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Abstract. We present a novel method to infer CO2 emissions from individual power plants based on satellite observations of 14 

co-emitted nitrogen dioxide (NO2) and demonstrate its utility on US power plants, where accurate stack emission estimates 15 

of both gases are available for comparison. In the first step of our methodology, we infer nitrogen oxides (NOx) emissions 16 

from isolated power plants using Ozone Monitoring Instrument (OMI) NO2 tropospheric vertical column densities (VCDs) 17 

averaged over the ozone season (May-September) and a “top-down” approach that we previously developed. Second, we 18 

determine the relationship between NOx and CO2 emissions based on the direct stack emissions measurements reported by 19 

continuous emissions monitoring system (CEMS) programs, accounting for coal type, boiler firing type, NOx emission 20 

control device type, and changes in operating conditions. Third, we estimate CO2 emissions of the ozone season for a plant 21 

using the OMI-estimated NOx emissions and the CEMS NOx/CO2 emission ratio. We find that the CO2 emissions estimated 22 

by our satellite-based method during 2005–2017 are in reasonable agreement with the CEMS measurements, with a relative 23 

difference of 8% ± 41% (mean ± standard deviation) for the selected US power plants in our analysis. Total uncertainty in 24 

the inferred CO2 estimates is partly associated with the uncertainty associated with the OMI NO2 VCD data, so we expect 25 

that it will decrease when our method is applied to OMI-like sensors with improved capabilities, such as TROPOspheric 26 

Monitoring Instrument (TROPOMI) and geostationary Tropospheric Emissions: Monitoring Pollution (TEMPO). The 27 

broader implication of our methodology is that it has the potential to provide an additional constraint on CO2 emissions from 28 

power plants in regions of the world without reliable emissions accounting. We explore the feasibility by applying our 29 

methodology to a power plant in South Africa, where the satellite-based emission estimates show reasonable consistency 30 

with other estimates. 31 

1 Introduction 32 

Thermal power plants, particularly coal-fired power plants, are among the largest anthropogenic CO2 emitters, contributing 33 

~40% of energy-related CO2 emissions globally in 2010 (Janssens-Maenhout et al., 2017). Coal-fired power plants are 34 

expected to be one of the primary contributors of CO2 emissions in the coming decades because of abundant world coal 35 

reserves (Shindell and Faluvegi, 2010). Therefore, it is important to accurately monitor global CO2 emissions from power 36 

production in order to better predict climate change (Shindell and Faluvegi, 2010) and to support the development of 37 

effective climate mitigation strategies. 38 

CO2 emissions from power plants are typically quantified based on bottom-up approaches using fuel consumption and fuel 39 

quality, though fuel properties are not always well known, resulting in uncertainties in the estimated CO2 emissions for 40 
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individual plants (Wheeler and Ummel, 2008). Even for US power plants that are considered to have the most accurate 1 

information on fuel usage among world nations, the difference between emissions estimated based on fuel usage and those 2 

reported as part of continuous emissions monitoring systems (CEMS) programs is typically about 20% (Ackermann and 3 

Sundquist, 2008). Thus, emission estimates based on independent data sources such as satellite observations are a desirable 4 

complement to validate and improve the current CO2 emissions inventories, especially in countries without CEMS data, 5 

which is the case in most of the world. 6 

Anthropogenic CO2 emissions have been estimated from space-based CO2 observations, but the existing satellite CO2 7 

sensors are designed to provide constraints on natural CO2 sources and sinks (Basu et al., 2013; Houweling et al, 2015), and 8 

thus their capability for monitoring anthropogenic point sources is limited (Nassar et al., 2017). Observations from sensors, 9 

including the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY; Burrows et al., 10 

1995), Greenhouse gases Observing SATellite (GOSAT; Yokota et al., 2009), and Orbiting Carbon Observatory-2 (OCO-2; 11 

Crisp et al., 2015), show statistically significant enhancements over metropolitan regions (Kort et al., 2012; Schneising et al., 12 

2013; Janardanan et al., 2016; Buchwitz et al., 2018; Reuter et al., 2019). However, very few studies have focused on 13 

individual point sources. Bovensmann et al. (2010) and Velazco et al. (2011) presented a promising satellite remote sensing 14 

concept to infer CO2 emissions for power plants based on the atmospheric CO2 column distribution. Nassar et al. (2017) and 15 

Reuter et al. (2019) presented the only quantification of CO2 emissions from individual power plants using OCO-2 16 

observations. However, due to the narrow swath of the OCO-2 sensor, their method cannot be currently applied to generate a 17 

global CO2 emissions database. 18 

In contrast to CO2, inferring NOx emissions from individual power plants using satellite NO2 column retrievals has been 19 

done with a higher degree of confidence (e.g., Duncan et al., 2013; de Foy et al., 2015). The Dutch-Finnish Ozone 20 

Monitoring Instrument (OMI) on NASA’s Earth Observing System Aura spacecraft (Schoeberl et al., 2006) provides daily, 21 

global NO2 tropospheric vertical column densities (VCDs) at a spatial resolution of 13×24 km2 (at nadir) (Levelt et al., 2006; 22 

2018; Krotkov et al., 2017), which allows emission signals from individual power plants to be resolved. Beirle et al. (2011) 23 

first analyzed isolated large sources (i.e., megacities and the US Four Corners power plant) by averaging OMI NO2 24 

tropospheric VCDs separately for different wind directions, which allows to determine NOx emissions and lifetimes by 25 

fitting an exponentially modified Gaussian function. Several follow-up studies (e.g., de Foy et al., 2015; Lu et al., 2015 and 26 

