Editor comment:

Authors appreciate the editor's comments below that improved the quality of the manuscript a lot. In response to each of the comments, a related line number at which each comment is made in the previous manuscript is first shown in black and then our responses are shown in blue. Line numbers in our responses are based on the revised manuscript.

In addition to revision based on the comments here, we also identified words, sentences and paragraphs that we believed required revision, and revised them to make the manuscript concise.

29: Revised also following a reviewer's comment as follows:

(LL27-29 on p2)

Through a modeling framework, this study investigates how a pyrocumulonimbus (pyroCb) event influences water vapor concentrations and cirrus cloud properties near the tropopause, specifically focusing on how fire-produced aerosols affect this role.

67: Revised as follows also following a reviewer's comment:

(LL67 on p3)

studies have been conducted to improve this understanding

88: Corrected also following a reviewer's comment as follows:

(LL84-86 on p3)

More droplets mean more competition among them for available water vapor needed for their condensational growth, decreasing the size of individual droplets (Twomey, 1977; Albrecht, 1989).

101: Revised as follows:

(LL94-96 on p4)

The role of fire-generated aerosols in the development of pyroCbs and their effects on water vapor and cirrus clouds in the UTLS lacks a firm scientific understanding, and hence this paper focuses on that role of those aerosols.

107: Corrected.

127: The corresponding sentence is considered redundant and removed.

137: The last sentence is removed. The corresponding paragraph is shortened.

147: Corrected.

157: The corresponding sentence is revised as follows:

(LL131-132 on p5)

This study examines this dependence, not studied by Kablick et al. (2018).

194: Corresponding sentence is removed.

215: Corrected also following a reviewer's comment as follows:

(LL182-184 on p7)

These surface heat-flux values follow previous studies which adopt boreal forest emissions (Trentmann et al., 2006; Luderer et al., 2006).

242: Corrected.

244: Corrected.

249: Sentences are contracted as follows:

(LL211-213 on p8)

The control run adopts the unimodal lognormal distribution as an initial aerosol size distribution, a reasonable assumption in fire sites (Reid et al., 2005; Knobelspiessel et al., 2011; Lee et al., 2014).

255: The unit of standard deviation is μ m and this is indicated in text.

274: The corresponding paragraph is made more concise.

293: The corresponding sentence is revised as follows:

(LL246-249 on p9)

The average cloud-top and cloud-base heights over the life span of the pyroCb are 10.3 km and 3.6 km in the control run, respectively, and these simulated heights are \sim 7% different from the satellite-retrieved values.

309: The repetitive sentence is removed.

378: Sentences of corresponding text are removed, since they contain the same information as in Introduction.

384: Done.

396: Done.

418: Sentence is revised as follows:

(LL349-350 on p12)

This implies that air parcels and associated updrafts in the pyroCb are stronger, reaching higher altitudes.

436: The corresponding sentence is considered redundant and removed.

444: Corrected.

465: Wang's work is mentioned as follows:

(LL377-383 on p13)

In summary, the pyroCb and associated updrafts cause a substantial enhancement of the transport of water vapor to the UTLS at and above the tropopause. Wang (2019) also reported this enhancement. Using modeling work and satellite observation, Wang (2019) indicated that the upward transport of water vapor in deep convective storms was possibly a major pathway through which water substance entered the stratosphere. Wang (2019) showed that the upward transport of water vapor was aided by gravity wave and its breaking in overshooting convective parcels.

469: We removed an unnecessary sentence and clarified text.

493: The sentence pointed out is considered redundant and thus removed.

520: CDNC is replaced with "Nd"

532: The corresponding sentence is revised as follows:

(LL443-445 on p15)

Increasing N_d enhances competition among droplets for a given amount of water vapor. Enhanced competition eventually curbs the condensational growth and reduces droplet size (R_v).

537: The repetitive text is removed.

540: R_v is defined in the title of Section 4.2.2 (LL431 on p15), N_d is defined in the title of sub-section "a" in Section 4.2.2 (LL433 on p15), and LWC is defined at line number 244 on p9.

We thought that the editor may want us to define or explain the proportionality itself between R_v and (LWC/N_d)^(1/3). To explain the proportionality, Equation (2) and associated text are added.

550: (LWC/N_d)^(1/3), but not R_v, corresponds to numbers shown in text after (LWC/N_d)^(1/3). Since R_v is linearly proportional to (LWC/N_d)^(1/3) according to Equation (2), the larger variation of (LWC/N_d)^(1/3) leads to the larger variation of R_v.

558: The already defined expression is removed.

559: Corrected.

565, 566: The corresponding sentence is revised as follows:

(LL473-478 on p16)

During period 1, as fire intensity weakens and updraft speed decreases, parcel equilibrium supersaturation decreases and thus, the minimum size of activated aerosol particles increases not only among the clean-scenario runs but also among the polluted-scenario runs. When the production of parcel supersaturation by updrafts and the consumption of supersaturation by droplets balance out, parcel supersaturation reaches parcel equilibrium supersaturation (Rogers and Yau, 1991).

579: Khain's HUCM model calculates equilibrium supersaturation at every model time step by considering dynamic effects on supersaturation (e.g., advection and updrafts) and microphysical effects on supersaturation (e.g., condensation and evaporation). For the consideration of dynamic effects and microphysical effects, dynamic and microphysical sub-time steps are considered for each model time step. After a model time step is completed, both of dynamic and microphysical impacts on supersaturation are completed. So, we obtain equilibrium supersaturation when each model time step is completed, and average it over those time steps and areas with positive updraft speed.

583: Corresponding sentences are contracted by removing unnecessary words.

596: (LWC/CDNC)^(1/3) is removed.

606: The corresponding paragraph is revised substantially to make it more concise as follows:

(LL502-505 on p17)

In association with larger aerosol concentration and the assumed aerosol size distribution, a smaller percentage variation of the number of activated aerosols and Nd with fire intensity is simulated in the polluted-scenario runs than in the clean-scenario runs. This smaller variation of Nd aids the greater reduction in Rv among the polluted-scenario runs.

616: The corresponding repetitive sentence is removed.

636: Throughout the manuscript, when what I am comparing is established in a sentence, the following sentences are simplified by shortening parts related to the comparison in each paragraph. For example, look at following sentences in Section 4.2.3:

To satisfy mass conservation, the freezing- and deposition-enhanced updrafts above the freezing level induce more updraft mass fluxes below the freezing level in the polluted-scenario run than in the clean-scenario run for each fire intensity. This leads to more convergence around and below cloud base in the pollutedscenario run than in the clean-scenario run for each fire intensity.

In the first sentence, the comparison between the polluted-scenario run and the clean-scenario run for each fire intensity is established, so, in the second sentence, "than in the clean-scenario run for each fire intensity" is removed.

640: Following a reviewer's comment, "get greater" is replaced with "increase" and the corresponding sentence is revised as follows:

(LL519-521 on p18)

The increasing differences in autoconversion rates between the polluted-scenario and clean-scenario runs increase those differences in the amount of cloud liquid available for freezing with weakening fire intensity (Figure 9a).

642: Following a reviewer's comment, "gets greater" is replaced with "increase" and the corresponding sentence is revised as follows:

(LL521-523 on p18)

Thus, differences in the average rate of cloud-liquid freezing and freezing-related latent heat over the period 2 between the runs increase with weakening fire intensity (Figure 9a).

644: Corresponding sentence is removed, following a reviewer's comment. However, following the comment here, in other parts of text, we removed the redundant statements of period. **648:** Following the editor's and a reviewer's comments here, the repetitive text is removed.

650: Following the editor's and a reviewer's comments here, the repetitive text is removed.

654: We removed unnecessary numbers. We believe that even without a table for those numbers, what we intend to deliver can be delivered well. So, we do not add the table.

674: Revised as follows:

The corresponding sentences are substantially revised to make it more concise as follows:

(LL533-536 on p18)

The greater freezing and thus freezing-related latent heat eventually cause updrafts to be stronger in the polluted-scenario run starting at ~21:00 GMT (Figure 10). Then, the stronger updrafts induce deposition to be greater in the polluted-scenario run around 21:10 GMT (Figure 10).

682: Redundant expressions related to comparisons are removed throughout the manuscript.

686: Removed.

688: Also following a reviewer's comment, the text is revised as follows:

(LL544-545 on p19)

The higher mass fluxes and convergence below the freezing level

693: Redundant expressions related to comparisons are removed throughout the manuscript.

703: Revised as follows:

(LL554-557 on p19)

those differences in the average freezing-affected updrafts and subsequently in deposition-related latent heat over period 3 increase with weakening fire intensity (Figures 9a, 9b and 10).

769: Removed.

781: Corrected.

801: Redundant expressions (i.e., words in parentheses) are removed.

806: Revised as follows:

(LL642-645 on p22)

Much greater N_d is in the polluted-scenario run than in the clean-scenario run for each fire intensity. N_d decreases are smaller among the polluted-scenario runs than among the clean-scenario runs with weakening fire intensity. This situation during the initial stage induces R_v to decrease much more among the polluted-scenario runs with weakening fire intensity.

834: Revised.

836: Done.

837: We find Koren et al. (2008) at Ilan Koren's homopage (<u>https://www.weizmann.ac.il/EPS/Koren/publications</u>) as a paper for invigoration. The citation is as follows:

Koren I., Martins J. V., Remer L. A. & Afargan H. (2008). Smoke invigoration versus inhibition of clouds over the Amazon. Science. 321:(5891)946-949.

We add Koren et al. (2008) in the manuscript.

850: Revised.

861: Corrected.

1100: "which is" is removed.

1124: Revised as follows:

(LL957-959 on p32)

Figure 9. Average rates of condensation, deposition and cloud-liquid freezing at all altitudes in cloudy areas and over periods (a) 2, (b) 3 and (c) 4. In panel (a), average autoconversion rates are also shown.

Referee Report 1

Lee et al., Examination of effects of aerosol on a pyroCb and their dependence on fire intensity and aerosol perturbation using a cloud-system resolving model, submitted to Atmos. Chem. Phys., 2019

General comments

In response to comments and requested from both reviewers, the authors shortened the paper and improved the structure. After making the following minor language revisions, many of which will further decrease the length of the text, I recommend the manuscript for publication in ACP. Even after implementing these changes, I strongly recommend that the manuscript is proofread for correct English before publication. Thanks!

Authors appreciate the reviewer's comments below that improved the quality of the manuscript a lot. We revised the manuscript based on the comments and the manuscript was proofread. In addition, we identified words, sentences and paragraphs that we believed required revision, and revised them to make the manuscript concise with the better structure.

In the following, each comment by the reviewer (black) is followed by our response (blue).

Specific comments

299 Please provide examples in the text of "good agreement"

In the corresponding Section 3.1, we compared the simulation to the observation in terms of cirrus cloud, cloud macro-physical (e.g., LWP, IWP, cloud-top and cloud-base heights), and reflectively fields. We believe that these fields are examples of good agreement between the simulation and the observation. These examples are described in Section 3.1 and the last sentence in Section 3.1 is as follows:

(LL258-260 on p9)

These favorable comparisons between the observed and simulated cirrus clouds, cloud macro-physical and reflectivity fields demonstrate that the pyroCb-case simulation reasonably reproduces the event.

We believe that "examples" mentioned by the reviewer here may also mean the description of quantified differences and similarity in the reflectivity field between the simulation and the observation. Hence, the corresponding text is revised as follows:

(LL252-258 on p9)

Compared are the control-run and observed reflectivity fields. Kablick et al. (2018) provide details about the reflectivity field observed by CloudSat. Observations and the control run both show increasing reflectivity up to \sim 7 km, decreasing reflectivity between \sim 7 km and \sim 11 km and insignificant changes in reflectivity above \sim 11 km in altitude (Figure 3). The average reflectivity over altitudes along the Cloudsat path in the control run is -8.1 dBZe, \sim 15% different from the observed value. Hence, the reflectivity field is simulated fairly well compared to the observation.

29-30 "specifically focusing on how fire-produced aerosols affect this role via a modeling framework" -> "specifically focusing via a modeling framework on how fire-produced aerosols affect this role"

This corresponding sentence is revised as follows:

(LL27-29 on p2)

Through a modeling framework, this study investigates how a pyrocumulonimbus (pyroCb) event influences water vapor concentrations and cirrus cloud properties near the tropopause, specifically focusing on how fire-produced aerosols affect this role.

67 "studies to improve this understanding has been going on" -> "studies have been conducted to improve this understanding"

Done.

80 Insert "of pyroCB" after "microphysical properties"

Done.

84 "make" -> "decrease"

85 remove "smaller"

Done.

86-87 remove "or increasing aerosol"

Done.

88-89 replace "this more competition makes" with "decreasing the size of"

Done.

89 remove "smaller"

Done.

90 change "sizes of droplets" to "droplet sizes"

Done.

91 "autoconversion that is" -> "autoconversion,"

Done.

92 "for them to" -> "in which they", "be" -> "become"

Done.

94-95 "More cloud liquid is thus available for transport to places above the freezing level by updrafts." -> "More cloud liquid is thus available for transport by updrafts to altitudes above the freezing level."

101 "by" -> "of"

Done.

108 "cloud typical properties" -> "cloud properties"

Done.

110 "For the simplicity of the term" -> "For simplicity"

It is replaced with "For simplicity herein" (LL102 on p4)

113 "have shown" -> "showed", "updrafts

throughout the manuscript, ex. 115: "the pyroCb development and its impacts on the UTLS" -> "pyroCb development and its impacts on the UTLS"

"have shown" is replaced with "demonstrated"

"the pyroCb development and its impacts on the UTLS" is replaced with "pyroCb development and its impacts on the UTLS" throughout the manuscript.

Regarding updrafts the following is added:

(LL102-104 on p4)

For simplicity herein, an "updraft" refers to the general upward motion of convective air, or to the actual updraft speed representing the updraft or convective intensity, depending on the context.

Based on the added sentence above, we generally use "updrafts" in places where the meaning of "updrafts", which can be the upward motion or the updraft speed or both, is rather obvious to readers based on the context. However, in a few sentences where conventional rules indicate that the use of "updraft speeds" is better than that of "updrafts", we write "updraft speeds" explicitly.

An example of the sentences is as follows:

(LL478-482 on p16-17)

Mostly due to greater aerosol concentrations, associated average equilibrium supersaturation and minimum size of activated aerosol particles over areas with positive updraft speeds and period 1 are lower and larger, respectively, in the polluted-scenario run than in the clean-scenario run for each fire intensity (Rogers and Yau, 1991).

In this example sentence, simply because the word "positive" is generally coupled with "updraft speed" not but with "updrafts", we just use this customary expression "positive updraft speed"

125 "impacts" -> "impacts on"

The corresponding sentence is considered redundant and removed.

128 "parameterize" -> "parameterizes"

The corresponding sentence is considered redundant and removed.

133 remove "have"

The corresponding sentence is considered redundant and removed, following editor's comment.

135 "cloud-particle" -> "cloud-particle and aerosol"

The corresponding sentence is considered redundant and removed, following editor's comment.

137 "varying with varying" -> "varying with"

The corresponding sentence is considered redundant and removed, following editor's comment.

137-138 "the bulk schemes in general uses" -> "bulk schemes in general use"

The corresponding sentence is considered redundant and removed, following editor's comment.

138-139 remove "which are not able to consider the variation of collection efficiencies and terminal velocities in reality"

The corresponding sentence is considered redundant and removed, following editor's comment.

139-140 "This makes the bin scheme more sophisticated than the bulk scheme." -> "Thus, the bin scheme is more sophisticated than the bulk scheme."

The corresponding sentence is considered redundant and removed, following editor's comment.

147 "are strongly dependent" -> "is strongly dependent"

Done.

152 "are referred to as fire-driven updrafts, henceforth" -> "are henceforth referred to as firedriven updrafts"

Done.

153-156 "Aerosol effects on clouds are initiated by an increase in aerosol concentration, which can be caused by an increase in aerosol emission at and near the surface, and dependent on how much aerosol concentration increases, or on the magnitude of an increase in aerosol concentration, i.e., aerosol perturbation" -> "Aerosol effects on clouds are initiated by an increase in aerosol concentration, which can be caused by an increase in aerosol emission at and near the surface, and dependent on how much aerosol concentration increases (aerosol perturbation)"

The corresponding text is simplified as follows to make it more concise:

(LL129-131 on p4)

Effects of fire-induced increases in aerosol concentration on pyroCbs are likely to be dependent on how much aerosol concentration increases (aerosol perturbation) (e.g., Rosenfeld et al., 2008; Koren et al., 2012).

157 "has not been" -> "was not"

The corresponding sentence is revised as follows:

(LL131-132 on p5)

This study examines this dependence, not studied by Kablick et al. (2018).

166-167 "Shortwave and longwave radiation parameterizations have been included in all simulations by adopting" -> "Shortwave and longwave radiation is parameterized by"

Done.

169 "To represent the microphysical processes" -> "To represent microphysical processes"

176 "The cloud-droplet" -> "A cloud-droplet", "parameterization, which is based" -> "parameterization based"

Done.

177 "Arbitrary aerosol mixing states and arbitrary" -> "Arbitrary aerosol mixing states and"

Done.

190 "case is performed" -> "case was performed"

The corresponding sentence is revised as follows:

(LL161-162 on p6)

The control run for an observed pyroCb case involved a forested site in the Canadian Northwest Territories ($60.03 \circ N$, $115.45 \circ W$).

192 "the site and the pyroCb" -> "the site and pyroCb"

Done.

193 remove "between them"

Done.

198 "from Ft. Smith" -> "from the Ft. Smith"

Done.

204-205 "These tendencies are horizontally homogeneous and applied to the control run every time step by interpolation" -> "These tendencies are applied to the control run every time step by interpolation, in a horizontally homogeneous manner"

The corresponding sentence is revised as follows:

(LL169-171 on p6)

Temperature and humidity tendencies at each altitude from sequential soundings are obtained and applied to the control run every time step by interpolation in a horizontally homogeneous manner.

206 "lengths" -> "extents"

Done.

207 "For the simulation, the" -> "The simulation"

Done.

211-212 "simulation, at the center of the simulation domain, a fire spot with a diameter of 40 km is placed" -> "simulation, a fire spot with a diameter of 40 km is placed at the center of the simulation domain"

215 "the previous studies which are Trentmann et al. (2006) and Luderer et al. (2006) and adopt boreal forest emissions" -> "previous studies which adopt boreal forest emissions (Trentmann et al. (2006) and Luderer et al. (2006))"

Done.

219 "idealized and this enables" -> "idealized, enabling"

Done.

223 remove "aerosol properties that can be represented by"

Done.

235-236 "~50-70% of organic-carbon (OC) compounds, ~5-10% of black-carbon (BC) material, and ~20-45% of inorganic species" -> "~50-70% organic-carbon (OC) compounds, ~5-10% black-carbon (BC) material, and ~20-45% inorganic species"

Done.

247 Insert new paragraph after "in the control run."

Done.

247-249 "According to Reid et al. (2005), Knobelspiessel et al. (2011), and Lee et al. (2014), it is reasonable to assume that the initial aerosol size distribution follows the unimodal lognormal

distribution in fire sites. Hence, the control run adopts the unimodal lognormal distribution as an initial aerosol size distribution." -> "The control run adopts the unimodal lognormal distribution as an initial aerosol size distribution, a reasonable_assumption in fire sites (Reid et al. (2005), Knobelspiessel et al. (2011), Lee et al. (2014))"

Throughout, e.g. 251-253 "median aerosol diameter and standard deviation of the distribution" -> "median and standard deviation aerosol diameter"

Done.

263 Insert new paragraph after "(Pruppacher and Klett, 1978)."

Done.

264 "captured" -> "capture"

Done.

268 "points" -> "point"

Done.

267, 270 "counterparts" -> "values"

Done.

279-280 **"Figure 1. This field in Figure 2 represents" -> "Figure 1, representing"

Done.

Throughout, e.g. 284, including figures, "averaged" <cloud property> -> "average" <cloud property>

297 "well as" -> "well"

Done.

Throughout, including figures, anytime multiple rounds are referred to together in a row, e.g. 33,3 "the medium run and the weak run" -> "the medium and weak runs"

Done.

345 remove "or aerosol perturbation"

Done.

353, 356 "intensity" -> "intensities"

Done.

364 "corresponds" -> "correspond"

Done.

374 remove "themselves"

The corresponding paragraph is considered redundant and removed.

377 "(2018) by" -> "(2018),"

The corresponding paragraph is considered redundant and removed.

379-380 "The updraft mass flux is one of the most representative variables that are indicative of

the cloud dynamic intensity and the magnitude of convective invigoration." -> ""The updraft mass flux is one of the most indicative variables of cloud dynamic intensity and magnitude of convective invigoration."

The corresponding sentence is revised as follows:

(LL318-319 on p11)

The updraft mass flux is one of the most indicative variables of the upward air motion and magnitude of convective invigoration.

381 "is" -> "was"

Done.

382-383 "17:00 GMT on August 5th and 12:00 GMT on August 6th, and 17:00 GMT on August 5th is a time around which the pyroCb starts to from" -> "17:00 GMT on August 5th, approximately when the pyroCb starts to form, and 12:00 GMT on August 6th, and 17:00 GMT on August 5th is"

Done.

385 "that" -> "which"

390-393 "Considering that the stratosphere is between the tropopause and its top that is generally \sim 50 km in altitude, the defined lower stratosphere occupies around a quarter of the total vertical extent of the stratosphere." -> "The defined lower stratosphere occupies around a quarter of the total vertical extent of the stratosphere, the top of which is generally \sim 50 km in altitude."

The corresponding sentences are simplified as follows:

(LL329-330 on p11)

The defined upper troposphere and lower stratosphere occupy around a quarter of the total vertical extent of the troposphere and stratosphere, respectively.

397 "the cloudy columns and that over" -> "cloudy and"

Done.

399 "in a part" -> "in the part"

Done.

410, 411 remove "those"

Done.

413 remove "or the pyroCb"

Done.

423 remove "both"

426 "as compared to that in" -> "versus"

Done.

430-433 "These averaged fluxes are over cloudy columns for the simulation period between 17:00 GMT on August 5th and 12:00 GMT on August 6th. The averaged water- vapor fluxes vary from 8.30x10-6 kg m-2 s-1 in the control run to 8.21x10-6 kg m-2 s-1 in the low-aerosol run." -> "The averaged water-vapor fluxes over cloudy columns for the simulation period between 17:00 GMT on August 5th and 12:00 GMT on August 6th vary from 8.30x10-6 kg m-2 s-1 in the control run to 8.21x10-6 kg m-2 s-1 in the control run to 8.21x10-6 kg m-2 s-1 in the control run to 8.21x10-6 kg m-2 s-1 in the control run to 8.21x10-6 kg m-2 s-1 in the control run to 8.21x10-6 kg m-2 s-1 in the control run to 8.21x10-6 kg m-2 s-1 in the control run to 8.21x10-6 kg m-2 s-1 in the control run to 8.21x10-6 kg m-2 s-1 in the control run to 8.21x10-6 kg m-2 s-1 in the control run."

The corresponding sentences are revised as follows:

(LL356-360 on p12)

The small variation in updraft mass fluxes between the runs results in a small variation in the average water-vapor fluxes at the tropopause from $8.30 \times 10-6$ kg m-2 s-1 in the control run to $8.21 \times 10-6$ kg m-2 s-1 in the low-aerosol run over cloudy columns for the simulation period between 17:00 GMT on August 5th and 12:00 GMT on August 6th.

435 "only are" -> "are only"

We thought it was better to put "are", since "only" is used to emphasize cirrus clouds are composed of ice crystals but not other types of hydrometeors. Stated differently, "only" is not used to emphasize cirrus clouds are between 9 and 13 km. In case we use "are only" as recommended by the reviewer here, the corresponding sentence emphasizes cirrus clouds are between 9 and 13 km. This is not what we intend to emphasize and thus we just put "are" here.

436 "there are the presence of" -> "there is the presence of"

The corresponding sentence is considered redundant and removed.

440 "cloud-ice number concentration and cloud-ice size" -> "cloud-ice number concentration and size"

Done.

442 "micron" -> μm

Done.

443-444 "The altitudes between 9 km and 13 km correspond to a part of the UTLS below the troposphere. Henceforth, the UTLS cirrus clouds mean those clouds in a part of the UTLS below the tropopause." -> "The altitudes between 9 km and 13 km correspond to a part of the UTLS below the tropopause, and henceforth, "UTLS cirrus clouds" refer to clouds in the troposphere."

