R = 1.0). The tagged anthropogenic tracers all show increasing trends during 1983-1998 despite the increases in 1160 

OH levels, with larger increasing trends by AGR (3.6 ppb yr-1) and WST (3.6 ppb yr-1) consistent with emission trends. Major 

anthropogenic tracers (e.g., CH4AGR, CH4ENE, and CH4WST) correlate very well with total methane, with R varying 

between 0.9 to 1.0 over this time period. Since wetland emissions and other natural emissions are constant every year in 

S0Aopt, with the increases in OH levels during 1983-1998, both CH4WET and CH4ONA decrease by -0.5 ppb yr-1 and -0.1 

ppb yr-1, respectively, over this period. During 1999-2006, total methane has a small increasing trend of 1.3 ppb yr-1, still 1165 
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slightly greater than observations (0.6 ppb yr-1), but correlated relatively well with the observations (R = 0.8). During this time 

period, there are increasing trends in CH4ENE (2.6 ppb yr-1) and CH4WST (2.3 ppb yr-1) with slightly decreasing trends in 

CH4AGR (-0.1 ppb yr-1), CH4BMB (-0.9 ppb yr-1) and CH4OAT (-0.5 ppb yr-1). Anthropogenic tracers such as CH4ENE and 

CH4WST correlate well with total methane, whereas CH4AGR shows a poor correlation with total methane, and CH4BMB 

and CH4OAT show an anticorrelation with total methane over this time period. Similarly, with the increases in OH levels 1170 

during 1999-2006, both CH4WET and CH4ONA decrease, with a linear decreasing trend of -1.8 ppb yr-1 and -0.4 ppb yr-1. 

During 2007-2017, total methane shows a renewed increasing trend of 5.3 ppb yr-1, slightly below observations (6.0 ppb yr-1) 

but correlated relatively well with the observations (R = 1.0). During this time, CH4ENE shows a large increasing trend (5.8 

ppb yr-1), dominating the total methane trend. Interestingly, although there is a slight decrease in OH levels after 2008, with 

both CH4WET and CH4ONA still show decreasing trends of -1.1 ppb yr-1 and -0.3 ppb yr-1 during 2007-2017. Also, all the 1175 

natural tracers show an anticorrelation with total methane during this period. The results from S0Aopt suggest that globally, 

anthropogenic tracers dominate total methane trends during the entire simulation period. During the 1980s and 1990s, 

emissions from agriculture, energy, and waste sectors are the major contributors to the methane increase. During 1999-2006, 

where methane stabilizes, increases in methane sinks and methane sources alternatively dominate the trend for different tracers 

and therefore the imbalance between methane sinks and sources dominate the total methane trend. During 2007-2017, the 1180 

energy sector is the major contributor to the methane renewed growth. 

The source tagged tracers behave slightly different in S0Wopt. For S0Wopt, globally, total methane shows a similar increasing 

trend as S0Aopt (as discussed in section 3.1.2). The tagged anthropogenic tracers all show increasing trends during 1983-1998 

except CH4ENE (-0.3 ppb yr-1). Anthropogenic tracers (except CH4OAT) in general correlate well with total methane. 

CH4WET show a significant increasing trend during this period (7.0 ppb yr-1) and correlate relatively well with total methane. 1185 

During 1999-2006, anthropogenic tracers such as CH4ENE and CH4WST show increasing trends (1.8 ppb yr-1 and 1.9 ppb yr-

1, respectively) and correlate relatively well with total methane (R = 0.7 and 0.8, respectively), whereas all other tracers show 

decreasing trends and are anticorrelated with total methane. During this time, our wetland tracer (CH4WET) shows a slightly 

decreasing trend (-0.6 ppb yr-1), mainly due to the slightly higher CH4WET sinks (226 Tg yr-1) than sources (223 Tg yr-1). 

During 2007-2017, anthropogenic tracers such as CH4AGR, CH4ENE, and CH4WST show significant increasing trends (2.3 1190 

ppb yr-1, 6.9 ppb yr-1 , and 1.6 ppb yr-1, respectively) and correlate quite well with total methane (R = 1.0) whereas all other 

tracers except CH4OAT show decreasing trends and poor correlations with total methane. On the other hand, CH4WET shows 

a significant decreasing trend during this period (-4.6 ppb yr-1) and an anticorrelation with total methane. The decreasing trend 

of CH4WET is due to higher CH4WET sinks (217 Tg yr-1) than sources (206 Tg yr-1) during this period. During 1983-1998, 

wetland emission growth is larger than anthropogenic emission growth due to emission optimization in S0Wopt, leading to 1195 

the dominancy of wetland to drive global methane growth. During 1999-2006, when methane stabilizes, increases in methane 

emissions from energy and waste sectors dominate the increases in total methane sources as well as their tagged tracers (i.e., 

CH4ENE and CH4WST), whereas increases in methane sinks dominate all other tracers. Therefore, the imbalance between 
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total methane sinks and sources dominate the total methane trend, which is also the case in S0Aopt during this time period. 

During 2007-2017, the energy is the major contributor to the renewed methane growth similar to that in S0Aopt. 1200 

In this section, we apply Mann-Kendall (M-K) test to estimate the linear trend (different from long-term trend discussed in 

Section 3.1.2) of global mean source tagged tracers and total methane for 1983-1998, 1999-2006, and 2007-2017 to investigate 

possible drivers inof total methane trends. Figure 7 compares the trends of source tagged tracers and total methane from S0Aopt 

and S0Wopt during each time period and Table 5 summarizes the estimated linear trend for each time period along with the 

dominating tracers. For S0Aopt, total methane shows a strong increasing trend of 10.5 ppb yr-1. The tagged anthropogenic 1205 

tracers all show increasing trends during 1983-1998 despite the increases in OH levels, with dominant increasing trends by 

CH4AGR and CH4WST consistent with emission trends. Since wetland emissions and other natural emissions are kept 

constant every year in S0Aopt, with the increases in OH levels during 1983-1998, all tagged natural tracers show a weak 

decreasing trend. During 1999-2006, total methane shows a small increasing trend of 1.0 ppb yr-1, due to the increasing trends 

of CH4ENE and CH4WST compensated by the decreasing trends of other source tagged tracers. The increasing trends of 1210 

CH4ENE and CH4WST are mainly driven by the increases in the emissions in S0Aopt whereas the decreasing trends of other 

source tagged tracers are mainly determined by the increases in OH levels. During 2007-2017, total methane shows a renewed 

increasing trend of 5.3 ppb yr-1, dominated by a strong increasing trend of CH4ENE and smaller increasing trends of CH4AGR 

and CH4WST. The results from S0Aopt suggest that globally, anthropogenic tracers dominate total methane trends during the 

entire simulation period. During the 1980s and 1990s, emissions from agriculture, energy, and waste sectors are the major 1215 

contributors to the methane increase. During 1999-2006, wherewhen methane stabilizes, increases in methane sinks and 

methane sources alternatively dominate the trend for different tracers. During 2007-2017, emissions from agriculture,  energy 

and waste sectors are the major contributors to the methane renewed growth in methane, with energy sector as the largest 

contributor. 

The source tagged tracers behave slightly differently in S0Wopt. For S0Wopt, total methane shows a similar increasing trend 1220 

as S0Aopt. During 1983-1998, the tagged anthropogenic tracers all show increasing trends except CH4ENE, with overall 

smaller increasing trends than those in S0Aopt. CH4WET shows a strong increasing trend (7.0 ppb yr-1), dominating the total 

methane trend. This is mainly because wetland emission growth is larger than anthropogenic emission growth due to the 

emission optimization in S0Wopt during this period. During 1999-2006, similar to S0Aopt, total methane trend is resulted 

from the increasing trends of CH4ENE and CH4WST compensated by the decreasing trends of other source tagged tracers. 1225 

During this time period, CH4WET shows a slightly decreasing trend (-0.8 ppb yr-1), mainly due to the slightly higher CH4WET 

sinks (226 Tg yr-1) than sources (223 Tg yr-1). During 2007-2017, the total methane trend is dominated by the increasing trends 

of CH4AGR, CH4ENE, and CH4WST, with CH4ENE as the largest contributor, similar to S0Aopt. On the other hand, 

CH4WET shows a significant decreasing trend during this period, mainly due to higher CH4WET sinks (217 Tg yr-1) than 

sources (206 Tg yr-1). Compared to the S0Aopt results, S0Wopt suggest CH4WET as the largest contributor for the methane 1230 

trends during 1980s and 1990s, mainly due to the emission optimization ofn different sectors. However, both scenarios suggest 

CH4AGR, CH4WST, and CH4ENE are the major contributors to the renewed growth, with CH4ENE as the largest contributor. 
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As shown in Figures 7 5 and 86, OH levels show a slightslightly decrease and methane sinks are relatively stable during 2007-

2013, but large interannual variability exists during 2013-2017. Decreasing OH levels could lead to increases in methane 

lifetime and therefore methane build-up. Combined with increases in the emissions, methane starts to increase again during 1235 

this period. However, it is difficult to separate the contributions from methane emissions and sinks as optimized methane 

emissions are based on methane mass balance (e.g., changes in the methane loss would act as a feedback on estimates of 

optimized total emissions). HoweverNevertheless, it is clear that the decrease in OH levels alone (e.g., if emissions are kept 

constant) would not be enough to reproduce the renewed growth. The remaining question then is which emission sector(s) is 

(are) the major contributor(s) to the renewed growth over 2007 to 2017. Both S0Wopt and S0Aopt suggest that agriculture, 1240 

waste and energy sectors is the major sector contributingare the major contributors to renewed methane growth. However, 

both cases depend largely on the initial emission inventory. For example, S0Wopt relies on the emission growth of other 

sectors from the initial emission inventory, which means if the emission growth of a certain sector is overestimated or 

underestimated in the initial emission inventory, it would give a different resultlead to different results. Therefore, we 

conducted two additional sensitivity simulations (i.e., S0A06 and S0Comb as described in Section 2.3) with different emission 1245 

growths for anthropogenic and wetland sectors as in S0Aopt and S0Wopt for 2006-2014.  

Based on evidence from isotopic composition (δ13CH4), recent studies suggest increasing wetland emissions may be 

responsible for the renewed growth of methane (Dlugokencky et al., 2009; Nisbet et al., 2016). To test this hypothesis in our 

modeling framework, we conducted another sensitivity simulation for 2006-2014, by repeating 2006 anthropogenic emissions 

for all the years but adjusting wetland emissions to ensure that the total methane emissions are the same as in S0Wopt (or 1250 

S0Aopt), which would imply that the increases in methane emissions are only due to the increases in wetland emissions. This 

sensitivity simulation is referred to as “S0A06” and theThe trends for source tagged tracers and total methane by S0A06 and 

S0Comb are shown in Figure S5 in the supplement4 and Table 5. Interestingly, in S0A06, where anthropogenic and biomass 

burning emissions are kept constant every year for 2006-2014,  anthropogenic tracers still show an increasing trends during 

2007-2014, with the dominating increasing trends in by CH4ENE and CH4WST dominating (trend = 3.6 ppb yr-1 and R = 1.0), 1255 

whereas CH4WET shows a small decreasing trend (trend = -1.0 ppb yr-1 and R = -0.8) despite rising emissions. As OH levels 

slightly decrease during this time period, with constant emissions except wetland, one might expect possible increasing trends 

in all tagged tracers except CH4WET. In fact, major anthropogenic tracers such as CH4AGR, CH4ENE, CH4WST, and 

CH4BMB increase over 2007-2014 in S0A06, but at a slower rate than in S0Wopt (and S0Aopt) due to no emission growth 

for these tracers. On the other hand, the decreasing OH levels (Figure 8) would lead to less methane sink and therefore higher 1260 

methane concentrations. Since methane loss is proportional to the product of OH levels and methane concentrations and 

concentrations of CH4WET are much greater than other source tagged tracers, the loss of CH4WET is also much higher than 

other tracers. Higher CH4WET loss (224 Tg yr-1) than CH4WET sources (207 Tg yr-1) leads to a decreasing trend in CH4WET. 

Nevertheless, S0A06 results still suggest that the renewed growth during 2007-2014 is dominated by the increases of CH4ENE 

and CH4WST., which The results means suggest OH trends play an important role in determining the increasing trend of total 1265 

methane since emissions of the energy and waste sectors are kept constant in this sensitivity simulation. In addition, increases 
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in wetland emissions alone are not able to drive increases in CH4WET over this period, as CH4WET sinks are equally 

important for determining the trend in CH4WET under constant anthropogenic emissions condition. Our analysis also suggests 

that increases in other microbial sources (e.g., agriculture and waste) would be needed to match the observed negative trend 

in δ13CH4 since 2007 (Nisbet et al., 2019).  1270 

We perform an additional sensitivity simulation to test the possibility of wetland emissions driving the methane trend during 

the period of renewed methane growth by combining the emissions of S0Aopt and S0Wopt as follows: S0Aopt emissions for 

1980-2005 and S0Wopt emissions for 2006-2014. This simulation is referred to as “S0Comb”; theThe trends for source tagged 

tracers and total methane are shown in Figure S6 in the supplementbehave different in S0Comb, where we combine S0Aopt 

emissions for 1980-2005 and S0Wopt emissions for 2006-2014. For During 20072006-2014, all anthropogenic tracers show 1275 

decreasing trends except CH4ENE (2.7 8 ppb yr-1), whereas CH4WET shows a significant increasing trend (6.35.9 ppb yr-1) 

and dominates the total methane trend. This is mainly due to lower anthropogenic emissions during this period than previous 

periods, allowing sinks of anthropogenic methane tracers to start to take over their trends except for CH4ENE. At the same 

time, significantly higher wetland emissions during this period than previous periods dominate the increasing trend of 

CH4WET. Interestingly, even with the same wetland emissions in S0Wopt and S0Comb for 2006-2014, CH4WET shows 1280 

different trends. This is mainly because the CH4WET concentrations at the beginning of 2006 are much lower in S0Comb 

than in S0Wopt. Therefore, CH4WET loss is much lower in S0Comb (190 Tg yr-1) compared to S0Wopt (220 Tg yr-1) over 

this time period, leading to an increasing CH4WET trend in S0Comb, but a decreasing trend in S0Wopt. S0Comb results 

suggest the need for a significant increase in wetland emissions along with decreases in anthropogenic emissions starting in 

2006, compared to the stabilization period, for wetland emissions to drive renewed growth in methane. However, this is a less 1285 

likely scenario as both top-down and bottom-up inventories indicate anthropogenic emissions increasing over 2007-2014. A 

more likely scenario is that both anthropogenic and wetland emissions increase (i.e., higher during 2007-2014 than 1999-

2006). However, in that case, the dominance of wetland emissions in driving the total methane trend would decrease based on 

our analysis. 