Goldberg et al., 2019) further developed this approach and inferred NOx emissions from isolated power plants and cities. 27 

More recently, we advanced this approach for sources located in polluted areas to infer NOx emissions for 17 power plants 28 

and 53 cities across China and the US (Liu et al., 2016; 2017). 29 

Since NOx is co-emitted with CO2, NOx emissions inferred from satellite data may be used to estimate CO2 emissions from 30 

thermal power plants. Previous analyses estimated regional CO2 emissions based on satellite-derived NOx emissions and the 31 

NOx to CO2 emission ratios from bottom-up emission inventories (Berezin et al., 2013; Konovalov et al., 2016) or co-located 32 

satellite retrievals of CO2 and NO2 (Reuter et al., 2014). Hakkarainen et al. (2016) confirmed the spatial correlation between 33 

CO2 spatial anomalies and OMI NO2 VCD enhancements at the regional scale using satellite observations at higher 34 

resolution. More recently, the co-located regional enhancements of CO2 observed by OCO-2 and NO2 observed by 35 

TROPOMI were analysed to monitor localized CO2 emissions (Reuter et al., 2019). 36 

In this study, we present a novel method to estimate CO2 emissions from individual power plants using OMI NO2 37 

observations and auxiliary CEMS information on NOx to CO2 emission ratios. We apply our approach to US power plants, 38 

which have an exceptionally detailed CEMS database, in order to validate our method. We discuss the uncertainties and 39 

limitations of our approach. Finally, we present the application of our method to power plants in South Africa. We discuss 40 

other potential applications in conclusion, including to other NO2 datasets from new and upcoming satellite instruments. 41 
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2 Method 1 

In this section, we present a novel method to infer CO2 emissions (𝐸 𝐶𝑂2

𝑆𝑎𝑡 ) from satellite-derived NOx emissions (𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 ) for 2 

individual coal-fired power plants using the following equation:  3 

𝐸𝐶𝑂2,𝑦
𝑆𝑎𝑡 =

𝐸𝑁𝑂𝑥,𝑦
𝑆𝑎𝑡

𝑟𝑎𝑡𝑖𝑜𝑖,𝑦
𝐶𝐸𝑀𝑆 ,                                           (1) 4 

where i represents coal type and y represents the target year. We demonstrate our method on US power plants since there are 5 

accurate CEMS stack measurements of NOx and CO2 emissions with which to validate 𝐸 𝐶𝑂2

𝑆𝑎𝑡 . In Section 2.1, we describe 6 

how to estimate 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  from OMI NO2 tropospheric VCD observations. In Section 2.2, we discuss how to estimate the ratio of 7 

NOx to CO2 emissions (𝑟𝑎𝑡𝑖𝑜𝑦
𝐶𝐸𝑀𝑆 = 𝐸𝑁𝑂𝑥,𝑦

𝐶𝐸𝑀𝑆/ 𝐸𝐶𝑂2,𝑦
𝐶𝐸𝑀𝑆) from CEMS stack measurements in the US Emissions & Generation 8 

Resource Integrated Database (eGRID; USEPA, 2018). Since post-combustion NOx control systems, including selective 9 

noncatalytic reduction (SNCR) and selective catalytic reduction (SCR), change the correlation between 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆 and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆, 10 

we present separate methods to determine 𝑟𝑎𝑡𝑖𝑜𝑦
𝐶𝐸𝑀𝑆  for power plants without and with post-combustion NOx control 11 

systems in Section 2.2.1 and Section 2.2.2, respectively. We discuss the validation of the estimated 𝐸 𝐶𝑂2

𝑆𝑎𝑡  in Section 3.   12 

2.1 Estimating satellite-derived NOx emissions (𝑬𝑵𝑶𝒙

𝑺𝒂𝒕 ) 13 

From all US coal-fired power plants, we selected 21 power plants for estimating 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 . We chose these plants based on 14 

𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆 (i.e., > 10 Gg/yr in 2005) and relative isolation from other large sources and relative isolation from other large 15 

sources to avoid contamination of a power plant’s NOx plumes by NOx from other sources. Power plants located in urban 16 

areas (i.e., within a radius of 100 km from city centers), or clustered in close proximity (i.e., 50 km) with other large 17 

industrial plants are excluded by visual inspection satellite imagery from Google Earth. The top 200 largest US cities (rank 18 

by 2018 population as estimated by the United States Census Bureau, available at 19 

https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population) are used to select power plants.As discussed 20 

below, we are able to estimate 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  for 8 of the 21 plants. The locations of the 8 plants are shown in Figure 5. 21 

We follow the method of Liu et al. (2016; 2017) to estimate 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  for 2005 to 2017. In our analysis, we use OMI NO2 22 

tropospheric VCDs from the NASA OMI standard product, version 3.1 (Krotkov et al., 2017) together with meteorological 23 

wind information from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2; Gelaro 24 

et al., 2017). We only analyze the ozone season (May-September), in order to exclude winter data, which have larger 25 

uncertainties and longer NOx lifetime. As in our previous study (Liu et al., 2017), we use the changes of VCDs under calm 26 

wind conditions (wind speed < 2 m/s below 500 m) and windy conditions (wind speed > 2 m/s) to fit the effective NOx 27 

lifetime. We then estimate the average NO2 total mass integrated around a power plant on the basis of the 3-year mean 28 