The corresponding sentences are simplified as follows:

(LL366-367 on p13)

Henceforth, "the UTLS cirrus clouds" refer to clouds in the upper troposphere.

445-446 "Updrafts in the pyroCb produce supersaturation, which leads to the generation of cloud ice mass and associated cirrus clouds via deposition, the primary source of

cloud-ice mass" -> "Updrafts in the pyroCb produce supersaturation, which leads to the primary source of cloud-ice mass and associated cirrus clouds via deposition"

Done.

449 "circus" -> "cirrus"

Done.

452, 453 remove "large"

As a process of making the corresponding paragraph succinct, the last two sentences in the paragraph are removed. In the removed sentences, "significant variations of cloud-ice number concentration and size" are indicated. Although those sentences are removed, we believe that it is important to deliver this indication in the rest of the sentences not removed. For this deliverance, "significant" replaces "large" in the sentence pointed out here by the reviewer.

456-457 "simulations (Figure 7), and thus a negligible variation of the mass of the UTLS cirrus clouds" -> "simulations (Figure 7), and thus a negligible variation of UTLS cirrus cloud mass"

Done.

462 "The role, which is played by" -> "The role of"

The corresponding paragraph is revised substantially following the editor's comment and the corresponding sentence is revised as follows:

(LL384-386 on p13)

The effects of fire-generated aerosols on the pyroCb updrafts, cirrus cloud mass and the enhancement of the water vapor transport are insignificant when fire intensity is strong.

464-465 "the UTLS at and above the tropopause, and in the production of the mass of the UTLS cirrus clouds is not significant for strong fire intensity" -> "the UTLS at and above the tropopause, and in the production UTLS cirrus cloud mass, is not significant for strong fire intensity"

The corresponding paragraph is revised substantially following the editor's comment and the corresponding sentence is revised as follows:

(LL384-386 on p13)

The effects of fire-generated aerosols on the pyroCb updrafts, cirrus cloud mass and the enhancement of the water vapor transport are insignificant when fire intensity is strong.

470 "the mass of the UTLS cirrus clouds" -> "UTLS cirrus cloud mass" The corresponding sentence is considered redundant and removed.

478 "updrafts, produced" -> "updrafts produced"

Done.

480-481 "when the fire-generated surface heat fluxes and the fire intensity" -> "when the fire intensity and fire-generated surface heat fluxes"

Done.

485-486 "relative magnitude of aerosol-induced perturbation of latent heat to" -> "relative magnitudes of aerosol-induced perturbation of latent heat and"

Done.

500 "does vary" -> "varies"

Done.

501-503 "Hence, it can be said that percentage differences in updraft mass fluxes mean percentage differences in updraft speed with good confidence." -> "Hence, it can be said with good confidence that percentage differences in updraft mass fluxes mean percentage differences in updraft speed."

The corresponding sentence is revised as follows:

(LL319-323 on p11)

Since the updraft mass flux is updraft speed that is multiplied by air density, and air density at each altitude varies negligibly, differences in updraft mass fluxes are mostly explained by those in updraft speeds among the simulations. Hence, with good confidence, differences in updraft mass fluxes mean those in updraft speeds.

505 "run than the clean-scenario run" -> "run and clean-scenario runs"

Done.

508 and similar equations: remove "the"

Done.

517 "gets larger" -> "increases"

Done.

530 "than the" -> "than in the"

Done.

549 "the averaged LWC and the averaged CDNC" -> "the average LWC and CDNC"

550, 551 "varies" -> "decreases"

Done.

559 "reduce" -> "decreases"

Done.

566 "to increase" -> "increasing", "lowers" -> "decreases"

The corresponding sentence is revised as follows:

(LL473-478 on p16)

During period 1, as fire intensity weakens and updraft speed decreases, parcel equilibrium supersaturation decreases and thus, the minimum size of activated aerosol particles increases not only among the clean-scenario runs but also among the polluted-scenario runs. When the production of parcel supersaturation by updrafts and the consumption of supersaturation by droplets balance out, parcel supersaturation reaches parcel equilibrium supersaturation (Rogers and Yau, 1991).

569 "averaged associated" -> "associated average"

The corresponding sentence is revised as follows:

(LL478-482 on p16-17)

Mostly due to greater aerosol concentrations, associated average equilibrium supersaturation and minimum size of activated aerosol particles over areas with positive updraft speeds and period 1 are lower and larger, respectively, in the polluted-scenario run than in the clean-scenario run for each fire intensity (Rogers and Yau, 1991).

575 "reduces" -> "decreases"

Done.

577 remove "size in"

Done.

578 "reduces" -> "decreases"

Done.

586 "less close to" -> "further from"

The corresponding sentence is revised as follows:

(LL491-494 on p17)

A smaller portion of the total aerosol concentration is in the size range closer to the right tail of the distribution as long as the range is on the right-hand side of the distribution peak where most of aerosol activation occurs.

588-590 "distribution; most of aerosol activation occurs for aerosol sizes on the right- hand side of the distribution peak, here we are only concerned with the size ranges on the right-hand side." -> "distribution. Here we are only concerned with the size ranges on the right-hand side of the distribution peak, where most of aerosol activation occurs."

The corresponding sentence is revised as follows:

(LL491-494 on p17)

A smaller portion of the total aerosol concentration is in the size range closer to the right tail of the distribution as long as the range is on the right-hand side of the distribution peak where most of aerosol activation occurs.

Throughout the manuscript: <cloud property>", which is averaged" -> <cloud property>"averaged" e.g. 593 "CNDC, which is averaged" -> "CNDC averaged"

Done.

596 "to greater" -> "to a greater"

Done.

605 "thus the" -> "thus a"

Done.

618 "rates, which are averaged" -> "rates averaged"

624-629 "The averaged autoconversion rates over period 2 reduce from 3.61×10^{-6} g m- 3 s-1 in the control run with strong fire intensity to 0.93×10^{-6} g m-3 s-1 in the weak run with weak fire intensity through 2.01×10^{-6} g m-3 s-1 in the medium run with medium fire intensity by 74%. Those averaged autoconversion rates reduce from 4.52×10^{-6} g m-3 s- 1 in the low-aerosol run with strong fire intensity to 3.94×10^{-6} g m-3 s-1 in the weak-low run with weak fire intensity through 4.43×10^{-6} g m-3 s-1 in the medium-low run with medium fire intensity by 14%." -> "The averaged autoconversion rates over period 2 decrease by 74% from 3.61×10^{-6} g m-3 s-1 in the control run with strong fire intensity to 0.93×10^{-6} g m-3 s-1 in the weak run with weak fire intensity through 2.01×10^{-6} g m-3 s- 1 in the medium run with medium fire intensity. Those averaged autoconversion rates decrease by 14% from 3.61×10^{-6} g m-3 s-1 in the control run with strong fire intensity to 0.93×10^{-6} g m-3 s-1 in the weak run with weak fire intensity through 2.01×10^{-6} g m-3 s- 1 in the medium run with medium fire intensity. Those averaged autoconversion rates decrease by 14% from 4.52×10^{-6} g m-3 s-1 in the low-aerosol run with strong fire intensity to 3.94×10^{-6} g m-3 s-1 in the weak-low run with weak fire intensity through 4.43×10^{-6} g m-3 s-1 in the medium-run with medium fire intensity through 4.43×10^{-6} g m-3 s-1 in the medium-low run with medium fire intensity through 4.43×10^{-6} g m-3 s-1 in the medium-low run with medium fire intensity."

The corresponding sentence is shortened substantially as follows to make it more concise and succinct:

(LL513-516 on p18)

Due to the larger absolute and percentage reduction in Rv among the polluted-scenario runs than among the clean-scenario runs with weakening fire intensity during period 2, the average autoconversion rates decrease by 74% (14%) from the control (low-aerosol) to weak (weak-low) runs (Figure 9a).

631 "get greater" -> "increase"

Done.

633 "smaller" -> "lower"

The corresponding sentence is considered redundant and removed.

635 "freezing, which is averaged" -> "freezing averaged"

The corresponding sentence is considered redundant and removed.

640, 642 "get greater" -> "increase"

644-648 "When fire intensity is strong, the difference in freezing-related latent heat, which is averaged in cloudy areas and period 2, between the polluted-scenario run, which is the control run, and the clean-scenario run, which is the low-aerosol run," -> "When fire intensity is strong, the difference in freezing-related latent heat averaged in cloudy areas and period 2 between the polluted-scenario run (control run) and the clean-scenario run (low-aerosol run)"

Following the other reviewer's comment, the corresponding sentences are simplified as follows:

(LL521-523 on p18)

Thus, differences in the average rate of cloud-liquid freezing and freezing-related latent heat over the period 2 between the runs increase with weakening fire intensity (Figure 9a).

649-650 "while with weak fire intensity, that difference between the polluted-scenario run, which is the weak run, and the clean-scenario run, which is the weak-low run" -> "while with weak fire intensity, that difference between the polluted-scenario run (weak run) and the clean-scenario run (weak-low run)"

Following the other reviewer's comment, the corresponding sentences are simplified as follows:

(LL521-523 on p18)

Thus, differences in the average rate of cloud-liquid freezing and freezing-related latent heat over the period 2 between the runs increase with weakening fire intensity (Figure 9a).

651-652 "differences, which are calculated by Equation (1)," -> "differences (calculated by Equation (1))"

The corresponding sentence is removed as a process of making the corresponding paragraph more concise and succinct, following the other reviewer's comment.

653-654 "and the clean-scenario run from 9% with strong fire intensity to 83% with weak fire intensity through 51% with medium fire intensity over the period 2." -> "and the clean-scenario run over the period 2 from 9% with strong fire intensity to 83% with weak fire intensity to 51% with medium fire intensity."

The corresponding sentence is removed as a process of making the corresponding paragraph more concise and succinct, following the other reviewer's comment.

657, 674 "deposition, which is averaged" -> "deposition averaged"

It is replaced with "average deposition"

658 "period 2," -> "period 2"

Done.

666 "transportation" -> "transport"

Done.

670 remove "as compared to those before 20:30 GMT"

Done.

673 "from" -> "starting at"
Done.

685 "in polluted-scenario" -> "in the polluted-scenario" Done.

688 "The more mass fluxes and the more convergence" -> "The higher mass fluxes and convergence"

Done.

690 "be greater" -> "increase"

Done.

695-696 "thus, enhancing freezing, deposition, condensation, and updrafts further." -> "thus further enhancing freezing, deposition, condensation, and updrafts."

Done.

708, 710, 713, 727,741 "get greater" -> "increase"

Done.

714-715 "Then, the increases in condensation, in turn, further enhance the increases in updrafts in the polluted-scenario run for each fire intensity." -> "The increases in

condensation further enhance the increases in updrafts in the polluted-scenario run for each fire intensity."

The corresponding sentences are revised as follows:

(LL564-566 on p19)

The greater increases in condensation cause the greater further enhancement of the increases in updrafts in the polluted-scenario run with weaker fire intensity.

720 "induce" -> "induces"

Done.

752-753 "This possibility is not that unrealistic, since stronger fire likely involves more material burnt and more aerosols from it." -> "This possibility is not that unrealistic, since stronger fires likely involve more material burned and higher aerosol emissions."

Done.

757, 763, 778 "reduces" -> "decreases"

Done.

758 "less" -> "lower"

Done.

759-760 "For strong fire, the perturbation-related aerosol concentration is 30000

760 cm-3, for medium fire, it is 15000 cm-3, and for weak fire, it is 7500 cm-3." -> "The perturbation-related aerosol concentration is 30000 cm-3 for strong fire, 15000 cm-3 for medium fire, and 7500 cm-3 for weak fire."

Done.

765 "when fire-induced" -> "when the fire-induced"

Done.

772 "has the" -> "has an"

Done.

773 "run; when" -> "run, and when"

The corresponding sentence is revised as follows:

(LL613-615 on p21)

Based on this, the medium run is repeated with a fire-induced aerosol perturbation of 2000 cm⁻³ down from 15000 cm⁻³ (the medium-2000 run). The weak run is repeated with a fire-induced aerosol perturbation of 1000 cm⁻³ down from 7500 cm⁻³ (the weak-1000 run).

780 "with the weakening" -> "with weakening fire"

Done.

783 "whether those aerosol perturbations vary with varying fire intensity or not" -> "whether or not those aerosol perturbations vary with varying fire intensity"

Done.

791 "transport water vapor to the tropopause and above efficiently" -> "efficiently transport water vapor to the tropopause and above"

Done.

796 "gets more" -> "becomes"

Done.

810 "reduce" -> "decrease"

Done.

813 "makes" -> "results in"

The corresponding sentence is revised as follows:

(LL646-648 on p22)

This reduces autoconversion more among the polluted-scenario runs and increases differences in autoconversion between the polluted-scenario and clean-scenario runs as fire intensity weakens.

814 "increase" -> "increasing"

The corresponding sentence is revised as follows:

(LL646-648 on p22)

This reduces autoconversion more among the polluted-scenario runs and increases differences in autoconversion between the polluted-scenario and clean-scenario runs as fire intensity weakens.

830 "It is true that the" -> "The"

Done.

833 "transportation" -> "transport"

Done.

850 "reduce" -> "decrease"

Done.

858 "came up with" -> "generated", "preformed" -> "performed"

Done.

861 "revised manuscript based on the reviewers' comments and perform" -> "revised the manuscript based on the reviewers' comments and performed"

Table 2 "Meidum-low" -> "Medium-low"

Done.

1172, 1190 "The averaged" -> "Averaged"

"The averaged" is replaced with "average"

Figure 10 "Differences in the averaged values" -> "Differences in average values"

Done.

Referee Report 2

Review of:

"Examination of effects of aerosol on a pyroCb and their dependence on fire intensity and aerosol perturbation using a cloud-system resolving model"

Authors: Seoung Soo Lee, George Kablick III, Zhanqing Li

Recommend minor revisions.

General comment:

This revised manuscript is much improved. The results are clearer and presented more concisely in most areas. Following a few additional clarifications and rewording, I think this paper will be ready for publication.

Authors appreciate the reviewer's comments below that improved the quality of the manuscript a lot. In the following, each comment by the reviewer (black) is followed by our response (blue).

Specific comments:

1.Lines 126: Use of the phrase "has been going on" seems a little awkward.

(LL67 on p3)

It is corrected to be "have been conducted to improve this understanding"

2.Lines 248-251: The sentence beginning with "Aerosol effects on clouds..." is confusing as stated. Please make this clearer.

Revised as follows by reflecting another reviewers' comment as well:

(LL129-132 on p5)

Effects of fire-induced increases in aerosol concentration on pyroCbs are likely dependent on how much aerosol concentration increases (aerosol perturbation) (e.g., Rosenfeld et al., 2008; Koren et al., 2012). This study examines this dependence, not studied by Kablick et al. (2018).

3.Line 373: Please find more recent specific references related to IN observations.

Fan et al. (2014 and 2017) are added.

4.Line 527: Grammar error. "pyro Cb starts to from ... "

Corrected.

5.Lines 1356-1367: This paragraph is still quite wordy, and thus, it's difficult to read and easily discern the main take-away point. Please reword to be more concise. The specific numbers related to differences in latent heating are not particularly meaningful; the % change is more meaningful and is the basis of your main point here. You could include the actual numbers in a table if you wish.

Number are removed and the corresponding text is revised as follows:

(LL519-523 on p18)

The increasing differences in autoconversion rates between the polluted-scenario and clean-scenario runs increase those differences in the amount of cloud liquid available for freezing with weakening fire intensity (Figure 9a). Thus, differences in the average rate of cloud-liquid freezing and freezing-related latent heat over the period 2 between the runs increase with weakening fire intensity (Figure 9a).

6.Lines 1611-1612: This sentence is worded in such a way that makes it sound like you are saying that the fire intensity weakens due to reduction in LWC. Please reword to better state your point.

The corresponding text is considered redundant and removed.

	44		
1 2	Examination of effects of aerosols on a pyroCb and their dependence on fire intensity and aerosol perturbation		Deleted: 1
3			
4			
5	Seoung Soo Lee ¹ , George Kablick III ^{2,3} , Zhanqing Li ² , Chang-Hoon Jung ⁴ , Yong-Sang		
6	Choi ⁵ , Junshik Um ⁶ , Won Jun Choi ⁷		
7 8	¹ Research Foundation, San Jose State University, San Jose, California, USA	****	
9	² Earth System Science Interdisciplinary Center, University of Maryland, College Park,		
10	Maryland, USA		
11	³ US Naval Research Laboratory, Washington, DC, USA		1 Formatted: Superscript
12	⁴ Department of Health Management, Kyungin Women's University, Incheon, South	(Formatted: Superscript
13	Korea		
14	⁵ Department of Environmental Science and Engineering, Ewha Womans University,		
15	Seoul, South Korea		
16	⁶ Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan	(Formatted: Superscript
17	National University, Busan, South Korea		
18	7National Institute of Environmental Research, Incheon, South Korea	(Formatted: Superscript
19			
20			
21			
22			
23			
24	•		Deleted: 1
I			

	45		
55	Abstract	****	Deleted: ¶
56			
57	Through a modeling framework, this study investigates how a pyrocumulonimbus (pyroCb)		Deleted: T
58	event influences water vapor concentrations and cirrus cloud properties near the tropopause,		
59	specifically focusing on how fire-produced aerosols affect this role. Results from a case		(Deleted:
60	study show that when observed fire intensity is high, there is an insignificant impact of		Deleted: via a modeling framework
61	fire-produced aerosols on the development of the pyroCb and associated changes in water		Deleted: convective
62	vapor and cirrus clouds near the tropopause. However, as fire intensity weakens, effects		Deleted: the amount of
63	of those aerosols on microphysical variables and processes such as droplet size and		
64	autoconversion increase. Due to this, aerosol-induced invigoration of convection is		Deleted: Modeling results shown herein indicate that
65	significant for pyroCb with weak-intensity fires and associated weak surface heat fluxes.		
66	This leads to a situation where, there is a greater aerosol effect on the transport of water		Deleted: Thus,
67	vapor to the upper troposphere and the production of cirrus clouds with weak-intensity fires,		Deleted: ation
68	whereas this, effect, is, muted with strong-intensity fires.		Deleted: ese
69			Deleted: s
			Deleted: are
70			
71			
72			
73			
74			
75			
76			
77			
78			
79			
80			
81			
82			
83			
84			
0.5			

100 **1. Introduction**

101

102	Recent studies (e.g., Pumphrey et al., 2011; Kablick et al., 2018) showed, that
103	pyrocumulonimbus (pyroCbs) may, transport significant amounts of water vapor to the
104	upper troposphere and the lower stratosphere (UTLS) and can possibly have an impact on
105	seasonal UTLS water vapor budgets. Any change in water vapor in the UTLS has an
106	exceptionally strong influence on the global radiation budget and thus Earth's climate
107	(Solomon et al., 2010). PyroCbs develop cirrus clouds associated with overshooting
108	convective tops that reach the UTLS. Changes in cirrus clouds in the UTLS are known to
109	have a strong influence on the global radiation budget (Solomon et al., 2010). The level of
110	our understanding of impacts of pyroCbs on water vapor and cirrus clouds in the UTLS on
111	a global scale is very low and studies have, been conducted to improve this understanding
112	(Fromm et al., 2010). However, this paper does not focus on these pyroCb impacts at the
113	global scale. Instead, this paper aims to gain a process-level understanding of mechanisms
114	that control local impacts of individual pyroCbs on water vapor and cirrus clouds in the
115	UTLS. The examination of these mechanisms can provide useful information to
116	parameterize interactions among pyroCbs, water vapor and cirrus clouds in climate models.
117	PyroCbs initiate over a fire, and the large surface energy release mainly through fire-
118	induced latent- and sensible-heat fluxes at and near the surface affects the dynamic,
119	thermodynamic and microphysical development <u>of pyroCbs</u> (Fromm et al., 2010; Peterson
120	et al., 2017). However, questions remain about what role the large concentration of cloud
121	condensation nuclei (CCN) contained in smoke has on the vertical development and
122	microphysical properties of pyroCbs. Studies (e.g., Koren et al., 2008; Rosenfeld et al.,
123	2008; Storer et al., 2010; Tao et al., 2012) showed that aerosols affected cumulonimbus
124	clouds, thus, raising, the possibility that fire-generated aerosols may affect pyroCb
125	development. As an example of aerosol impacts on cumulonimbus clouds, these studies
126	have demonstrated that increases in aerosol loading can decrease, the size of droplets (i.e.,
127	cloud-liquid particles), Individual aerosol particles act as seeds for the formation of
128	droplets, so increasing aerosol loading leads to more droplets formed. More droplets mean
129	more competition among them for available water vapor needed for their condensational
130	growth, decreasing the size of individual droplets (Twomey, 1977; Albrecht, 1989).

Deleted: have shown
Deleted: can
Deleted: thus may play a role in
Deleted: involve and control
Deleted: around their tops
Deleted: over
Deleted: the
Deleted: the
Deleted: to improve this understanding

Deleted: Hence, this examination can contribute to studies that try to improve our understanding of the global-scale impacts of pyroCbs on water vapor and cirrus clouds by using climate models.

Deleted: By definition,

Deleted: p Deleted: ir

Deleted: s Deleted: going on

Deleted: The dynamics of these events has been shown to be mostly controlled by fire-induced latent and sensible heat fluxes at and near the surface.

(Deleted: have shown
),	Deleted: and
-(Deleted: this
(Deleted: es
~(Deleted: a
-(Deleted: make
-(Deleted: smaller
1	Deleted: and thus
-(Deleted: or increasing aerosol concentrations
Д	Deleted: and
(Deleted: this more competition makes
-(Deleted: smaller
-(Deleted:

163	Aerosol-induced smaller droplet sizes, reduce the efficiency of the growth of cloud-liquid
164	particles to raindrops via autoconversion, a collection process among cloud-liquid particles
165	in which they become raindrops (Pruppacher and Klett, 1978; Rogers and Yau, 1991). This
166	reduced efficiency leads to, less cloud liquid converted to rain and thus, more cloud liquid
167	available for transport by updrafts to altitudes above the freezing level, This eventually
168	induces more freezing of cloud <u>liquid</u> , enhance <u>d</u> parcel buoyancy, and the invigoration of
169	updrafts and associated convection (Rosenfeld, 2008).
170	The role of fire-generated aerosols in the development of pyroCbs and their effects
171	on water vapor and cirrus clouds in the UTLS lacks a firm scientific understanding, and
172	hence this paper focuses on that role of those aerosols. To examine the role, this study
173	extends the previous modeling work by Kablick et al. (2018). The modeling work therein
174	showed that the effects of fire-generated aerosols on the development of a specific pyroCb
175	and its impacts on the UTLS water vapor and cirrus clouds were negligible compared to
176	the effects of fire-generated heat fluxes. However, aerosol effects on cloud development
177	vary with cloud properties such as typical updraft speeds (e.g., Khain et al., 2008; Lee et
178	al., 2008; Tao et al., 2012). For simplicity herein, an "updraft" refers to the general upward
179	motion of convective air, or to the actual updraft speed representing the updraft or
180	convective intensity, depending on the context. Typical updrafts are determined by
181	environmental instability as represented by convective available potential energy (CAPE).
182	Lee et al. (2008) demonstrated that different clouds with different typical updrafts showed
183	different sensitivity, of cloud microphysical and thermodynamic development to aerosol
184	concentration. Hence, it is hypothesized that aerosol effects on pyroCb development and
185	its impacts on the UTLS water vapor and cirrus clouds vary depending on the pyroCb
186	typical updrafts.
187	To examine the potential variation of aerosol effects on pyroCb development and its
188	impacts on the UTLS water vapor and cirrus clouds with typical updrafts of pyroCbs,
189	numerical simulations are performed. Simulated is the pyroCb case examined by Kablick
190	et al. (2018) using a cloud-system resolving model (CSRM). The CSRM is capable of

- 191 resolving cloud-scale dynamic and thermodynamic processes. The basic modelin,
- 192 methodology in this study is similar to that used by Kablick et al. (2018). However, this

Deleted: sizes of Deleted: s Deleted: s Deleted: that is a collection process among cloud-liquid particles for them to grow to be raindrops Deleted: given that the efficiency is proportional to the sizes Deleted: s to Deleted: . Deleted: . Deleted: . Deleted: liqui Deleted: liqui Deleted: s Delet

47

Deleted: Compared to the research done on the role played by firegenerated heat fluxes in the development of pyroCbs and their effects on water vapor and cirrus clouds in the UTLS, the research on that role by fire-generated aerosols has been scarce. Motivated by this lack of understanding, this paper focuses on the role by those aerosols in the development of a pyroCb and its effects on water vapor and cirrus clouds in the UTLS. To examine that role, this study extends the previous modeling work that was described in Kablick et al. (2018). That modeling work compared effects of firegenerated heat fluxes on the development of a pyroCb and its impacts on the UTLS water vapor and cirrus clouds to those of firegenerated aerosols.