3.4 Sensitivity to OH levels 1290 

As described in Section 2.23, we perform two additional simulations for low and high OH levels (i.e., S1 and S2) for 1980-

2017 to investigate the sensitivity of methane predictions to different OH levels. For both OH cases, the interannual variations 

in OH levels are the same as in S0 because the simulations are driven by the same meteorology. Figures 138(a) and (b) show 

global tropospheric OH concentrations, methane OH loss, and methane tropospheric lifetime for the three cases (i.e., S0, S1, 

and S2) in which wetland emissions are optimized (Wopt; Aopt shows a very similar global OH trend as Wopt). Compared to 1295 

S0, scaling LNOx production in the model by a factor of 0.5 leads to a reduction in simulated annual global mean OH levels 

by -6.4 % in S1 over 1980-2017; scaling by a factor of 2 leads to an increase in simulated annual global mean OH by +9.1% 

in S2 . The global mean OH levels increase from 1980 to 2008 (by 3.6%, with respect to 1980 level), with a linear rate of 

increase of 4.1´103 molecule cm-3 yr-1, a decrease from 2008 to 2015 (by 2.3%, with respect to 2008 level) with a mean rate 
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of -7.1´103 molecule cm-3 yr-1, and an increase from 2015 to 2017 (by 4.6%, with respect to 2015 level) with a mean rate of 1300 

3.2´104 molecule cm-3 yr-1. However, compared to the 1998-2007, OH levels during 2008-2015 and 2015-2017 are still higher 

by 2.5% and 1.3%, respectively. Changes in OH levels depend on a number of factors (e.g., temperature, water vapor, O3, 

NOx, CO, and VOCs). Therefore, OH is influenced by the specific chemistry and forcing data used in the model. Since emission 

optimization is also based on methane sinks, the total optimized emissions in S1 are lower than those in S0 by about 4.1% 

(with an annual mean of -23.724 Tg yr-1), and the total optimized emissions in S2 are higher than those in S0 by about 5.8% 1305 

(or 33.433 Tg yr-1). This indicates that a 1% change in OH levels could lead to about 4 Tg yr-1 difference in the optimized 

emissions. Increasing methane loss due to OH is simulated for 1980 to 2007 in the three cases due to increases in OH and 

methane concentrations (except over the stabilization period when methane was not increasing but OH was increasing). During 

2007-2013, the simulated decrease in OH levels combined with increasing methane concentrations leads to relative 

stabilization in methane OH loss in the three cases. The large interannual variability in OH levels during 2013-2017 dominates 1310 

the interannual variability in methane OH loss despite the continued increases in methane.  

All three simulations show a similar trend for tropospheric methane lifetime, with a linear decreasing trende from 1980 to 2007 

(-0.04 year yr-1 in S0, -0.05 year yr-1 in S1, and -0.03 year yr-1 in S2), a clear increasing trend during 2011-2015 (0.08 year yr-

1 in all three simulations), and a decreasing trend during 2015-2017(-0.2 year yr-1 in all three simulations). The mean 

tropospheric methane lifetime due to OH loss for 1980-2017 is 9.9±0.4 years in S0Wopt, which is about 0.5 year lower than 1315 

S1Wopt (10.4±0.5 years), and about 0.7 year higher than S2Wopt (9.2 ±0.3 years), due to different OH levels and therefore 

methane sinks, but with similar methane burdens. This indicates that a 1% change in OH levels could lead to about 0.08 year 

difference in the tropospheric methane lifetime. The mean tropospheric methane lifetimes simulated by the three simulations 

are is within the uncertainty range of observation-derived estimates for the 2000s (Prather et al., 2012) and model estimates 

(Voulgarakis et al., 2013; Naik et al., 2013). All simulations show an increase in methane lifetime during 2011-2015, which 1320 

could be a signal of the methane feedback on its lifetime (Holmes, 2018) in the model. Continued increases in methane 

emissions (Figure 75) during this time period, along with decreases in tropospheric OH concentrations (Figure 138), lengthen 

the lifetime of methane and therefore amplify the methane’s response to emission changes. If methane emissions continue to 

increase, we can expect stronger increases in atmospheric methane due to the amplifying effect of the methane-OH feedback 

as occurred during in the significant increases in methane growth rates during 2014 and 2015. 1325 

4 Conclusions 

In this work, we thoroughly evaluate the atmospheric methane budget simulated by the GFDL-AM4.1 and apply the model to 

quantify investigate the drivers of changes in global methane over the past four decades. We simulate the DMF of methane 

and related tracers for 1980 to -2017 by driving the model with gridded emissions compiled from various sources. In order tTo 

match the long-term record of surface methane measurements, we optimize global total methane emissions using a simple 1330 

mass-balance approach. Our optimized global total methane emissions are within the range of estimates by previous studies 
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(both bottom-up and top-down). The GFDL-AM4.1 simulations with emissions following two different optimizations 

(anthropogenic and wetlands) both reproduce observed global methane trends and variabilities, despite the different 

contributions from anthropogenic and wetland emissions. This, therefore, suggests that the accurate estimates of global total 

emissions and of the interannual variability in emissions are critical in predicting the global methane trend and its variability, 1335 

despite uncertainties in the estimates of individual sources. reproduce observed methane growth rates for the different time 

periods (e.g., 9.4 ppb yr-1 during 1984-1998, 1.1 ppb yr-1 during 1999-2006, and 6.1 ppb yr-1 during 2007-2017). The 

simulations In addition, both simulations are in generalalso able to capture the spatial distribution and seasonal cycle of 

methane as retrieved by satellitesobserved by NOAA GMD sites and vertical distribution of methane as measured from aircraft, 

demonstrating the reasonable spatial and temporal representations of the optimized emissions derived in this work . Both 1340 

simulations also reproduce observed global methane trends and variabilities, despite the different contributions from 

anthropogenic and wetland emissions. This therefore suggests that the accurate estimates of global total emissions and of the 

interannual/seasonal variability in emissions are critical in predicting the global methane trend and its variability, despite 

uncertainties in the estimates of individual sources. 

We then explore the causes of methane trends and variability over 1980-2017 to sources and sinks. The simulation with 1345 

optimization of anthropogenic emissions shows anthropogenic emissions to be the major contributors to the rapid methane 

growth during 1980s and 1990s, whereas the simulation with optimization of wetland emissions also shows wetlands to be one 

of the major contributors during these periods. However, both simulations suggest increases in methane sources (mainly from 

agriculture, energy and waste sectors), balanced by the increases in methane sinks (mainly due to increases in OH levels), lead 

to methane stabilization during 1999-2006, and that the agriculture, energy, and waste sectors is are the major contributors to 1350 

the renewed growth of methane after 2006, with the largest contribution by energy sector.  

Two additional sensitivity simulations further investigate the contributions of wetlands to the methane renewed growth during 

2007-2014. The simulation with repeating 2006 emissions for all the sectors except wetland shows a declining contribution of 

wetland tracer to total methane abundance despite of the increasing contribution of wetland emissions to total emissions, 

because sinks are equally important for determining the tracer trend. Results from a simulation with combined optimizations 1355 

(i.e., 1980-2005 optimized anthropogenic emissions and 2006-2014 optimized wetland emissions) suggest that a sharp increase 

in wetland emissions (a likely scenario) with concomitant sharp decrease in anthropogenic emissions (a less likely scenario), 

would be required starting in 2006 to drive the methane growth by wetland tracer.  

Two additional sensitivity simulations further investigate the contributions of wetlands to the methane renewed growth during 

2007-2014. The simulation with repeating 2006 emissions for all the sectors except wetland suggests increases in wetland 1360 

emissions alone are not able to explain the renewed methane growth because sinks are equally important for determining the 

trend under constant anthropogenic emissions. Results from a simulation with combined optimizations (i.e., 1980-2005 

optimized anthropogenic emissions and 2006-2014 optimized wetland emissions) suggest that a significant increase in wetland 

emissions along with decreases in anthropogenic emissions starting in 2006 compared to the stabilization period (1999-2006) 

is required for wetland emissions to drive renewed growth in methane, which is a less likely scenario. 1365 
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Two additional sensitivity simulations, with low and high OH levels (by scaling LNOx production in the model by a factor of 

0.5 and 2), further investigate methane OH loss and tropospheric lifetime. In general, OH trends dominate methane OH loss 

trends during different methane growth periods except 2007-2013, when methane OH loss shows little change due to the 

decrease in OH levels combined with the increase in methane concentrations. The results also indicate that a 1% change in OH 

levels could lead to about 4 Tg yr-1 difference in the optimized emissions and 0.08 year difference in the estimated tropospheric 1370 

methane lifetime. The increasing methane lifetime during 2011-2015 in all the OH sensitivity simulations indicate a possible 

methane feedback on its lifetime in the model. Continued increases in methane emissions along with decreases in tropospheric 

OH concentrations extend the lifetime of methane and therefore amplify methane’s response to emission changes.  

Essentially, the global atmospheric methane trend is driven by the competition between its emissions and sinks. Emissions 

dominate sinks leading to an increasing trend while sinks dominate emissions leading to a decreasing trend. Our model results 1375 

suggest that the methane stabilization during 1999-2006 is mainly due to increasing emissions balanced by increasing sinks, 

whereas the methane renewed growth during 2007-2013 is mainly due to increasing sources combined with little change in 

sinks despite small decreases in OH levels. The significant increases in methane growth during 2014-2015 are mainly due to 

increasing sources combined with decreasing sinks. Most of the model simulations conducted here suggest that increases in 

energy sources drive the renewed methane growth, in agreement with previous studies (e.g., Rice et al., 2016; Hausmann et 1380 

al., 2016; Worden et al., 2017), with second largest contributor from waste sector and third largest contributor from agriculture 

sector, consistent with the shift in the ratio d13CH4.but in disagreement with other studies that consider emissions from 

microbial sources as the major contributor (e.g., Nisbet et al., 2016; Schaefer et al., 2016). However, optimization of emissions 

from anthropogenic sources depends on the “shares” of individual anthropogenic sectors in the initial emission inventories. 

Uncertainties in these shares could lead to uncertainties in the emission adjustment for each anthropogenic sector. Recent 1385 

studies using methane isotopic composition suggest that renewed growth in methane is more likely due to the increases in 

biogenic sources (e.g., Schaefer et al., 2016) as the ratio d13CH4d13C is shifting to more negative values since 2007. However, 

it also implies increases in isotopically lighter fossil fuel emissions, or decreases in isotopically heavy sources (e.g., biomass 

burning), or increases in both microbial and fossil fuel emissions but with increases in microbial emissions stronger than those 

from fossil fuel sources (Nisbet et al., 2019). It is quite possible that, rather than the energy sector, the increases in the 1390 

agriculture and waste sectors may drive the renewed methane growth. In that case, it is possible that the growth of agriculture 

and waste emissions could be underestimated in the optimized emissions, while the growth of energy emissions could be 

overestimated. 

The optimized emission totals estimated in this work represent temporal and spatial distribution of methane total sources 

reasonably well. However, the emission adjustments are either applied to anthropogenic sectors only or wetland sector only. 1395 

Uncertainties therefore exist on the distribution of the emission adjustments to individual sectors. Without accurate estimates 

of emissions from individual sources, it would be difficult to attribute the methane trend and variability to specific sectors. The 

application of methane isotopes and additional observational constraints (e.g., ethane and δ13CH4) could potentially help better 

partition the emission adjustments to different sectors. In addition, the spatial distribution of optimized emissions depends on 
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the spatial information in the initial emission inventories. Uncertainties in the spatial distribution from the initial emission 1400 

inventories may remain in the optimized emissions. Our model evaluation suggests that the optimized inventory may 

overestimate tropical emissions. A process-based emission model (e.g., wetland emissions) coupled with AM4.1 may better 

represent the spatial and temporal patterns of the emissions than was possibleprescribed in the present work. 
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Table 1. Emission inventories used in this study 

Source 
Category 

Database Temporal Variability References 

Anthropogenic 

CEDS v2017-05-
18 

1980-2014 monthly data Hosely et al. (2018) 

SSP2-4.5 2015-2017 monthly data Gidden et al. (2018) 

Biomass 
Burning 

BB4MIP 1980-2014 monthly data van Marle et al. (2017) 
SSP2-4.5 2015-2017 monthly data Gidden et al. (2018) 

Wetlands WetChart v1.0 
Climatological monthly mean (with 
seasonal variability) for 1980-2017 

Bloom et al. (2017) 

Ocean MOZART 
Climatological monthly mean (with 
seasonal variability) for 1980-2017 

Brasseur et al. (1998) 

Near-shore  TransCom-CH4 
Climatological annual mean (no 
seasonal variability) for 1980-2017 

Lambert and Schmidt 
(1993), Patra et al. 
(2011) 

Termites NASA-GISS 
Climatological annual mean (no 
seasonal variability) for 1980-2017 

Fung et al. (1991) 

Mud volcanoes TransCom-CH4 
Climatological annual mean (no 
seasonal variability) for 1980-2017 

Etiope and Milkov 
(2004), Patra et al. 
(2011) 

 
Table 2. List of simulations conducted using GFDL-AM4.1 to explore trends and variability in methane 

Simulations Description 
S0Aopt Standard AM4.1 configuration, but with optimized anthropogenic emissions for 1980-

2017 
S0Wopt Standard AM4.1 configuration, but with optimized wetland emissions for 1980-2017 
S0A06 S0Aopt emissions for 1980-2005, with repeating 2006 S0Aopt anthropogenic 

emissions for 2006-2014 and adjusting wetland emissions for 2006-2014 to ensure the 
total emissions are same as optimized totals 

S0Comb S0Aopt emissions for 1980-2005 and S0Wopt emissions for 2006-2014 
S1Wopt AM4.1 configuration with low OH levels (LNOx emissions scaled by a factor of 0.5), 

and optimized wetland emissions for 1980-2017 
S2Wopt AM4.1 configuration with high OH levels (LNOx emissions scaled by a factor of 2), 

and optimized wetland emissions for 1980-2017 
1725 
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Table 3. Comparisons of simulated methane growth rates (annual mean ± standard deviation) with observed methane 

growth rates (ppb yr-1) 
 1984-1991 1992-1998 1999-2006 2007-2017 

Observed 11.7±1.4 5.5±3.5 0.7±3.1 7.0±2.7 
S0Aopt 13.7±3.2 5.4±3.4 1.3±4.1 6.1±2.7 
S0Wopt 13.6±3.4 5.4±3.6 1.3±4.4 6.1±2.6 