VCDs, in agreement with previous studies (Fioletov et al., 2011; Lu et al., 2015). The NO2 total mass is scaled by a factor of 29 

1.32 in order to derive total NOx mass following Beirle et al. (2011).  The NO/NO2 ratio might differ locally in plumes, but 30 

the influence is not expected to be dramatic on the scales of the OMI footprint (at least 13 km×24 km), considering the 31 

overpass time of OMI close to noon, the selection of cloud-free observations, and the focus on the ozone season and polluted 32 

regions with generally high tropospheric ozone. The uncertainty associated with the NO/NO2 ratio has been discussed in 33 

detail in Section 3 of the supplement in Liu et al. (2016). The 3-year average 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  is derived from the corresponding 3-year 34 

average NOx mass divided by the average NOx lifetime of the entire study period (Liu et al., 2017). Fitting results of 35 

insufficient quality (e.g., correlation coefficient of the fitted and observed NO2 distributions <0.9) are excluded from this 36 

analysis, consistent with the criteria in Section 2.2 of Liu et al. (2016). This final filtering leaves 18 power plants, of which 8 37 
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have valid results for all consecutive 3-year periods between 2005 and 2017. More details of the approach are documented in 1 

Liu et al. (2017).  2 

We use the Rockport power plant (37.9°N, 87.0°W) in Indiana to demonstrate our approach. This power plant is particularly 3 

well suited for estimating 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 , because it is a large and isolated NOx point source. Figure 1 displays 𝐸𝑁𝑂𝑥

𝑆𝑎𝑡  based on 3-year 4 

mean VCDs. For simplicity, the 3-year period is represented by the middle year with an asterisk (e.g., 2006* denotes the 5 

period from 2005 to 2007). For comparison to 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 , 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆 averaged over the period of May to September is derived from 6 

Air Markets Program Data (available at https://ampd.epa.gov/ampd/). For this particular plant, 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡   and 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆  show 7 

positive biases (of varying magnitude) during the entire period, except the last two years. The coefficient of determination 8 

for the entire period is R2=0.68. The relative differences for individual 3-year means (defined as (𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 − 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆)/𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆) 9 

range from -20% to 41%, because of the uncertainties of 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  as discussed in Section 3.2. Both datasets present a declining 10 

trend from 2012*. The total declines of 45% and 26% since 2012* in 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  and 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆 are attributed to the 25% decrease in 11 

net electricity generation for the plant. The average relative difference of 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  and 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆 for the 8 plants in this study is 0% 12 

± 33%, ranging from -58% to 72% for individual 3-year periods (Figure 5). 13 

2.2 Estimating NOx to CO2 emission ratios using CEMS data (𝒓𝒂𝒕𝒊𝒐𝑪𝑬𝑴𝑺) 14 

We determine the observed relationship between 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆  for coal-fired power plants using eGRID information 15 

about each plant’s net electric generation, boiler firing types (e.g., tangential or wall-fired boiler), NOx control device type, 16 

fossil fuel type (with categories of coal, oil, gas and other), and coal type (with categories of bituminous, lignite, 17 

subbituminous, refined and waste coal). We only use data of power plants with more than 99% of the fuel burned being coal 18 

as reported in eGRID. We analyze the relationship between 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 by coal type, as emission characteristics vary 19 

widely by coal type. 20 

eGRID includes two sets of emission data for NOx and CO2: 1) calculated from fuel consumption data and 2) observed by 21 

stack monitoring (i.e., 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆). Here we focus on eGRID CEMS data as 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆 are reported to be highly accurate 22 

with an error of less than 5% (e.g., Glenn et al., 2003). 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆 may have larger uncertainties than fuel-based emissions 23 

estimates due to uncertainties in the calculation of flue gas flow (Majanne et al., 2015). Nevertheless, we use 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆to relate 24 

NOx emissions to CO2 emissions, since the primary uncertainty of 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 arises from the calculation of the flue 25 

gas flow, which will cancel in 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆.  26 

2.2.1 Coal-fired power plants without post-combustion NOx control systems 27 

We first limited our analysis to 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 from coal-fired power plants without post-combustion NOx control systems 28 

in operation in a given year (Table 1). We find that 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 have a strong linear relationship (Figure 2). In Figure 29 

2a, we compare 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆 and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 from power plants (using bituminous coal) by boiler firing type in 2005. We use 30 

bituminous coal-fired plants for illustration, as bituminous coal is the most widely used coal in US power plants. We analyze 31 

power plants that use cyclone or cell burner boilers separately and exclude them in Figure 2 because they typically produce 32 

higher NOx emissions than other boiler types (USEPA, 2009; available at 33 

https://www3.epa.gov/ttn/chief/ap42/ch01/index.html). A strong linear relationship between 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 is evident with 34 

excellent correlation (R2= 0.93, N = 278), regardless of boiler firing types. Similar linear relationships exist for other years 35 

(e.g., year 2016 in Figure 2b) and other types of coal (Table 1). The slope of the regression of 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆 and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 , 36 

𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 
𝐶𝐸𝑀𝑆 , is assumed by setting the intercept to zero. Table 1 shows 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑,𝑖,𝑦 

𝐶𝐸𝑀𝑆 by coal type and year. 37 
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𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑,𝑖,𝑦 
𝐶𝐸𝑀𝑆 will be applied to approximate 𝑟𝑎𝑡𝑖𝑜𝑖,𝑦 