<u>-</u> ////	Deleted: In that comparison,
py	Deleted: ose
). \ \\\\	Deleted: shown to be
	Deleted: as
<u>2</u> \ }	Deleted: hose
ol	Deleted: typical
nd	Deleted: that are determined by environmental conditions
	Deleted: For the simplicity of the term, in this study, "typical [1]
b	Deleted: have shown
	Deleted: , which are
	Deleted: due to different CAPE,
ts	Deleted: y
s,	Deleted: the
<u>.k</u>	Deleted: can
	Deleted: the intensity of
$\underline{\mathbf{p}}$	Deleted: Based on this hypothesis,
ıg	Deleted: t
	Deleted: the

Deleted: the varying
Deleted: These simulations are for a case of a pyroCb which is [2]

Deleted: By resolving these processes that play a critical role in[3]

255	study uses a more sophisticated microphysical scheme, i.e., a bin scheme, rather than the
256	two-moment bulk scheme used by Kablick et al. (2018).
257	Note that Kablick et al. (2018) examined aerosol effects on the convective
258	development of a specific pyroCb case, with a typical updraft framework. The present study
259	expands upon that work by performing sensitivity simulations in which typical updrafts in
260	the pyroCb vary, enabling us to ascertain the dependence of aerosol effects on typical
261	updrafts. Note that CAPE, which determines typical updrafts in convective clouds, is
262	strongly dependent on surface latent and sensible heat fluxes (e.g., Houze, 1993), and in
263	the case of pyroCbs, these fluxes are strongly controlled by fire intensity. Therefore, the
264	present, sensitivity simulations enable us to study the dependence of those aerosol effects
265	on fire intensity. Since fire intensity is the dominant driver of the pyroCb typical updrafts,
266	these typical updrafts are henceforth referred to as fire-driven updrafts,
267	Effects of fire-induced increases in aerosol concentration on pyroCbs are likely
268	dependent on how much aerosol concentration increases (aerosol perturbation) (e.g.,
269	Rosenfeld et al., 2008; Koren et al., 2012). This study examines this dependence, not
270	studied by, Kablick et al. (2018),
271	
272	2. Modeling framework
273	
274	We use the Advanced Research Weather Research and Forecasting (ARW) model, a
275	nonhydrostatic compressible model, as the CSRM. Prognostic microphysical variables are
276	transported with a fifth-order monotonic advection scheme (Wang et al., 2009). Shortwave
277	and longwave radiation is parameterized by the Rapid Radiation Transfer Model (RRTM;
278	Mlawer et al., 1997; Fouquart and Bonnel, 1980).
279	To represent microphysical processes, the CSRM adopts a bin scheme based on the
280	
	Hebrew University Cloud Model described by Khain et al. (2009). The bin scheme solves
281	Hebrew University Cloud Model described by Khain et al. (2009). The bin scheme solves a system of kinetic equations for the size distribution functions of water drops, ice crystals
281 282	

284 mass doubling bins, i.e., the mass of a particle m_k in the kth bin is determined as $m_k = 285$ $2m_{k-1}$.

Deleted: Through extensive comparisons between various types of bin schemes and bulk schemes, Fan et al. (2012) and Khain et al. (2015) have concluded that the use of bin schemes is desirable for reasonable simulations of clouds, precipitation, and their interactions with aerosols. This is because the bin scheme explicitly predicts cloud-particle size distributions, while the bulk scheme prescribes those size distributions. The bin scheme also uses collection efficiencies and terminal velocities varying with varying cloudparticle sizes to emulate this variation in reality, while the bulk scheme in general uses fixed efficiencies and terminal velocities, which are not able to consider the variation of collection efficiencies and terminal velocities in reality. This makes the bin scheme more sophisticated than the bulk scheme.

Deleted:

Deleted: study, simulating microphysical conditions, detraine water vapor mixing ratios, and cirrus cloud properties only considering a typical updraft framework	d
Deleted: are allowed to	
Deleted: those	
Deleted: are	
Deleted:	
Deleted: Hence	
Deleted: se	
Deleted: in turn	
Deleted: Here, we see that	
Deleted: are controlled by fire intensity and thus	
Deleted: pyroCb	
Deleted: are referred to as fire-driven updrafts, henceforth.	
Deleted:	
Deleted: Aerosol effects on clouds are initiated by an increas aerosol concentration, which can be caused by an increase in ae emission at and near the surface, and	
Deleted: , or on the magnitude of an increase in aerosol concentration, i.e.,	
Deleted: This dependence has not been	
Deleted: examined in	
Deleted: and this study examines this dependence by perform additional sensitivity simulations where the magnitude of aerose perturbation varies.	
Deleted: parameterizations	

Deleted: the

328	A cloud-droplet nucleation parameterization based on Köhler theory represents cloud-
329	droplet nucleation. Arbitrary aerosol mixing states and aerosol size distributions can be fed
330	to this parameterization. To represent heterogeneous ice-crystal nucleation, the
331	parameterizations by Lohmann and Diehl (2006) and Möhler et al. (2006) are used. In these
332	parameterizations, contact, immersion, condensation-freezing, and deposition nucleation
333	paths are all considered by taking into account the size distribution of IN, temperature and
334	supersaturation. Homogeneous aerosol (or haze particle) and droplet freezing is also
335	considered following the theory developed by Koop et al. (2000).
336	
337	3. Case description and simulations
338	
339	3.1 Control run
340	
341	The control run for an observed pyroCb case involved a forested site in the Canadian
342	Northwest Territories (60.03° N, 115.45° W). Kablick et al. (2018) give details about the
343	site and pyroCb case. The control run is identical to the Full Simulation in Kablick et al.
344	(2018) except for the different microphysical schemes, The period covered by the control
345	run is from 12:00 GMT on August 5th to 12:00 GMT on August 6th in 2014 and captures
346	the initial, mature, and decaying stages of the pyroCb. As described by Kablick et al. (2018),
347	halloon soundings of winds, temperature and dew-point temperature were obtained every
348	6 hours from the Ft. Smith observation station near the forested site Sounding data at 12:00
349	GMT on August 5 th prescribe the initial atmospheric conditions. <u>Temperature and humidity</u>
350	tendencies at each altitude from sequential soundings are obtained and applied to the
351	control run every time step by interpolation in a horizontally homogeneous manner. These
352	tendencies represent the impacts of synoptic- or large-scale motion on temperature and
353	humidity (Grabowski et al., 1996; Krueger et al., 1999; and Lee et al., 2018). The control
354	run is performed in a three dimensional domain with horizontal and vertical extends of 300
355	km and 20 km, respectively. The simulation horizontal and vertical resolutions are 500 m
356	and 200 m, respectively, to resolve cloud dynamic and thermodynamic processes.
357	Figure 1 shows a satellite image of the observed pyroCb and the fire spot (spatial length
358	is ~40 km) when the cloud is about to advance into its mature stage. To emulate this in the

Deleted: The)	
Deleted: , which is		
Deleted: y, is used to		
Deleted: arbitrary		

Deleted:	, based on the size distribution of droplets,
Deleted:	is performed over
Deleted:	the
	between them; remember that this study uses a bin hile Kablick et al. (2018) used a bulk scheme
Deleted:	Т
Deleted:	performed for one day from
Moved (i	insertion) [1]
Deleted:	a
Deleted:	in
Deleted:	
Deleted:	В
Deleted:	, which is located
Deleted:	,
Moved u	p [1]: as described in Kablick et al. (2018).
Deleted:	The s
Deleted:	are used to
Deleted:	Using the sequential soundings, at each altitude,
Deleted:	t
	with the assumption that sounding data represent the onditions, following
Deleted:	(
Deleted:),
Deleted:	(
Deleted:)
Deleted:	(
	These tendencies are horizontally homogeneous and the control run every time step by interpolation.
Deleted:	lengths
Deleted:	For t
Deleted:	,
Deleted:	the
Deleted:	is
Deleted:	the vertical resolution is
Deleted:	whose
Deleted:	
Deleted:	

399 simulation, a fire spot with a diameter of 40 km is placed at the center of the simulation 400 domain (Figure 2). In the fire spot, the surface latent and sensible heat fluxes are set at 401 1800 and 15000 W m⁻², respectively. In areas outside of the fire spot, the surface latent and 402 sensible heat fluxes are set at 310 and 150 W m⁻², respectively. These surface heat-flux 403 values follow, previous studies, which, adopt, boreal forest, emissions (Trentmann et al., 2006; 404 Luderer et al., 2006). Following Kablick et al. (2018), the surface heat-flux values are 405 prescribed with no temporal variation and no consideration of interactions between heat 406 fluxes and the atmosphere in the control run. Thus, the setup for the surface heat fluxes is 407 idealized, enabling a better isolation of aerosol effects on pyroCb development and its 408 impacts on the UTLS water vapor and cirrus clouds by excluding effects of interactions 409 between the surface heat fluxes and atmosphere on this development and its impacts. 410 For the selected pyroCb case, aerosol chemical composition, size distribution and 411 concentration are unknown. Hence, in (outside) the fire spot at the first time step, the 412 concentration of aerosols acting as CCN is prescribed to be 15000 (150) cm⁻³. This 413 prescription is for the planetary boundary layer (PBL), and the concentration decreases 414 exponentially with height above the PBL top. These prescribed aerosol concentrations are 415 typically observed in fire spots and their background (Pruppacher and Klett, 1997; Seinfeld 416 and Pandis, 1998; Reid et al., 1999; Andreae et al., 2004; Reid et al., 2005; Luderer et al., 417 2009). 418 Reid et al. (2005) showed that aerosol mass produced by forest fires was generally

- 419 composed of (by mass) ~50-70% organic-carbon (OC) compounds, ~5-10% black-carbon
- 420 (BC) material, and ~20-45% inorganic species. The approximate median value of each of
- (De) material, and 20 10/0 morganic species. The approximate median value of each of
- these chemical component percentage ranges determines the aerosol particle composition
 in the control run, i.e., 60% OC, 8% BC, and 32% inorganic species. OC is assumed to be
- 422 <u>in the control run, i.e., 60% OC, 8% BC, and 32% inorganic species. OC is assumed to be</u> 423 water soluble and composed of 18 % levoglucosan (C₆H₁₀O₅, density = 1600 kg m⁻³, van't
- 424 Hoff factor = 1), 41 % succinic acid ($C_4H_6O_4$, density = 1572 kg m⁻³, van't Hoff factor =
- 425 3), and 41 % fulvic acid ($C_{33}H_{32}O_{19}$, density = 1500 kg m⁻³, van't Hoff factor = 5) based
- 426 on typically observed chemical composition of OC compounds over fire sites (Reid et al.,
- 427 2005). In the control run, the inorganic species are assumed to be ammonium sulfate, a
- 428 representative inorganic species associated with fires (Reid et al., 2005). This chemical

Deleted: at the center of the simulation domain, ... fire spot with a diameter of 40 km is placed at the center of the simulation domain (Figure 2). In the fire spot, the surface latent and sensible heat fluxes are set at 1800 and 15000 W m², respectively. In areas outside of the fire spot in the domain... the surface latent and sensible heat fluxes are set at 310 and 150 W m², respectively. These surface heat-flux values follow[4]

Formatted

... [5]

Deleted: the previous studies which are Trentmann et al. (2006) and Luderer et al. (2006) and adopt boreal forest emissions. Following Kablick et al. (2018), the surface heat-flux values are prescribed with no temporal variation and no consideration of interactions between heat fluxes and the atmosphere in the control run. ThusHence... the setup for the surface heat fluxes is idealized, and this ...nablinges...a better isolation of aerosol effects on the

Formatted: Font: (Asian) Batang, Font color: Auto

Deleted: for the given surface heat fluxes ... y excluding effects of interactions between the surface heat fluxes and atmosphere on thisthose [7]

Deleted: aerosol properties that can be represented by ...erosol chemical composition, size distribution and concentration are unknown. Hence, in (outside) the fire spot atfor...the first time step, the concentration of aerosols acting as CCN is prescribed to be 15000 (150) cm⁻³. This prescription is for in ...he planetary boundary layer (PBL),...and the concentration decreases exponentially with height above the PBL top. Outside of the fire spot for the first time step, the concentration of aerosols acting as CCN is prescribed to be 150 cm⁻³ in the PBL and also decreases exponentially with height above this layer. ...hese prescribed aerosol concentrations of aerosols ...re typically observed in fire spots and their background [8]

Deleted: For the control run, the other aerosol properties are assumed to follow typical values determined in previous studies. Reid et al. (2005) showedhave shown...that For example, ... aerosol mass produced by forest fires wasis...generally composed of (by mass) ~50-70% of ... rganic-carbon (OC) compounds, ~5-10% of ... lack-carbon (BC) material, and ~20-45% of ... norganic species. The approximate median value of each of these chemical component percentage ranges determines the aerosol particle composition in the control run, i.e., 60% OC, 8% BC, and 32% inorganic species. Based on those results, the approximate median value of each chemical component percentage range is used in the control run. Aerosol particles are assumed to be composed of 60% OC, 8% BC, and 32% inorganic species. In the control run, ... C is assumed to be water soluble and composed of (by mass) . [9] Formatted

... [10]

Deleted: is

533 composition taken for aerosol particles is assumed to be spatiotemporally unvarying in the 534 control run. 535 The control run adopts the unimodal lognormal distribution as an initial aerosol size 536 distribution, a reasonable assumption in fire sites (Reid et al., 2005; Knobelspiessel et al., 537 2011; Lee et al., 2014). Those studies reported that in general, median and standard 538 deviation aerosol diameters range from $\sim 0.01 \ \mu m$ to $\sim 0.03 \ \mu m$ and from $\sim 2.0 \ \mu m$ to ~ 2.2 539 um, respectively, for aerosols as CCN. The approximate median values of these ranges 540 determine, median and standard deviation diameters of aerosols as CCN in the control run, 541 i.e., 0.02 µm and 2.1 µm, respectively, Assumed identical in the control run are IN and 542 CCN aerosol properties except that at the first time step, (1) their median and standard 543 deviation aerosol diameters differ, and (2) the IN concentration is 100 times lower than the 544 CCN concentration (Pruppacher and Klett, 1978; Fan et al., 2014 and 2017). Following 545 Seinfeld and Pandis (2006) and Phillips et al. (2007), for aerosols as IN, median and 546 standard deviation aerosol diameters are assumed to be 0.1 µm and 1.6 µm, respectively, 547 which are typical values in the continent. 548 Airflow in clouds diffuses, and advects, aerosols, After activation or capture, by 549 precipitating hydrometeors, aerosols are transported within hydrometeors and removed 550 from the atmosphere once these hydrometeors reach the surface. Once clouds disappear 551 completely at any grid point, aerosol size distribution and number concentration recover to 552 the background values at the first time step. This assumption simulates overall aerosol 553 properties and their impacts on clouds and precipitation reasonably well (Morrison and 554 Grabowski, 2011; Lebo and Morrison, 2014; Lee et al., 2016). This assumption means that 555 fire continuously produces aerosols to maintain the initial background aerosol 556 concentration. 557 Located to the northeast of the fire spot is the observed cirrus cloud at the top of the 558 pyroCb, since winds advect the cloud northeastward (Figure 1). The extent of the observed 559 cirrus cloud is ~100 km. Figure 2 shows the simulated field of cloud-ice mass density at a 560 time that corresponds to the satellite image in Figure 1, representing the simulated cirrus 561 cloud in the control run. Located to the northeast of the fire spot is the simulated cirrus cloud, and the extent of this cloud is ~100 km. The morphologies of the observed and 562 563 simulated cirrus clouds agree well,

Deleted: According to Reid et al. (2005), Knobelspiessel et al. (2011), and Lee et al. (2014), it is reasonable to assu ne that th initial aerosol size distribution follows the unimodal lognormal [11] Deleted: have Deleted: indicated Deleted: and standard deviation of the distribution Deleted: that act Deleted: By taking the Deleted: each of Deleted: Deleted: median aerosol diameter and standard deviation of the12] Deleted: are assumed to be Deleted: , for the control run Deleted: Following Seinfeld and Pandis (2006) and Phillips et [4]3] Deleted: Aerosols are Deleted: d Deleted: ed Deleted: by air flow in clouds Deleted: d Deleted: that contain aerosols Deleted: It is assumed that in non-cloudy areas, aerosol size and 4] Deleted: o Deleted: s Deleted: at those points Deleted: counterpart Deleted: has been used by numerous CSRM studies and proven to Deleted: This assumption means that a situation where fire [15] Deleted: T Deleted: is located to the northeast of the fire spo Deleted: t due to Deleted: the northeastward Deleted: at the altitude of the cirrus cloud Deleted: The cloud first formed around the fire spot. However[16] Deleted: . This field in Figure 2 Deleted: s Deleted: As observed, the simulated cirrus is Deleted: 1 Deleted: he simulated cirrus Deleted: Deleted: Hence, we see that there is good agreement in Deleted: t Deleted: y Deleted:

Deleted: between the observation and the simulation

633	The average liquid-water path (LWP) over areas with non-zero LWP in the control run
634	is 960 g m ⁻² , and the average ice-water path (IWP) over areas with non-zero IWP in the
635	control run is 202 g m ⁻² . These simulated LWP and IWP are ~10 % different from the
636	satellite-retrieved values. In this study, droplet mass but not raindrop mass is used to obtain
637	liquid-water content (LWC) and LWP, and the mass of ice crystals but not the mass of
638	snow aggregates, graupel and hail is used to obtain ice-water content (IWC) and IWP.
639	Drops with radii smaller (greater) than 20 µm are classified as droplets (raindrops). The
640	average cloud-top and cloud-base heights over the life span of the pyroCb are, 10.3 km and
641	3.6 km in the control run, respectively, and these simulated heights are ~7% different from
642	the satellite-retrieved values, Qverall, cloud macro-physical structures, as represented by
643	LWP, IWP, cloud-top and cloud-base heights, are simulated reasonably well compared to
644	the observation.
645	Compared are the control-run and observed reflectivity fields, Kablick et al. (2018)
646	provide details about the reflectivity field observed by CloudSat. Observations and the
647	control run both show increasing reflectivity up to ~7 km, decreasing reflectivity between
648	~7 km and ~11 km and insignificant changes in reflectivity above ~11 km in altitude
649	(Figure 3). The average reflectivity over altitudes along the Cloudsat path in the control
650	run is -8.1 dBZe, ~15% different from the observed value. Hence, the reflectivity field is
651	simulated fairly well compared to the observation, These favorable comparisons between
652	the observed and simulated cirrus clouds, cloud macro-physical and reflectivity fields

653 demonstrate that the pyroCb-case simulation reasonably reproduces the event,

654

655 **3.2 Low-aerosol run**

656

To see the role played by fire-generated aerosols in the development of the pyroCb and its

658 effects on <u>the UTLS</u> water vapor and cirrus clouds, we repeat the control run by reducing 659 aerosol concentration in the fire spot from 15000 cm⁻³ to the background aerosol

uerosor concentration in the the spot non 15000 cm to the background derosor

660 concentration (i.e., 150 cm⁻³). This reduction removes fire-generated aerosols in the fire

spot. Hence, comparisons between the control <u>run</u> and this repeated run, referred to as the

low-aerosol run, will identify the role played by fire-generated aerosols, The low-aerosol

Deleted: veraged

Deleted: while

Deleted: veraged

Deleted: counterparts

Deleted: for the calculation of LWP (IWP), we only considered droplets (ice crystals); drops with radii smaller (greater) than 20 μ m are classified as droplets (raindrops). Stated differently,

Deleted:

	_
Deleted: veraged	
Deleted: height	
Deleted: period between when	
Deleted: forms and when the pyroCb disappears	
Deleted: is	
Deleted: top and base	
Deleted: counterparts	
Deleted: This indicates the	
Deleted: o	
Deleted: as	
Deleted:	
Deleted: The details of the reflectivity field are given in Kablick al. (2018).	et
Moved down [2]: There is good agreement between observed and simulated cloud reflectivity fields for this study (Figure 3).	
Deleted: e 3).	
Moved (insertion) [2]	
Deleted: There is good agreement between observed and simulated cloud reflectivity fields for this study (Figure 3).	
Deleted: The agreement in the observed and simulated	
Deleted: s	
Deleted: is	
Deleted: e	_
Deleted:	_

Deleted: in the UTLS

Deleted: The only difference is in aerosol concentration in the fire spot and there are no other differences in the simulation setup which is described in Section 3.1 between the control run and this repeated run. ...

Deleted: run

Deleted: which is

Deleted: in the pyroCb development and its impacts on the UTLS water vapor and cirrus clouds

Deleted: Here, Deleted: t

706	different microphysical schemes between them.	
707		
708	3.3 Additional runs	
709		$\left \right $
710	For the examination of the potential variation of effects of fire-generated aerosols on	
711	pyroCb development and its impacts on the UTLS water vapor and cirrus clouds with fire	and the second
712	intensity and associated fire-driven updrafts, we repeat the control run by varying fire	inninnin Sannannin
713	intensity. Remember that fire intensity controls surface latent and sensible heat fluxes on	
714	which fire-driven updrafts are strongly dependent, Therefore, variations in fire-induced	
715	surface latent and sensible heat fluxes can represent variations in fire intensity. As a first	
716	step, the control run is repeated by reducing fire-induced surface latent and sensible heat	
717	fluxes by factors of 2 and 4, respectively, The first repeated run represents a case with	
718	medium fire intensity, referred to as "the medium run". The second repeated run represents	
719	a case with weak fire intensity, referred to as "the weak run". Relative to these repeated	
720	runs, the control run represents a case with strong fire intensity. Then, to see effects of fire-	
721	generated aerosols on pyroCb development for each of those different fire intensities, the	
722	medium and weak runs are repeated with the identical initial aerosol concentration to that	
723	in the low-aerosol run. The repeated medium and weak runs are referred to as "the medium-	
724	low run" and "the weak-low run", respectively. The control, medium, and weak runs are	
725	the polluted-scenario runs, and the low-aerosol, medium-low, and weak-low runs are the	₩/
726	clean-scenario runs.	4
727	Effects of fire-generated aerosols on pyroCb development and its impacts on the UTLS /	4
728	water vapor and cirrus clouds can also depend on the magnitude of fire-induced increases /	
729	in aerosol concentration, in a fire spot. To test, this dependence, for each fire intensity, we	Ľ
730	repeat the polluted-scenario run by increasing and decreasing the magnitude by a factor of	
731	2 in the fire spot but not outside of the fire spot. The simulations with the increased	/
732	magnitude have an aerosol concentration of 30000 cm ⁻³ at the first time step over the fire	1
733	spot in the PBL, referred to as the control-30000, medium-30000, and weak-30000 runs	Ľ
734	for strong, medium, and weak fire intensities, respectively. The simulations with the	
735	decreased magnitude have an aerosol concentration of 7500 cm ⁻³ at the first time step over	

run is identical to the Low Aerosol Simulation in Kablick et al. (2018) except for the

705

	We examine the above-mentioned potential variation of ire-generated aerosols on the pyroCb development and iterations
Deleted:	in convective clouds
Deleted:	are controlled by fire intensity
Deleted:	Hence
Deleted:	the
Deleted:	of
Deleted:	intensity can be represented by the variation of fire- [18]
Deleted:	
Deleted:	, while
Deleted:	t
Deleted:	Henceforth, the first repeated run is referred to as "the19]
Deleted:	
Deleted:	and its impacts on the UTLS water vapor and cirrus [20]
Deleted:	
Deleted:	the
Deleted:	run
Deleted:	
Deleted:	the
Deleted:	run
Deleted:	the
Deleted:	while
Deleted:	
Deleted:	
Deleted:	
Deleted:	
\sim	Comparisons between the medium run and the medium
Deleted:	
/ >	be dependent
Deleted:	
Deleted:	or aerosol perturbation
/ >	Motivated by this, the previously described simulation
Deleted:	
Deleted:	the sensitivity of results to the magnitude of fire-induced
Deleted:	
Deleted:	
Deleted:	and are
Deleted:	
Deleted:	the
Deleted:	run
Deleted:	
Deleted:	
Deleted:	·
Deleted:	reduced