 
 1730 
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Table 4. Global methane budget (Tg CH4 yr-1) during 1980-2017 

Period of time 1980-1989 1990-1999 2000-2009 2008-2017 1999-2006 2007-2017 
Sourcesa       

Natural 
sources 

203 [203-282] 203 [203-297] 203 [203-288] 203 [203-277] 203 [203-297] 203 [203-277] 
203 [150-267]b 182 [167-197]b 218 [179-273]b 215 [176-248]d   
355 [244-466]c 336 [230-465]c 347 [238-484]c 371 [245-488]e   

  214 [176-243]d    
  369 [245-485]e    

Natural 
wetlands 

166 [166-245] 166 [166-260] 166 [166-251] 166 [166-240] 166 [166-260] 166 [166-240] 
167 [115-231]b 150 [144-160]b 175 [142-208]b 178 [155-200]d   
225 [183-266]c 206 [169-265]c 217 [177-284]c 149 [102-182]e   

  180 [153-196]d    
  147 [102-179]e    

Other natural 
sources 37 37 

37 
35 [21-47]d 

222 [143-306]e 

37 
37 [21-50]d 

222 [143-306]e 
37 37 

Oceans 9.5 9.5 
9.5 

9.5 9.5 9.5 18 [2-40]c 
13 [9-22]e 

Termites 20 20 20 20 20 20 
Mud 

volcanoes 7.5 7.5 7.5 7.5 7.5 7.5 

Anthropogenic 
sources 

289 [289-368] 311 [311-405] 340 [340-425] 379 [379-452] 328 [328-422] 377 [377-450] 
348 [305-383]b 372 [290-453]b 335 [273-409]b 357 [334-375]d   
308 [292-323]c 313 [281-347]c 331 [304-368]c 366 [348-392]e   

  331[310-346]d    
  334 [325-357]e    

Agriculture 
and waste 

159 [159-203] 172 [172-224] 185 [185-232] 201 [201-240] 181 [181-233] 200 [200-239] 
208 [187-220]b 239 [180-301]b 209 [180-241]b 219 [175-239]d   
185 [172-197]c 188 [177-196]c 200 [187-224]c 206 [191-223]e   

  202 [173-219]d    
  192 [178-206]e    

Biomass 
burning 

13 [13-16] 18 [18-24] 15 [15-18] 14 [14-17] 15 [15-20] 14 [14-17] 
  19 [15-32]e 17 [14-26]e   

Fossil fuels 

104 [104-132] 107 [107-139] 127 [127-159] 151 [151-180] 120 [120-153] 150 [150-179] 
94 [75-108]b 95 [84-107]b 96 [77-123]b 109 [79-168]d   
89 [89-89]c 84 [66-96]c 96 [85-105]c 127 [111-154]e   

  100 [70-149]d    
  110 [93-129]e    

Other 
anthropogenic 

sources 
14 [14-17] 14 [14-18] 13 [13-16] 13 [13-16] 12 [12-16] 13 [13-16] 

 DEf,g 47 [23-79] 60 [36-94] 52 [29-85] 44 [21-79] 57 [34-93] 40 [17-73] 
Sinksg       

Total chemical 
loss 

486 [462-519] 540 [516-573] 577 [553-610] 584 [560-617] 570 [546-603] 592 [568-625] 
490 [450-533]b 525 [491-554]b 518 [510-538]b 518 [474-532]d   
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539 [411-671]c 571 [521-621]c 604 [483-738]c    

  505 [459-516]d 

595 [489-749]e 
   

OH loss 
442 [419-476] 486 [462-519] 526 [502-559] 

534 [510-567] 519 [495-552] 542 [519-576] 468 [382-567]c 479 [457-501]c 528 [454-617]c 

553 [476-677]e 

O1D loss 
38 47 43 

43 44 42 46 [16-67]c 67 [51-83]c 51 [16-84]c 

31 [12-37]e  

Cl loss 
5 7 7 7 8 7 

25 [13-37]c 25 [13-37]c 25 [13-37]c 

11 [1-35]e 
   

Soils 

13 14 14 14 14 14 
21 [10-27]b 27 [27-27]b 32 [26-42]b 38 [27-45]d   
28 [9-47]c 28 [9-47]c 28 [9-47]c    

  34 [27-41]d 

30 [11-49]e 
   

Totalsg       

Sum of 
sources 

539 [515-571] 574 [549-608] 595 [572-628] 605 [582-640] 589 [565-625] 620 [597-653] 
551 [500-592]b 554 [529-596]b 548 [526-569]b 572 [538-593]d   
663 [536-789]c 649 [511-812]c 678 [542-852]c 737 [593-880]e   

  545 [522-559]d    
  703 [570-842]e    

Sum of sinks 

499 [475-532] 554 [530-586] 591 [567-624] 598 [574-632] 584 [560-617] 606 [582-639] 
511 [460-559]b 542 [518-579]b 540 [514-560]b 556 [501-574]d   
539 [420-718]c 596 [530-668]c 632 [592-785]c    

  540 [486-556]d 

625 [600-798]e 
   

Imbalance 
40 [39-40] 20 [19-22] 4 [4-5] 7 [8-8] 5 [5-8] 14 [15-14] 
30 [16-40]b 12 [7-17]b 8 [-4-19]b 16 [0-47]d   

  4 [-11-36]d    

Atmospheric 
growth 

36 19 4.8 7.4 3.5 16.6-17.2 
34b 17b,h 6b,h  1.9±1.6h 18.9±1.7h 
32h      

a The decadal mean values are based on initial emission inventories. The lower and upper limits of the ranges are based on 
the minimum and maximum among all the optimized emission scenarios (i.e., S0Aopt, S0Wopt, S1Aopt, S1Wopt, S2Aopt, 
and S2Wopt) conducted in this work. 1735 
bValues are based on Kirschke et al. (2013) top-down approach. 
cValues are based on Kirschke et al. (2013) bottom-up approach. 
dValues are based on Saunois et al. (2019) top-down approach. 
eValues are based on Saunois et al. (2019) bottom-up approach. 
fDE is calculated based on the methodology of Ghosh et al. (2015). 1740 
gThe ranges are based on the low OH (S1Wopt) and high OH cases (S2Wopt) and the decadal mean values shown in the 
table are based on the default OH (S0Wopt). 
hThe observed atmospheric growth rates (Tg yr-1) are estimated based on a few MBL sites (Dlugokencky et al., 2018), which 
are not the same as the Imbalance Row (based on the entire globe). 
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 1745 
Table 5. Comparisons of estimated methane linear trend (ppb yr-1)* 

 1984-1998 1999-2006 2007-2017 2007-2014 

 Total Dominating 
tracers 

Total Dominating 
tracers 

Total Dominating 
tracers 

Total Dominating 
tracers 

Observed 8.9 N./A. 0.6 N./A. 6.0 N./A. 5.4 N./A. 

S0Aopt 10.5 

CH4AGR 
(3.7) 

CH4ENE 
(2.2) 

CH4WST 
(3.6) 

1.0 

CH4ENE 
(2.6) 

CH4WST 
(2.3) 

5.3 

CH4AGR 
(0.6) 

CH4ENE 
(5.9) 

CH4WST 
(1.0) 

  

S0Wopt 10.4 

CH4AGR 
(0.8) 

CH4WST 
(2.2) 

CH4WET 
(7.0) 

1.1 

CH4ENE 
(1.8) 

CH4WST 
(1.9) 

5.4 

CH4AGR 
(2.2) 

CH4ENE 
(7.0) 

CH4WST 
(1.6) 

  

S0A06       4.4 

CH4ENE 
(3.4) 

CH4WST 
(1.1) 

S0Comb       4.4 

CH4ENE 
(2.8) 

CH4WET 
(5.9) 

*The linear trend is estimated by Mann-Kendall test. The estimated linear trend for source tagged tracers are shown in 
parentheses. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 1. Time series of methane emissions from the initial methane inventories (a), optimized methane emissions on 1750 
anthropogenic sectors (S0Aopt, b) and wetland sector (S0Wopt, c) for the period of 1980-2017. The emissions for major 
sectors are shown on the left y axis, including agriculture sector, energy production sector, waste sector, biomass 
burning sector, wetland sector, ocean and near-shore fluxes, termites, mud volcanoes, and other sources (i.e., industrial 
processes, surface transportation, international shipping, residential, commercial, and others). The total methane 
emissions from the initial emission inventories (black line) are shown on the right y axis.  1755 
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(a) 

 
(b) 

Figure 2. Model bias (a) and correlation coefficient (b) of simulated climatological mean surface methane 
concentrations against NOAA GMD observations for the 1983-2017 time period. GMD sites with at least 20-year 
observations are selected for model climatological evaluation. In Fig.2a, each red square or blue cross represents model 
mean bias by S0Aopt or S0Wopt at the corresponding GMD site. Root-mean-square-error (RMSE) is shown for all the 1760 
GMD sites in Fig.2a. In Fig.2b, each red square or blue cross represents correlation of climatological seasonal 
variability by S0Aopt or S0Wopt at the corresponding GMD site. Spatial correlation (R) is shown for all the GMD sites 
in Fig.2b. 
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Figure 3. Comparison of vertical distribution of methane from S0Aopt and S0Wopt simulations with measurements 
from individual HIPPO campaigns. Months of campaign are given at the top left of the individual plots.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4. Comparison of GFDL-AM4.1 simulated methane concentrations and growth rates with NOAA-GMD surface 
observations. For the upper plot in each panel, dash line represents smoothed trends (i.e., 12-month running mean) 1770 
from deseasonalized monthly data. A meridional curve (Tans et al., 1989) was fitted through NOAA-GMD site 
observations to get the latitudinal distribution of methane. A function fit consisting of yearly harmonics and a 
polynomial trend, with fast fourier transform and low pass filtering of the residuals are applied to the monthly mean 
methane DMF (Thoning et al., 1989; Thoning, 2019) to approximate the long-term trend. For the lower plot in each 
panel, the growth rates are calculated from the time derivative of the dash line in the corresponding upper plot. 1775 
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Figure 75. Time series of global methane burden (black line, left Y axis), methane sources (red line, right Y axis), and 
methane sinks (blue line, right Y axis) by S0Wopt. 

 

 1780 

Figure 6. Time series of global tropospheric OH anomalies with respect to 1998-2007. Results of Montzka et al. (2011) 
are shown in dark purple (with the mean interannual variability of OH as ±2.3% for the period of 1998-2007). Results 
of Rigby et al. (2017) derived from NOAA observations are shown in light blue (with the mean interannual variability 
of OH as ±2.3% for the period of 1998-2007 and ±2.6% for the period of 1980-2014), and derived from AGAGE 
observations are shown in dark blue (with the mean interannual variability of OH as ±3.0% for the period of 1998-1785 
2007 and ±3.1% for the period of 1980-2014). Results from Turner et al. (2017) are shown in green (with the mean 
interannual variability of OH as ±2.0% for the period of 1998-2007 and ±2.5% for the period of 1980-2014). Results 
from Naus et al. (2019) are shown in dark green (with the mean interannual variability of OH as ±1.2% for the period 
of 1998-2007 and ±1.8% for the period of 1994-2014). OH anomalies in this work are shown in red (with the mean 
interannual variability of OH as ±2.2% for the period of 1998-2007 and ±4.1% for the period of 1980-2014). 1790 
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Figure 7. Estimated global linear trends for source tagged tracers and total methane (TOT). The source tagged tracers include tracer for 
agriculture sector (AGR), energy sector, (ENE), waste sector (WST), biomass burning sector (BMB), other anthropogenic sectors (OAT), 
wetland sector (WET), and other natural sectors (ONA). The grey bar represents total methane trend from NOAA-GMD observations. In 1795 
the left panel (i.e., S0Aopt and S0Wopt), the trends are estimated for the periods of 1983-1998, 1999-2006, and 2007-2017. In the right 
panel (i.e., S0A06 and S0Comb), the trends are estimated for the period of 2007-2014, with 1999-2006 trends from S0Wopt and S0Aopt 
respectively. 
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Figure 813. Time series of global tropospheric OH levels (left Y axis, dash line) and methane OH loss (right Y axis, solid 
line) from S0Wopt (purple), S1Wopt (blue), and S2Wopt (brown) in the upper panel and time series of methane 
tropospheric lifetime from S0Wopt (purple), S1Wopt (blue), and S2Wopt (brown) in the lower panel. 1805 
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Abstract. Changes in atmospheric methane abundance have implications for both chemistry and climate as methane is both a 

strong greenhouse gas and an important precursor for tropospheric ozone. A better understanding of the drivers of trends and 1815 

variability in methane abundance over the recent past is therefore critical for building confidence in projections of future 

methane levels. In this work, the representation of methane in the atmospheric chemistry model AM4.1 is improved by 

optimizing total methane emissions (to an annual mean of 580±34 Tg yr-1) to match surface observations over 1980-2017. The 

simulations with optimized global emissions are in general able to capture the observed trend, variability, seasonal cycle, and 

latitudinal gradient of methane. Simulations with different emission adjustments suggest that increases in methane emissions 1820 

(mainly from agriculture, energy, and waste sectors) balanced by increases in methane sinks (mainly due to increases in OH 

levels) lead to methane stabilization (with an imbalance of 5 Tg yr-1) during 1999-2006, and that increases in methane emissions 

(mainly from agriculture, energy, and waste sectors) combined with little change in sinks (despite small decreases in OH 

levels) during 2007-2012 lead to renewed growth in methane (with an imbalance of 14 Tg yr-1 for 2007-2017). Compared to 

1999-2006, both methane emissions and sinks are greater (by 31 Tg yr-1 and 22 Tg yr-1, respectively) during 2007-2017. Our 1825 

tagged tracer analysis indicates that anthropogenic sources (such as agriculture, energy, and waste sectors) are more likely 

major contributors to the renewed growth in methane after 2006. A sharp increase in wetland emissions (a likely scenario) 

with concomitant sharp decrease in anthropogenic emissions (a less likely scenario), would be required starting in 2006 to 

drive the methane growth by wetland tracer. Simulations with varying OH levels indicate that a 1% change in OH levels could 

lead to an annual mean difference of ~4 Tg yr-1 in the optimized emissions and 0.08 year difference in the estimated 1830 

tropospheric methane lifetime. Continued increases in methane emissions along with decreases in tropospheric OH 

concentrations during 2008-2015 prolong methane’s lifetime and therefore amplify the response of methane concentrations to 

emission changes. Uncertainties still exist in the partitioning of emissions among individual sources and regions.  