𝐶𝐸𝑀𝑆 when estimating 𝐸 𝐶𝑂2

𝑆𝑎𝑡  from 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  for the 8 plants in Section 2.1 1 

for years before post-combustion control systems were in operation. 2 

𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 
𝐶𝐸𝑀𝑆  for power plants using bituminous coal decreased from 2005 (Figure 2a) to 2016 (Figure 2b) by 31% on 3 

average because of reductions in NOx emission factors associated with improvements in boiler operations, such as by 4 

optimizing furnace design and operating conditions. The NOx emissions factors, defined as NOx emission rates per net 5 

electricity generation (Gg/TW·h) declined by 33% from 2005 to 2016 (Figure 2c). We interpolate 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 
𝐶𝐸𝑀𝑆 to get year-6 

specific ratios by coal type for the entire study period, as eGRID data are only available for some years (i.e., 2005, 2007, 7 

2009, 2010, 2012, 2014 and 2016). 8 

In addition, 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 
𝐶𝐸𝑀𝑆 shows significant variation by coal type and year (Figure 3). 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 

𝐶𝐸𝑀𝑆 is 1.7, 1.3 and 0.91 Gg 9 

NOx/Tg CO2 for bituminous, subbituminous and lignite coal in 2005, respectively. A reduction over time in 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 
𝐶𝐸𝑀𝑆  is 10 

observed for all coal types (Figure 3). 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 
𝐶𝐸𝑀𝑆  displays a large decrease of 31%, 36% and 20% from 2005 to 2016 for 11 

bituminous, subbituminous, and lignite coal, respectively.  12 

2.2.2 Coal-fired power plants with post-combustion NOx control systems 13 

Here, we describe how we create continuous and consistent records of 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆 for the entire study period for plants that 14 

had post-combustion NOx control systems installed at some time during our study period, 2005–2017. The estimation is 15 

based on 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  derived in Section 2.2.1 for plants without post-combustion control systems in operation. We 16 

introduce a NOx removal efficiency parameter, f, to adjust 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  for years after the installation of post-combustion 17 

control systems, 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑:  18 

𝑟𝑎𝑡𝑖𝑜𝑖,𝑦
𝐶𝐸𝑀𝑆−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑,𝑖,𝑦

𝐶𝐸𝑀𝑆 × (1 − 𝑓𝑦) ,                                        (2) 19 

f is commonly measured for individual power plants to describe the performance of their post-combustion NOx control 20 

systems. It is directly reported by some power plant databases, such as the China coal-fired Power plant Emissions Database 21 

(CPED; Liu et al., 2015). For databases that do not report f, like eGRID used in this study, one can estimate it for an 22 

individual power plant by first estimating the unabated emissions per electricity generation, eunabated, which is the emission 23 

factor before the flue gas enters the post-combustion control system:  24 

𝑓𝑦 =
𝑒𝑢𝑛𝑎𝑏𝑎𝑡𝑒𝑑,𝑦−𝑒𝐶𝐸𝑀𝑆,𝑦

𝑒𝑢𝑛𝑎𝑏𝑎𝑡𝑒𝑑,𝑦
 ,                                           (3) 25 

where eCEMS denotes the actual emission factor in terms of CEMS NOx emissions per net electricity generation (Gg/TW·h). 26 

eunabated for a given year, eunabated,y, is estimated based on the emission per electricity generation for years prior to, p, the 27 

installation of the post-combustion control system, eunabated,p: 28 

𝑒𝑢𝑛𝑎𝑏𝑎𝑡𝑒𝑑,𝑦 = 𝑘𝑦 × 𝑒𝑢𝑛𝑎𝑏𝑎𝑡𝑒𝑑,𝑝 ,                                          (4) 29 

where the scaling factor, ky, is used to account for the change over time in eunabated associated with improvements in boiler 30 

operations discussed in Section 2.2.1. ky is calculated as the ratio of the averaged eunabated (i.e., the slope of the regression of 31 

NOx emissions on electricity generation) in year, t, to that in year, p.  32 

To assess the reliability of 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑, we select all power plants which had post-combustion devices installed 33 

between 2005 and 2016. Figure 4 shows a scatterplot of 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆 (i.e., the ratio of 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆to 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 for individual plant) and 34 

𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 for these power plants. We use the NOx emissions factor in 2005, eunabated,2005, to predict the unabated 35 

emission factor in 2016, eunabated,2016, following Equations (3) and (4) in order to quantify the removal efficiencies for 2016, 36 

f2016. 𝑟𝑎𝑡𝑖𝑜2016
𝐶𝐸𝑀𝑆−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  is based on the estimated f2016 and 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑,2016

𝐶𝐸𝑀𝑆  from Section 2.2.1. 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆 and 37 
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𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  show good correlation (R2 = 0.64), which increases our confidence that the estimated removal 1 

efficiencies approximate the actual efficiencies well. The slight underestimation suggested by the slope of 0.85 arises from 2 

the uncertainties in estimating unabated NOx emission factors using Equation (4) and thus removal efficiencies, which is a 3 

major source of error (see details in Section 3.2) contributing to the overall uncertainties of 𝐸𝐶𝑂2
𝑆𝑎𝑡. 4 

3 Results and Discussion 5 

In Section 3.1, we present 𝐸𝐶𝑂2
𝑆𝑎𝑡 for our selected power plants and, in Section 3.2, discuss the uncertainties associated with 6 

𝐸𝐶𝑂2
𝑆𝑎𝑡. We apply the approach to power plants in South Africa in Section 3.3. 7 