803	the fire spot in the PBL, referred to as the control-7500, medium-7500, and weak-7500	e
804	runs for strong, medium, and weak fire intensities, respectively. Motivated by the analysis	\square
805	described in Section 4.3, we additionally repeat the medium and weak runs with aerosol	$\langle \rangle \rangle$
806	concentrations of 2000 and 1000 cm ⁻³ , respectively, at the first time step over the fire spot	\mathbb{N}
807	in the PBL, The repeated medium (weak) run is referred to as the medium-2000 (weak-	$\langle \rangle \rangle$
808	1000) run. Table 1 summarizes the simulations.	
809	The aerosol concentration of 30000 cm ⁻³ (7500, 2000 and 1000 cm ⁻³) over the fire spot	
810	corresponds to a situation where, fire produces a larger (lower) concentration of aerosols	
811	than what is typically observed, i.e., 10000 to 20000 cm ⁻³ (Reid et al, 1999; Andreae et al,	
812	2004; Reid et al, 2005; Luderer et al., 2009).	$\langle \langle \rangle$
813		
814	4. Results	
815		
816	4.1 The control and low-aerosol runs	
817	TT	
818	The updraft mass flux was averaged over the simulation period between 17:00 GMT on	
819	August 5 th , approximately when the pyroCb started to form, and 12:00 GMT on August 6 th	
820	(Figure 4). The updraft mass flux is one of the most indicative variables of the upward air	
821	motion and magnitude of convective invigoration. Since the updraft mass flux is updraft	
822	speed that is multiplied by air density, and air density at each altitude varies negligibly,	
823	differences in updraft mass fluxes are mostly explained by those in updraft speeds among	
824	the simulations. Hence, with good confidence, differences in updraft mass fluxes mean	
825	those in updraft speeds.	
826	The upper troposphere is defined <u>here</u> to be between ~ 9 km in altitude and the	
827	tropopause which is ~13 km in altitude, The equilibrium level where the buoyancy of a	c
828	rising air parcel becomes zero above the level of free convection is the tropopause	
829	(Emanuel, 1994). The lower stratosphere is defined here to be between the tropopause and	\mathbb{N}
830	an altitude 10 km above the tropopause. The UTLS is thus between $\sim 9 \text{ km}$ and $\sim 23 \text{ km}$ in	
831	this study. The defined upper troposphere and lower stratosphere occupy around a quarter	
832	of the total vertical extent of the troposphere and stratosphere, respectively.	
1		> >

54

Deleted: and are

	Deleted: and are
	Deleted: run
Ì	Deleted: the
Ì	Deleted: run
Ì	Deleted: the
)	Deleted: y
Ì	Deleted: run
Ì	Deleted: the
Ì	Deleted:
Ì	Deleted: , respectively
Ì	Deleted: the
-	Deleted: en
	Deleted: a
7	Deleted: range between
Ì	Deleted: and
Ì	Deleted: , while
	Deleted: the aerosol concentrations of 7500, 2000 and 1000 cm ⁻³ over the fire spot corresponds to a situation when fire produces a lower concentration of aerosols than the typically observed range
	Deleted: run
	Deleted: the
/	Deleted: Results from the control run and the low-aerosol run, which are equivalent to the Full Simulation and the Low Aerosol Simulation in Kablick et al. (2018), respectively, are described here.
	Kablick et al. (2018) mainly focused on comparisons themselves between aerosol effects and heat-flux effects on pyroCb development and its impacts on the UTLS water vapor and cirrus clouds. In this study, we expand upon the results of Kablick et al. (2018) by focusing on aerosol effects on pyroCb development and its subsequent impacts on the UTLS water vapor and cirrus clouds.
/	between aerosol effects and heat-flux effects on pyroCb development and its impacts on the UTLS water vapor and cirrus clouds. In this study, we expand upon the results of Kablick et al. (2018) by focusing on aerosol effects on pyroCb development and its subsequent impacts on the UTLS water vapor and cirrus clouds.¶ Deleted: The updraft mass flux is one of the most representative variables that are indicative of the cloud dynamic intensity and the magnitude of convective invigoration. The updraft mass flux is averaged over the simulation period between 17:00 GMT on August 5 th and 12:00 GMT on August 6 th , and 17:00 GVE
	between aerosol effects and heat-flux effects on pyroCb development and its impacts on the UTLS water vapor and cirrus clouds. In this study, we expand upon the results of Kablick et al. (2018) by focusing on aerosol effects on pyroCb development and its subsequent impacts on the UTLS water vapor and cirrus clouds. Deleted: The updraft mass flux is one of the most representative variables that are indicative of the cloud dynamic intensity and the magnitude of convective invigoration. The updraft mass flux is averaged over the simulation period between 17:00 GMT on August 5 th and 12:00 GMT on August 6 th , and 17:00 GME
	between aerosol effects and heat-flux effects on pyroCb development and its impacts on the UTLS water vapor and cirrus clouds. In this study, we expand upon the results of Kablick et al. (2018) by focusing on aerosol effects on pyroCb development and its subsequent impacts on the UTLS water vapor and cirrus clouds.¶ Deleted: The updraft mass flux is one of the most representative variables that are indicative of the cloud dynamic intensity and the magnitude of convective invigoration. The updraft mass flux is averaged over the simulation period between 17:00 GMT on August 5 th and 12:00 GMT on August 6 th , and 17:00 GVE
	between aerosol effects and heat-flux effects on pyroCb development and its impacts on the UTLS water vapor and cirrus clouds. In this study, we expand upon the results of Kablick et al. (2018) by focusing on aerosol effects on pyroCb development and its subsequent impacts on the UTLS water vapor and cirrus clouds. Deleted: The updraft mass flux is one of the most representative variables that are indicative of the cloud dynamic intensity and the magnitude of convective invigoration. The updraft mass flux is averaged over the simulation period between 17:00 GMT on August 5 th and 12:00 GMT on August 6 th , and 17:00 GME
	between aerosol effects and heat-flux effects on pyroCb development and its impacts on the UTLS water vapor and cirrus clouds. In this study, we expand upon the results of Kablick et al. (2018) by focusing on aerosol effects on pyroCb development and its subsequent impacts on the UTLS water vapor and cirrus clouds. Deleted: The updraft mass flux is one of the most representative variables that are indicative of the cloud dynamic intensity and the magnitude of convective invigoration. The updraft mass flux is averaged over the simulation period between 17:00 GMT on August 5 th and 12:00 GMT on August 6 th , and 17:00 GP[24] Formatted: Font: (Asian) Times New Roman Deleted: Regarding the UTLS, in this study,
	between aerosol effects and heat-flux effects on pyroCb development and its impacts on the UTLS water vapor and cirrus clouds. In this study, we expand upon the results of Kablick et al. (2018) by focusing on aerosol effects on pyroCb development and its subsequent impacts on the UTLS water vapor and cirrus clouds. T Deleted: The updraft mass flux is one of the most representative variables that are indicative of the cloud dynamic intensity and the magnitude of convective invigoration. The updraft mass flux is averaged over the simulation period between 17:00 GMT on August 5 th and 12:00 GMT on August 6 th , and 17:00 GMT Formatted: Font: (Asian) Times New Roman Deleted: Regarding the UTLS, in this study, Deleted: t
	between aerosol effects and heat-flux effects on pyroCb development and its impacts on the UTLS water vapor and cirrus clouds. In this study, we expand upon the results of Kablick et al. (2018) by focusing on aerosol effects on pyroCb development and its subsequent impacts on the UTLS water vapor and cirrus clouds. () Deleted: The updraft mass flux is one of the most representative variables that are indicative of the cloud dynamic intensity and the magnitude of convective invigoration. The updraft mass flux is averaged over the simulation period between 17:00 GMT on August 5 th and 12:00 GMT on August 6 th , and 17:00 GMT Formatted: Font: (Asian) Times New Roman Deleted: t Deleted: t
	between aerosol effects and heat-flux effects on pyroCb development and its impacts on the UTLS water vapor and cirrus clouds. In this study, we expand upon the results of Kablick et al. (2018) by focusing on aerosol effects on pyroCb development and its subsequent impacts on the UTLS water vapor and cirrus clouds. Deleted: The updraft mass flux is one of the most representative variables that are indicative of the cloud dynamic intensity and the magnitude of convective invigoration. The updraft mass flux is averaged over the simulation period between 17:00 GMT on August 5 th and 12:00 GMT on August 6 th , and 17:00 GMT Formatted: Font: (Asian) Times New Roman Deleted: t Deleted: Deleted: Deleted: that
	between aerosol effects and heat-flux effects on pyroCb development and its impacts on the UTLS water vapor and cirrus clouds. In this study, we expand upon the results of Kablick et al. (2018) by focusing on aerosol effects on pyroCb development and its subsequent impacts on the UTLS water vapor and cirrus clouds. Deleted: The updraft mass flux is one of the most representative variables that are indicative of the cloud dynamic intensity and the magnitude of convective invigoration. The updraft mass flux is averaged over the simulation period between 17:00 GMT on August 5 th and 12:00 GMT on August 6 th , and 17:00.Gtpt] Formatted: Font: (Asian) Times New Roman Deleted: Regarding the UTLS, in this study, Deleted: t Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: t
	between aerosol effects and heat-flux effects on pyroCb development and its impacts on the UTLS water vapor and cirrus clouds. In this study, we expand upon the results of Kablick et al. (2018) by focusing on aerosol effects on pyroCb development and its subsequent impacts on the UTLS water vapor and cirrus clouds. Deleted: The updraft mass flux is one of the most representative variables that are indicative of the cloud dynamic intensity and the magnitude of convective invigoration. The updraft mass flux is averaged over the simulation period between 17:00 GMT on August 5 th and 12:00 GMT on August 6 th , and 17:00 GM2 Formatted: Font: (Asian) Times New Roman Deleted: Regarding the UTLS, in this study, Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: t Deleted: Deleted: t Deleted: t
	between aerosol effects and heat-flux effects on pyroCb development and its impacts on the UTLS water vapor and cirrus clouds. In this study, we expand upon the results of Kablick et al. (2018) by focusing on aerosol effects on pyroCb development and its subsequent impacts on the UTLS water vapor and cirrus clouds. Deleted: The updraft mass flux is one of the most representative variables that are indicative of the cloud dynamic intensity and the magnitude of convective invigoration. The updraft mass flux is averaged over the simulation period between 17:00 GMT on August 5 th and 12:00 GMT on August 6 th , and 17:00.Gtpt] Formatted: Font: (Asian) Times New Roman Deleted: Regarding the UTLS, in this study, Deleted: t Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: t
	between aerosol effects and heat-flux effects on pyroCb development and its impacts on the UTLS water vapor and cirrus clouds. In this study, we expand upon the results of Kablick et al. (2018) by focusing on aerosol effects on pyroCb development and its subsequent impacts on the UTLS water vapor and cirrus clouds. Deleted: The updraft mass flux is one of the most representative variables that are indicative of the cloud dynamic intensity and the magnitude of convective invigoration. The updraft mass flux is averaged over the simulation period between 17:00 GMT on August 5 th and 12:00 GMT on August 6 th , and 17:00 GM2 Formatted: Font: (Asian) Times New Roman Deleted: Regarding the UTLS, in this study, Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: t Deleted: Deleted: t Deleted: t
	between aerosol effects and heat-flux effects on pyroCb development and its impacts on the UTLS water vapor and cirrus clouds. In this study, we expand upon the results of Kablick et al. (2018) by focusing on aerosol effects on pyroCb development and its subsequent impacts on the UTLS water vapor and cirrus clouds. ¶ Deleted: The updraft mass flux is one of the most representative variables that are indicative of the cloud dynamic intensity and the magnitude of convective invigoration. The updraft mass flux is averaged over the simulation period between 17:00 GMT on August 5 th and 12:00 GMT on August 6 th , and 17:00 GM24] Formatted: Font: (Asian) Times New Roman Deleted: Regarding the UTLS, in this study, Deleted: t Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: t Deleted: t Deleted: t Deleted: t
	between aerosol effects and heat-flux effects on pyroCb development and its impacts on the UTLS water vapor and cirrus clouds. In this study, we expand upon the results of Kablick et al. (2018) by focusing on aerosol effects on pyroCb development and its ubsequent impacts on the UTLS water vapor and cirrus clouds. Deleted: The updraft mass flux is one of the most representative variables that are indicative of the cloud dynamic intensity and the magnitude of convective invigoration. The updraft mass flux is averaged over the simulation period between 17:00 GMT on August 5 th and 12:00 GMT on August 6 th , and 17:00,GV <u>p</u> A1 Formatted: Font: (Asian) Times New Roman Deleted: Regarding the UTLS, in this study, Deleted: t Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: Deleted: t Deleted: t Deleted: t Deleted: t

894	Updraft mass fluxes in the control run are only $\sim 3\%$ greater than those in the low-
895	aerosol run (Figure 4 and Table 2). Given the hundredfold difference in aerosol loading
896	over the fire spot between the runs, this 3% difference in updraft fluxes is negligible. The
897	comparison between water-vapor mass density over the cloudy and non-cloudy columns in
898	the control run demonstrates that there is a substantial 5-fold increase in the amount of
899	water vapor in the part of the UTLS at and above the tropopause due to the pyroCb (Figure
900	5 and Table 2). Henceforth, the UTLS water vapor means water vapor in the part of the
901	UTLS at and above the tropopause.
902	For the simulation period between 17:00 GMT on August 5th and 12:00 GMT on \nearrow
903	August 6 th , the average water-vapor mass fluxes at the tropopause over cloudy and non-
904	cloudy grid columns are 8.30 $\times 10^{-6}$ and 0.57 $\!\times 10^{-6}$ kg m^{-2} s^{-1}\!, respectively. Due to the
905	presence of the pyroCb and associated updrafts in cloudy grid columns, there are
906	substantial increases in fluxes at the tropopause over cloudy grid columns compared to
907	fluxes in the background over non-cloudy grid columns. This explains the larger amount
908	of the UTLS water vapor over the pyroCb than in the background in the control run. The
909	vertical extent of water vapor reaches, further up to ~ 16 km by the pyroCb beyond ~ 14 km
910	in the background (Figure 5). This means that air parcels that include water vapor overshoot
911	the tropopause by \sim 3 km in the pyroCb, while those parcels in the background do so by \sim
912	1 km. This implies that air parcels and associated updrafts in the pyroCb are stronger,
913	reaching higher altitudes. Those stronger air parcels enable water-vapor layers to be
914	deepened in the lower stratosphere, These deepened layers, and their greater water-vapor
915	mass contribute to more interception of longwave radiation by water vapor in the UTLS
916	over the pyroCb,
917	Similar to the situation with updraft mass fluxes, there is only a small (~2%) increase
918	in the average mass of the UTLS water vapor in the control run versus the low-aerosol run
919	for strong fire intensity (Figure 5 and Table 2). The small variation in updraft mass fluxes
920	between the runs results in a small variation in the average water-vapor fluxes at the
921	tropopause from 8.30×10^{-6} kg m ⁻² s ⁻¹ in the control run to 8.21×10^{-6} kg m ⁻² s ⁻¹ in the low-
922	aerosol run over cloudy columns for the simulation period between 17:00 GMT on August
923	5 th and 12:00 GMT on August 6 th
I	

Deleted:

— A	Deletea:	,
11	Deleted: negligibly small)
4	Deleted: ¶)
1	Deleted: columns	`
-	Deleted: that over	`
λ	Deleted: a)
A	Deleted: There is about five times greater water-vapor mass over the cloudy columns that represent the pyroCb area than in the background outside the pyroCb area in the control run.	
(Deleted: a	>
/	Deleted: Updrafts in the pyroCb transport water vapor to the UTLS at and above the tropopause, which leads to the substantial increase in the amount of the UTLS water vapor over the pyroCb area.	
(Deleted: veraged)
Á	Deleted: water vapor	>
-//	Deleted: those)
1/1	Deleted: as	>
Ζ,	Deleted: those	>
1	Deleted: leads to	>
Λ	Deleted: outside the pyroCb or the pyroCb area	>
-1	Deleted: It is also shown that	>
(Deleted: t	>
(Deleted: is extended	>
	Deleted:	>
્ઞ	Deleted: as compared to the extent of	
7	Deleted: and rise from below the tropopause	
	Deleted:	
(Deleted: in turn	
(Deleted: to	>
1	Deleted: before their demise in the stratosphere than those in the background)
\sum	Deleted: , which in turn enable the interception of longwave radiation by water vapor to occur over longer paths in the lower stratosphere	
$\langle \rangle$	Deleted: longer paths	
1	Deleted: over the paths both	>
Y	Deleted: than in the background	>
$ \subset $	Deleted: veraged	
Y	Deleted: as compared to that in	
(Deleted: control run and the low-aerosol	>
$\langle \neg$	Deleted: the transportation of water vapor to the UTLS at and [27]	>
Y	Deleted: veraged	>
(Deleted: between these two simulations.	>
(Formatted: Superscript	>
\bigcirc	Formatted: Superscript	>
Y	Deleted: These averaged fluxes are over cloudy columns for the	>

976	The altitude of homogeneous freezing is 9 km, so cirrus clouds composed of ice crystals
977	(or cloud ice) are between 9 km and 13 km in the control run, (Figure 6). The amount of
978	cirrus clouds in the control run, represented by the average cloud-ice mass density, ranges
979	from 0.028 to 0.037 g m ⁻³ between 9 km and 13 km (Figure 6). The average cloud-ice
980	number concentration and size, represented by ice-crystal volume mean radius, between 9
981	km and 13 km range, from 6 to 20 cm ⁻³ , and from 10 to 20 µm, respectively. Henceforth,
982	"the UTLS cirrus clouds" refer to clouds in the upper troposphere.
983	Updrafts produce supersaturation, which leads to the primary source of cloud-ice mass
984	and associated cirrus clouds via deposition. Due to the negligible variation of updraft mass
985	fluxes, there are negligible variations of supersaturation and deposition (Figure 7). So, there
986	is only a <u>negligible</u> increase (~4%) in UTLS cirrus cloud mass, in the control run compared
987	to that in the low-aerosol run (Figure 6 and Table 2). However, mainly due to the larger
988	aerosol concentrations, and associated greater homogeneous aerosol and droplet freezing,
989	there is a <u>significant</u> ~20-fold increase in cloud-ice number concentration and associated
990	with this, there is a significant,~2-fold decrease in cloud-ice size in the control run between
991	9 km and 13 km
992	In summary, the pyroCb and associated updrafts cause a substantial enhancement of
993	the transport of water vapor to the UTLS at and above the tropopause. Wang (2019) also
994	reported this enhancement. Using modeling work and satellite observation, Wang (2019)
995	indicated that the upward transport of water vapor in deep convective storms was possibly
996	a major pathway through which water substance entered the stratosphere. Wang (2019)
997	showed that the upward transport of water vapor was aided by gravity wave and its
998	breaking in overshooting convective parcels. The pyroCb, and its updrafts also produce
999	cirrus clouds. The effects of fire-generated aerosols on the pyroCb updrafts, cirrus cloud
000	mass and the enhancement of the water vapor transport are insignificant when fire intensity
001	is strong
1002 1003 1004	4.2 Dependence of aerosol effects on fire intensity
005	When fire-generated surface heat fluxes and fire intensity increase, in-cloud latent heat is

also likely to increase because a major source of in-cloud latent heating is surface heat flux.

1006

control run and the low-aerosol run for strong fire intensity show that ...here is only a small ...egligible increase (~4%) in the mass of the ... TLS cirrucu... cloud masss... in the control run as ... ompared to that in the low-aerosol run (Figure 6 and Table 2). However mainly due to the larger aerosol concentrations, and associated greater homogeneous aerosol and droplet freezing, there is a large...significant ~20-fold increase in cloud-ice number concentration and associated with this, there is a significant large...~2-fold decrease in cloud-ice size in the control run between

below the tropopause.

9 km and 13 km as compared to that in the low-aerosol run.... Due to the negligible variation of updraft mass fluxes, there are negligible variations of supersaturation and deposition between the simulations (Figure 7), and thus a negligible variation of the mass of the UTLS cirrus clouds between the control run and the low-aerosol run. Mainly due to the variation of aerosol concentrations, there are significant variations of cloud-ice number concentration and size between the control run and the low-aerosol run. ... [30]

Deleted: Updrafts in the pyroCb produce supersaturation, which leads to the generation of cloud-ice mass and associated cirrus clouds via deposition, the primary source of cloud-ice mass. Similar to the situation with updraft mass fluxes,...comparisons between the

...he altitude of homogeneous freezing is at ... km ... so cirrus clouds which are ... omposed of ice crystals (or cloud ice) only ... re between 9 km and 13 km in the control run....Between 9 km and 13 km, there are the presence of cloud ice and thus cirrus clouds in the control run, meaning that the pyroCb, which is simulated in the control run, produces cirrus clouds ... Figure 6). The amount of cirrus clouds in the control run, as ... epresented by the averaged...erage cloud-ice mass density, ranges from 0.028 to 0.037 g m³ between 9 km and 13 km (Figure 6). The averaged...erage cloud-ice number concentration and cloud-ice ...ize, as ...epresented by ice-crystalits...volume mean radius, between 9 km and 13 km ranges...from 6 to 20 cm³, and from 10 to 20 µm micron... respectively. Henceforth, "the UTLS cirrus clouds" refer to clouds in the upper troposphere. The altitudes between 9 km and 13 km correspond to a part of the UTLS below the troposphere. Henceforth, the UTLS cirrus clouds mean those clouds in a part of the UTLS

... [29]

Deleted: of ... the transportation ... of water vapor to the UTLS at and above the tropopause. Wang (2019) also reported this enhancement.sing modeling work and satellite observation, Wang (2019) indicated that the upward transport of water vapor in deep convective storms was possibly a major pathway through which water substance entered the stratosphere. Wang (2019) showed that the upward transport of water vapor was aided by gravity wave and its breaking in overshooting convective parcels. The pyroCbhey...and its updrafts also produce cirrus clouds. The effectsrole...of, which is played by...fire-generated aerosols and their effects ...n the pyroCb and its ...pdrafts, cirrus cloud mass in ... he enhancement of the transportation of ... ater vapor transport are insignificant to ... hen fire intensity is strongthe UTLS at and above the tropopause, and in the production of the mass of the UTLS cirrus clouds is not significant for strong fire intensity [31]

Deleted: Taking interest in the negligible sensitivity of updrafts and their impacts on the UTLS water vapor and the mass of the UTLS cirrus clouds to aerosol loading in the pyroCb, we raise a possibility that this sensitivity is affected by fire intensity. ...hen fire-generated surface heat fluxes and fire intensity are ...ncreased. it is likely that ...n-cloud latent heat is is ... lso likely to increase[32]

Deleted:

1164	Therefore, aerosol-induced perturbations of latent heating may be relatively small		Deleted: the
1165	compared with large in-cloud latent heat contributed by surface fluxes with very intense		
1166	burning. Thus, aerosol-induced increases in parcel buoyancy, updrafts and their impacts on		Deleted:
1167	water vapor and the amount of cirrus clouds are relatively small compared with the large		
1168	buoyancy, strong fire-driven updrafts, produced by strong fire intensity and their associated		Deleted: ,
1169	impacts on water vapor and the amount of cirrus clouds.		Deleted: larg
1170	When fire intensity and fire-generated surface heat fluxes decrease, in-cloud latent heat		Deleted: Con
1171	is also likely to be smaller. Here, we are interested in how the magnitude of an aerosol-		surface heat flux Deleted: whe
1172	induced perturbation of latent heating for a pyroCb with weak fire intensity compares to		intensity Deleted: are a
1173	that with strong fire intensity. This is to evaluate the possibility that with background in-		Deleted: is co
1174	cloud latent heat varying with fire intensity, the relative magnitudes of aerosol-induced		
1175	perturbations of latent heat and surface flux-dominated latent heat may vary.		Deleted: to
1176			
1177	4.2.1 Effects of Updrafts on the UTLS water vapor and cirrus clouds		
1178			
1179	The average updraft mass fluxes in the low-aerosol, medium-low, and weak-low runs		Deleted: run
1180	represent fire-driven updrafts for strong, medium and weak fire intensities, respectively		Deleted: the
1181	(Figure 4). Due to different fire intensity and associated CAPE, fire-driven updrafts vary	M/	Deleted: run Deleted: the
1182	between these runs. All weak, medium and strong fire intensity cases show aerosol-induced		Deleted: as sl
1183	increases in updraft mass fluxes (Figure 4 and Table 2). Of interest is that the greatest		Deleted: y
1184	percentage increase in updraft mass flux is in the case of weak fire (weak-low to weak	\mathbb{N}	Deleted: The run and the poll
1185	runs), smallest in the case of strong fire (low-aerosol to control runs), and intermediate in		by fire-generate Deleted: of the
1186	the case of medium fire (medium-low to medium runs) (Figure 4 and Table 2). Here, the		Deleted: Sinc
1187	percentage difference, including both the percentage increase and decrease, is the relative		multiplied by ai negligibly amor
			mostly explaine that percentage
1188	difference in the value of variables between the polluted-scenario and clean-scenario runs		differences in u
1189	for each fire intensity. The following equation determines this percentage difference for	11	Deleted: run Deleted: than
1190	the strong fire intensity case:	/	Deleted: the
1191	۲		Deleted: This
1192	$\frac{Control run minus low-aerosol run}{low-aerosol run} \times 100 (\%) \tag{1}$		obtained as foll Deleted: The
	bow-aerosol run X100 (70) (1)	\leq	Deleted: <i>rne</i>
1193		11	Deleted: 14

eted: eted: , eted: large in-cloud latent heat, and their **eted:** Considering that a major source of in-cloud latent heat is ace heat fluxes, eted: when the fire-generated surface heat fluxes and the fire isity eted: are reduced

eted: is compared to

57

Deleted:	run
Deleted:	the
Deleted:	run
Deleted:	the
Deleted:	as shown in Figure 4
Deleted:	у
run and the	The variation of these fluxes between the clean-scenario polluted-scenario run for each fire intensity is induced erated aerosols.
Deleted:	of the cases of
	Since the updrafts mass flux is updraft speed that is by air density, and air density at each altitude does vary

tiplied by air density, and air density at each altitude does vary ligibly among simulations, differences in updraft mass fluxes are tly explained by those in updraft speed. Hence, it can be said percentage differences in updraft mass fluxes mean percentage rences in updraft speed with good confidence.