1 Introduction 

Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with a global warming potential 28-1835 

34 times that of carbon dioxide (CO2) over a 100-year time horizon (Myhre et al., 2013). Methane is also a precursor for 
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tropospheric ozone (O3)—both an air pollutant and greenhouse gas—influencing ozone background levels (Fiore et al., 2002). 

Controlling methane has been shown to be a win-win, benefiting both climate and air quality (Shindell et al., 2012). From a 

preindustrial level of 722±25 ppb (Etheridge et al., 1998; Dlugokencky et al., 2005), methane has increased by a factor of ~2.5 

to a value of 1857±1 ppb in 2018 (Dlugokencky et al., 2018), mostly due to anthropogenic activities (Dlugokencky et al., 1840 

2011). The global network of surface observations over the past 3-4 decades indicates that methane went through a period of 

rapid growth from the 1980s to 1990s, nearly stabilized from 1999 to 2006, and then renewed its rapid growth. Here, we 

estimate the methane budget and explore the contributions of methane sources and sinks to its observed trends and variability 

during 1980-2017.  

Methane is emitted into the atmosphere from both anthropogenic activities (e.g., agriculture, energy, industry, transportation, 1845 

waste management, and biomass burning) and natural processes (e.g., wetland, termites, oceanic and geological processes, and 

volcanoes), and is removed from the atmosphere mainly by reaction with hydroxyl radical (OH) in the troposphere, with lesser 

contributions to destruction by reactions with excited atomic oxygen (O(1D)) and atomic chlorine (Cl) in the stratosphere and 

uptake by soils (Saunois et al., 2016). Measurements of the global distribution of surface methane beginning in 1983 have 

revealed that atmospheric methane approached steady state during 1983-2006 and renewed its growth since then. During 1983-1850 

2006, methane growth rates decreased from 12 ppb yr-1 during 1984-1991 to 5 ppb yr-1 during 1992-1998 (Nisbet et al., 2014; 

Dlugokencky et al., 2018) and to 0.7±0.6 ppb yr-1 during 1999-2006 (Dlugokencky et al., 2018). After 2006, methane started 

increasing again with a growth rate of 5.7±1.2 ppb yr-1 in 2007-2013 and reached 12.6±0.5 ppb yr-1 in 2014 and 10.0±0.7 ppb 

yr-1 in 2015 (Nisbet et al., 2016; Dlugokencky et al., 2018). While anthropogenic activities are widely considered responsible 

for the long-term methane increase since pre-industrial times (Dlugokencky et al., 2011), there is no consensus on the drivers 1855 

for the methane stabilization during 1999-2006 and renewed growth since 2007. Previous studies have attributed the 

stabilization during 1999-2006 to the combined effects of increased anthropogenic emissions with decreased wetland emissions 

(Bousquet et al., 2006), decreased fossil fuel emissions (Dlugokencky et al., 2003; Simpson et al., 2012; Schaefer et al., 2016) 

or rice paddies emissions (Kai et al., 2011), stable emissions from microbial and fossil fuel sources (Levin et al., 2012), or 

variations of methane sinks (Rigby et al., 2008; Montzka et al., 2011; Schaefer et al., 2016). The observed renewed growth 1860 

since 2007 has been explained alternatively through increases in tropical emissions (Houweling et al., 2014; Nisbet et al., 

2016) such as agricultural emissions (Schaefer et al., 2016; Patra et al., 2016) and tropical wetland emissions (Bousquet et al., 

2011; Maasakkers et al., 2019), increases in fossil fuel emissions (Rice et al., 2016; Worden et al., 2017), decreases in sources 

compensated by decreases in sinks due to OH levels (Turner et al., 2017; Rigby et al, 2017), or a combination of changes in 

different sources such as increases in fossil, agriculture, and waste emissions with decreases in biomass burning emissions 1865 

(Saunois et al., 2017). These different explanations reflect limitations in our understanding of recent changes in methane and 

its budget.  

Previous work has generally combined observations of methane and its isotopic composition (δ13CH4) with inverse models 

(top-down), process-based models (bottom-up), or box models to estimate methane emissions and sinks and their variability 

(Bousquet et al., 2006; Monteil et al., 2011; Rigby et al., 2012; Bloom et al., 2012; Kirschke et al., 2013; Ghosh et al., 2015; 1870 
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Schwietzke et al., 2016; Schaefer et al., 2016; Nisbet et al., 2014, 2016; Dalsøren et al., 2016; Turner et al., 2017; Rigby et al., 

2017). Inverse models use observations to derive emissions, but usually prescribe climatological OH, O(1D), and Cl levels or 

loss rates (e.g., Rice et al., 2016; Tsuruta et al., 2017). Box models, on the other hand, use methane observations together with 

those of other proxy chemicals (e.g., 13C/12C ratio, ethane, carbon monoxide, methyl chloroform) to provide information on 

the global methane budget (e.g., Schaefer et al., 2016; Turner et al., 2017), but lack information on spatial variability or regional 1875 

characteristics. With process-based models (e.g., wetlands) and inventories representing different source types (e.g., fossil fuel 

emissions) to drive chemical transport models, the bottom-up approach is able to estimate the methane budget for all individual 

sources and sinks. However, without observational constraints, there is considerable uncertainty in the total methane emissions 

derived from a combination of independent bottom-up estimates (Saunois et al., 2016).  

Bottom-up global Earth System Models (ESMs) that realistically simulate the physical, chemical, and biogeochemical 1880 

processes, as well as interactions and feedbacks among these processes, are useful tools to characterize the global methane 

cycle and quantify the global methane budget and impacts on composition and climate. Dalsøren et al. (2016) investigated the 

evolution of atmospheric methane by driving a chemical transport model with bottom-up emissions. While their model results 

are able to match the observed time evolution of methane without emission adjustments, surface methane is largely 

underpredicted in their study. Ghosh et al. (2015) optimized bottom-up emissions to investigate methane trends; however, OH 1885 

trends and interannual variability were not considered in their chemical transport model. Here, we apply a prototype of the 

full-chemistry version of the Geophysical Fluid Dynamics Laboratory (GFDL) new-generation Atmospheric Model, version 

4.1 (AM4.1, Zhao et al., 2018a, b; Horowitz et al., manuscript in preparation) to investigate the evolution of methane over 

1980-2017. Our main objectives are to improve the representation of methane in GFDL-AM4.1, to comprehensively evaluate 

the model performance of methane predictions with an improved representation of the methane budget, and to investigate 1890 

possible drivers of the methane trends and variability. This paper is structured as follows: Section 2 describes the modeling 

approach, emission inventories, and observations used for model evaluation. Results of the model evaluation, global methane 

budget analysis, and model sensitivities are presented in Section 3. Finally, Section 4 summarizes the results and discusses the 

implication of these results. 

2 Methodology and data 1895 

2.1 Model description and initialization 

We use a prototype version of the new generation GFDL chemistry-climate model, GFDL-AM4.1 (Zhao et al., 2018a, b; 

Horowitz et al., manuscript in preparation). A detailed description of the physics and dynamics in AM4.1 is provided by Zhao 

et al. (2018a, b). The version of AM4.1 with full interactive chemistry used in this work is described by Schnell et al. (2018). 

In its standard form, this model setup consists of a cubed sphere finite-volume dynamical core with a horizontal resolution of 1900 

~100 km and 49 vertical levels extending from the surface up to ~80 km. The model’s lowermost level is approximately 30 m 

thick. The chemistry and aerosol physics in this model have been updated from the previous version (GFDL-AM3; Naik et al., 



63 
 

2013a), as described by Mao et al. (2013a, b) and Paulot et al. (2016). There are a total of 102 advected gas tracers and 18 

aerosol tracers, 44 photolysis reactions, and 205 gas-phase reactions included in the chemical mechanism in this version of 

AM4.1 to represent tropospheric and stratospheric chemistry. 1905 

The standard AM4.1 configuration uses global annual-mean methane concentrations as a lower boundary condition to simulate 

the atmospheric distribution of methane. This modeling framework does not allow for the full characterization of the drivers 

of methane trends and variability, nor does it capture latitudinal or seasonal variations in methane. To overcome this issue, we 

updated AM4.1 to be driven by methane emissions. Table 1 provides information on the methane emission datasets used in 

this work. Our initial estimates of surface emissions from anthropogenic sources—including agriculture (AGR), energy 1910 

production (ENE), industry (IND), road transportation (TRA), residential, commercial, and other sectors (RCO), waste (WST), 

and international shipping (SHP)—are from the Community Emissions Data System (CEDS, version 2017-05-18, Hoesly et 

al., 2018) developed in support of the Coupled Model Intercomparison Project Phase 6 (CMIP6) for 1980-2014. Emissions for 

2015-2017 are from a middle-of-the-road scenario of Shared Socioeconomic Pathways targeting a forcing level of 4.5 W m-2 

(SSP2-4.5), developed in support of the ScenarioMIP experiment within CMIP6 (Gidden et al., 2019). Biomass burning (BMB) 1915 

emissions are from van Marle et al. (2017) for 1980-2014 and from SSP2-4.5 for 2015-2017, and are vertically distributed 

over seven ecosystem-dependent altitude levels between the surface and 6 km above the surface, following the methodology 

of Dentener et al. (2006). Anthropogenic and biomass burning emissions are represented by monthly gridded emissions 

including seasonal and interannual variability. Natural emissions include wetland (WET) emissions from the WetCHARTs 

version 1.0 inventory (Bloom et al., 2017), ocean (OCN) emissions from Brasseur et al. (1998) with near-shore methane fluxes 1920 

from Lambert and Schmidt (1993) and Patra et al. (2011), termites (TMI) from Fung et al. (1991), and mud volcanoes (VOL) 

from Etiope and Milkov (2004) and Patra et al. (2011). Wetland emissions and ocean emissions are climatological monthly 

means without interannual variability. The remaining natural emissions are based on a climatological annual mean (repeated 

every month without seasonal variability). Timeseries of the total emissions and emissions from major sectors over 1980-2017 

are shown in Figure 1. Trends in total emissions are primarily driven by trends in ENE, AGR, and WST emissions. Although 1925 

wetlands are in reality a major contributor to interannual variability in methane emissions (Bousquet et al., 2006; Kirschke et 

al., 2013), our use of climatological wetland emissions causes the interannual variability in our methane emissions to be 

dominated by BMB emissions. Anthropogenic and biomass burning emissions of other short-lived species also follow CEDS 

and SSP2-4.5 inventories. Natural emissions of other short-lived species are from Naik et al. (2013a). Biogenic isoprene 

emissions are calculated interactively following Guenther et al. (2006). 1930 

The methane sinks considered in AM4.1 include oxidation by OH, Cl, and O(1D), and dry deposition. Since the model does 

not represent tropospheric halogen chemistry, it does not consider removal of methane by Cl in the troposphere, a sink that 

remains poorly constrained (Hossaini et al., 2016; Gromov et al., 2018; Wang et al., 2019). The dry deposition flux of methane 

is estimated based on a monthly climatology of deposition velocities (Horowitz et al, 2003) calculated by a resistance-in-series 

scheme (Wesely, 1989; Hess et al., 2000) and used to mimic methane loss by soil uptake, which accounts for about 5% of the 1935 

total methane sink (Kirschke et al., 2013; Saunois et al., 2016).  
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In this work, we included 12 additional methane tracers tagged by source sector to attribute methane from agriculture 

(CH4AGR), energy (CH4ENE), industry (CH4IND), transportation (CH4TRA), residents (CH4RCO), waste (CH4WST), 

shipping (CH4SHP), biomass burning (CH4BMB), ocean (CH4OCN), wetland (CH4WET), termites (CH4TMI), and mud 

volcanoes (CH4VOL). The tracers are emitted from corresponding sources, and undergo the same chemical and transport 1940 

pathways as the full CH4 tracer. For analysis, we combine CH4IND, CH4TRA, CH4RCO, and CH4SHP as other anthropogenic 

tracers (i.e., CH4OAT), and combine CH4OCN, CH4TMI, and CH4VOL as other natural tracers (i.e., CH4ONA). 

Initially the model was spun up in a 50-year run with repeating 1979 emissions driven by 1979 sea surface temperatures and 

sea ice until stable atmospheric burdens of methane and tagged tracers were obtained. After spin-up, several sets of simulations 

were conducted for 1980-2017 to quantify the methane budget and investigate the impacts of changes in methane sources and 1945 

sinks on methane abundance (see Section 2.3). All model simulations are forced with interannually-varying sea surface 

temperatures and sea ice from Taylor et al. (2000), prepared in support of the CMIP6 Atmospheric Model Intercomparison 

Project (AMIP) simulations. Horizontal winds are nudged to the National Centers for Environmental Prediction (NCEP) 

reanalysis (Kalnay et al., 1996) using a pressure-dependent nudging technique (Lin et al., 2012). 

2.2 Observations 1950 

We evaluate the simulated methane dry-air mole fraction (DMF) against a suite of ground-based and aircraft observations to 

thoroughly evaluate the model simulated spatial and temporal distribution of methane. To evaluate surface CH4, we use 

measurements from a globally distributed network of air sampling sites maintained by the Global Monitoring Division (GMD) 

of the Earth System Research Laboratory at the National Oceanic and Atmospheric Administration (NOAA) (Dlugokencky et 

al., 2018). The global estimates are based on spatial and temporal smoothing of CH4 measurements from 45 surface marine 1955 

boundary layer (MBL) sites. Locations of the MBL sites are shown in Figure S1, and information for each MBL site is listed 

in Table S1 in the Supplement. First, the average trend and seasonal cycle are approximated for each sampling site by fitting 

a second-order polynomial and four harmonics to the data. We characterize deviations from this average behaviour by 

transforming the residuals to frequency domain, then multiplying by a low pass filter (Thoning et al., 1989; Thoning, 2019). 

Zonal and global averages are determined by extracting values at synchronized times steps from the smoothed fits to the data, 1960 

then fitting another curve as a function of latitude (Tans et al., 1989). We divide these fits into sine (latitude) = 0.05 intervals, 

which define a matrix of zonally averaged CH4 as a function of time and latitude. The same sampling and processing approach 

(Thoning et al., 1989; Tans et al., 1989) is applied to the simulated monthly mean methane DMF to calculate global and zonal 

averages to facilitate consistent model-observation comparison. Besides the comparison with global estimates from MBL sites, 

we also evaluate model performance at individual GMD sites to investigate regional emission representation. For site-specific 1965 

evaluation, we sample the model grid cell at the location of the corresponding site and at the model layer with height closest 

to the altitude of the corresponding site. 