3.1 Satellite-derived CO2 emissions (𝑬𝑪𝑶𝟐

𝑺𝒂𝒕 ) 8 

Figure 6a is a scatterplot of 𝐸𝐶𝑂2
𝑆𝑎𝑡 and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 for the 8 power plants (Figure 5), 7 of which did not have post-combustion NOx 9 

control systems installed during the study period, 2005–2017. The comparison shows a good correlation, R2, of 0.66. 𝐸𝐶𝑂2
𝑆𝑎𝑡 10 

and 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆for individual power plants are tabulated in Table 2 and their relative difference with CEMS measurements are 11 

listed in Table 3. The average 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆for all power plants is 2.0 Gg/h and the average 𝐸𝐶𝑂2

𝑆𝑎𝑡 is 1.8 Gg/h. The relative difference 12 

for individual 3-year means (defined as (𝐸𝐶𝑂2
𝑆𝑎𝑡 − 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆)/𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆) is 8% ± 41% (mean ± standard deviation). For example, 13 

Figure 1 shows 𝐸𝐶𝑂2
𝑆𝑎𝑡 for the Rockport power plant, which typically has a positive bias as compared to 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 because of a 14 

positive bias in 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 . 15 

The time series between 𝐸𝐶𝑂2
𝑆𝑎𝑡 and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆are generally consistent, with their annual averages for the 8 power plants exhibiting 16 

a declining trend of 5%/yr and 3%/yr from 2006* to 2016* for 𝐸𝐶𝑂2
𝑆𝑎𝑡 and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆, respectively. The reduction in net electricity 17 

generation is the driving force underlying the emission changes, which has decreased by 37% for the 8 power plants from 18 

2005 to 2016, as power producers shut down coal-fired units in favor of cheaper and more flexible natural gas as well as 19 

solar and wind (USEIA, 2018). It is interesting to note that the temporal variations in 𝐸𝐶𝑂2
𝑆𝑎𝑡 are not as “smooth” as those in 20 

𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆 , which results from fluctuations in 𝐸𝑁𝑂𝑥

𝑆𝑎𝑡 . Such fluctuations are caused by uncertainties associated with 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 as 21 

discussed in Section 3.2. For example, changes in VCDs do not necessarily relate linearly with NOx emissions (e.g., Figure 2 22 

in Duncan et al., 2013) due to temporal variations in meteorology, and nonlinear NOx chemistry (Valin et al, 2013) and 23 

transport. Averaging VCDs for a long-term period (3 years in this study) helps reduce those influences, but small 24 

fluctuations may still exist.  25 

3.2 Uncertainties 26 

We estimate the uncertainty of 𝐸𝐶𝑂2
𝑆𝑎𝑡 based on the fit performance of 𝐸𝑁𝑂𝑥

𝑆𝑎𝑡   and comparison with 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆. The major sources of 27 

uncertainty include (a) the fitted NOx lifetimes and 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  (Liu et al., 2016); (b) 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑

𝐶𝐸𝑀𝑆 ; and (c) f. We assume that their 28 

contributions to the total uncertainty are independent and define the total uncertainty as their root mean square.  29 

(a) The uncertainty of the fitted NOx lifetimes and 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  are quantified following the method described in Liu et al. (2017), 30 

accounting for errors arising from both the fit procedure and OMI NO2 VCD observations (Liu et al., 2016). Particularly, the 31 

tropospheric air mass factors (AMF) used in NO2 retrievals are based on relatively coarsely resolved surface albedo data and 32 

a priori NO2 vertical profile shapes, likely causing low-biased VCDs over strong emission sources (e.g., Russell et al., 2011; 33 

McLinden et al., 2014; Griffin et al., 2019). The average AMF uncertainty of ~30% (see Table 2 in Boersma et al., 2007) 34 

likely contributes to the underestimation of emissions from some power plants in this study. Both random and systematic 35 

(bias) uncertainties in VCDs directly propagates into the uncertainty of 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  (see details in the supplement of Liu et al. 36 
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(2016) and Section 3.4 of Liu et al. (2017)). The overall uncertainties of 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  range from 60% to 95% for all power plants in 1 

our analysis, which is comparable with the level of differences between 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  and 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆. 2 

(b) For power plants without post-combustion devices, 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆 derived from the regression (Figure 2a & b) and the 3 

plant-specific CEMS measurements are found to be within 15%, which is assumed as the uncertainty of the ratio to be 4 

applied to all power plants.  5 

(c) For power plants with post-combustion devices, an additional uncertainty of 20% is applied to reflect the difference 6 

between the predicted and the true removal efficiency as suggested by Figure 4.  7 

The overall uncertainties of 𝐸𝐶𝑂2
𝑆𝑎𝑡 range from 62%–96% for the power plants in our analysis. However, it is worth noting that 8 

this uncertainty estimate is rather conservative. For power plants, relative differences between 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆 and 𝐸𝐶𝑂2

𝑆𝑎𝑡are 8% ± 41% 9 

(mean ± standard deviation) (Figure 6a). 10 

3.3 Application 11 

We apply the approach proposed in this study to estimate CO2 emissions from a power plant in South Africa, aiming to 12 

assess the capability of the approach to provide constraint on CO2 emissions for regions outside the US. We chose South 13 

Africa, a country without reliable emissions accounting, as the area of interest, because we found available information on 14 

coal type and NOx control status for its power plants. The power plant of Matimba (including the nearby Medupi which has 15 

operated since 2015) in South Africa are particularly suitable for application of our method, because it is a strong isolated 16 