eted: run

eted: This percentage difference for strong fire intensity is ined as follows in this study:

eted: The

Deleted: the

Deleted: The l

1230	Replacing the control run with the medium (weak) run, and the low-aerosol run with the
1231	medium-low (weak-low) run in Equation (1) determines the percentage difference for the
1232	medium (weak) fire intensity case. Associated with the greater increases in updraft mass
1233	fluxes, the percentage increases in the UTLS water vapor and cloud-ice mass (Equation 1)
1234	are greater in the case of weaker fire (Figures 5 and 6 and Table 2).
1235	In this section, we see that although fire-produced aerosols invigorate updrafts in all
1236	three types of fire intensity, the invigoration-induced increases in the UTLS water-yapor
1237	and cloud-ice mass increase as fire intensity weakens.
1238	
1239	4.2.2 Volume mean radius of droplets (R _v)
1240	
1241	a. Cloud droplet number concentration (Na) and LWC
1242	
1243	The simulation period is divided into four sub-periods for this next analysis: period 1
1244	between 17:00 and 19:00 GMT on August 5 th (initial formation of the pyroCb), period 2
1245	between 19:00 and 21:00 GMT on August 5 th , and period 3 between 21:00 GMT and 23:00
1246	GMT on August 5 th (initial stages of cloud development), and period 4 between 23:00 GMT
1247	on August 5 th and 12:00 GMT on August 6 th (mature and decaying stages). The average N _d
1248	over period 1 decreases as the fire intensity and updrafts decrease (Figure 8). The polluted-
1249	scenario run has higher aerosol concentrations over the fire spot (Table 1), leading to the
1250	much higher average Nd in the polluted-scenario run than in the clean-scenario run for each
1251	fire intensity, Increasing Nd enhances competition among droplets for a given amount of
1252	water, vapor, Enhanced competition eventually curbs the condensational growth and
1253	reduces droplet size, (R.). This explains why the average R. over period 1, is smaller in the
1254	polluted-scenario run (Figure 8). Of interest is that as fire intensity weakens, although the
1255	$average N_d$ decreases, the average R_v decreases not only among the polluted-scenario runs
1256	but also among the clean-scenario runs over the fire spot (Figure 8). This is because R_v is
1257	proportional to $\left(\frac{LWC}{N_d}\right)^{\frac{1}{3}}$ based on the following Equation (2):
1258	
1259	$\underline{R_{v}} = \left(\frac{3}{4\pi\rho_{w}}\right)^{\frac{1}{3}} \left(\frac{LWC}{N_{d}}\right)^{\frac{1}{3}} $ (2)

1	Deleted: The percentage difference for medium (weak) fire
	intensity is obtained by replacing the control run with the medium (weak) run, and the low-aerosol run with the medium-low (weak-
ļ	low) run in Equation (1).
Å	Deleted: in
ļ	Deleted:
ļ	Deleted: gets larger
ļ	Deleted: CDNC
(Formatted: Subscript
ļ	Deleted: (initial formation of the pyroCb)
(Formatted: Superscript
(Deleted: the second sec
(Deleted: CDNC
(Formatted: Subscript
(Deleted: , which is
(Deleted: averaged at all altitudes in cloudy areas and
(Deleted: .
(Deleted: control run, the medium run and the weak run
1	Deleted: ve
1	Deleted: , which
1	Deleted: veraged
1	Deleted: CDNC
(Formatted: Subscript
1	Deleted: than
(Deleted: low-aerosol run
l	Deleted: , the medium-low run, and the weak-low run,
	respectively
Å	Deleted: CDNC
Å	Formatted: Subscript
Å	Deleted: , which is
1	Deleted: available for the condensational growth of droplets, in a cloud
1	Deleted: , which is
1	Deleted: represented by
•{	Deleted:
•(Deleted: in this study
1	Deleted: ,
1	Deleted: which is averaged at all altitudes in cloudy areas and
Ĭ	Deleted: ,
1	Deleted: than in the clean-scenario run for each fire intensity
1	Deleted: veraged
ï	Deleted: CDNC
Ì	Formatted: Subscript
Ì	Deleted: reduces, which tends to lower the competition among [33]
1	Deleted: veraged

Deleted: over the fire spot

Here, ρ_w represents water density at a constant value of 1000 kg m ⁻³ , so $(\frac{3}{4 \pi \rho_w})^{\frac{3}{3}}$ has a	D
constant value. LWC represents the given amount of water available for the condensational	D
growth of droplets. This proportionality means that for a given N_d , a decrease in LWC,	av pr
decreases Ry The average LWC over period 1 also decreases with weakening fire intensity	F(F)
not only among the polluted-scenario runs but also among the clean-scenario runs (Figure	th cł
8). Effects of LWC on R_v outweigh those of N_{d_x} leading to the decrease in the average R_v	w 1,
with weakening fire intensity (Figure 8).	OI SC C
Using the average LWC and N_d from Figure 8, $\left(\frac{LWC}{N_d}\right)^{\frac{1}{3}}$ decreases by 1.50×10^{-5} kg	F
from 3.50×10^{-5} kg in the control run to 2.00×10^{-5} kg in the weak run, while it decreases by	D
9.80×10^{-6} kg from 1.03×10^{-4} kg in the low-aerosol run to 9.32×10^{-5} kg in the weak-low run,	F
Associated with this, the average R_v shows a 47 % reduction from the control to weak runs.	D
while it shows a 10 % reduction from the low-aerosol to weak-low runs during period 1	D
(Figure 8).	ru fii
In summary, the simulated LWC, Nd, their variations with fire intensity, and the	1. 9. A
functional relation between LWC, N_d and R_v lead to a situation where R_v decreases much	re
more among the polluted-scenario runs than among the clean-scenario runs during the	fr D
period when the pyroCb initially forms.	F
	D
b. Equilibrium supersaturation	F
	D
During period 1, as fire intensity weakens and updraft speed, decreases, parcel equilibrium	Dar
supersaturation decreases, and thus, the minimum size of activated aerosol particles	ru D
increases not only among the clean-scenario runs but also among the polluted-scenario runs.	w st
When the production of parcel supersaturation by updrafts and the consumption of	th or
supersaturation by droplets balance out, parcel supersaturation reaches parcel equilibrium	sc uj
supersaturation (Rogers and Yau, 1991). Mostly due to greater aerosol concentrations,	ou su ae
associated average, equilibrium supersaturation and minimum size of activated aerosol	su
particles over areas with positive updraft speeds and period 1, are lower and larger,	ar

eleted:

ormatted: Superscript

Deleted: represents ... he given amount of water which is vailable for the condensational growth of droplets. This roportionality means that for a given CDNC [34] ormatted: Subscript Deleted: C also...causes Rv to ...ecreases Rv, i. e., a decrease in he available amount of water for the condensational growth with no hanges in CDNC induces a decrease in R_v... The average LWC, which is...averaged at all altitudes in cloudy areas and ...ver periodalso decreases with weakening fire intensity and updraftsot nly among the polluted-scenario runs but also among the cleancenario runs (Figure 8). Effects of LWC on R_v outweigh those of DNC... [35] formatted: Subscript [[][36]

Deleted:	and thisleadingsto the decrease in the a	averaged [36]
Deleted:	dLWC and the averaged CDNC	[37]

ormatted: Subscript

eleted: that are shown ... romin... Figure 8, it is found that ... [38]

eleted: $\left(\frac{LWC}{CDNC}\right)^{\frac{1}{3}}$

Deleted: varies...by 1.50×10⁻⁵ kg from 3.50×10⁻⁵ kg in the control un for strong fire intensity ... o 2.00×10^{-5} kg in the weak run for ire intensity... while it decreases varies... by 9.80×10^{-6} kg from the intensity... while it decreases values...by Job 10 kg from $3/3 \times 10^{-4}$ kg in the low-accosol run for strong fire intensity... 32×10^{-5} kg in the weak-low run for weak fire intensity... Associated with this, the averaged...erage R_v shows a 47 % eduction from 3.20 μ m in ... he control run ... o 1.70 μ m in the veak runs, while it and the averaged R_v ... hows a 10 % reduction rom 7.75 $\,\mu m$ in …he low-aerosol run …o 6.98 μm in the [39]

... [40]

[41]

eleted: ...WC, CDNC

ormatted: Subscript Deleted: varying ... ire intensity, and the functional relation etween LWC, CDNC

ormatted: Subscript

eleted:, which is $R_{v \propto} \left(\frac{LWC}{CDNC}\right)^{\frac{1}{3}}$,

eleted: s...to a situation where Rv decreasesreduce...much more mong the polluted-scenario runs than among the clean-scenario uns during the period when with the initial formation of ... [42]

Deleted: speed...decreases, parcel equilibrium supersaturation , which is supersaturation when supersaturation in a rising air parcel tops to increase (Rogers and Yau, 1991), ...ecreaseslowers...and hus, the minimum size of activated aerosol particles increases not nly among the clean-scenario runs but also among the polluted-cenario runs. When the production of parcel supersaturation by pdrafts and the consumption of supersaturation by droplets balance ut, parcel supersaturation reaches parcel equilibrium upersaturation (Rogers and Yau, 1991). Mostly due to greater persaturation (registration and reaction (registration)) and the greater record concentrations, associated the ...veraged...equilibrium apersaturation and the averaged associated ...inimum size of ctivated aerosol particles over areas with positive updraft speeds nd period 1,...are lower and largerhigher ... [43] 1430 respectively, in the polluted-scenario run than in the clean-scenario run for each fire 1431 intensity (Rogers and Yau, 1991), 1432 The average equilibrium supersaturation decreases, from 0.21% in the control run to 1433 0.10% in the weak run. Associated with this, the average minimum diameter increases from 1434 0.09 µm in the control run to 0.12 µm in the weak run over period 1. The average 1435 equilibrium supersaturation decreases, from 0.55% in the low-aerosol run to 0.31% in the 1436 weak-low run, and the average minimum size increases from 0.04 µm in the low-aerosol 1437 run to 0.07 μm in the weak-low run over period 1. 1438 The increase in the minimum-activation size with weakening fire intensity occurs 1439 closer to the right tail of the assumed unimodal aerosol size distribution among the 1440 polluted-scenario runs than among the clean-scenario runs. A smaller portion of the total 1441 aerosol concentration is in the size range closer to the right tail of the distribution as long 1442 as the range is on the right-hand side of the distribution peak where most of aerosol 1443 activation occurs. So, a similar increase in the average minimum-activation size for a 1444 weakened fire results in a smaller percentage reduction in the total activated aerosol 1445 concentration and thus N_d among the polluted-scenario runs during period 1. The average 1446 N_{d} over period 1 decreases by 8% from the control to weak runs. The average N_{d} decreases 1447 by 76% from the low-aerosol to weak-low runs (Figure 8). This contributes to the greater 1448 reduction in R_v as fire intensity weakens among the polluted-scenario runs during period 1. 1449 This is for a similar LWC between the polluted-scenario and clean-scenario runs for each 1450 fire intensity (Figure 8). 1451 In association with larger aerosol concentration and the assumed aerosol size 1452 distribution, a smaller percentage variation of the number of activated aerosols and N_d with fire intensity is simulated in the polluted-scenario runs than in the clean-scenario runs. This 1453 1454 smaller variation of N_d aids the greater reduction in R_v among the polluted-scenario runs. 1455 1456 4.2.3 Autoconversion, freezing, deposition and condensation 1457 1458 Autoconversion is proportional to the size of cloud droplets (Pruppacher and Klett, 1978; 1459 Rogers and Yau, 1991; Khairoutdinov and Kogan, 2000; Liu and Daum, 2004; Lee and

1460 Baik, 2017). Due to the larger Rv during period 1, the subsequent average autoconversion Deleted: y. ...ogers and Yau, (...991) have also shown that higher aerosol concentrations induce lower and higher equilibrium supersaturation and the averaged associated minim activated aerosol particles, respectively [44]

Deleted: veraged...erage equilibrium supersaturation decreases reduces...from 0.21% in the control run for strong fire intensity .. o 0.10% in the weak run for weak fire intensity. Associated with this, the averaged ... erage minimum size in diameter increases from 0.09 µm in the control run to 0.12 µm in the the weak run over period 1. The averaged...erage equilibrium supersaturation decreases reduces ... from 0.55% in the low-aerosol run for strong fire intensity ... o 0.31% in the weak-low run, for fire intensity ... nd . Associated with this, ... he averaged ... [45]

Deleted: which is ...loser to the right tail of the assumed unimodal aerosol size ... istribution than that which is less close to the right tail as long as changes in the minimum size in these two size ranges are similar and t...hehese...ranges...isare...on the right-hand side of the aerosol ... istribution peak ; most of aerosol activation occurs for aerosol sizes on the right-hand side of the distribution peak, here we are only concerned with the size ranges on the right-hand side...here most of aerosol activation occurs. So, a similar increase in the averaged ... erage minimum-activation size for a weakened fire in a smaller percentage reduction in the total activated aerosol concentration and thus CDNC [46]

Formatted: Subscript

Deleted: than among the clean-scenario runs ...uring period 1. The average CDNC . [47]

Formatted: Subscript

Deleted: , which is ... overaveraged in cloudy areas and ... period 1,...decreases by 8% from 850 cm⁻³ in ...he control run...to 780 cm in the ... eak runs. The averaged ... erage CDNC [48] Formatted: Subscript

Deleted: 33 cm⁻³ in ... he low-aerosol run ... o 8 cm⁻³ in the ... eak low runs (Figure 8). This contributes to the greater reduction in $\left(\frac{LWC}{CDNC}\right)^{\frac{1}{3}}$ and thus ... [49]

Deleted: than among the clean-scenario runs ... uring period 1. This is for a similar simulated ... WC between the polluted-scenario run ...nd the .. [50]

Deleted: summary... due to larger aerosol concentrations and associated lower equilibrium supersaturation, the variation of the number of activated aerosols with varying fire intensity and updrafts occurs in the aerosol size range that is closer to the right tail of the assumed aerosol size distribution in the polluted-scenario runs than in the clean-scenario runs. In the size range that is closer to the right tail of the size distribution, there is a smaller portion of aerosol concentrations and thus ... the ... smaller percentage variation of the number of activated aerosols and CDNC ... [51]

Formatted: Subscript

Deleted: CDNC

Formatted: Subscript

Deleted: than among the clean-scenario runs via the relation of R $\propto \left(\frac{LWC}{CDNC}\right)^{\frac{1}{3}}$, in the situation where LWC is similar between the polluted-scenario run and the clean-scenario run for each fire intensity

Deleted: According to previous studies (e.g., Khairoutdinov and Kogan, 2000; Liu and Daum, 2004; Lee and Baik, 2017), Aa...toconversion is proportional to the size of cloud droplets....This is explained by the fact that the efficiency of collection among droplets is proportional to droplet size .. [52]

1601	rates over period 2 are higher in the clean-scenario run than in the polluted-scenario run
1602	for each fire intensity (Figure 9a). Due to the larger absolute and percentage reduction in
1603	R _{ve} among the polluted-scenario runs than among the clean-scenario runs with weakening
1604	fire intensity during period 2, the average autoconversion rates decrease by 74% (14%)
1605	from the control (low-aerosol) to weak (weak-low) runs (Figure 9a), Associated with this,
1606	differences in the average autoconversion rates between the polluted-scenario and clean-
1607	scenario run <u>s</u> increase, as fire intensity weakens during period 2 (Figure 9a),
1608	The increasing differences in autoconversion rates between the polluted-scenario
1609	and clean-scenario runs increase those differences in the amount of cloud liquid available
1610	for freezing with weakening fire intensity (Figure 9a). Thus, differences in the average rate
1611	of cloud-liquid freezing and freezing-related latent heat over the period 2 between the runs
1612	increase with weakening fire intensity (Figure 9a), Enhanced freezing-related latent heat
1613	strengthens updrafts in places where freezing occurs and this, in turn, enhances deposition
1614	and deposition-related latent heat (Lee et al., 2017). Although the average deposition over
1615	period 2, is slightly lower, those strengthened updrafts enable the average deposition and
1616	deposition-related latent heat to be greater in the polluted-scenario run than in the clean-
1617	scenario run for each fire intensity during period 3 (Figures 9a and 9b). Differences in the
1618	average freezing rate (and thus the average freezing-related latent heating) between the
1619	runs do not change much up to ~20:30 GMT (Figure 10). However, after ~20:30 GMT,
1620	these differences start to increase as time goes by for each fire intensity. This is because as
1621	convection intensifies, the transport of cloud liquid to places above the freezing level starts
1622	to be effective around 20:30 GMT. The greater freezing and thus freezing-related latent
1623	heat eventually cause updrafts to be stronger in the polluted-scenario run starting at ~21:00
1624	GMT (Figure 10). Then, the stronger updrafts induce deposition to be greater in the
1625	polluted-scenario run around 21:10 GMT (Figure 10). Note that deposition-related latent
1626	heat is about one order of magnitude greater than freezing-related latent heat for a unit
1627	mass of hydrometeors involved in phase-transition processes. This contributes to much
1628	greater differences in deposition-related latent heat during period 3 than those in freezing-
1629	related latent heat between the runs during period 2 or 3 (Figures 9a and 9b).
1630	To satisfy mass conservation, the freezing- and deposition-enhanced updrafts above
1/101	

1631 the freezing level induce more updraft mass fluxes below the freezing level in the polluted-

Deleted: Due to smaller autoconversion rates, there is more cloud liquid available for freezing in the polluted-scenario run than in the clean-scenario run for each fire intensity, particularly during period 2. Hence, the rate of cloud-liquid freezing, which is averaged in cloudy areas and period 2, is greater in the polluted-scenario run than in the clean-scenario run for each fire intensity (Figure 9a). ... The increasing dD...fferences in autoconversion rates between the polluted-scenario run ...nd the ...lean-scenario runs , which increase with weakening fire intensity, ...ncrease induce ...hose differences in the amount of cloud liquid available for freezing to get greater ... ith weakening fire intensity (Figure 9a). Thus, differences in the averaged ... erage rate of cloud-liquid freezing and freezingrelated latent heat over the period 2 between the runs between the polluted-scenario run and the clean-scenario run over period 2 gets greater...ncrease with weakening fire intensity (Figure 9a). Due to this, differences in freezing-related latent heat between the runs increase with weakening fire intensity.... When fire intensity is strong, the difference in freezing-related latent heat, which is averaged in cloudy areas and period 2, between the polluted-scenario run, which is the control run, and the clean-scenario run, which is the low-aerosol run, is 1.60×10-4 J m-3 s-1. However, with medium fire intensity, that difference between the polluted-scenario run, which is the medium run, and the clean-scenario run, which is the medium-low run, is 6.98×10-4 J m-3 s-1, while with weak fire intensity, that difference between the polluted-scenario run, which is the weak run, and the clean-scenario run, which is the weak-low run, is 7.94×10^4 J m⁻³ s⁻¹. This corresponds to the variation of the percentage differences, which are calculated by Equation (1), in the averaged freezing-related latent heat between the polluted-scenario run and the clean-scenario run from 9% with strong fire intensity to 83% with weak fire intensity through 51% with medium fire intensity over the period 2. As shown in Lee et al. (2017), ...e...hanced freezing-related

As shown in Lee et al. (2017), ...e..hanced freezing-related latent heat strengthens updrafts in places where freezing occurs and this, in turn, enhances deposition and deposition-related latent heat (Lee et al., 2017). Hence, ...a...though the average deposition, which is ...ver averaged in cloudy areas and ...eriod 2,...is slightly lower, those strengthened updrafts enable due to those strengthened updrafts, ...he averaged...erage deposition and deposition-related latent heat to beare...greater in the polluted-scenario run than in the clean-scenario run for each fire intensity during period 3 (Figures 9a and 9b). Differences in the averaged...erage freezing rate (and thus the averaged...erage freezing-related latent heating) in cloudy areas between the polluted-scenario run and the clean-scenario ...ms for each fire intensity ...o not change much up to ~20:30 GMT after start to appear around 18:30 GMT ...Figure 10). However, after ~20:30 GMT, these differences start to increase as time goes by for each fire intensity. This is because as convection intensifies, the [54]

Deleted: , due to enhanced freezing and deposition,

62
scenario run than in the clean-scenario run for each fire intensity. This leads to more convergence around and below cloud base in the polluted-scenario run. The higher mass
fluxes and convergence below the freezing level, in turn, increase condensation starting
around 22:30 GMT in the polluted-scenario run (Figure 10), This induces the greater,
average condensation and condensation-related latent heat in the polluted-scenario run
during period 4 (Figure 9c). Enhanced condensation in turn enhances updrafts, establishing
a positive feedback between freezing, deposition, condensation, and updrafts, thus further,
enhancing freezing, deposition, condensation, and updrafts, This enhancement, due to the
feedback, eventually determines the overall differences in the pyroCb properties and their

1950 impacts on the UTLS water vapor and cloud ice between the runs.