To investigate background tropospheric methane variability, we compare the simulated vertical profiles with aircraft 

measurements from the High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-
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Pole observation (HIPPO) campaigns from January 2009 to September 2011 (Wofsy et al., 2012). A total of 787 profiles were 1970 

flown during 5 campaigns with continuous profiling between approximately 150 m and 8500 m altitudes, but also including 

many profiles up to 14 km altitude. For each HIPPO mission, we spatially sample the model consistent with the observations 

and average the model for the months of the campaign to create climatological monthly means. 

2.3 Simulation design 

We conduct several sets of hindcast simulations for 1980-2017, as listed in Table 2, to quantify the methane budget and 1975 

investigate the contributions of sources and sinks to the trend and variability of methane. The model simulation using the initial 

methane emissions inventory (Einit) described in Section 2.1 was found to largely underestimate the methane DMF by 126 ppb 

(see Figures S2 and S3 in the Supplement). Assuming that this mismatch is due to a bias in the simulated methane budget, we 

can either increase methane sources or decrease methane sinks to match the observations. We perform several optimization 

simulations that explore the sensitivity of methane to uncertainties in emissions of methane and levels of OH, the dominant 1980 

sink for methane. Because OH trends and variability depend on a number of factors, including temperature, water vapor, O3, 

and emissions of nitrogen oxide (NOx), carbon monoxide (CO), and volatile organic compounds (VOCs), it is not 

straightforward to perturb OH. Previous work has shown that interannual variability of global OH is highly correlated with 

NOx from lightning (Fiore et al., 2006; Murray et al., 2013). Therefore, we apply scaling factors to lightning NOx (LNOx) 

emissions to indirectly adjust OH levels without influencing its variability. The LNOx emissions are calculated interactively 1985 

as described by Horowitz et al. (2003) as a function of subgrid convection parameterized in the model. The climatological 

global mean LNOx emission simulated by standard AM4.1 is about 3.6 TgN yr-1, within the range of 2-8 TgN yr-1 estimated 

by previous studies (e.g., Schumann and Huntrieser, 2007). We additionally apply scaling factors (e.g., 0.5 and 2.0) to LNOx 

emissions, producing LNOx at the lower and upper limits of the estimated range for sensitivity simulations described below. 

We test the sensitivity of simulated methane to changes in OH using: 1) standard OH levels simulated by AM4.1 (referred as 1990 

“S0”); 2) low OH levels via applying a scaling factor of 0.5 to the default LNOx emission calculations (referred as “S1”); 3) 

high OH levels via applying a factor of 2 to the default LNOx emission calculation (referred as “S2”). For each OH option, we 

begin with initial methane emissions and then optimize global total emissions as described below to match simulated methane 

with surface observations. Different OH levels lead to different estimations of the optimized total emissions, which provides 

a measure of uncertainties in our optimized total methane emissions.  1995 

The estimates of optimized emissions are based on comparison of simulated surface methane with NOAA-GMD MBL 

observations. We apply a simple mass balance approach to optimize global total methane emissions, following the 

methodology of Ghosh et al. (2015). In this approach, we calculate an increment ΔE, by which global emissions need to be 

modified for each year. We do so by converting the differences in surface methane DMFs between observations and model 

estimates to the differences in methane burden growth rate and in total methane loss. We iterate the optimization process a 2000 

couple of times to account for the methane-OH feedback until the simulated surface methane DMF matches the observations. 

Unlike inverse modeling studies (Houweling et al., 2017), we do not optimize emissions for each grid cell. Instead, we 
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uniformly scale emissions for particular sectors (as described below) globally for each year by the rate of the optimized 

emission total (Eopt = Einit + ΔE) to the initial emissions (Einit). We assume that the spatial distribution of methane emissions 

from the initial emission inventories are the best available information we have. Considering the large uncertainties in the 2005 

anthropogenic and wetland emissions, we perform two simulations for the standard (S0) LNOx scenario, in which we achieve 

the optimized emission totals by scaling either anthropogenic and biomass burning sources only (referred to as “Aopt”) or the 

wetland sector only (referred to as “Wopt”). The purpose of conducting these simulations is to investigate the impact of 

optimizing emissions from different sectors on methane predictions. For the Aopt case, eight anthropogenic sectors (i.e., AGR, 

ENE, IND, TRA, RCO, WST, SHP, and BMB) are uniformly scaled by the ratio of ΔE to total anthropogenic emissions 2010 

(ΔE/Eanthro.), keeping the fractions of individual sources unchanged. For the Wopt case, wetland emissions are rescaled to 

increase this source by ΔE. For S1 and S2 scenarios, we scale the wetland sector only. The total Eopt emissions are the same 

for both Aopt and Wopt cases. Time series of optimized total emissions and emissions from major sectors from S0Aopt and 

S0Wopt over 1980-2017 are shown in Figure 1. As shown in Figure 1, the emission optimization to match observations resulted 

in higher interannual variability in total emissions than in the initial emissions. Although the interannual variability of methane 2015 

emissions is mainly dominated by that from wetland and biomass burning, it could also exist in anthropogenic emissions due 

to the dependence of microbial methane sources, such as rice paddies, on soil temperature and precipitation (e.g., Knox et al., 

2016). Because the purpose of S0Aopt is to investigate the role of changes in total anthropogenic emissions (including BMB) 

rather than individual sectors, we applied this interannual variability to all anthropogenic sectors which we acknowledge 

introduces some unrealistic interannual variability in the anthropogenic emissions. We chose this experimental construct to 2020 

limit the number of sensitivity simulations.  

Based on evidence from δ13CH4, recent studies suggest increasing wetland emissions may be responsible for the renewed 

growth of methane (Dlugokencky et al., 2009; Nisbet et al., 2016). We perform two additional sensitivity simulations to test 

the possibility of wetland emissions driving the renewed methane growth during 2006-2014. One simulation is driven by 

repeating 2006 S0Aopt anthropogenic and biomass burning emissions for 2006-2014 but adjusting wetland emissions to ensure 2025 

that the total methane emissions are the same as in S0Wopt (or S0Aopt), which would imply that the increases in methane 

emissions are only due to the increases in wetland emissions. This sensitivity simulation is referred to as “S0A06”. Another 

sensitivity simulation is driven by a combination of emissions for S0Aopt and S0Wopt as follows: S0Aopt emissions for 1980-

2005 and S0Wopt emissions for 2006-2014. This simulation is referred to as “S0Comb”.  

3 Results and discussions 2030 

3.1 Model evaluation 

The detailed model evaluation for S0Aopt and S0Wopt are discussed below. We first evaluate the mean climatological spatial 

distribution and seasonal variability simulated by the model and then evaluate the trends and variability.  
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3.1.1 Climatological evaluation 

Figure 2 shows the model bias and correlation coefficient of simulated climatological mean surface methane DMF against 2035 

NOAA GMD surface observations (Dlugokencky et al., 2018) for 1983-2017. The mean seasonal cycle at individual GMD 

sites is shown in Figure S4 in the Supplement. GMD sites with at least 20 years of observations are selected for model 

climatological evaluation. Information about these sites is shown in Table S2 in the Supplement. As shown in Figure 2a, 

simulations with optimization of either anthropogenic (S0Aopt) or wetland (S0Wopt) emissions are generally able to reproduce 

surface methane DMF with model biases within ±30 ppb at most sites. Both S0Wopt and S0Aopt simulate methane DMF 2040 

relatively well over the Southern Hemisphere. Going from south to north, the low bias in methane DMF decreases and becomes 

a high bias over the tropics. Simulated methane in both S0Aopt and S0Wopt are biased moderately high over the tropical 

Pacific Ocean (by up to ~40 ppb), indicating possible overestimation of methane emissions over the tropics and possible 

underestimation in tropical OH levels. Large positive biases occur at Key Biscayne (KEY, 25.7 N, 80.2 W) and Mace Head 

(MHD, 53.3 N, 9.9 W) for both S0Wopt and S0Aopt, likely due to a model sampling bias, with model grid box overlapping 2045 

land while samples are collected with onshore winds. Over middle and high latitudes of the Northern Hemisphere, the 

simulated surface methane DMF shows low and high biases at individual sites, possibly due in part to uncertainties in the local 

emissions. As shown in Figure 2b, both S0Aopt and S0Wopt are able to capture the methane seasonal cycle at most sites (with 

a correlation coefficient (R) larger than 0.5 for about 80% of sites). Both S0Aopt and S0Wopt are able to reproduce the methane 

seasonal cycle over the Southern Hemisphere. However, both S0Aopt and S0Wopt show poor performance in the seasonal 2050 

cycle over the southern tropical Pacific Ocean, with R < 0.5 (e.g., POCS10 and POCS15 in Figure S4 in the Supplement), but 

show good performance in the seasonal cycle over the northern tropical Pacific Ocean, with R = 0.9 (e.g., POCN05, POCN10, 

and POCN15 in Figure S4 in the Supplement). Poor performance also exists at a few sites in middle and high northern latitudes 

(e.g., AZR, UUM, LEF, MHD, and ICE shown in Figure S4 in the Supplement), mainly due to overestimates of methane 

during summer. The major differences in simulated methane seasonal cycles between S0Aopt and S0Wopt occur over the 2055 

Northern Hemisphere, with slightly better performance by S0Wopt over the Pacific Ocean and by S0Aopt over continental 

sites (e.g., UUM, WLG, UTA, and NWR). Uncertainties in the seasonality of methane emissions, OH abundances, and long-

range transport could lead to biases in the seasonal cycle. In general, both S0Aopt and S0Wopt are able to capture the methane 

latitudinal gradient (e.g., R = 0.9). This suggests that the spatial distribution of methane in emissions is reasonable on the large 

scale despite uncertainties in representing local sources.  2060 

To investigate background tropospheric methane variability, Figure 3 shows the bias in the simulated vertical distribution of 

methane with respect to HIPPO observations for the S0Aopt and S0Wopt simulations. S0Aopt and S0Wopt simulations 

produce very similar methane profiles. Both S0Aopt and S0Wopt match observed methane profiles very well over the Southern 

Hemisphere. Compared to HIPPO measurements, methane in both simulations is consistently high over the tropical Pacific 

Ocean (by up to ~50 ppb) from the surface to 700 mb during all HIPPO campaigns. These biases decrease with altitude and 2065 

decrease with latitude except for summer. In the Northern Hemisphere, both S0Wopt and S0Aopt simulations capture observed 
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methane from near the surface to 700 mb, but are generally biased low, except in summer when they are biased high, especially 

at mid-latitudes. Mid-latitude background methane is affected by both high-latitude and low-latitude air masses on synoptic 

scales. Biases over these regions could result from many processes (e.g., overestimation of the summer emissions, insufficient 

OH levels, and model transport). In general, the relative differences between the simulated methane profiles and HIPPO 2070 

measurements are within 2% over most regions, demonstrating the capability of the improved GFDL-AM4.1 for simulating 

tropospheric methane. 

3.1.2 Timeseries evaluation 

As described in Section 2.2, we fit a function consisting of yearly harmonics and a polynomial trend, with fast fourier transform 

and low pass filtering of the residuals, to the monthly mean methane DMF (Thoning et al., 1989; Thoning, 2019) to estimate 2075 

the timeseries and growth rates discussed below. The comparisons of simulated global mean background surface methane 

timeseries and growth rates to NOAA-GMD observations are shown in Figure 4. Both S0Wopt and S0Aopt predict similar 

global mean surface methane DMF, timeseries, and growth rates, since the global methane budget (emissions and sinks) is the 

same in the two simulations. S0Wopt and S0Aopt are also able to reproduce global annual mean surface methane DMF (with 

root-mean-square-error (RMSE) = 10.4 ppb in S0Wopt and 11.6 ppb in S0Aopt) over 1983-2017, which is expected from 2080 

emission optimization. Meanwhile, both simulations are able to reproduce the methane timeseries very well (with R = 1.0 in 

both S0Wopt and S0Aopt) over different latitude bands as shown in Figure 4. The major discrepancies in surface methane 

DMF between model simulations and observations are mainly over low latitudes, especially the tropics, where the RMSE is 

greater than 20 ppb. Over the high northern latitudes, both S0Aopt and S0Wopt reproduce background methane DMF very 

well with RMSE less than 10 ppb. Over the high southern latitudes, both S0Aopt and S0Wopt underestimate background 2085 

methane DMF by up to 35 ppb in the 1980s, which could be due in part to the fewer observational sites in the Southern 

Hemisphere used for emission optimization during this time period. In general, the agreement between the evolution of the 

simulated and observed global methane DMFs increases our confidence in the optimized methane emission trends used in this 

work. 

Table 3 summarizes methane growth rates during 1984-1991, 1992-1998, 1999-2006, and 2007-2017. S0Aopt and S0Wopt 2090 

simulate very similar methane growth rates as their emission totals are the same. During 1984-1991, both S0Aopt and S0Wopt 

slightly overestimate methane growth rates by ~2 ppb yr-1, possibly due to fewer available observations used for emission 

optimization during this time period than afterwards. After 1991, the simulated methane growth rates are in general comparable 

to the observations (with annual mean difference within ±1 ppb yr-1). The major discrepancies in the simulated methane growth 

rates and observations occur over the tropics and high northern latitudes as shown in Figure 4. Over the tropics, both S0Aopt 2095 

and S0Wopt overestimate methane growth rates (by about 5-10 ppb yr-1) during 1984-1990 when there were limited 

observations available, but are able to reproduce methane growth rates relatively well afterwards. Agreement of the methane 

growth rate is worse in the Northern Hemisphere than in the Southern Hemisphere, especially at high northern latitudes, mainly 

due to the large bias during 1984-1988 and a slight shift in peak growth (or peak decrease) during 1997-2005. The number of 
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observational MBL sites does not provide adequate coverage of the globe, especially in the 1980s, which could have different 2100 

impacts on the Northern and Southern Hemisphere when optimizing global total emissions. In general, S0Aopt estimates 

slightly better methane growth rates than S0Wopt, especially over 30-90o N. The biases in methane growth rates also suggest 

a need to refine regional emissions.  