NOx point source (Figure 7). We estimate 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  for Matimba from 2005 to 2017 based on OMI NO2 observations following 17 

the approach in Section 2.1. Matimba use subbituminous coal with the calorific value of ~ 20 MJ/kg (Makgato and Chirwa, 18 

2017). We assume the NOx to CO2 emission ratio of Matimba is on the upper end of the US values, considering that it is not 19 

equipped with any NOx control devices, even low-NOx burners which are widely installed in US power plants (Pretorius et 20 

al., 2015). We thus use the ratio ranging from 2005 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  to 2005 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑

𝐶𝐸𝑀𝑆  + standard deviation for 21 

subbituminous coal listed in Table 1 to infer 𝐸𝐶𝑂2
𝑆𝑎𝑡 based on 𝐸𝑁𝑂𝑥

𝑆𝑎𝑡 . The derived 𝐸𝐶𝑂2
𝑆𝑎𝑡 is shown in Figure 8 and fluctuates over 22 

time. Note that the range of 𝐸𝐶𝑂2
𝑆𝑎𝑡  in Figure 8 represents the emissions based on a range of NOx-to-CO2 ratios, not the 23 

uncertainty. The overall uncertainty of 𝐸𝐶𝑂2
𝑆𝑎𝑡 is ~70% for the Matimba power plant. The growth after 2008* is most likely 24 

caused by the increased unit operating hours driven by the desire to meet fully the demand for electricity in South Africa 25 

after a period of rolling blackouts (2007–2008) (Duncan et al., 2016). The decline afterwards may be associated with the 26 

tripping of generating units at the Matimba due to overload and the shortage of coal supply. The newly-built power plant of 27 

Medupi contributes to the increase from 2015*. 28 

Figure 8 compares 𝐸𝐶𝑂2
𝑆𝑎𝑡 derived in this study with other publicly available estimates and shows reasonable agreement. 𝐸𝐶𝑂2

𝑆𝑎𝑡 29 

falls between the estimates based on OCO-2 CO2 observations (Nassar et al., 2017) and two bottom-up estimates including 30 

Wheeler and Ummel (2008) and Tong et al. (2018). We make a further comparison of NOx emissions esttimates to Tong et 31 

al. (2018), the only database that reports both CO2 and NOx emissions, in order to shed light on the reason for the difference. 32 

The differences between 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  and bottom-up estimates contribute significantly to the differences of CO2 estimates. 𝐸𝑁𝑂𝑥

𝑆𝑎𝑡  for 33 

Matimba is 3.8 Mg/h for 2010*, which is 65% smaller than the estimate by Tong et al. (2018) for 2010. It is not surprising to 34 

see such differences considering the uncertainties of satellite-derived NOx emissions and bottom-up estimates without 35 

reliable CEMS measurements. On one hand, 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  is potentially underestimated, due to the bias in the OMI NO2 standard 36 

product (version 3.1) associated with a low-resolution static climatology of surface Lambert-Equivalent Reflectivity 37 

(OMLER) (Kleipool et al., 2008). We perform a sensitivity analysis by using the preliminary new version OMI NO2 product, 38 

which uses new geometry dependent MODIS-based surface reflectivity. The inferred 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  based on the new product 39 

increases by over 10%. On the other hand, the bottom-up estimates for Matimba are subject to significant uncertainties. For 40 
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example, national total fuel consumption of the power sector for South Africa as reported by the International Energy 1 

Agency is used to estimate fuel consumption at the plant level as detailed fuel consumption for each plant is not currently 2 

available. Additionally, due to the absence of country-specific measurement data, default NOx emission factors obtained 3 

from literature are applied (Tong et al., 2018). 4 

4 Conclusions 5 

We present a method to estimate CO2 emissions of ozone season from individual power plants from satellite observations of 6 

co-emitted NO2 and demonstrate its utility for US power plants, which have accurate CEMS with which to evaluate our 7 

method. While the uncertainty associated with our method is relatively high when applied to OMI data, we expect that the 8 

uncertainty will be less for the recently launched European Union Copernicus Sentinel 5 precursor (TROPOMI, launch 9 

October 2017), and the upcoming NASA geostationary Earth Venture one (TEMPO, launch expected in the early 2020s), 10 

both of which have superior capabilities. For example, higher spatiotemporal resolutions will likely improve the estimation 11 

of NOx emissions as well as allow for the separation of more power plant plumes from nearby sources, thus increasing the 12 

number of power plants available for analysis. Therefore, future work will be to apply our method to these new datasets, 13 

especially after several years of vetted TROPOMI data become available.  14 

We explore the feasibility of estimating CO2 emissions from power plants in regions of the world without reliable emissions 15 

accounting by applying our method to a South African plant. The emissions estimates for the power plant of Matimba show 16 

reasonable agreement with existing estimates. The ratios derived in this study have the potential to be applied to power 17 

plants located in other regions by carefully investigating their coal type and NOx control devices, in order to provide an 18 

additional constraint on CO2 emissions. Future work will include applying our method to other regions of the world with 19 

reliable CEMS information, such as Europe, Canada and, more recently, China, to develop a more reliable and complete 20 

database with region-specific ratios. This method will also serve as an independent approach to check CO2 emissions based 21 

on satellite retrievals of CO2 average mixing ratio from future CO2 sensors with improved accuracy and extended the spatial 22 

coverage (Bovensmann et al., 2010). 23 
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 1 