1951 Due to the increasing differences in freezing-related latent heat between the polluted-1952 scenario and clean-scenario runs with weakening fire intensity during period 2, those 1953 differences in the average freezing-affected updrafts and subsequently in deposition-1954 related latent heat over period 3 increase with weakening fire intensity (Figures 9a, 9b and 1955 10). Those differences, calculated using Equation (1), in deposition-related latent heat are 1956 16%, 181%, and 417% for strong, medium, and weak fire intensities, respectively (Figures 1957 9b and 10). Since percentage increases in deposition-related latent heat increase, the 1958 subsequent percentage increases in updrafts in the polluted-scenario run increase, with 1959 weakening fire intensity, particularly during period 3 (Figure 10). During period 4, due to 1960 these greater increases in updrafts in the polluted-scenario run with weaker fire intensity, 1961 the percentage increases in condensation in the polluted-scenario run increase, with 1962 weakening fire intensity (Figures 9c and 10). The greater increases in condensation cause 1963 the greater further enhancement of the increases in updrafts in the polluted-scenario run 1964 with weaker fire intensity, This leads to the overall greater effects of fire-produced aerosols 1965 on the UTLS water vapor and ice with weaker fire intensity. 1966 This section shows that the smaller R_v leads to lower autoconversion rates and a

- 1967 larger amount of cloud liquid as a source of freezing, which in turn induces higher freezing
- 1968 rates and stronger feedbacks between freezing, deposition, condensation and updrafts in
- 1969 the polluted-scenario run than in the clean-scenario run for each fire intensity. This results
- 1970 in stronger updrafts and their impacts on the UTLS water vapor and ice in the polluted-
- 1971 scenario run. The greater Rv reduction among the polluted-scenario runs than among the

Deleted: , which is air flow from environment to cloud,
Deleted: than in the clean-scenario run for each fire intensity
Deleted: more
Deleted: the more
Deleted: enhance
Deleted: . Hence, condensation, which is averaged in cloud are
Deleted:
Deleted: the
Deleted: veraged
Deleted: to be greater
Deleted: than in the clean-scenario run for each fire intensity
Deleted: and
Deleted: ,
Deleted: further
Deleted: polluted-scenario run than in the clean-scenario
Deleted: for each fire intensity
Deleted: D
Deleted: run
Deleted: the
Deleted: increase
Deleted: , particularly
Deleted: . Thus
Deleted: percentage
Deleted: , which is averaged in cloudy areas and
Deleted: ,
Deleted: between the polluted-scenario run and the clean-scenario]
Deleted: as
Deleted: by
Deleted: y
Deleted: in the polluted-scenario run
Deleted: get greater with weakening fire intensity
Deleted: as compared to updrafts in the clean-scenario run
Deleted: get greater
Deleted: as compared to condensation in the clean-scenario run
Deleted: get greater
Deleted: Then,
Deleted: t
Deleted: , in turn,
Deleted:
Deleted: for each fire intensity
Deleted: This enhancement is greater with weaker fire intensity57]
Deleted: greater
Deleted: In this section, we see
Deleted: than in the clean-scenario run for each fire intensity

Deleted: nduces	
Deleted: run	
Deleted: the	
Deleted: to get greater	

Delete	ed: and in the amount of the UTLS cirrus clouds
Delete	ed: the
Delete	ed: and the amount
Delete	ed:, respectively
Delete	ed: ,
Delete	ed: with no fire-induced aerosol perturbation.
Delete	ed: and the amount of the UTLS cirrus clouds
Delete	ed: get greater
Delete	ed: and the amount of the UTLS cirrus clouds
Delete	ed: the
	ed: we considered the situation where the fire-induced perturbation does not vary with fire intensity. Note that so
Delete	ed: ,
Delete	ed:
Delete	ed: Hence,
Delete	ed: t
Delete	ed: examine and
Delete	ed: smaller
Delete	ed: s
Delete	ed: more aerosols from it
Delete	ed:
Delete	ed: situation
Delete	ed: run
Delete	ed: the
Delete	ed: run
Delete	ed: the
Delete	ed: run
Delete	ed: the
Delete	ed: Hence,
Delete	ed: a
Delete	ed: reduces
Delete	ed: less
Forma	tted: Superscript
	tted: Superscript

clean-scenario runs with weakening fire intensity increases, the differences in autoconversion, freezing and the feedbacks between the polluted-scenario and clean-scenario runs as fire intensity weakens. This results in the greater impacts of aerosol-induced stronger updrafts on the UTLS water vapor and ice with weaker fire intensity.

4.3 Dependence of aerosol effects on the magnitude of aerosol perturbation

2025

2026

2027

2028

2029

2032 Table 3 shows that for each of the strong-, medium-, and weak-fire cases, there are 2033 increases in the UTLS water-vapor and cirrus-cloud mass in the run with fire-induced 2034 aerosol perturbations of 30000 or 7500 cm⁻³. These increases are relative to the mass in the 2035 low-aerosol run for the strong-fire case, in the medium-low run for the medium-fire case, 2036 and in the weak-low run for the weak-fire case. Note that for each of the three types of fireinduced aerosol perturbations of 30000, 15000 and 7500 cm-3, aerosol-perturbation-2037 2038 induced percentage increases in the UTLS water-vapor and cirrus-cloud mass increase as 2039 fire intensity weakens (Tables 2 and 3). The qualitative nature of results regarding the dependence of the percentage increases in the UTLS water-vapor and cirrus-cloud mass on 2040 2041 fire intensity thus does not depend on the magnitude of the fire-induced aerosol 2042 perturbation. 2043 Until now, we have taken interest in the sensitivity to fire intensity of an aerosol 2044 perturbation on pyroCb development, the UTLS water vapor and cirrus clouds. To isolate 2045 the sensitivity, we have shown comparisons among sensitivity simulations by varying only 2046 fire intensity while maintaining a constant aerosol perturbation. While working well for 2047 the isolation aspect, this strategy does not reflect reality well. It may be that weaker fire 2048 intensity produces a lower, aerosol concentration. This possibility is not that unrealistic, 2049 since stronger fires likely involve more material burnt and higher aerosol emissions, 2050 With this in mind, we make comparisons among three pairs of simulations: the low-2051 aerosol and control-30000 runs for strong fire vs. the medium-low and medium runs for 2052 medium fire vs. the weak-low and weak-7500 runs for weak fire. Among these three pairs,

- 2053 the magnitude of the fire-induced aerosol perturbation decreases, with weakening fire,
- 2054 emulating the possibility that weaker fire intensity involves a <u>lower</u>, amount of aerosols.
- 2055 <u>The perturbation-related aerosol concentration is 30000 cm⁻³ for strong fire, 15000 cm⁻³ for</u>

2093 medium fire, and 7500 cm⁻³ for weak fire, Comparisons among these three pairs show that 2094 relative importance of aerosol effects on pyroCb development and its impacts on the UTLS 2095 water vapor and cirrus clouds increases for weaker fires, and that it does not matter if the 2096 aerosol perturbation decreases, or stays constant with weakening fire intensity (Tables 2 2097 and 3). In these comparisons, it is also possible that when the fire-induced aerosol 2098 perturbation is very low for medium or weak fire intensity, the latent heat perturbation by 2099 aerosol perturbation can be very low. This very low latent heat is not large enough to 2100 increase the relative importance of those aerosol effects with weakening fire intensity. 2101 Based on this, the medium run is repeated with a fire-induced aerosol perturbation of 2000 2102 cm⁻³ down from 15000 cm⁻³ (the medium-2000 run). The weak run is repeated with a fire-2103 induced aerosol perturbation of 1000 cm⁻³ down from 7500 cm⁻³ (the weak-1000 run), The 2104 percentage increases in the UTLS water-yapor and cirrus-cloud mass, from the mediumlow to medium-2000 runs or from the weak-low to weak-1000 runs are smaller than the 2105 2106 increases from the low-aerosol to control-30000 runs for the case of strong fire. This 2107 indicates that when the fire-induced aerosol perturbation decreases, too much with 2108 weakening fire intensity, the relative importance of aerosol effects on pyroCb development 2109 and its impacts on the UTLS water vapor and cirrus clouds no longer increases with, 2110 weakening fire intensity. 2111 Results in this section show, that the increasing impacts of the fire-induced aerosol 2112 perturbations on the UTLS water vapor and cirrus clouds with weakening fire intensity are, 2113 robust whether or not aerosol perturbations vary with fire intensity unless their variation is

2114 extremely high.2115

5. Conclusions

2117

2116

2118 This study investigates an observed case of a pyroCb using a modeling framework. In

2119 particular, this study focuses on effects of fire-produced aerosols on pyroCb development

2120 and its impacts on the UTLS water vapor and cirrus clouds. Results show that the pyroCb

2121 <u>efficiently transports</u> water vapor to the tropopause and above, This leads to a much greater

- amount of water vapor around and above the tropopause (i.e., the UTLS) over the pyroCb
- 2123 compared to that outside the pyroCb. The pyroCb also generates a deck of cirrus clouds

Deleted: For strong fire, the perturbation-related aerosol concentration is 30000 cm ⁻³ , for medium fire, it is 15000 cm ⁻³ , and for weak fire, it is 7500 cm ⁻³	
Formatted: Superscript	\mathbb{D}
Deleted: As shown in Tables 2 and 3,)

Deleted: c Deleted: the

Deleted: reduces

Deleted:	the medium run and the weak run are repeated again.
Deleted:	Т
Formatte	ed: Superscript
Deleted:	lower
Deleted:	fire-induced aerosol perturbations than
Deleted:	the perturbation of
Deleted:	,
Deleted:	while
Deleted:	t
perturbatio has the aer is referred has the aer	lower fire-induced aerosol perturbations than the on of 7500 cm ⁻³ . Recall that when the repeated medium run osol perturbation of 2000 cm ⁻³ , the repeated medium run to as the medium-2000 run; when the repeated weak run osol perturbation of 1000 cm ⁻³ , the repeated weak run is as the weak-1000 run.
Deleted:	
Deleted:	amount
Deleted:	run
Deleted:	the
Deleted:	run
Deleted:	the
Deleted:	ose
Deleted:	, for the case of strong fire,
Deleted:	run
Deleted:	the
Deleted:	reduces
Deleted:	the
Deleted:	s
Deleted:	is
Deleted:	those
Deleted:	varying
Deleted:	or not,
Deleted:	the variation of aerosol perturbations
Deleted:	updrafts
	efficiently
Deleted:	
Deleted: Deleted:	*

2167 around the tropopause. The role of fire-produced aerosols or the fire-induced aerosol perturbation in the water-vapor transport to the UTLS and the production of cirrus clouds 2168 2169 becomes significant as fire intensity weakens. 2170During the initial stage, there is a similar LWC between the polluted-scenario and 2171 clean-scenario runs for each fire intensity. The reduction in LWC with weakening fire 2172 intensity among the polluted-scenario runs is similar to that among the clean-scenario runs. 2173 <u>Much greater N_d is in the polluted-scenario run than in the clean-scenario run for each fire</u> 2174 intensity. Nd decreases are smaller, among the polluted-scenario runs than among the clean-2175 scenario runs with weakening fire intensity. This situation during the initial stage induces 2176 R_v to decrease much more among the polluted-scenario runs with weakening fire intensity. 2177 This reduces autoconversion more among the polluted-scenario runs and increases 2178 differences in autoconversion between the polluted-scenario and clean-scenario runs as fire 2179 intensity weakens. The increasing differences in autoconversion between the runs cause 2180 greater differences in freezing-related latent heat as fire intensity weakens. Through 2181 feedback between freezing, deposition, updrafts, and condensation, differences in freezing-2182 related latent heat induce those in updrafts between the runs. Those greater differences in 2183 freezing-related latent heat lead to greater differences in updrafts, producing the greater 2184 differences in the UTLS water vapor and cirrus clouds between the runs with weaker fire 2185 intensity. This means that the role of fire-produced aerosols in the water-vapor transport to 2186 the UTLS and the production of cirrus clouds becomes more significant as fire intensity 2187 weakens. This more significant role of fire-produced aerosols with weaker fire intensity is 2188 robust to the magnitude of a given fire-induced aerosol perturbation, and the variation of 2189 the fire-induced aerosol perturbation with fire intensity unless the variation is very high. 2190 The level of understanding of the role played by fire-produced aerosols in the 2191 development of pyroCbs and their impacts on the UTLS water vapor and cirrus clouds has 2192 been low. This study shows that fire-produced aerosols can invigorate updrafts and 2193 convection and thus enhance the transport of water vapor to the UTLS and the formation 2194 of cirrus clouds. We find that the mechanism that controls the invigoration of convection 2195 by aerosols in the pyroCb is consistent with the traditional invigoration mechanism 2196 proposed and described by Koren et al. (2008) and Rosenfeld et al. (2008). However, this 2197 study shows that for pyroCbs produced by strong fires, the aerosol-induced invigoration

Deleted: As fire intensity weakens, due to the reduction in LWC, R_v decreases despite the reduction in CDNC that tends to increase R_v...uring the initial stage, there is a similar LWC between the polluted-scenario run (i.e., the control run for strong fire intensity, the medium run for medium fire intensity and the weak run for weak fire intensity with the fire-induced aerosol perturbation) ...nd the clean-scenario runs (i.e., the low-aerosol perturbation) ...nd the weak-low run for weak fire intensity with no fire-induced aerosol perturbation) ...or each fire intensity with no fire-induced aerosol perturbation) ...or each fire intensity. TT...e reduction in LWC with weakening fire intensity among the polluted-scenario runs is also similar to that among the clean-scenario runs. During the initial stage, there are ...m...ch greater CDNC

Formatted: Subscript

Deleted: , and the smaller CDNC

Formatted: Subscript

Deleted: reduction ... among the polluted-scenario runs than among the clean-scenario runs with weakening fire intensity. This situation during the initial stage induces Ry to decreasereduce...much more among the polluted-scenario runs than among the clean-scenario runs ... ith weakening fire intensity. This reduces autoconversion more among the polluted-scenario runs than among the cleanscenario runs ...nd with weakening fire intensity. ...ncreases This makes ... ifferences in autoconversion between the polluted-scenario run...and the ...lean-scenario runs increase ...s fire intensity weakens. The increasing differences in autoconversion between the polluted-scenario run and the clean-scenario ...uns causes...greater differences in freezing-related latent heat as fire intensity weakens. Through feedback between freezing, deposition, updrafts, and condensation, differences in freezing-related latent heat induce thosedifferences ... in updrafts between the polluted-scenario run and the clean-scenario ... uns. Those greater differences in freezinglatent heat also ... ead to greater differences in updrafts, producing the greater differences in the UTLS water vapor and cirrus clouds between the runs with weaker fire intensity. This means that the role of fire-produced aerosols in the water-vapor transport to the UTLS and the production of cirrus clouds in the pyroCb ... ecomes more significant as fire intensity weakens

...hise...more significant role of fire-produced aerosols in water-vapor transport to the UTLS and the production of cirrus cloud in the pyroCb ...ith weaker fire intensity is robust to the magnitude of athe...given fire-induced aerosol perturbation, which was assumed not to vary with varying fire intensity...and. This more significant role with weaker fire intensity is also robust to ...he variation of the fire-induced aerosol perturbation with the varying601

Deleted: It is true that t...e level of the ...nderstanding of a mechanism that controls ...he role played by fire-produced aerosols in the development of pyroCbs and their impacts on the UTLS water vapor and cirrus clouds has been low. This study shows that fire-produced aerosols can invigorate convection and ...pdrafts and convection and thus enhance the cause enhanced transportation...of water vapor to the UTLS and the enhanced formation of cirrus clouds. WeThis study...finds...that the mechanism that controls the invigoration of convection by aerosols in the pyroCb is consistent with the traditional invigoration mechanism which was ...roposed and described bytailed in[61]

2318	and its effects on the UTLS water vapor and cirrus clouds are insignificant. Note that
2319	traditional understanding generally focuses on effects of fire-produced heat and water
2320	vapor and their associated surface fluxes on the pyroCb and does not consider effects of
2321	fire-produced aerosols on the pyroCb, This understanding adequately explains the
2322	mechanics for pyroCbs in association with strong fires. This study suggests that when
2323	pyroCbs form over weak-intensity fires, those effects of fire-produced aerosols require
2324	consideration,
2325	Note that when fire-induced aerosol perturbations are strongly reduced for cases of
2326	weaker-intensity fires compared with strong-intensity fires, the significance of the role of
2327	the fire-produced aerosol perturbation no longer increases, and starts to decrease, with
2328	weakening fire. This suggests that there may be a critical level of aerosol perturbation
2329	below which the increase in this significance with weakening fire intensity ceases.
2330	
2331	
2332	
2333	
2334	
2335	
2336	
2337	
2338	
2339	
2340	
2341	
2342	
2343	
2344	
2345	
2346	
2347	
2348	

n	n

Deleted: around the surface

Deleted: It is of interest to

Deleted: the role of fire-produced aerosols in pyroCb development and its effects on the UTLS water vapor and cirrus clouds Deleted: should be considered for cases where pyroCbs form over weak-intensity fires, should one be observed in nature.

Deleted: , Deleted: and t Deleted: However, Deleted: t

Deleted: n Deleted: played by Deleted: does not Deleted: any longer Deleted: Deleted: reduce Deleted: is Deleted: e

2367	Author contributions			
2368				
2369	SSL generated the research ideas and goals, performed the simulations, and wrote the	11 - N	Deleted: came up with	\sum
2370	manuscript. GK and ZL selected the case, analyzed observations, and provided data to set	1	Deleted: s and aims	$\left \right\rangle$
2371	up the simulations while reviewing and providing comments on the manuscript. CHJ_YSC_		Deleted: e Deleted: and	\prec
2372	<u>JU and WJC</u> revised <u>the</u> manuscript based on the reviewers' comments and performed		Deleted. and	
2373	associated analyses of simulation and observation data.			
2374				
2375				
2376				
2377				
2378				
2379				
2380				
2381				
2382				
2383				
2384				
2385				
2386				
2387				
2388				
2389				
2390				
2391				
2392				
2393				
2394				
2395				
2396				
2397				

	68	
2402	Acknowledgements	Deleted: ¶
2403	This study was, supported by the National Aeronautics and Space Administration through	Deleted: is
2404	grant NNX16AN61G and the National Science Foundation through grant AGS 1837811.	
2405	This study was also supported by the National Strategic Project-Fine particle of the	
2406	National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT	
2407	(MSIT), the Ministry of Environment (ME), the Ministry of Health and Welfare (MOHW)	
2408	(NRF-2017M3D8A1092022) and the Ministry of Education (NRF-	Deleted: m
2409	2018R1D1A1A09083227). Additional support was provided by the National Institute of	
2410	Environmental Research (NIER) funded by the Ministry of Environment (MOE) (NIER-	
2411	<u>2019-01-02-085).</u>	
2412		
2413		
2414		
2415		
2416		
2417		
2418		
2419		
2420		
2421		
2422		
2423		
2424		
2425		
2426		
2427		
2428		
2429		
2430		
2431		
2432		

	69	
2436	References	Commented [SSL1]: Put koren et al. (2006)
2437		Deleted: ¶
2438	Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245,	
2439	1227–1230, 1989.	Deleted: -
 2440	Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M., and	
2441	Silva-Dias, M. A. F.: Smoking rain clouds over the Amazon, Science, 303, 1337–1342,	
2442	2004.	
2443	Emanuel, K.: Atmospheric convection, Oxford University Press, 580 pp, 1994	Moved (insertion) [3]
2444	Fan, J., Leung, L. R., DeMott, P. J., Comstock, J. M., Singh, B., Rosenfeld, D., Tomlinson,	Deleted: ¶
2445	J. M., White, A., Prather, K. A., Minnis, P., Ayers, J. K., and Min, Q.: Aerosol impacts	Deleted: Fan, J., Leung, L. R., Li, Z.: Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk
2446	on California winter clouds and precipitation during CalWater 2011: local pollution	microphysics, J. Geophys. Res., 117, D00K36, doi:10.1029/2011JD016537, 2012. ¶
	versus long-range transported dust, Atmos. Chem. Phys., 14, 81–101,	Formatted: Font: (Default) Times New Roman, (Asian) Malgun Gothic, 12 pt, Font color: Black, Pattern: Clear
2447		Malgun Goune, 12 pt, Font Color: Diack, Fattern: Clean
2448	https://doi.org/10.5194/acp-14-81-2014, 2014.	
2449	Fan, J., Leung, L. R., Rosenfeld, D., and DeMott, P. J.: Effects of cloud condensation nuclei	Formatted: Font: (Default) Times New Roman, (Asian) Malgun Gothic, 12 pt, Font color: Black, Pattern: Clear
2450	and ice nucleating particles on precipitation processes and supercooled liquid in	Formatted: Indent: Left: 0", Hanging: 2 ch
2451	mixed-phase orographic clouds, Atmos. Chem. Phys., 17, 1017–1035,	
2452	https://doi.org/10.5194/acp-17-1017-2017, 2017.	
2453	Fouquart, Y., and Bonnel, B.: Computation of solar heating of the Earth's atmosphere: a	
2454	new parameterization, Beitr. Phys. Atmos., 53, 35-62, 1980.	Deleted: -
2455	Fromm, M., Lindsey, D. T., Servranckx, R., Yue, G., Trickl, T., Sica, R., Doucet, P., Godin-	
2456	Beekmann, S., et al.: The untold story of pyrocumulonimbus, B. Am. Meteorol. Soc.,	
2457	91, 1193, doi:10.1175/2010BAMS3004.1, 2010.	
2458	Grabowski, W. W., Wu, X., and Moncrieff, M. W.: Cloud resolving modeling of tropical	
2459	cloud systems during phase III of GATE. Part I: Two-dimensional experiments, J.	Deleted: D
2460	Atmos. Sci., 53, 3684_3709, 1996.	Deleted: E
2461	Houze, R. A.: Cloud Dynamics, Academic Press, 573 pp, 1993.	Deleted: -
2462	Kablick, G., Fromm, M., Miller, S., Partain, P., Peterson. D., Lee, S. S., Zhang, Y., Lambert,	
2463	A., and Li, Z.: The Great Slave Lake pyroCb of 5 August 2014: observations,	
2464	simulations, comparisons with regular convection, and impact on UTLS water vapor,	
2465	J. Geophy. Res., <u>123</u> , <u>12332–12352</u> , <u>https://doi.org/10.1029/2018JD028965</u> , 2018.	
	Khain, A.: Notes on state-of-the-art investigations of aerosol effects on precipitation: a	Moved (insertion) [4]
2466	main, A. notes on state-or-une-art investigations of acrosof effects on precipitation: a	

2480	critical review, Environ. Res. Lett., 4, doi:10.1088/1748-9326/4/1/015004, 2009	Deleted: 1
2481	Khain, A., BenMoshe, N., and Pokrovsky, A.: Factors determining the impact of aerosols	Moved up [3]: Emanuel, K.: Atmospheric convection, Oxford University Press, 580 pp, 1994.
2482	on surface precipitation from clouds: Attempt of classification, J. Atmos. Sci., 65,	Moved up [4]: Khain, A.: Notes on state-of-the-art
2483	1721_1748, 2008.	investigations of aerosol effects on precipitation: a critical review, Environ. Res. Lett., 4, doi:10.1088/1748-9326/4/1/015004, 2009.
2484	Khairoutdinov, M., and Kogan, Y.: A new cloud physics parameterization in a large-eddy	Deleted: Khain, A., Ovtchinnikov, M., Pinsky, M.: Notes on the state-of-the-art numerical modeling of cloud microphysics, Atmos
2485	simulation model of marine stratocumulus, Mon. Wea. Rev., 128, 229-243, 2000.	Res., 55, 159-224, 2000.
2486	Knobelspiesse, K., Cairus, B., Ottaviani, M., et al.: Combined retrievals of boreal forest	Deleted: - Deleted: Khain, A. P., et al.: Representation of microphysical
2487	fire aerosol properties with a polarimeter and lidar, Atmos. Chem. Phys., 11, 7045_	processes in cloud resolving models: Spectral (bin) microphysica versus bulk parameterization, Rev. Geophys., 53, 247–322, doi:10.1002/2014RG000468, 2015.
2488	7067, 2011.	Deleted: -
2489	Koop, T., Luo, B. P, Tsias, A. and Peter, T.; Water activity as the determinant for	Deleted: -
2490	homogeneous ice nucleation in aqueous solutions, Nature, 406, 611_614. 2000.	Deleted: , Deleted: -
2491	Koren I., Martins, J. V., Remer, L. A., and Afargan, H.: Smoke invigoration versus	
2492	inhibition of clouds over the Amazon, Science, 321, 946-949, 2008.	
2493	Koren, I., Altaratz, O., Remer, L. A., et al.: Aerosol-induced intensification of rain from the	
2494	tropics to the mid-latitudes, Nat. Geosci., 5, 118-122, 2012.	Deleted: -
2495	Krueger, S. K., Cederwall, R. T., Xie, S. C., and Yio, J. J.: GCSS Working Group 4 Model	
2496	Intercomparison-procedures for Case 3: Summer 1997 ARM SCM IOP. Draft	
2497	manuscript obtainable from http://www.arm.gov/docs/scm/scmic3, 1999.	
2498	Lebo, Z. J. and Morrison, H.: Effects of horizontal and vertical grid spacing on mixing in	
2499	simulated squall lines and implications for convective strength and structure, Mon.	
2500	Wea <u>ther</u> . Rev., 143, 4355_4375, 2014.	Deleted: -
2501	Lee, H., and Baik, JJ.: A physically based autoconversion parameterization, J. Atmos. Sci.,	
2502	74, 1599–1615, 2017.	Deleted: -
2503	Lee, S. S., Kim, BG., Nam, HG., et al.: Factors that control heavy snowfalls in the	Formatted: Font: Not Bold
2504	eastern coast of Korea, Terr. Atmos. Ocean. Sci, 29, 301-304, 2018.	
2505	Lee, S. S., and Penner, J. E.: Comparison of a global-climate model to a cloud-system	Moved (insertion) [5]
2506	resolving model for the long-term response of thin stratocumulus clouds to	
2507	preindustrial and present-day aerosol conditions, Atmos. Chem. Phys., 10, 6371-6389,	Deleted: -
2508	2010.	Deleted: ¶
2509	Lee, S. S., Donner, L. J., Phillips, V. T. J., and Ming, Y.: The dependence of aerosol effects	
2510	on clouds and precipitation on cloud-system organization, shear and stability, J.	