S0Aopt and S0Wopt simulate very similar surface methane DMF and their comparison with NOAA-GMD observations at 

individual sites show both simulations to be biased low over Southern Hemisphere sites, but the low bias decreases northward 2105 

(Figure S5 in the Supplement). The simulations are biased moderately high (by up to ~40 ppb) over tropical regions (e.g., 

POCS15, POCS10, SMO, POCS05, POCN00, CHR, and POCN05). These sites are mainly remote sites and surface methane 

DMF represents background methane levels. The overestimates are likely due to overestimation of emissions over Southeast 

Asia (e.g., Saeki and Patra, 2017, Patra et al., 2016, and Thompson et al., 2015), which could affect these remote sites through 

transport. However, the model predicts surface methane DMF relatively well at Ascension Island (ASC, 8oS, 14.4oW, 85 m), 2110 

which is also a remote site without impacts from East Asia. The high biases over the tropics suggest a need to improve regional 

emissions (e.g., Southeast Asia). Moderate overestimates also occur at Mahe Island (SEY, 4.7oS, 55.5oE), a location that could 

be affected by air masses from polluted areas over the tropics and Northern Hemisphere. Over middle and high latitudes of the 

Northern Hemisphere, both S0Aopt and S0Wopt simulate surface methane DMF relatively well at most sites, except at Key 

Biscayne (KEY, 25.7oN, 80.2oW), Tae-ahn Peninsula (TAP, 36.7oN, 126.1oW), Park Falls (LEF, 45.9oN, 113.7oW), and Mace 2115 

Head (MHD, 53.3oN, 9.9oW). KEY, MHD, and TAP are sampled under onshore winds, whereas LEF are affected by local 

sources and transport. The high biases at these sites could be due in part to model sampling bias (e.g., model grid box 

overlapping land while samples are collected at coast with onshore winds) and uncertainties in local emissions (e.g., possible 

overestimation in the emissions over East Asia). In general, both S0Wopt and S0Aopt are able to reproduce the surface methane 

DMF and capture the monthly variations at most sites (e.g., with R greater than 0.5 at 98% of total sites and with RMSE less 2120 

than 30 ppb at 74% of total sites). As shown in Figure S5, S0Aopt in general better estimates methane timeseries and growth 

over low latitudes of the Southern Hemisphere (e.g., SMO) and middle/high latitudes of the Northern Hemisphere (e.g., ASK, 

KEY, WIS, UTA, NWR, UUA, LEF, CBA, STM, and ALT) than S0Wopt. Based on the site-level comparisons between 

S0Wopt and S0Aopt, anthropogenic emissions over Southeast Asia are likely overestimated in both S0Aopt and S0Wopt, 

while they could be underestimated at WLG and NWR in S0Wopt but be reasonably well represented in S0Aopt. 2125 

3.2 Global methane budget 

Figure 5 shows time series of optimized total emissions, global sink, and global burden of methane based on S0Wopt. Since 

global totals in the S0Aopt and S0Wopt simulations are very similar, we only show the budget for S0Wopt. As depicted in 

Figure 5, the simulated global methane burden steadily increases from 1980 to 1992, with a growth rate of 39 Tg yr-1. During 

1993-1998, the global methane burden growth slows with a growth rate of 16 Tg yr-1. The simulated growth rate in global 2130 

methane burden decreases to 4 Tg yr-1 during 1999-2006 while it increases to 16 Tg yr-1 during 2007-2017 and reaches over 

20 Tg yr-1 during 2014-2016. The changes in the global burdens are due to the imbalance between methane emissions and 
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sinks. As shown in Figure 5, the optimized emissions in general increase during 1980-2017, with an annual mean of 580±34 

Tg yr-1 (mean±standard deviation) and show much larger interannual variability during 1991-1993 and 1997-2000, which is 

likely due to the strong El Niño events during 1991-1992 and 1997-1998 as well as the Mt Pinatubo eruption in 1991 2135 

(Dlugokencky et al., 1996; Bousquet et al., 2006; Bândă et al., 2016). Although there is an overall increasing trend in total 

global emissions, growth in annual mean emissions has increased from the 1980s (with an annual emission growth rate of 

3.9 Tg yr-1) to the 1990s (4.4 Tg yr-1), but decreased to 0.3 Tg yr-1 during 2000-2006, and increased again to 2.3 Tg yr-1 

during 2007-2017. Interannual variability of the optimized emissions mainly results from interannual variability in simulated 

OH levels during emission optimization. Uncertainties in the interannual variability of simulated OH levels and therefore 2140 

methane sinks could lead to uncertainties in the interannual variability of the optimized emissions.  

Unlike methane emissions, the methane sink increases during 1980-2007, with relative stabilization during 2008-2014 but a 

resumed increase during 2015-2017. The annual mean methane sink during 1980-2017 is 560±44 Tg yr-1 (mean±standard 

deviation). The trends in methane sink are affected by the changes in both methane and OH levels (assuming that other sinks 

are minor) and temperature. Figure 6 shows the tropospheric OH anomalies with respect to 1998-2007. An interesting finding 2145 

is that AM4.1 predicts higher OH levels during 2008-2014 than 1998-2007 by 3.1%, whereas previous studies applying 

multispecies inversion with a box-model framework (e.g., Rigby et al., 2017; Turner et al., 2017) suggest a decline in OH 

levels after 2007. However, a recent study by Naus et al. (2019) found a shift to positive OH trend over 1994-2015 after 

applying bias corrections based on a 3-D chemical transport model to a similar box model setup. In addition, OH levels 

simulated by AM4.1 decrease from 2013 to 2015 but increase again afterwards, leading to an increase in methane sinks during 2150 

2015-2017. As shown in Figure 5, larger methane emissions than sinks during 1980-1998 lead to an increase in methane 

burden. A relative balance between methane sources and sinks during 1999-2006 leads to the methane stabilization. Compared 

to 1999-2006, both methane sources and sinks are greater during 2007-2017, but methane emissions outweigh sinks after 2007 

leading to renewed methane growth.  

Table 4 provides a summary of the decadal mean methane budget for 1980-2017. Compared to Kirschke et al. (2013) and 2155 

Saunois et al. (2019), total natural emissions from the initial emission inventories (203 Tg yr-1) are at the lower range of top-

down estimates during this period, except for the 1990s, when they are slightly greater than top-down estimates but still much 

lower than the bottom-up estimates. Since there is no observational constraint on bottom-up estimates, total natural emissions 

are simply summed over independent individual sources, which could be overestimated in the bottom-up approach considering 

the relatively large uncertainties in each individual source. In addition, in the bottom-up estimate from Kirschke et al. (2013) 2160 

and Saunois et al. (2016), some other natural sources, such as freshwater, are not included in the initial emission inventories 

in this work; however, they are likely double counted in the bottom-up estimates (e.g., high-latitude inland waters are likely 

also considered as wetland areas) as pointed out in Saunois et al. (2019). The natural emissions estimated in this work (e.g., 

203-297 Tg yr-1) are much more comparable to previous top-down estimates (e.g., 150-273 Tg yr-1 as shown in Kirschke et 

al., 2013), which demonstrates confidence in the natural source estimates. Total anthropogenic emissions from the initial 2165 

emission inventories are overall within the range of top-down or bottom-up estimates, except for 1980-1989, when they are 
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less than the estimates in Kirschke et al. (2013). The low values in the 1980s result mainly from low estimated emissions from 

agriculture and waste sectors in the CEDS inventory. With the optimized global total emissions, the total sources used in this 

work and the total sinks estimated by AM4.1 are in the range of either top-down or bottom-up estimates by previous studies. 

As a result, the imbalance between total emissions and total sinks estimated in this work is, overall, within the range of 2170 

estimates by previous studies although we find a smaller imbalance than previous estimates for the 2000s and afterwards. The 

atmospheric growth rates simulated by the model (sampled identically as for observations) are also comparable to the observed 

atmospheric growth rates. 

3.3 Source tagged tracers 

In this section, we apply the Mann-Kendall (M-K) test to estimate the linear trend of global mean source tagged tracers and 2175 

total methane for 1983-1998, 1999-2006, and 2007-2017 to investigate possible drivers of total methane trends. Figure 7 

compares the trends of source tagged tracers and total methane from S0Aopt and S0Wopt during each time period. For S0Aopt, 

total methane increases strongly at 10.5 ppb yr-1 during 1983-1998. The tagged anthropogenic tracers all show increasing 

trends during 1983-1998 despite the increases in OH levels, with dominant increasing trends by CH4AGR and CH4WST 

consistent with emission trends. Since wetland emissions and other natural emissions are kept constant every year in S0Aopt, 2180 

with increases in OH levels during 1983-1998, all tagged natural tracers show a weak decreasing trend. During 1999-2006, 

total methane shows a small increasing trend of 1.0 ppb yr-1, due to the increasing trends of CH4ENE and CH4WST 

compensated by the decreasing trends of other source tagged tracers. The increasing trends of CH4ENE and CH4WST are 

mainly driven by the increases in the emissions from energy and waste sectors in S0Aopt whereas the decreasing trends of 

other source tagged tracers are mainly driven by the increases in OH levels. Compared to the rapid growth during 1983-1998, 2185 

only CH4ENE growth rate shows a small increase during 1999-2006 (2.6 ppb yr-1 vs. 2.2 ppb yr-1 in 1983-1998), with all other 

tracers show a decrease in their growth rates. Despite higher anthropogenic emissions during 1999-2006 than previous periods, 

the sinks are also higher, leading to a relative stabilization. During 2007-2017, total methane shows a renewed increasing trend 

of 5.3 ppb yr-1, dominated by a strong increasing trend of CH4ENE (5.9 ppb yr-1) and smaller increasing trends of CH4AGR 

and CH4WST. Compared to 1999-2006, there is a significant increase in CH4ENE growth rate with smaller increases in 2190 

CH4AGR growth rate during 2007-2017. Although the CH4WST growth rate decreased in 2007-2017, the continued 

increasing trend of CH4WST together with those of CH4AGR and CH4ENE contributes to the renewed growth in methane. 

The results from S0Aopt suggest that globally, anthropogenic tracers dominate total methane trends during the entire 

simulation period. During the 1980s and 1990s, emissions from agriculture, energy, and waste sectors are the major 

contributors to the methane increase. During 1999-2006, when atmospheric methane stabilizes, increases in methane sinks and 2195 

methane sources alternatively dominate the trend for different tracers. Compared to 1999-2006, higher emissions from 

agriculture, energy, and waste sectors during 2007-2017 are the major drivers for the renewed growth in methane, with energy 

sector as the largest contributor 
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The source tagged tracers behave slightly differently in S0Wopt. For S0Wopt, total methane shows a similar increasing trend 

as S0Aopt. During 1983-1998, the tagged anthropogenic tracers all show increasing trends except CH4ENE, with overall 2200 

smaller increasing trends than those in S0Aopt. CH4WET shows a strong increasing trend (7.0 ppb yr-1), dominating the total 

methane trend. This is mainly because wetland emission growth is larger than anthropogenic emission growth due to the 

emission optimization in S0Wopt during this period. During 1999-2006, similar to S0Aopt, the total methane trend results 

from the increasing trends of CH4ENE and CH4WST compensated by the decreasing trends of other source tagged tracers. 

During this time, CH4WET shows a slightly decreasing trend (-0.8 ppb yr-1), reflecting the slightly greater CH4WET sinks 2205 

(226 Tg yr-1) than emissions (223 Tg yr-1). Similar to S0Aopt, only CH4ENE shows an increase in its growth rate during this 

time period compared to previous time periods. During 2007-2017, the total methane trend is dominated by the increasing 

trends of CH4AGR, CH4ENE, and CH4WST, with CH4ENE as the largest contributor, similar to S0Aopt. On the other hand, 

CH4WET shows a significant decreasing trend during this period, with CH4WET sinks (217 Tg yr-1) larger than emissions 

(206 Tg yr-1). Compared to 1999-2006, there is a significant increase in CH4ENE growth rate with a noticeable increase in 2210 

CH4AGR growth rate during 2007-2017. Although the CH4WST growth rate also decreased in 2007-2017, similar to S0Aopt, 

the continued increasing trend of CH4WST together with those of CH4AGR and CH4ENE contributes to the renewed growth 

in methane. On the other hand, CH4WET shows a significant decrease in its growth rate during this time period compared to 

1999-2006, mainly due to lower emissions (206 Tg yr-1 in 2007-2017 vs. 223 Tg yr-1 in 1999-2006) imposed in this scenario. 

Compared to the S0Aopt results, S0Wopt suggests CH4WET as the largest contributor for the methane trends during 1980s 2215 

and 1990s, mainly due to emission optimization of different sectors. However, both scenarios suggest CH4AGR, CH4WST, 

and CH4ENE are the major contributors to the renewed growth in methane, with CH4ENE as the largest contributor.  

As shown in Figures 5 and 6, OH levels slightly decrease and methane sinks are relatively stable during 2007-2013, but large 

interannual variability exists during 2013-2017. Decreasing OH levels could lead to increases in methane lifetime and therefore 

methane buildup. Combined with increases in the emissions, methane starts to increase again during this period. However, it 2220 

is difficult to separate the contributions from methane emissions and sinks as optimized methane emissions are based on 

methane mass balance (e.g., changes in methane loss would act as a feedback on estimates of optimized total emissions). 

Nevertheless, it is clear that the decrease in OH levels alone (e.g., if emissions are kept constant) would not be enough to 

reproduce the renewed growth. The remaining question then is which emission sector(s) is (are) the major contributor(s) to the 

renewed growth over 2007 to 2017. Both S0Wopt and S0Aopt suggest that agriculture, waste, and energy sectors are the major 2225 

contributors to renewed methane growth. However, both cases depend largely on the initial emission inventory and the scaling 

methods chosen. For example, S0Wopt relies on the emission growth of other sectors from the initial emission inventory, 

which means if the emission growth of a certain sector is overestimated or underestimated in the initial emission inventory, it 

would lead to different results. Therefore, we conducted two additional sensitivity simulations (i.e., S0A06 and S0Comb as 

described in Section 2.3) with different emission growths for anthropogenic and wetland sectors as in S0Aopt and S0Wopt for 2230 

2006-2014.  
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The trends for source tagged tracers and total methane by S0A06 and S0Comb are shown in Figure 7. Interestingly, in S0A06, 

where anthropogenic and biomass burning emissions are kept constant every year for 2006-2014, anthropogenic tracers, 

particularly CH4ENE and CH4WST, still show increasing trends during 2007-2014, whereas CH4WET shows a small 

decreasing trend despite rising emissions. As OH levels slightly decrease during this time (but are still higher than 1999-2006), 2235 

with constant emissions except wetland, one might expect possible increasing trends in all tagged tracers except CH4WET. In 

fact, major anthropogenic tracers such as CH4AGR, CH4ENE, CH4WST, and CH4BMB increase over 2007-2014 in S0A06, 

but at a slower rate than in S0Wopt (and S0Aopt) due to no emission growth for these tracers. On the other hand, the decreasing 

OH levels (Figure 8) would lead to a smaller methane sink and therefore higher methane concentrations. Since methane loss 

is proportional to the product of OH levels and methane concentrations, and concentrations of CH4WET are much greater than 2240 

other source tagged tracers, the loss of CH4WET is also much greater than other tracers. Higher CH4WET loss (223 Tg yr-1) 

than CH4WET emissions (222 Tg yr-1) leads to a slightly decreasing trend in CH4WET. In other words, despite the increasing 

source contributions from wetlands to total methane emissions, the relative contributions of wetland tracer to total methane 

abundance is declining. Compared to 1999-2006, there are major increases in the growth rates of CH4ENE and CH4BMB, 

with smaller increase in CH4AGR and CH4OAT growth rates, which drives the renewed methane growth. Meanwhile, 2245 

CH4WET is still declining during 2007-2014 (-1.1 ppb yr-1), but at a larger decease rate than 1999-2006 (-0.8 ppb yr-1). 