Figure 1 𝐄𝐍𝐎𝐱

𝐒𝐚𝐭  (Mg/h; orange solid lines – right axis) and 𝐄𝐂𝐎𝟐

𝐒𝐚𝐭  (Gg/h; blue solid line – left axis) for the Rockport power plant 2 

(Indiana) during 2005 to 2017. 𝐄𝐍𝐎𝐱

𝐂𝐄𝐌𝐒 and 𝐄𝐂𝐎𝟐

𝐂𝐄𝐌𝐒 (dashed lines) are also shown. The 3-year periods are represented by the middle 3 

year with an asterisk (e.g., 2006* denotes the period from 2005 to 2007). 4 

 5 

 6 

Figure 2 Scatter plots of 𝑬𝑵𝑶𝒙

𝑪𝑬𝑴𝑺 versus 𝑬𝑪𝑶𝟐

𝑪𝑬𝑴𝑺for bituminous coal-fired electric generating units for (a) 2005 and (b) 2016. Values 7 

are color coded by firing type. (c) Scatter plot of 𝑬𝑵𝑶𝒙

𝑪𝑬𝑴𝑺 versus electricity generation of the same units for years 2005 (triangle) and 8 

2016 (square). Only plants without post-combustion NOx control devices within a given year are used. The electricity generation 9 
data are also from eGRID. The lines in all three panels represent the computed linear regressions. 10 
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 1 

Figure 3 Interannual trends of 𝒓𝒂𝒕𝒊𝒐𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒆𝒅 
𝑪𝑬𝑴𝑺 for power plants using bituminous, subbituminous and lignite coal types and without 2 

post-combustion NOx control devices in a given year. Error bars show the standard deviations for ratios of 𝑬𝑵𝑶𝒙

𝑪𝑬𝑴𝑺 to 𝑬𝑪𝑶𝟐

𝑪𝑬𝑴𝑺for 3 

individual power plants. 4 

 5 

Figure 4 Scatterplot of the ratio of 𝒓𝒂𝒕𝒊𝒐𝑪𝑬𝑴𝑺−𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅  as compared to 𝒓𝒂𝒕𝒊𝒐𝑪𝑬𝑴𝑺 for 2016. All coal-fired power plants that 6 
operated post-combustion techniques after 2005 and before 2016 are used in the plot. The sizes of the circles denote the magnitude 7 
of the NOx reduction efficiency of post-combustion control devices estimated in this study. The line represents the linear regression 8 

of 𝒓𝒂𝒕𝒊𝒐𝑪𝑬𝑴𝑺 to 𝒓𝒂𝒕𝒊𝒐𝑪𝑬𝑴𝑺−𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅. 9 
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Figure 5 Locations of the investigated power plants in this study. The bar charts denote the relative differences, defined as (E
Sat

− 

E
CEMS

)/E
CEMS

, averaged over 2005–2017, for NOx (blue) and CO2 (red) emissions. The upward and downward bars represent 

positive and negative differences, respectively. The Monticello power plant installed SNCR to control NOx emissions in 2008. 

Other power plants are not equipped with post-combustion NOx control devices. 

 

 

 

Figure 6 (a) Scatterplot of 𝑬𝑪𝑶𝟐

𝑺𝒂𝒕  for 8 power plants as compared to 𝑬𝑪𝑶𝟐

𝑪𝑬𝑴𝑺 from 2006* to 2016*. The straight solid and dash lines 

represent the ratio of 1:1 and 1:1.5, respectively. (b) Interannual trends of the averaged 𝑬𝑪𝑶𝟐

𝑺𝒂𝒕  (blue lines) and 𝑬𝑪𝑶𝟐

𝑪𝑬𝑴𝑺 (pink lines) is 

for all power plants analyzed in this study from 2006*–2016*, normalized to the 2006* value. The whiskers denote the maximum 

and minimum values. 
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Figure 7 Mean OMI NO2 TVCDs around the Matimba power plant (Lephalale, South Africa) for (a) calm, (b) southwesterly wind 

conditions and (c) their difference (southwesterly − calm) for the period of 2005 – 2017. The location of Matimba is labelled by a 

black dot.  

 

 

 

Figure 8 Comparison of 𝐄𝐂𝐎𝟐

𝐒𝐚𝐭  (Gg/h) derived in this study with existing estimates for the Matimba power plant during 2005 to 2017. 

𝐄𝐂𝐎𝟐

𝐒𝐚𝐭 is inferred based on the NOx to CO2 emissions ratio ranging from 𝒓𝒂𝒕𝒊𝒐𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒆𝒅
𝑪𝑬𝑴𝑺  to 𝒓𝒂𝒕𝒊𝒐𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒆𝒅

𝑪𝑬𝑴𝑺  + standard deviation of 

ratio. 
aEmissions are estimated for 2009 by Wheeler and Ummel (2008); for 2010 by Tong et al. (2018); and for 2014 and 2016 by Nassar at al. (2017). 
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Table 1 The slope (𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆 ), coefficient of determination, standard deviation and sample number of the linear 

regression of 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆 and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 by year for all US power plants without post-combustion NOx control devices from 2005 to 

2016.  