	/1		
2535	Geophys. Res., 113, D16202, 2008.		
2536	Lee, S. S., Penner, J. E., and Saleeby, S. M.: Aerosol effects on liquid-water path of thin		Moved (insertion) [6]
2537	stratocumulus clouds., J. Geophys. Res., 114, D07204, 2009,	(Deleted: ¶
2538	Lee, S. S., Feingold, G., Koren, I., Yu, H., Yamaguchi, T., and McComiskey, A.: Effect of		
2539	gradients in biomass burning aerosol on circulations and clouds, J. Geophys. Res.,		
2540	119, 9948_9964, 2014.	(Deleted: -
2541	Lee, S. S., Kim, BG., Yum, S. S., et al.: Effect of aerosol on evaporation, freezing and		
2542	precipitation in a multiple cloud system, Clim. Dyn., 48, 1069_1087, 2016.		Deleted: -
2543	Lee, S. S., Li, Z., and Mok, J., et al.: Interactions between aerosol absorption,		
2544	thermodynamics, dynamics, and microphysics and their impacts on clouds and		
2545	precipitation in a multiple-cloud system, Clim. Dyn., 49, 3905_3921, 2017.		Deleted: -
2546	Liu, Y., and Daum, P. H.: Parameterization of the autoconversion process. Part I: Analytical		Moved up [5]: Lee, S. S., and Penner, J. E.: Comparison of a global-climate model to a cloud-system resolving model for the
2547	formulation of the Kessler-type parameterizations, J. Atmos. Sci., 61, 1539-1548,		long-term response of thin stratocumulus clouds to preindustrial and present-day aerosol conditions, Atmos. Chem. Phys., 10, 6371-6389, 2010.
2548	2004.		Moved up [6]: Lee, S. S., Penner, J. E., and Saleeby, S. M.:
2549	Lohmann, U. and Diehl, K.: Sensitivity studies of the importance of dust ice nuclei for the		Aerosol effects on liquid-water path of thin stratocumulus clouds., J. Geophys. Res., 114, D07204, 2009.
2550	indirect aerosol effect on stratiform mixed-phase clouds, J. Atmos. Sci., 63, 968–982,)` ا	Deleted: -
2551	2006.	(
2552	Luderer, G., Trentmann, J., Winterrath, T., Textor, C., Herzog, M., Graf, H., and Andreae,		
2553	M.: Modeling of biomass smoke injection into the lower stratosphere by a large forest		
2554	fire (part ii): Sensitivity studies. Atmos. Chem. Phys., 6, 5261–5277, 2006.		
2555	Luderer, G., Trentmann, J., and Andreae, M.: A new look at the role of fire-released		
2556	moisture on the dynamics of atmospheric pyro-convection, Int. J. Wildland Fire, 18,		
2557	554_562, 2009.	(Deleted: -
2558	Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: RRTM, a		
2559	validated correlated-k model for the longwave, J. Geophys. Res., 102, 1663-1668,	\leq	Deleted: 6 Deleted: -
2560	1997.		
2561	Möhler, O., et al.: Efficiency of the deposition mode ice nucleation on mineral dust particles,		
2562	Atmos. Chem. Phys., 6, 3007_3021, 2006.	(Deleted: -
2563	Morrison, H., and Grabowski, W. W.: Cloud-system resolving model simulations of aerosol		
2564	indirect effects on tropical deep convection and its thermodynamic environment,		
2565	Atmos. Chem. Phys., 11, 10503–10523, 2011.		Deleted: -

	72		
2585	Peterson, D., Fromm, M., Solbrig, J., Hyer, E., Surratt, M., and Campbell, J.: Detection		
2586	and inventory of intense pyroconvection in western North America using GOES-15		
2580 2 <mark>5</mark> 87	daytime infrared data, J. Appl. Meteorol. Clim., 56, 471–493, 2017.	_	Deleted: -
2588	Phillips, V. T. J., Donner, L. J., and Garner, S.: Nucleation processes in deep convection	C	
2589	simulated by a cloud-system-resolving model with double-moment bulk microphysics,		
258) 2 5 90	J. Atrmos. Sci., 64, 738–761, 2007.	_	Deleted: -
2591	Pruppacher, H. R., and Klett, J. D.: Microphysics of clouds and precipitation, 714_pp,	Contraction Contraction	
2592	Reidel D., 1978.		
2593	Pumphrey, H., Santee, M., Livesey, N., Schwartz, M., and Read, W.: Microwave Limb		
2594	Sounder observations of biomass-burning products from the Australian bush fires of		
2595 2595	February 2009, Atmos. Chem. Phys., 11, 6285–6296, 2011.	_	Deleted: -
2596	Reid, J. S., Hobbs, P. V., Rangno, A. L., and Hegg, D. A.: Relationships between cloud	C	
2597	droplet effective radius, liquid water content, and droplet concentration for warm		
		C	Deleted: -
2598	clouds in Brazil embedded in biomass smoke, J. Geophys. Res., 104, 6145-6153, 1999.	C	Deleteu: -
2599			
2600	Reid, J. S., Koppmann, R., Eck T. F., and Eleuterio, D.: A review of biomass burning		
2601	emissions part II: intensive physical properties of biomass burning particles, Atmos.	C	
2602	Chem. Phys., 5,799 <u>825</u> , 2005.		Deleted: -
2603	Rogers, R. R., and Yau, M. K.: A short course in cloud physics, Pergamon Press, 293_pp,		
2604	1991.		
2605	Rosenfeld, D., Lohmann, U., Raga, G. B., et al.: Flood or drought, How do aerosols affect	(Deleted: ,
2606	precipitation? Science, 321, 1309–1313, 2008.	(Deleted: -
2607	Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution		
2608	to Climate Change, John Wiley & Sons, 1326 pp, 1998.		
2609	Solomon, S., Rosenlof, K. H., Portmann, R. W., Daniel, J. S., Davis, S. M., Sanford, T. J.,		
2610	and Plattner, G. K.: Contributions of stratospheric water vapor to decadal changes in		
2611	the rate of global warming, Science, 327, 1219-1223, 2010.		
2612	Storer, R. L., van den Heever, S. C., and Stephens, G. L.: Modeling aerosol impacts on		
2613	convection under differing storm environments, J. Atmos. Sci., 67, 3904-3915, 2010.		Deleted: -
2614	Tao, WK., Chen, JP., Li, Z., Wang, C., and Zhang, C.: Impact of aerosols on convective		
2615	clouds and precipitation, Rev. Geophys., 50, RG2001, 2012.		
	73		
--------------	--	---	
2624	Trentmann, J., Luderer, G., Winterrath, T., Fromm, M., Servranckx, R., Textor, C., et al.:		
2625	Modeling of biomass smoke injection into the lower stratosphere by a large forest fire.		
2626	Part I: Reference simulation. Atmos. Chem. Phys., 6, 5247–5260, 2006.	Deleted: (part i)	
		Deleted: r	
2627	Twomey, S.: The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci.,		
2628	34, 1149–1152, 1977.	Deleted: -	
2629	Wang, H., Skamarock, W. C., and Feingold, G.: Evaluation of scalar advection schemes in		
2630	the Advanced Research WRF model using large-eddy simulations of aerosol-cloud		
2631	interactions, Mon. Weather. Rev., 137, 2547–2558, 2009.	Deleted: -	
2632	Wang, P.: Is the Transport by deep convective storms the major source of stratospheric	Formatted: Font: Not Bold	
2633	water vapor?, 99th Annual Meeting, American Meteorological Society, available at	Formatted: Font: Not Bold	
		Formatted: Font: Not Bold	
2634	https://ams.confex.com/ams/2019Annual/webprogram/Paper354897.html, 2019,	Formatted: Font: Not Bold	
2635		Formatted: Font: Not Bold	
2636		Formatted: Font: Not Bold	
2637		Formatted: Font: Not Bold	
2638		Formatted: Font: Not Bold	
2639		Formatted: Font: Not Bold	
2640		Formatted: Font: (Asian) Malgun Gothic, Font color: Black Formatted: Font: Not Bold	
2641 2642		Formatted: Font. Not Bold	
2643			
2644			
2645			
2646			
2647			
2648 2649			
2650			
2651			
2652			
2653			
2654 2655			
2655 2656	τ	Deleted: ¶	
2650 2657			
2658			
2659			
2660			
2661			
2662			
2663			

2 <mark>669</mark> 2670 2671	FIGURE CAPTIONS		Deleted: ¶ ¶ ¶
2671 2672	Figure 1. Visible image of the fire, smoke and cirrus cloud in association with the selected		
2673	pyroCb. This image was taken by the visible infrared imaging radiometer suite onboard the		1
2674	Suomi spacecraft. Bright white represents cirrus (anvil) at the top of the pyroCb, and the		1
2675	red circle marks the fire spot. Dark white represents smoke produced by the fire. Adapted	manas	1
2676 2677	from Kablick et al. (2018).		4 4
2677 2 <mark>678</mark>	Figure 2. The simulated fire spot (red circle) and the field of cloud-ice mass density (cirrus		
2679	cloud) at the top of the simulated pyroCb when it is about to enter its mature stage.		1
2680			Peleted: IIRS v
2681	Figure 3. The vertical distribution of the radar reflectivity averaged along the Cloudsat path.		Deleted: mks v
	Figure 5. <u>The vertical distribution of the radal reflectivity averaged along the Cloudsat path.</u>		Deleted: ed
2682			Deleted: while
2683	Figure 4. Vertical distributions of the average updraft mass fluxes at all altitudes in cloudy		Deleted: circle
2684	areas (i.e., where the sum of LWC and IWC is non-zero) over the simulation period		Deleted: the pyroCb
	between 17:00 GMT on August 5 th and 12:00 GMT on August 6 th .	111	Deleted: advance to
2685	between 17.00 GW1 on August 5° and 12.00 GW1 on August 6°.		Deleted: The v
2686			Deleted: which is
2687	Figure 5. Vertical distributions of <u>the</u> average water-vapor mass density at altitudes above	/	Deleted: veraged
2688	13 km and over the simulation period between 17:00 GMT on August 5^{th} and 12:00 GMT		
2689	on August 6th. Colored lines represent the average values over cloudy grid columns (non-		Deleted: veraged
2690	zero sum of LWP and IWP). The black line represents those values over non-cloudy		
2691	columns (zero sum of LWP and IWP) in the control run.		
2692			
2693	Figure 6. Vertical distributions of the average cloud-ice mass density at all altitudes in		Deleted: veraged
2694	cloudy areas (non-zero sum of LWC and IWC) over the simulation period between 17:00		
2695	GMT on August 5 th and 12:00 GMT on August 6 th .		
2696			
2697	Figure 7. Same as Figure 6 but for deposition rate.		
2698	· · · ·		Deleted: The sugreged
	Figure 8. <u>Average N_d</u> , R _v , and LWC at all altitudes in cloudy areas over the period between		Deleted: The averaged
2699		\leq	Formatted: Subscript
2700	17:00 and 19:00 GMT on August 5th.		Deleted: ,

2740		
2741	Figure 9. Average rates of condensation, deposition and cloud-liquid freezing at all	Deleted: The averaged
2742	altitudes in cloudy areas and over periods (a) 2, (b) 3 and (c) 4. In panel (a), average	Deleted: the
2743	autoconversion rates are also shown.	Deleted: additionally
2744		
2745	Figure 10. Time series of differences in average values of variables related to aerosol-	Deleted: the
2746	induced invigoration of convection at all altitudes in cloudy areas between the (a) control	Deleted: ,
2747	and low-aerosol runs for strong fire intensity, (b) medium and medium-low runs for	
2748	medium fire intensity and (c) weak and weak-low runs for weak fire intensity.	
2749		
2750		
2751		
2752		
2753		
2754		
2755		
2756		
2757		
2758		
2759		
2760		
2761		
2762		
2763		
2764		
2765		
2766		
2767		
2768		
2769		
2770		

Simulations	Surface sensible heat fluxes in the fire spot (W m ⁻²)	Surface latent heat fluxes in the fire spot (W m ⁻²)	Aerosol concentration in the PBL over the fire spot (cm ⁻³)
Control run	15000	1800	15000
Low-aerosol run	15000	1800	150
Control-30000	15000	1800	30000
Control-7500	15000	1800	7500
Medium run	7500	900	15000
Medium-low run	7500	900	150
Medium-30000	7500	900	30000
Medium-7500	7500	900	7500
Medium-2000	7500	900	2000
Weak run	3750	450	15000
Weak-low run	3750	450	150
Weak-30000	3750	450	30000
Weak-7500	3750	450	7500
Weak-1000	3750	450	1000

2796		
2795		
2794		
2793		
2792		
2791		
2790		
2789		
2788		
2787		
2786		
2785		
2784		
2783		
2782		
2781		
2780		
2779		
2778		
2777	Table 1. Summary of simulations	
2110		

	Backg- round	Control	Low- aerosol	Differe- nce (%)	Medium	Medium- low	Differe- nce (%)	Weak	Weak- low	Differe- nce (%)
Updraft mass fluxes (kg m ⁻² s ⁻¹)		1.23	1.19	3	0.89	0.70	27	0.42	0.21	100
Water- vapor mass density between 13 and 16 km (10 ⁻³ g m ⁻³)	0.46	2.31	2.26	2	1.61	1.32	22	0.93	0.58	60
Cirrus- cloud mass density between 9 and 13 km (g m ⁻³)		0.024	0.023	4	0.017	0.012	42	0.008	0.004	100

2801	Table 2. Average updraft mass fluxes at all altitudes in cloudy areas, the average water-	(Deleted: The averaged
2802	vapor mass density over altitudes between 13 and 16 km and over cloudy columns except	······(Deleted: veraged
2803	for the average background water-vapor mass density which is also over altitudes between	(Deleted: veraged
2804	13 and 16 km but over non-cloudy columns, and the average cirrus-cloud mass density	(Deleted: veraged
2805	between 9 and 13 km in cloudy areas. 16 km is the altitude to which the non-zero water-	(Deleted: an
2806	vapor mass density over cloudy columns extends (Figure 5). These average values are		Deleted: veraged
2807	obtained over the simulation period between 17:00 GMT on August $5^{\rm th}$ and 12:00 GMT on		
2808	August 6th. "Difference" is the percentage difference between the polluted-scenario and	(Deleted: run
2809	clean-scenario runs for each fire intensity $\left(\frac{Polluted-scenario run minus clean-scenario run}{Clean scenario run} \times \right)$	······	Deleted: the
	Glean-scenario run	\leq	Deleted: The p
2810	100 (%)).		Deleted: the Deleted: The c
2811		(
2812			
2813			
2814			

	Control- 30000	Control- 7500	Medium- 30000	Medium- 7500	Medium- 2000	Weak- 30000	Weak- 7500	Weak- 1000
Water vapor mass density between 13 and 16 km (10 ⁻³ g m ⁻³)	2.38 (5%)	2.28 (0.9%)	1.87 (42%)	1.50 (14%)	1.36 (3%)	1.31 (125%)	0.75 (29%)	0.60 (3%)
Cirrus cloud mass density between 9 and 13 km (g m ⁻³)	0.025 (9%)	0.023 (0.2%)	0.023 (92%)	0.014 (17%)	0.012 (3%)	0.013 (225%)	0.006 (50%)	0.004 (8%)

2830	Table 3. Average water-vapor mass density between 13 and 16 km over cloudy columns	(Deleted: The averaged
2831	and the average cirrus-cloud mass density between 9 and 13 km in cloudy areas over the	(Deleted: ,
2832	simulation period between 17:00 GMT on August 5 th and 12:00 GMT on August 6 th . The	\sim	Deleted: veraged
		\langle	Deleted: ,
2833	numbers in parentheses are the percentage differences:		
2834	$\frac{Control-30000 (or control-7500) run minus low-aerosol run}{V} \times 100 (\%)$ for strong fire intensity,	(Deleted: The c
		5(Deleted: the
2835	Medium-30000 (or medium-7500 or medium-2000) run minus medium-low run $\times 100$ (%) for	\searrow	Deleted: the l
	v vNeduum-low run v	~ 10	Deleted: The l
2836	medium fire intensity, and	$\langle \rangle \langle \rangle$	Deleted: The m
2837	$\frac{Weak-30000}{(or weak-7500 or weak-1000)} run minus weak-low run}{100} \times 100 (\%) \text{ for weak fire}$	////Y	Deleted: the
2637	v Weak-low run v 100 (70) 101 weak life	////	Deleted: the
2838	intensity.	, //X	Deleted: the
2839		M / (Deleted: The
2039		M// (Deleted: m
2840		- /// X	Deleted: The w
2010		() (Deleted: the
)//	Deleted: the
)/	Deleted: the
		(Deleted: The w

Figure 1

2(

a Period 2 (19 GMT - 21 GMT on August 5th; initial stage)

b Period 3 (21 GMT - 23 GMT on August 5th; initial stage)

Page 47: [1] Deleted	Seoung Soo Lee	11/29/19 7:32:00 AM
Page 47: [2] Deleted		12/12/10 11.10.00 AM
Page 47: [2] Deleted	Seoung Soo Lee	12/13/19 11:19:00 AM
·		
Page 47: [3] Deleted	Seoung Soo Lee	12/2/19 1:40:00 PM
۲		
· · · · · · · · · · · · · · · · · · ·		
Page 50: [4] Deleted	Seoung Soo Lee	11/28/19 8:16:00 AM
Page 50: [4] Deleted	Seoung Soo Lee	11/28/19 8:16:00 AM
· · · · · · · · · · · · · · · · · · ·		
Page 50: [4] Deleted	Seoung Soo Lee	11/28/19 8:16:00 AM
τ		
Page 50: [5] Formatted	Seoung Soo Lee	11/28/19 8:12:00 AM
Font: (Asian) Batang, Not Expande		
Page 50: [5] Formatted	Seoung Soo Lee	11/28/19 8:12:00 AM
Font: (Asian) Batang, Not Expande	ed by / Condensed by	
Page 50: [5] Formatted	Seoung Soo Lee	11/28/19 8:12:00 AM
Font: (Asian) Batang, Not Expand	ed by / Condensed by	
Page 50: [5] Formatted	Seoung Soo Lee	11/28/19 8:12:00 AM
Font: (Asian) Batang, Not Expande	ed by / Condensed by	
Page 50: [5] Formatted	Seoung Soo Lee	11/28/19 8:12:00 AM
Font: (Asian) Batang, Not Expande	ed by / Condensed by	
Page 50: [5] Formatted	Seoung Soo Lee	11/28/19 8:12:00 AM
Font: (Asian) Batang, Not Expande	ed by / Condensed by	
Page 50: [5] Formatted	Seoung Soo Lee	11/28/19 8:12:00 AM
Font: (Asian) Batang, Not Expande	ed by / Condensed by	
Page 50: [5] Formatted	Seoung Soo Lee	11/28/19 8:12:00 AM
Font: (Asian) Batang, Not Expand	ed by / Condensed by	
Page 50: [5] Formatted	Seoung Soo Lee	11/28/19 8:12:00 AM
Font: (Asian) Batang, Not Expand	ed by / Condensed by	
Page 50: [5] Formatted	Seoung Soo Lee	11/28/19 8:12:00 AM
Font: (Asian) Batang, Not Expand	ed by / Condensed by	
Page 50: [5] Formatted	Seoung Soo Lee	11/28/19 8:12:00 AM
Font: (Asian) Batang, Not Expand	ed by / Condensed by	
Page 50: [5] Formatted	Seoung Soo Lee	11/28/19 8:12:00 AM

age 50: [5] Formatted	Seoung Soo Lee	11/28/19 8:12:00 AM
Font: (Asian) Batang, Not Expa	anded by / Condensed by	
Page 50: [5] Formatted	Seoung Soo Lee	11/28/19 8:12:00 AM
Font: (Asian) Batang, Not Expa	anded by / Condensed by	
Page 50: [5] Formatted	Seoung Soo Lee	11/28/19 8:12:00 AM
Font: (Asian) Batang, Not Expa	anded by / Condensed by	
Page 50: [6] Deleted	Seoung Soo Lee	11/26/19 9:25:00 AM
· · · · · · · · · · · · · · · · · · ·		
Page 50: [6] Deleted	Seoung Soo Lee	11/26/19 9:25:00 AM
Page 50: [6] Deleted	Seoung Soo Lee	11/26/19 9:25:00 AM
,		
Page 50: [6] Deleted	Seoung Soo Lee	11/26/19 9:25:00 AM
·		
		11/20/10 0-2E-00 AM
Page 50: [6] Deleted	Seoung Soo Lee	11/26/19 9:25:00 AM
Page 50: [6] Deleted	Seoung Soo Lee	11/26/19 9:25:00 AM
,		
Page 50: [7] Deleted	Seoung Soo Lee	12/3/19 8:30:00 AM
Page 50: [7] Deleted	Seoung Soo Lee	12/3/19 8:30:00 AM
Page 50: [8] Deleted	Seoung Soo Lee	11/28/19 8:18:00 AM
· · · · · · · · · · · · · · · · · · ·		
	Coc	11/20/10 2-10-00 411
Page 50: [8] Deleted	Seoung Soo Lee	11/28/19 8:18:00 AM
Page 50: [8] Deleted	Seoung Soo Lee	11/28/19 8:18:00 AM
Page 50: [8] Deleted	Seoung Soo Lee	11/28/19 8:18:00 AM
-3c per [o] Peloton		11, 20, 19 0110100 API

Page 50: [8] Deleted	Seoung Soo Lee	11/28/19 8:18:00 AM
Page 50: [8] Deleted	Seoung Soo Lee	11/28/19 8:18:00 AM
Page 50: [8] Deleted	Seoung Soo Lee	11/28/19 8:18:00 AM
rage 50: [6] Deleteu	Seoung Soo Lee	11/20/19 0.10:00 AM
Page 50: [9] Deleted	Seoung Soo Lee	11/28/19 2:09:00 PM
Page 50: [9] Deleted	Seoung Soo Lee	11/28/19 2:09:00 PM
		1
Page 50: [9] Deleted	Seoung Soo Lee	11/28/19 2:09:00 PM
Page 50: [9] Deleted	Seoung Soo Lee	11/28/19 2:09:00 PM
Page 50: [9] Deleted	Seoung Soo Lee	11/28/19 2:09:00 PM
Page 50: [9] Deleted	Seoung Soo Lee	11/28/19 2:09:00 PM
Page 50: [9] Deleted		11/28/19 2:09:00 PM
rage 50: [9] Deleted	Seoung Soo Lee	11/28/19 2:09:00 PM
Page 50: [9] Deleted	Seoung Soo Lee	11/28/19 2:09:00 PM
,		
Page 50: [10] Formatted	Seoung Soo Lee	11/26/19 9:28:00 AM
Subscript		
Page 50: [10] Formatted	Seoung Soo Lee	11/26/19 9:28:00 AM
Subscript		
Page 50: [10] Formatted	Seoung Soo Lee	11/26/19 9:28:00 AM
	Seoung Soo Lee	11/26/19 9:28:00 AM
Subscript		
Subscript Page 50: [10] Formatted	Seoung Soo Lee Seoung Soo Lee	11/26/19 9:28:00 AM 11/26/19 9:28:00 AM
Subscript Page 50: [10] Formatted Subscript	Seoung Soo Lee	11/26/19 9:28:00 AM
Page 50: [10] Formatted Subscript Page 50: [10] Formatted Subscript Page 50: [10] Formatted Subscript		