Nevertheless, S0A06 results suggest that the renewed growth during 2007-2014 is contributed by the increased growth rates 

of CH4ENE, CH4BMB, and CH4AGR as well as increasing trend of CH4WST, mainly due to higher anthropogenic emissions 

than 1999-2006 and decreases in OH levels during 2008-2014. The results also suggest OH trends play an important role in 

determining the increasing trend of total methane since emissions of the energy and waste sectors are kept constant in this 2250 

sensitivity simulation. In addition, increases in wetland emissions alone are not able to drive increases in CH4WET over this 

period, as CH4WET sinks are equally important for determining the trend in CH4WET. Our analysis also suggests that 

increased emissions from other microbial sources (e.g., agriculture and waste) are needed to match the observed negative trend 

in δ13CH4 since 2007 (Nisbet et al., 2019).  

The trends for source tagged tracers and total methane behave differently in S0Comb, where we combine S0Aopt emissions 2255 

for 1980-2005 and S0Wopt emissions for 2006-2014. During 2007-2014, all anthropogenic tracers show decreasing trends 

except CH4ENE (2.8 ppb yr-1), whereas CH4WET shows a significant increasing trend (5.9 ppb yr-1) and dominates the total 

methane trend. This is mainly due to lower anthropogenic emissions during this period than previous periods, allowing sinks 

of anthropogenic methane tracers to start to take over their trends except for CH4ENE. At the same time, significantly higher 

wetland emissions during this period than previous periods dominate the increasing trend of CH4WET. Interestingly, even 2260 

with the same wetland emissions in S0Wopt and S0Comb for 2006-2014, CH4WET shows different trends. This is mainly 

because the CH4WET concentrations at the beginning of 2006 are much lower in S0Comb than in S0Wopt. Therefore, 

CH4WET loss is much lower in S0Comb (190 Tg yr-1) compared to S0Wopt (220 Tg yr-1) over this time, leading to an 

increasing CH4WET trend in S0Comb, but a decreasing trend in S0Wopt. Compared to 1999-2006, there is a significant 

increase in CH4WET growth rate with a minor increase in CH4ENE growth rates during 2007-2014, which drives the renewed 2265 
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growth in methane. S0Comb results suggest the need for a sharp increase in wetland emissions with concomitant sharp decrease 

in anthropogenic emissions in 2006 to drive the methane growth by wetland tracer. It is a likely scenario for a sharp increase 

in wetland emissions considering the interannual variability. However, it is a less likely scenario for a concomitant sharp 

decrease in anthropogenic emissions as both top-down and bottom-up inventories indicate anthropogenic emissions increasing 

over 2000s. A more likely scenario is that both anthropogenic and wetland emissions increase (i.e., higher during 2007-2014 2270 

than 1999-2006). However, in that case, the dominance of wetland emissions in driving the total methane trend would decrease 

based on our analysis. 

3.4 Sensitivity to OH levels 

As described in Section 2.3, we perform two additional simulations for low and high OH levels (i.e., S1 and S2) for 1980-2017 

to investigate the sensitivity of methane predictions to different OH levels. For both OH cases, the interannual variations in 2275 

OH levels are the same as in S0 because the simulations are driven by the same meteorology. Figures 8(a) and (b) show global 

tropospheric OH concentrations, OH-driven methane loss, and tropospheric methane lifetime for the three cases (i.e., S0, S1, 

and S2) in which wetland emissions are optimized (Wopt; Aopt has a very similar global OH trend as Wopt). Compared to S0, 

scaling LNOx production in the model by a factor of 0.5 leads to a reduction in simulated annual global mean OH levels by -

6.4 % and an increase in methane lifetime by 0.5 years in S1 over 1980-2017; scaling by a factor of 2 leads to an increase in 2280 

simulated annual global mean OH by +9.1% and a decrease in methane lifetime by 0.7 years in S2. The global mean OH levels 

increase from 1980 to 2008 (by 3.6%, with respect to 1980 level), decrease from 2008 to 2015 (by 2.3%, with respect to 2008 

level), and increase from 2015 to 2017 (by 4.6%, with respect to 2015 level). However, compared to 1998-2007 average, OH 

levels during 2008-2015 and 2015-2017 are still greater by 2.5% and 1.3%, respectively. Changes in OH levels depend on a 

number of factors (e.g., temperature, water vapor, O3, NOx, CO, and VOCs). Therefore, OH is influenced by the specific 2285 

chemistry and forcing data used in the model. Nevertheless, our estimates in OH trends and variabilities from all three cases 

are quite comparable to the those estimated by the Chemistry-Climate Model Initiative (CCMI) models (e.g., Zhao et al., 2019). 

Since emission optimization is also based on methane sinks, the total optimized emissions in S1 are lower than those in S0 by 

about 4.1% (with an annual mean of -24 Tg yr-1), and the total optimized emissions in S2 are higher than those in S0 by about 

5.8% (or 33 Tg yr-1). This indicates that a 1% change in OH levels could lead to about 4 Tg yr-1 difference in the optimized 2290 

emissions. Increasing methane loss due to OH is simulated for 1980-2007 in the three cases due to increases in OH and methane 

concentrations (except over the stabilization period when methane was not increasing but OH was increasing). During 2007-

2013, the simulated decrease in OH levels combined with increasing methane concentrations leads to relative stabilization in 

OH-driven methane loss in the three cases. The large interannual variability in OH levels during 2013-2017 dominates the 

interannual variability in methane OH loss despite the continued increases in methane.  2295 

All three simulations show a similar trend for tropospheric methane lifetime, with a decreasing trend from 1980 to 2007 (-0.04 

year yr-1 in S0, -0.05 year yr-1 in S1, and -0.03 year yr-1 in S2), a clear increasing trend during 2011-2015 (0.08 year yr-1 in all 

three simulations), and a decreasing trend during 2015-2017 (-0.2 year yr-1 in all three simulations). The mean tropospheric 
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methane lifetime due to OH loss for 1980-2017 is 9.9±0.4 years in S0Wopt, which is about 0.5 year lower than S1Wopt 

(10.4±0.5 years), and about 0.7 year higher than S2Wopt (9.2±0.3 years), due to different OH levels and therefore methane 2300 

sinks, but with similar methane burdens. This indicates that a 1% change in OH levels could lead to about 0.08 year difference 

in the tropospheric methane lifetime. The mean tropospheric methane lifetime simulated by the three simulations is within the 

uncertainty range of model estimates of 9.3±0.9 ~ 9.8±1.6 years (Voulgarakis et al., 2013; Naik et al., 2013b) and in general 

comparable to the observation-derived estimates of 9.1±0.9 years for the present-day (Prather et al., 2012), with a slightly 

higher estimate by S1Wopt. All simulations show an increase in methane lifetime during 2011-2015, which could be a signal 2305 

of the methane feedback on its lifetime (Holmes, 2018) in the model. Continued increases in methane emissions (Figure 5) 

during this time, along with decreases in tropospheric OH concentrations (Figure 8), lengthen the lifetime of methane and 

therefore amplify methane’s response to emission changes. If methane emissions continue to increase, we can expect stronger 

increases in atmospheric methane due to the amplifying effect of the methane-OH feedback as occurred in the significant 

increases in methane growth rates during 2014 and 2015. 2310 

4 Conclusions 

In this work, we thoroughly evaluate the atmospheric methane budget simulated by the GFDL atmospheric chemistry model 

AM4.1 and apply the model to attribute the drivers of changes in global methane over the past four decades. We simulate 

methane and related tracers for 1980-2017 by driving the model with gridded emissions compiled from various sources. To 

match the long-term record of surface methane measurements, we optimize global total methane emissions using a simple 2315 

mass-balance approach. Our optimized global total methane emissions are within the range of estimates by previous studies 

(both bottom-up and top-down). The GFDL-AM4.1 simulations with emissions following two different optimizations 

(anthropogenic sources and wetlands) both reproduce observed global methane trends and variabilities, despite the different 

contributions from anthropogenic and wetland emissions. This, therefore, suggests that accurate estimates of global total 

emissions and of their interannual variability are critical in predicting the global methane trend and its variability, despite 2320 

uncertainties in the estimates of individual sources. In addition, both simulations are in general able to capture the spatial 

distribution and seasonal cycle of methane as observed by NOAA GMD sites and vertical distribution of methane as measured 

from aircraft, demonstrating the reasonable spatial and temporal representations of the optimized emissions derived in this 

work.  

We then explore the contributions of changes in methane sources and sinks to methane trends and variability over 1980-2017. 2325 

The simulation with optimization of anthropogenic emissions shows increasing anthropogenic emissions to drive the rapid 

methane growth during 1980s and 1990s, whereas the simulation with optimization of wetland emissions also shows wetland 

to be one of the major contributors during these periods. However, both simulations suggest increases in methane sources 

(mainly from agriculture, energy, and waste sectors), balanced by the increases in methane sinks (mainly due to increases in 
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OH levels), lead to methane stabilization during 1999-2006, and that the agriculture, energy, and waste sectors are the major 2330 

contributors to the renewed growth in methane after 2006.  

Two additional sensitivity simulations further investigate the contributions of wetlands to the methane renewed growth during 

2007-2014. The simulation with repeating 2006 emissions for all the sectors except wetland shows a declining contribution of 

wetland tracer to total methane abundance despite of the increasing contribution of wetland emissions to total emissions, 

because sinks are equally important for determining the tracer trend. Results from a simulation with combined optimizations 2335 

(i.e., 1980-2005 optimized anthropogenic emissions and 2006-2014 optimized wetland emissions) suggest that a sharp increase 

in wetland emissions (a likely scenario) with concomitant sharp decrease in anthropogenic emissions (a less likely scenario), 

would be required starting in 2006 to drive the methane growth by wetland tracer.  

Two additional sensitivity simulations, with low and high OH levels (by scaling LNOx production in the model by a factor of 

0.5 and 2), further investigate methane OH loss and tropospheric methane lifetime. In general, OH trends dominate methane 2340 

OH loss trends during different methane growth periods except 2007-2013, when methane OH loss shows little change due to 

the decrease in OH levels combined with the increase in methane concentrations. The results also indicate that a 1% change in 

OH levels could lead to about 4 Tg yr-1 difference in the optimized emissions and 0.08 year difference in the estimated 

tropospheric methane lifetime. The increasing methane lifetime during 2011-2015 in all the OH sensitivity simulations indicate 

a possible methane feedback on its lifetime in the model. Continued increases in methane emissions along with decreases in 2345 

tropospheric OH concentrations extend the lifetime of methane and therefore amplify methane’s response to emission changes.  

Essentially, the global atmospheric methane trend is driven by the competition between its emissions and sinks. Our model 

results suggest that the methane stabilization during 1999-2006 is mainly due to increasing emissions balanced by increasing 

sinks, whereas the methane renewed growth during 2007-2013 is mainly due to increasing sources combined with little change 

in sinks despite small decreases in OH levels. The significant increases in methane growth during 2014-2015 are mainly due 2350 

to increasing sources combined with decreasing sinks. Most of the model simulations conducted here suggest that increases in 

energy sources drive the renewed methane growth, in agreement with previous studies (e.g., Rice et al., 2016; Hausmann et 

al., 2016; Worden et al., 2017), with second largest contributor from waste sector and third largest contributor from agriculture 

sector, consistent with the shift in the isotopic ratio d13CH4. However, optimization of emissions from anthropogenic sources 

depends on the “shares” of individual anthropogenic sectors in the initial emission inventories. Uncertainties in these shares 2355 

could lead to uncertainties in the emission adjustment for each anthropogenic sector. Recent studies using methane isotopic 

composition suggest that renewed growth in methane since 2007 is more likely due to the increases in biogenic sources (e.g., 

Schaefer et al., 2016) as d13CH4 is shifting to more negative values after increasing during the 1980s and 1990s and relatively 

stable during 1999-2006. However, this shift could also imply increases in isotopically lighter fossil fuel emissions, or 

decreases in isotopically heavy sources (e.g., biomass burning), or increases in both microbial and fossil fuel emissions but 2360 

with increases in microbial emissions stronger than those from fossil fuel sources (Nisbet et al., 2019). It is quite possible that, 

rather than the energy sector, the increases in the agriculture and waste sectors could be the largest contributors to the renewed 
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growth in methane. In that case, it is possible that the growth of agriculture and waste emissions could be underestimated in 

the optimized emissions, while the growth of energy emissions could be overestimated. 

The optimized emission totals estimated in this work represent temporal and spatial distribution of methane total sources 2365 

reasonably well. However, the emission adjustments are either applied to anthropogenic (including biomass burning) sectors 

only (uniformly to all anthropogenic sectors) or wetland sector only. Uncertainties therefore exist on the distribution of the 

emission adjustments to individual sectors. Without accurate estimates of emissions from individual sources, it would be 

difficult to attribute the methane trend and variability to specific sectors. The application of methane isotopes and additional 

observational constraints (e.g., ethane and δ13CH4) could potentially help better partition the emission adjustments to different 2370 

sectors. In addition, the spatial distribution of optimized emissions depends on the spatial information in the initial emission 

inventories. Uncertainties in the spatial distribution from the initial emission inventories may remain in the optimized 

emissions. Our model evaluation suggests that the optimized inventory may overestimate tropical emissions. A process-based 

emission model (e.g., wetland emissions) coupled with AM4.1 may better represent the spatial and temporal patterns of the 

emissions than prescribed in the present work. 2375 
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Table 1. Emission inventories used in this study 

Source Category Database Temporal Variability References 

Anthropogenic 
CEDS v2017-05-18 1980-2014 monthly data Hosely et al. (2018) 

SSP2-4.5 2015-2017 monthly data Gidden et al. (2019) 

Biomass Burning BB4MIP 1980-2014 monthly data van Marle et al. (2017) 
SSP2-4.5 2015-2017 monthly data Gidden et al. (2019) 

Wetlands WetChart v1.0 Climatological monthly mean (with 
seasonal variability) for 1980-2017 Bloom et al. (2017) 

Ocean MOZART Climatological monthly mean (with 
seasonal variability) for 1980-2017 Brasseur et al. (1998) 

Near-shore  TransCom-CH4 Climatological annual mean (no seasonal 
variability) for 1980-2017 

Lambert and Schmidt (1993), 
Patra et al. (2011) 

Termites NASA-GISS Climatological annual mean (no seasonal 
variability) for 1980-2017 Fung et al. (1991) 

Mud volcanoes TransCom-CH4 Climatological annual mean (no seasonal 
variability) for 1980-2017 

Etiope and Milkov (2004), 
Patra et al. (2011) 

 
Table 2. List of simulations conducted using GFDL-AM4.1 to explore trends and variability in methane 

Simulations Description 
S0Aopt Standard AM4.1 configuration, but with optimized anthropogenic emissions for 1980-2017 
S0Wopt Standard AM4.1 configuration, but with optimized wetland emissions for 1980-2017 
S0A06 S0Aopt emissions for 1980-2005, with repeating 2006 S0Aopt anthropogenic emissions for 2006-2014 

and adjusting wetland emissions for 2006-2014 to ensure the total emissions are same as optimized totals 
S0Comb S0Aopt emissions for 1980-2005 and S0Wopt emissions for 2006-2014 
S1Wopt AM4.1 configuration with low OH levels (LNOx emissions scaled by a factor of 0.5), and optimized 

wetland emissions for 1980-2017 
S2Wopt AM4.1 configuration with high OH levels (LNOx emissions scaled by a factor of 2), and optimized 

wetland emissions for 1980-2017 
 
 2705 
Table 3. Comparisons of simulated methane growth rates (annual mean ± standard deviation) with observed methane 

growth rates (ppb yr-1) 
 1984-1991 1992-1998 1999-2006 2007-2017 

Observed 11.7±1.4 5.5±3.5 0.7±3.1 7.0±2.7 
S0Aopt 13.7±3.2 5.4±3.4 1.3±4.1 6.1±2.7 
S0Wopt 13.6±3.4 5.4±3.6 1.3±4.4 6.1±2.6 
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Table 4. Global methane budget (Tg CH4 yr-1) during 1980-2017 2710 
Period of time 1980-1989 1990-1999 2000-2009 2008-2017 1999-2006 2007-2017 

Sourcesa       

Natural 
sources 

203 [203-282] 
203 [150-267]b 
355 [244-466]c 

  

203 [203-297] 
182 [167-197]b 
336 [230-465]c 

  

203 [203-288] 
218 [179-273]b 
347 [238-484]c 
214 [176-243]d 
369 [245-485]e 

203 [203-277] 
215 [176-248]d 
371 [245-488]e 

  

203 [203-297] 
 
 
  

203 [203-277] 
 
 
  

Natural 
wetlands 

166 [166-245] 
167 [115-231]b 
225 [183-266]c 

  

166 [166-260] 
150 [144-160]b 
206 [169-265]c 

  

166 [166-251] 
175 [142-208]b 
217 [177-284]c 
180 [153-196]d 
147 [102-179]e 

166 [166-240] 
178 [155-200]d 
149 [102-182]e 

  

166 [166-260] 
 
 
  

166 [166-240] 
 
 
  

Other natural 
sources 

37 
  

37 
  

37 
35 [21-47]d 

222 [143-306]e 

37 
37 [21-50]d 

222 [143-306]e 

37 
  

37 
  

Oceans 9.5 
  

9.5 
  

9.5 
18 [2-40]c 
13 [9-22]e 

9.5 
  

9.5 
  

9.5 
  

Termites 20 20 20 20 20 20 
Mud 

volcanoes 7.5 7.5 7.5 7.5 7.5 7.5 

Anthropogenic 
sources 

289 [289-368] 
348 [305-383]b 
308 [292-323]c 

  

311 [311-405] 
372 [290-453]b 
313 [281-347]c 

  

340 [340-425] 
335 [273-409]b 
331 [304-368]c 
331[310-346]d 
334 [325-357]e 

379 [379-452] 
357 [334-375]d 
366 [348-392]e 

  

328 [328-422] 
 
 
  

377 [377-450] 
 
 
  

Agriculture 
and waste 

159 [159-203] 
208 [187-220]b 
185 [172-197]c 

  

172 [172-224] 
239 [180-301]b 
188 [177-196]c 

  

185 [185-232] 
209 [180-241]b 
200 [187-224]c 
202 [173-219]d 
192 [178-206]e 

201 [201-240] 
219 [175-239]d 
206 [191-223]e 

  

181 [181-233] 
 
 
  

200 [200-239] 
 
 
  

Biomass 
burning 13 [13-16]  18 [18-24]  

15 [15-18] 
19 [15-32]e 

14 [14-17] 
17 [14-26]e 15 [15-20]  14 [14-17]  

Fossil fuels 

104 [104-132] 
94 [75-108]b 
89 [89-89]c 

  

107 [107-139] 
95 [84-107]b 
84 [66-96]c 

  

127 [127-159] 
96 [77-123]b 
96 [85-105]c 

100 [70-149]d 
110 [93-129]e 

151 [151-180] 
109 [79-168]d 
127 [111-154]e 

  

120 [120-153] 
 
 
  

150 [150-179] 
 
 
  

Other 
anthropogenic 

sources 
14 [14-17] 14 [14-18] 13 [13-16] 13 [13-16] 12 [12-16] 13 [13-16] 

 DEf,g 47 [23-79] 60 [36-94] 52 [29-85] 39 [16-73] 57 [34-93] 40 [17-73] 
Sinksg       

Total chemical 
loss 

486 [462-519] 
490 [450-533]b 
539 [411-671]c 

  

540 [516-573] 
525 [491-554]b 
571 [521-621]c 

  

577 [553-610] 
518 [510-538]b 
604 [483-738]c 
505 [459-516]d 

592 [569-626] 
518 [474-532]d 

 
  

570 [546-603] 
 
 
  

592 [568-625] 
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595 [489-749]e 

OH loss 442 [419-476] 
468 [382-567]c  

486 [462-519] 
479 [457-501]c  

526 [502-559] 
528 [454-617]c 

553 [476-677]e 

543 [519-576] 
  

519 [495-552] 
  

542 [519-576] 
  

O1D loss 38 
46 [16-67]c  

47 
67 [51-83]c  

43 
51 [16-84]c 

31 [12-37]e 

42 
  

44 
  

42 
  

Cl loss 5 
25 [13-37]c  

7 
25 [13-37]c  

7 
25 [13-37]c 

11 [1-35]e 

7 
  

8 
  

7 
  

Soils 

13 
21 [10-27]b 
28 [9-47]c 

  

14 
27 [27-27]b 
28 [9-47]c 

  

14 
32 [26-42]b 
28 [9-47]c 

34 [27-41]d 

30 [11-49]e 

14 
38 [27-45]d 

 
  

14 
 
 
  

14 
 
 
  

Totalsg       

Sum of 
sources 

539 [515-571] 
551 [500-592]b 
663 [536-789]c 

  

574 [549-608] 
554 [529-596]b 
649 [511-812]c 

  

595 [572-628] 
548 [526-569]b 
678 [542-852]c 
545 [522-559]d 
703 [570-842]e 

621 [598-655] 
572 [538-593]d 
737 [593-880]e 

  

589 [565-625] 
 
 
  

620 [597-653] 
 
 
  

Sum of sinks 

499 [475-532] 
511 [460-559]b 
539 [420-718]c 

  

554 [530-586] 
542 [518-579]b 
596 [530-668]c 

  

591 [567-624] 
540 [514-560]b 
632 [592-785]c 
540 [486-556]d 

625 [600-798]e 

606 [583-640] 
556 [501-574]d 

 
  

584 [560-617] 
 
 
  

606 [582-639] 
 
 
  

Imbalance 40 [39-40] 
30 [16-40]b  

20 [19-22] 
12 [7-17]b  

4 [4-5] 
8 [-4-19]b 
4 [-11-36]d 

15 [15-15] 
16 [0-47]d  

5 [5-8] 
  

14 [15-14] 
  

Atmospheric 
growth 

36 
34b 
32h 

19 
17b,h 

 

4.8 
6b,h 

 

16.7 
18.7±2.7h 

 

3.5 
1.9±1.6h 

 

16.6-17.2 
18.9±1.7h 

 
a The decadal mean values are based on initial emission inventories. The lower and upper limits of the ranges are based on 
the minimum and maximum among all the optimized emission scenarios (i.e., S0Aopt, S0Wopt, S1Aopt, S1Wopt, S2Aopt, 
and S2Wopt) conducted in this work. 
bValues are based on Kirschke et al. (2013) top-down approach. 
cValues are based on Kirschke et al. (2013) bottom-up approach. 2715 
dValues are based on Saunois et al. (2019) top-down approach. 
eValues are based on Saunois et al. (2019) bottom-up approach. 
fDE is calculated based on the methodology of Ghosh et al. (2015). 
gThe ranges are based on the low OH (S1Wopt) and high OH cases (S2Wopt) and the decadal mean values shown in the 
table are based on the default OH (S0Wopt). 2720 
hThe observed atmospheric growth rates (Tg yr-1) are estimated based on a few MBL sites (Dlugokencky et al., 2018), which 
are not the same as the Imbalance Row (based on the entire globe).
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(a) 

 

 
(b) 

 

 
(c) 

Figure 1. Time series of methane emissions from the initial methane inventories (a), optimized methane emissions on 2725 
anthropogenic sectors (S0Aopt, b) and wetland sector (S0Wopt, c) for the period of 1980-2017. The emissions for major 
sectors are shown on the left y axis, including agriculture sector, energy production sector, waste sector, biomass 
burning sector, wetland sector, ocean and near-shore fluxes, termites, mud volcanoes, and other sources (i.e., industrial 
processes, surface transportation, international shipping, residential, commercial, and others). The total methane 
emissions from the initial emission inventories (black line) are shown on the right y axis.  2730 
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(a) 

 
(b) 

Figure 2. Model bias (a) and correlation coefficient (b) of simulated climatological mean surface methane 
concentrations against NOAA GMD observations for the 1983-2017 time period. GMD sites with at least 20-year 
observations are selected for model climatological evaluation. In Fig.2a, each red square or blue cross represents model 
mean bias by S0Aopt or S0Wopt at the corresponding GMD site. Root-mean-square-error (RMSE) is shown for all the 2735 
GMD sites in Fig.2a. In Fig.2b, each red square or blue cross represents correlation of climatological seasonal 
variability by S0Aopt or S0Wopt at the corresponding GMD site. Spatial correlation (R) is shown for all the GMD sites 
in Fig.2b. 
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 2740 

     

     

Figure 3. Comparison of vertical distribution of methane from S0Aopt and S0Wopt simulations with measurements 
from individual HIPPO campaigns. Months of campaign are given at the top left of the individual plots.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4. Comparison of GFDL-AM4.1 simulated methane concentrations and growth rates with NOAA-GMD surface 
observations. For the upper plot in each panel, dash line represents smoothed trends (i.e., 12-month running mean) 2745 
from deseasonalized monthly data. A meridional curve (Tans et al., 1989) was fitted through NOAA-GMD site 
observations to get the latitudinal distribution of methane. A function fit consisting of yearly harmonics and a 
polynomial trend, with fast fourier transform and low pass filtering of the residuals are applied to the monthly mean 
methane DMF (Thoning et al., 1989; Thoning, 2019) to approximate the long-term trend. For the lower plot in each 
panel, the growth rates are calculated from the time derivative of the dash line in the corresponding upper plot. 2750 
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Figure 5. Time series of global methane burden (black line, left Y axis), methane sources (red line, right Y axis), and 
methane sinks (blue line, right Y axis) by S0Wopt. 

 

 2755 

Figure 6. Time series of global tropospheric OH anomalies with respect to 1998-2007. Results of Montzka et al. (2011) 
are shown in dark purple (with the mean interannual variability of OH as ±2.3% for the period of 1998-2007). Results 
of Rigby et al. (2017) derived from NOAA observations are shown in light blue (with the mean interannual variability 
of OH as ±2.3% for the period of 1998-2007 and ±2.6% for the period of 1980-2014), and derived from AGAGE 
observations are shown in dark blue (with the mean interannual variability of OH as ±3.0% for the period of 1998-2760 
2007 and ±3.1% for the period of 1980-2014). Results from Turner et al. (2017) are shown in green (with the mean 
interannual variability of OH as ±2.0% for the period of 1998-2007 and ±2.5% for the period of 1980-2014). Results 
from Naus et al. (2019) are shown in dark green (with the mean interannual variability of OH as ±1.2% for the period 
of 1998-2007 and ±1.8% for the period of 1994-2014). OH anomalies in this work are shown in red (with the mean 
interannual variability of OH as ±2.2% for the period of 1998-2007 and ±4.1% for the period of 1980-2014). 2765 
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Figure 7. Estimated global linear trends for source tagged tracers and total methane (TOT). The source tagged tracers 
include tracer for agriculture sector (AGR), energy sector, (ENE), waste sector (WST), biomass burning sector (BMB), 
other anthropogenic sectors (OAT), wetland sector (WET), and other natural sectors (ONA). The grey bar represents 
total methane trend from NOAA-GMD observations. In the left panel (i.e., S0Aopt and S0Wopt), the trends are 2770 
estimated for the periods of 1983-1998, 1999-2006, and 2007-2017. In the right panel (i.e., S0A06 and S0Comb), the 
trends are estimated for the period of 2007-2014, with 1999-2006 trends from S0Wopt and S0Aopt respectively. 
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 2775 
Figure 8. Time series of global tropospheric OH levels (left Y axis, dash line) and methane OH loss (right Y axis, solid 
line) from S0Wopt (purple), S1Wopt (blue), and S2Wopt (brown) in the upper panel and time series of methane 
tropospheric lifetime from S0Wopt (purple), S1Wopt (blue), and S2Wopt (brown) in the lower panel. 
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