Page 50: [10] Formatted	Seoung Soo Lee	11/26/19 9:28:00 AM
Subscript		
Page 50: [10] Formatted	Seoung Soo Lee	11/26/19 9:28:00 AM
Subscript		
Page 50: [10] Formatted	Seoung Soo Lee	11/26/19 9:28:00 AM
Subscript		
Page 50: [10] Formatted	Seoung Soo Lee	11/26/19 9:28:00 AM
Subscript		
Page 51: [11] Deleted	Seoung Soo Lee	11/26/19 9:34:00 AM
A		
Page 51: [12] Deleted	Seoung Soo Lee	11/28/19 8:23:00 AM
۷		
Page 51: [13] Deleted	Seoung Soo Lee	11/28/19 2:13:00 PM
Y		
A		
Page 51: [14] Deleted	Seoung Soo Lee	11/28/19 2:15:00 PM
۲		
A Page 51: [15] Deleted	Seoung Soo Lee	12/13/19 12:28:00 PM
-		
A		
Page 51: [16] Deleted	Seoung Soo Lee	12/5/19 9:06:00 AM
V		
Page 53: [17] Deleted	Seoung Soo Lee	12/5/19 9:35:00 AM
		12/3/13 9.55.00 AH
۲		
Page 53: [18] Deleted	Seoung Soo Lee	12/13/19 12:58:00 PM
۲		
Dama 52: [10] Dalata d		11/20/40 10:25:00 44
Page 53: [19] Deleted	Seoung Soo Lee	11/29/19 10:35:00 AM
Χ		
Page 53: [20] Deleted	Seoung Soo Lee	11/29/19 10:36:00 AM
A		
Page 53: [21] Deleted	Seoung Soo Lee	11/29/19 10:44:00 AM
۲		
Page 53: [22] Deleted	Seoung Soo Lee	11/29/19 10:48:00 AM
		, ,, == ========
Ι		

age 53: [23] Deleted	Seoung Soo Lee	11/29/19 10:49:00 AM
age 54: [24] Deleted	Seoung Soo Lee	11/26/19 1:45:00 PM
age 54: [25] Deleted	Seoung Soo Lee	12/13/19 1:12:00 PM
		12,13,19 112100 111
age 54: [26] Deleted	Seoung Soo Lee	11/26/19 1:52:00 PM
age 55: [27] Deleted	Seoung Soo Lee	12/5/19 10:51:00 AM
age 55: [28] Deleted	Seoung Soo Lee	11/26/19 2:02:00 PM
age 56: [29] Deleted	Seoung Soo Lee	12/5/19 10:48:00 AM
age 56: [29] Deleted	Seoung Soo Lee	12/5/19 10:48:00 AM
	-	
age 56: [29] Deleted	Seoung Soo Lee	12/5/19 10:48:00 AM
	Scoung Sob Lee	12/3/13 10.40.00 AM
age 56: [29] Deleted	Seoung Soo Lee	12/5/19 10:48:00 AM
age 56: [29] Deleted	Seoung Soo Lee	12/5/19 10:48:00 AM
age 56: [29] Deleted	Seoung Soo Lee	12/5/19 10:48:00 AM
age 56: [29] Deleted	Seoung Soo Lee	12/5/19 10:48:00 AM
age 56: [29] Deleted	Seoung Soo Lee	12/5/19 10:48:00 AM
age 56: [29] Deleted	Seoung Soo Lee	12/5/19 10:48:00 AM
age 50. [29] Deleteu	Security 500 Lee	12/3/19 10:40:00 AM

age 56: [29] Deleted	Seoung Soo Lee	12/5/19 10:48:00 AM
age 56: [29] Deleted	Seoung Soo Lee	12/5/19 10:48:00 AM
	Seoung Soo Lee	12/5/19 10:40:00 AM
Page 56: [29] Deleted	Seoung Soo Lee	12/5/19 10:48:00 AM
Page 56: [29] Deleted	Seoung Soo Lee	12/5/19 10:48:00 AM
		12/3/19 10.40.00 AP
Page 56: [29] Deleted	Seoung Soo Lee	12/5/19 10:48:00 AM
Page 56: [29] Deleted	Seoung Soo Lee	12/5/19 10:48:00 AM
		, ,
Page 56: [29] Deleted	Seoung Soo Lee	12/5/19 10:48:00 AM
Page 56: [30] Deleted	Seoung Soo Lee	11/26/19 2:15:00 PM
Page 56: [30] Deleted	Seoung Soo Lee	11/26/19 2:15:00 PM
Page 56: [30] Deleted	Seoung Soo Lee	11/26/19 2:15:00 PM
Page 56: [30] Deleted	Seoung Soo Lee	11/20/10 2.15-00 PM
raye 30: [30] Deletea	Security Soo Lee	11/26/19 2:15:00 PM
Page 56: [30] Deleted	Seoung Soo Lee	11/26/19 2:15:00 PM
Page 56: [30] Deleted	Seoung Soo Lee	11/26/19 2:15:00 PM
ימשב שטי בשטן שבובובע	Security Soc Lee	11/20/13 2:13:00 PM
Page 56: [30] Deleted	Seoung Soo Lee	11/26/19 2:15:00 PM
Page 56: [30] Deleted	Seoung Soo Lee	11/26/19 2:15:00 PM
age Joi [Jo] Deleten	Scouly 300 Lee	11/20/19 2.13.00 PM

age 56: [30] Deleted	Seoung Soo Lee	11/26/19 2:15:00 PM
age 56: [30] Deleted	Seoung Soo Lee	11/26/19 2:15:00 PM
		11/20/19 2.19.00 114
age 56: [30] Deleted	Seoung Soo Lee	11/26/19 2:15:00 PM
age 56: [31] Deleted	Seoung Soo Lee	12/13/19 1:26:00 PM
age 56: [31] Deleted	Seoung Soo Lee	12/13/19 1:26:00 PM
age 56: [31] Deleted	Seoung Soo Lee	12/13/19 1:26:00 PM
age 56: [31] Deleted	Seoung Soo Lee	12/13/19 1:26:00 PM
age 56: [31] Deleted	Seoung Soo Lee	12/13/19 1:26:00 PM
	0	12/12/10 1-20-00 PM
age 56: [31] Deleted	Seoung Soo Lee	12/13/19 1:26:00 PM
age 56: [31] Deleted	Seoung Soo Lee	12/13/19 1:26:00 PM
age 56: [31] Deleted	Seoung Soo Lee	12/13/19 1:26:00 PM
········		,,
age 56: [31] Deleted	Seoung Soo Lee	12/13/19 1:26:00 PM
age 56: [31] Deleted	Seoung Soo Lee	12/13/19 1:26:00 PM
age 56: [31] Deleted	Seoung Soo Lee	12/13/19 1:26:00 PM

age 56: [31] Deleted	Seoung Soo Lee	12/13/19 1:26:00 PM
ige 56: [32] Deleted	Seoung Soo Lee	11/26/19 2:39:00 PM
age 56: [32] Deleted	Seoung Soo Lee	11/26/19 2:39:00 PM
age 56: [32] Deleted	Seoung Soo Lee	11/26/19 2:39:00 PM
		, , , , , , , , , , , , , , , , , , , ,
age 56: [32] Deleted	Seoung Soo Lee	11/26/19 2:39:00 PM
age 56: [32] Deleted	Seoung Soo Lee	11/26/19 2:39:00 PM
age 50. [52] Deleted	Security Soc Lee	11/20/19 2.39.00 PM
	0	11 /0C /10 0.000 DV
age 56: [32] Deleted	Seoung Soo Lee	11/26/19 2:39:00 PM
age 58: [33] Deleted	Seoung Soo Lee	12/15/19 8:18:00 AM
age 59: [34] Deleted	Seoung Soo Lee	11/28/19 2:45:00 PM
age 59: [34] Deleted	Seoung Soo Lee	11/28/19 2:45:00 PM
age 59: [34] Deleted	Seoung Soo Lee	11/28/19 2:45:00 PM
age 59: [35] Deleted	Seoung Soo Lee	1/1/20 11:41:00 AM
age 59: [35] Deleted	Seoung Soo Lee	1/1/20 11:41:00 AM
age 59: [35] Deleted	Seoung Soo Lee	1/1/20 11:41:00 AM
		1/1/20 11:41:00 AM

1/1/20 11:41:00 AM 1/1/20 11:41:00 AM 1/1/20 11:41:00 AM 12/15/19 8:23:00 AM 12/15/19 8:23:00 AM
1/1/20 11:41:00 AM 1/1/20 11:41:00 AM 12/15/19 8:23:00 AM
1/1/20 11:41:00 AM 12/15/19 8:23:00 AM
1/1/20 11:41:00 AM 12/15/19 8:23:00 AM
12/15/19 8:23:00 AM
12/15/19 8:23:00 AM
12/15/19 8:23:00 AM
12/15/19 8:23:00 AM
12/13/19 0.23:00 AM
12/15/10 0-22-00 414
12/15/19 8:23:00 AM
11/27/19 6:49:00 AM
11/27/19 6:49:00 AM
12/3/19 2:35:00 PM
12/3/19 2:35:00 PM
12/3/19 2:35:00 PM
11/27/19 6:50:00 AM
11/27/19 6:50:00 AM
11/27/19 6:50:00 AM

age 59: [39] Deleted	Seoung Soo Lee	11/27/19 6:50:00 AM
ge 59: [39] Deleted	Seoung Soo Lee	11/27/19 6:50:00 AM
ge 59: [39] Deleted	Seoung Soo Lee	11/27/19 6:50:00 AM
age 59: [39] Deleted	Seoung Soo Lee	11/27/19 6:50:00 AM
age 59: [39] Deleted	Seoung Soo Lee	11/27/19 6:50:00 AM
age 59. [59] Deleted	Seoung Sou Lee	11/2//19 0.50.00 AM
age 59: [39] Deleted	Seoung Soo Lee	11/27/19 6:50:00 AM
age 59: [39] Deleted	Seoung Soo Lee	11/27/19 6:50:00 AM
age 59: [39] Deleted	Seoung Soo Lee	11/27/19 6:50:00 AM
age 59: [39] Deleted	Seoung Soo Lee	11/27/19 6:50:00 AM
age 59: [39] Deleted	Seoung Soo Lee	11/27/19 6:50:00 AM
age 59: [39] Deleted	Seoung Soo Lee	11/27/19 6:50:00 AM
age 59: [40] Deleted	Seoung Soo Lee	1/1/20 11:47:00 AM
age 59: [40] Deleted	Seoung Soo Lee	1/1/20 11:47:00 AM
	• • • • • • • • • • • • • • • • • • • •	
age 59: [41] Deleted	Seoung Soo Lee	12/3/19 2:36:00 PM
20 37. [71] Polotou	Scouly Sou Lee	12, J, 19 2.30.00 PM
	Ca	
age 59: [41] Deleted	Seoung Soo Lee	12/3/19 2:36:00 PM

age 59: [42] Deleted	Seoung Soo Lee	11/27/19 8:07:00 AM
ge 59: [42] Deleted	Seoung Soo Lee	11/27/19 8:07:00 AM
<u> </u>		
age 59: [42] Deleted	Seoung Soo Lee	11/27/19 8:07:00 AM
age 59: [43] Deleted	Seoung Soo Lee	11/28/19 7:42:00 AM
age 59: [43] Deleted	Seoung Soo Lee	11/28/19 7:42:00 AM
age 59: [43] Deleted	Seoung Soo Lee	11/28/19 7:42:00 AM
age 59: [43] Deleted	Seoung Soo Lee	11/28/19 7:42:00 AM
age 59: [43] Deleted	Seoung Soo Lee	11/28/19 7:42:00 AM
age 59: [43] Deleted	Seoung Soo Lee	11/28/19 7:42:00 AM
age 59: [43] Deleted	Seoung Soo Lee	11/28/19 7:42:00 AM
age 59: [43] Deleted	Seoung Soo Lee	11/28/19 7:42:00 AM
	0	12/20/10 0.20.00 11
age 60: [44] Deleted	Seoung Soo Lee	12/30/19 8:28:00 AM
age 60: [44] Deleted	Seoung Soo Lee	12/30/19 8:28:00 AM
age 60: [44] Deleted	Seoung Soo Lee	12/30/19 8:28:00 AM
age 60: [45] Deleted		11/28/10 0.00.00 AM
iye ov: [45] Deleced	Seoung Soo Lee	11/28/19 9:00:00 AM

age 60: [45] Deleted	Seoung Soo Lee	11/28/19 9:00:00 AM
age 60: [45] Deleted	Seoung Soo Lee	11/28/19 9:00:00 AM
		•
<u>.</u>		
age 60: [45] Deleted	Seoung Soo Lee	11/28/19 9:00:00 AM
<u>.</u>		
age 60: [45] Deleted	Seoung Soo Lee	11/28/19 9:00:00 AM
age 60: [45] Deleted	Seoung Soo Lee	11/28/19 9:00:00 AM
		•
ano 60: [45] Delotad		11/20/10 0.00.00 414
age 60: [45] Deleted	Seoung Soo Lee	11/28/19 9:00:00 AM
		•
age 60: [45] Deleted	Seoung Soo Lee	11/28/19 9:00:00 AM
		11, 20, 19 SIGGIOU AN
age 60: [45] Deleted	Seoung Soo Lee	11/28/19 9:00:00 AM
age 60: [45] Deleted	Seoung Soo Lee	11/28/19 9:00:00 AM
<u></u>		
age 60: [45] Deleted	Seoung Soo Lee	11/28/19 9:00:00 AM
		٩
.		
age 60: [45] Deleted	Seoung Soo Lee	11/28/19 9:00:00 AM
		4
L		
age 60: [46] Deleted	Seoung Soo Lee	11/28/19 3:05:00 PM
age 60: [46] Deleted	Seoung Soo Lee	11/28/19 3:05:00 PM
age 60: [46] Deleted	Seoung Soo Lee	11/28/19 3:05:00 PM
age 60: [46] Deleted	Seoung Soo Lee	11/28/19 3:05:00 PM

age 60: [46] Deleted	Seoung Soo Lee	11/28/19 3:05:00 PM
je 60: [46] Deleted	Seoung Soo Lee	11/28/19 3:05:00 PM
age 60: [46] Deleted	Seoung Soo Lee	11/28/19 3:05:00 PM
Page 60: [46] Deleted	Seoung Soo Lee	11/28/19 3:05:00 PM
Page 60: [46] Deleted	Seoung Soo Lee	11/28/19 3:05:00 PM
Page 60: [46] Deleted	Secure Sec Lee	11/20/10 2.05.00 PM
age ov. [to] Deleteu	Seoung Soo Lee	11/28/19 3:05:00 PM
Page 60: [46] Deleted	Seoung Soo Lee	11/28/19 3:05:00 PM
Page 60: [47] Deleted	Seoung Soo Lee	12/3/19 2:45:00 PM
Page 60: [47] Deleted	Seoung Soo Lee	12/3/19 2:45:00 PM
Page 60: [48] Deleted	Seoung Soo Lee	11/28/19 9:54:00 AM
Page 60: [48] Deleted	Seoung Soo Lee	11/28/19 9:54:00 AM
Page 60: [48] Deleted	Seoung Soo Lee	11/28/19 9:54:00 AM
Page 60: [48] Deleted	Seoung Soo Lee	11/28/19 9:54:00 AM
	Second Soc Lee	11/20/19 9.94.00 AM
Page 60: [48] Deleted	Seoung Soo Lee	11/28/19 9:54:00 AM
Page 60: [48] Deleted	Seoung Soo Lee	11/28/19 9:54:00 AM

age 60: [48] Deleted	Seoung Soo Lee	11/28/19 9:54:00 AM
age 60: [48] Deleted	Seoung Soo Lee	11/28/19 9:54:00 AM
	Seoung Soo Lee	11/20/19 9:54:00 AM
age 60: [49] Deleted	Seoung Soo Lee	11/29/19 4:16:00 PM
age 60: [49] Deleted	Seoung Soo Lee	11/29/19 4:16:00 PM
	Scoung 500 Lee	11/23/13 4.10.001 P
age 60: [49] Deleted	Seoung Soo Lee	11/29/19 4:16:00 PM
age 60: [49] Deleted	Seoung Soo Lee	11/29/19 4:16:00 PM
age 60: [50] Deleted	Seoung Soo Lee	11/29/19 4:16:00 PM
age 60: [50] Deleted	Seoung Soo Lee	11/29/19 4:16:00 PM
age 60: [50] Deleted	Seoung Soo Lee	11/29/19 4:16:00 PM
age 60: [50] Deleted	Seoung Soo Lee	11/29/19 4:16:00 PM
age 60: [51] Deleted	Seoung Soo Lee	11/30/10 3.10.00 54
age on: [21] neieceg	Seoung Soo Lee	11/28/19 3:16:00 PM
age 60: [51] Deleted	Seoung Soo Lee	11/28/19 3:16:00 PM
age 60: [51] Deleted	Seoung Soo Lee	11/28/19 3:16:00 PM
and on [at] peleren	Scoung Soo Lee	11/20/19 3:10:00 PM
age 60: [51] Deleted	Seoung Soo Lee	11/28/19 3:16:00 PM
age 60: [52] Deleted	Seoung Soo Lee	11/29/19 4:27:00 PM
age ou. [Jz] Deleteu	Security Soc Lee	11/29/19 4:2/:00 PM

age 60: [52] Deleted	Seoung Soo Lee	11/29/19 4:27:00 PM
ge 60: [52] Deleted	Seoung Soo Lee	11/29/19 4:27:00 PM
	-	
	0	11/20/10 1-27-00 DM
age 60: [52] Deleted	Seoung Soo Lee	11/29/19 4:27:00 PM
age 61: [53] Deleted	Seoung Soo Lee	11/27/19 7:02:00 AM
age 61: [53] Deleted	Seoung Soo Lee	11/27/19 7:02:00 AM
age 61: [53] Deleted	Seoung Soo Lee	11/27/19 7:02:00 AM
age 61: [53] Deleted	Seoung Soo Lee	11/27/19 7:02:00 AM
age 61: [53] Deleted	Seoung Soo Lee	11/27/19 7:02:00 AM
age 61: [53] Deleted	Seoung Soo Lee	11/27/19 7:02:00 AM
age 61: [53] Deleted	Seoung Soo Lee	11/27/19 7:02:00 AM
	Security Soc Lee	11/2//197.02.00 AM
age 61: [53] Deleted	Seoung Soo Lee	11/27/19 7:02:00 AM
age 61: [53] Deleted	Seoung Soo Lee	11/27/19 7:02:00 AM
age 61: [53] Deleted	Seoung Soo Lee	11/27/19 7:02:00 AM
	-	
ngo 61, [E2] Delated	Conume Coo Loo	11/27/10 7.02.00 414
age 61: [53] Deleted	Seoung Soo Lee	11/27/19 7:02:00 AM
age 61: [53] Deleted	Seoung Soo Lee	11/27/19 7:02:00 AM

age 61: [53] Deleted	Seoung Soo Lee	11/27/19 7:02:00 AM
		11/2/15/102.00 AM
ge 61: [53] Deleted	Seoung Soo Lee	11/27/19 7:02:00 AM
age 61: [53] Deleted	Seoung Soo Lee	11/27/19 7:02:00 AM
age 61: [53] Deleted	Seoung Soo Lee	11/27/19 7:02:00 AM
age 61: [53] Deleted	Seoung Soo Lee	11/27/19 7:02:00 AM
age 61: [53] Deleted	Seoung Soo Lee	11/27/19 7:02:00 AM
	C	11/27/10 7-02-00 AM
Page 61: [53] Deleted	Seoung Soo Lee	11/27/19 7:02:00 AM
Page 61: [53] Deleted	Seoung Soo Lee	11/27/19 7:02:00 AM
Page 61: [53] Deleted	Seoung Soo Lee	11/27/19 7:02:00 AM
Page 61: [53] Deleted	Seoung Soo Lee	11/27/19 7:02:00 AM
Page 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
Page 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
Page 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
Page 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM

age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
ge 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
age 61: [54] Deleted	Conversion Con Lon	11/20/10 4/26-00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
	Sebung Sob Lee	11/29/19 4.30.00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM

age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
ge 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
age 61: [54] Deleted	Conversion Con Lon	11/20/10 4/26-00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
	Sebung Sob Lee	11/29/19 4.30.00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM

age 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
ge 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
ge 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
	Security Soc Lee	11/23/13 4.30.00 PM
Page 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
Page 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
Page 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
Page 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
Page 61: [54] Deleted	Seoung Soo Lee	11/29/19 4:36:00 PM
Page 62: [55] Deleted	Seoung Soo Lee	11/29/19 4:57:00 PM
Page 62: [56] Deleted	Seoung Soo Lee	12/4/19 7:42:00 AM
Page 62: [57] Deleted	Seoung Soo Lee	11/29/19 5:09:00 PM
Page 65: [58] Deleted	Seoung Soo Lee	12/4/19 9:40:00 AM
	j	
Page 65: [58] Deleted	Seoung Soo Lee	12/4/19 9:40:00 AM
Page 65: [58] Deleted	Seoung Soo Lee	12/4/19 9:40:00 AM
Page 65: [58] Deleted	Seoung Soo Lee	12/4/19 9:40:00 AM

age 65: [58] Deleted	Seoung Soo Lee	12/4/19 9:40:00 AM
age 65: [58] Deleted	Seoung Soo Lee	12/4/19 9:40:00 AM
	Scould Soo Lee	12/4/15 5.40.00 AM
age 65: [59] Deleted	Seoung Soo Lee	12/7/19 8:59:00 AM
age 65: [59] Deleted	Seoung Soo Lee	12/7/19 8:59:00 AM
age 65: [59] Deleted	Seoung Soo Lee	12/7/19 8:59:00 AM
age 65: [59] Deleted	Seoung Soo Lee	12/7/19 8:59:00 AM
		12/7/10 0.50.00 AM
Page 65: [59] Deleted	Seoung Soo Lee	12/7/19 8:59:00 AM
age 65: [59] Deleted	Seoung Soo Lee	12/7/19 8:59:00 AM
age 65: [59] Deleted	Seoung Soo Lee	12/7/19 8:59:00 AM
age 65: [59] Deleted	Seoung Soo Lee	12/7/19 8:59:00 AM
age 65: [59] Deleted	Seoung Soo Lee	12/7/19 8:59:00 AM
	0	11/27/10 0.20.00 111
Page 65: [60] Deleted	Seoung Soo Lee	11/27/19 8:38:00 AM
age 65: [60] Deleted	Seoung Soo Lee	11/27/19 8:38:00 AM
age 65: [60] Deleted	Seoung Soo Lee	11/27/19 8:38:00 AM
-3- ooi [oo] Beieten		
age 65: [60] Deleted	Seoung Soo Lee	11/27/19 8:38:00 AM

ge 65: [60] Deleted	Seoung Soo Lee	11/27/19 8:38:00 AM
ge 65: [60] Deleted	Seoung Soo Lee	11/27/19 8:38:00 AM
	Scouling Soo Lee	11/2//19 0.50.00 AP
ge 65: [60] Deleted	Seoung Soo Lee	11/27/19 8:38:00 AM
ge 65: [60] Deleted	Seoung Soo Lee	11/27/19 8:38:00 AM
ge 65: [60] Deleted	Seoung Soo Lee	11/27/19 8:38:00 AM
ge 65: [60] Deleted	Seoung Soo Lee	11/27/19 8:38:00 AM
ge 65: [60] Deleted	Seoung Soo Lee	11/27/19 8:38:00 AM
ge 65: [60] Deleted	Seoung Soo Lee	11/27/19 8:38:00 AM
ge 65: [60] Deleted	Seoung Soo Lee	11/27/19 8:38:00 AM
ge 65: [60] Deleted	Seoung Soo Lee	11/27/19 8:38:00 AM
	Scouling Soo Lee	11/2//19 0.50.00 AM
ge 65: [60] Deleted	Seoung Soo Lee	11/27/19 8:38:00 AM
ge 65: [60] Deleted	Seoung Soo Lee	11/27/19 8:38:00 AM
ge 65: [60] Deleted	Seoung Soo Lee	11/27/19 8:38:00 AM
	Security Soc Lee	11/2//19 0.30:00 AM
ge 65: [60] Deleted	Seoung Soo Lee	11/27/19 8:38:00 AM

Page 65: [60] Deleted	Seoung Soo Lee	11/27/19 8:38:00 AM
age 65: [60] Deleted	Seoung Soo Lee	11/27/19 8:38:00 AM
Page 65: [60] Deleted	Seoung Soo Lee	11/27/19 8:38:00 AM
Page 65: [61] Deleted	Seoung Soo Lee	11/27/19 2:47:00 PM
Page 65: [61] Deleted	Seoung Soo Lee	11/27/19 2:47:00 PM
· · · · · · · · · · · · · · · · · · ·	j	,,
Page 65: [61] Deleted	Seoung Soo Lee	11/27/19 2:47:00 PM
	Seoung Soo Lee	11/2//19 2.4/:00 PM
Page 65: [61] Deleted	Seoung Soo Lee	11/27/19 2:47:00 PM
Page 65: [61] Deleted	Seoung Soo Lee	11/27/19 2:47:00 PM
Page 65: [61] Deleted	Seoung Soo Lee	11/27/19 2:47:00 PM
Page 65: [61] Deleted	Seoung Soo Lee	11/27/19 2:47:00 PM
Page 65: [61] Deleted	Seoung Soo Lee	11/27/19 2:47:00 PM
,		
Page 65: [61] Deleted	Seoung Soo Lee	11/27/19 2:47:00 PM
Page 65: [61] Deleted	Seoung Soo Lee	11/27/19 2:47:00 PM
·		
Page 65: [61] Deleted	Seoung Soo Lee	11/27/19 2:47:00 PM
	-	
Page 76: [62] Deleted	Seoung Soo Lee	1/10/20 9:44:00 AM

l