Coal type Year 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  R2 

Standard 

deviation 

Sample 

numbera 

Bituminous 

2005 1.74 0.93 0.63 278 

2007 1.75 0.91 0.68 286 

2009 1.49 0.88 0.64 241 

2010 1.48 0.86 0.60 235 

2012 1.33 0.87 0.56 190 

2014 1.28 0.87 0.41 136 

2016 1.20 0.87 0.45 66 

Subbituminous 

2005 1.31 0.65 0.73 226 

2007 1.18 0.61 0.61 221 

2009 1.02 0.66 0.56 230 

2010 1.00 0.67 0.59 216 

2012 0.93 0.74 0.51 200 

2014 0.89 0.74 0.39 165 

2016 0.84 0.70 0.39 111 

Lignite 

2005 0.91 0.74 0.33 20 

2007 0.86 0.82 0.35 22 

2009 0.88 0.91 0.32 16 

2010 0.83 0.94 0.37 18 

2012 0.76 0.91 0.40 15 

2014 0.82 0.92 0.37 12 

2016 0.73 0.78 0.09 9 

aThe sample number generally decreases from 2005 to 2016 as power plants installed post-combustion NOx control devices 

over time. 
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Table 2 Summary of effective NOx lifetimes, satellite-derived NOx emissions (𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 ), CO2 emissions (𝐸𝐶𝑂2

𝑆𝑎𝑡) and bottom-up 

NOx emissions (𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆), CO2 emissions (𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆) for 8 US power plants during May to September from 2005 to 2017. The 3-

year periods are represented by the middle year with an asterisk. 

  

Category Year Four Corners 

& San Juan 

Independence Intermountain Martin Lake Monticello Navajo Rockport White Bluff 

NOx lifetime 2005-2017 2.7 2.5 2.2 2.3 3.2 2.3 2.4 4.3 

 

2006* 10.5 2.0 4.0 2.4 1.1 4.6 2.9 1.0 

 

2007* 10.0 1.7 4.1 2.3 1.1 4.4 3.0 0.9 

 

2008* 9.4 1.6 3.7 2.0 0.8 4.5 2.6 0.9 

 

2009* 7.2 1.2 3.9 2.1 0.7 3.9 2.7 0.7 

𝐸𝑁𝑂𝑥

𝑆𝑎𝑡  2010* 6.8 1.0 4.4 2.1 0.6 3.6 2.5 0.9 

(Mg/h) 2011* 6.5 0.9 3.6 1.8 0.7 2.5 2.5 0.8 

 

2012* 6.3 0.9 3.4 1.6 0.6 2.3 2.7 0.8 

 

2013* 5.6 0.8 3.5 1.8 0.5 1.9 2.5 0.6 

 

2014* 4.4 0.7 3.5 1.7 0.8 2.2 2.3 0.5 

 

2015* 3.8 0.8 3.0 1.4 0.7 2.1 1.4 0.4 

  2016* 3.5 1.2 1.7 1.2 0.6 2.5 1.5 0.7 

 

2006* 7.4 1.8 3.0 1.8 1.5 3.8 2.0 1.7 

 

2007* 7.3 1.8 3.1 1.8 1.4 3.9 2.1 1.6 

 

2008* 6.8 1.8 2.9 1.8 1.3 3.8 2.0 1.6 

 

2009* 6.5 1.6 2.9 1.8 1.2 3.4 2.1 1.8 

𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆 2010* 6.2 1.6 2.8 1.7 1.1 2.8 2.1 1.8 

(Mg/h) 2011* 6.2 1.4 2.5 1.5 1.0 2.2 2.2 1.9 

 

2012* 6.1 1.3 2.4 1.4 0.9 1.9 2.1 1.9 

 

2013* 5.6 1.3 2.4 1.3 0.9 1.9 2.0 2.0 

 

2014* 5.2 1.2 2.5 1.3 0.8 1.9 1.9 1.9 

 

2015* 4.3 1.2 2.0 1.3 0.8 1.7 1.8 1.5 

  2016* 3.9 1.1 1.5 1.2 0.8 1.6 1.6 1.2 

(𝐸𝑁𝑂𝑥

𝑆𝑎𝑡 -

𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆)/ 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆 2005-2017 10% -22% 38% 20% -29% 21% 20% -56% 

 

2006* 6.1 1.6 2.3 2.7 1.2 2.6 2.3 0.8 

 

2007* 5.9 1.5 2.4 2.6 1.3 2.6 2.5 0.8 

 

2008* 5.6 1.4 2.3 2.3 1.1 2.8 2.4 0.8 

 

2009* 4.1 1.1 2.6 2.4 1.0 2.5 2.6 0.6 

𝐸𝐶𝑂2

𝑆𝑎𝑡 2010* 3.7 1.0 3.0 2.5 0.9 2.5 2.5 0.9 

(Gg/h) 2011* 3.4 1.0 2.6 2.2 1.0 1.7 2.5 0.8 

 

2012* 3.3 1.0 2.5 2.1 1.0 1.7 2.9 0.9 

 

2013* 3.1 0.9 2.6 2.3 0.8 1.5 2.7 0.6 

 

2014* 2.5 0.8 2.8 2.2 1.2 1.8 2.6 0.6 

 

2015* 2.3 0.9 2.4 1.8 1.1 1.7 1.7 0.5 

  2016* 2.2 1.4 1.4 1.6 1.0 2.0 1.7 0.8 

 

2006* 3.1 1.5 1.7 2.4 1.9 2.2 1.8 1.2 

 

2007* 3.1 1.5 1.7 2.4 1.8 2.2 1.9 1.2 

 

2008* 3.0 1.5 1.6 2.4 1.8 2.2 1.8 1.2 

 

2009* 3.1 1.4 1.5 2.3 1.7 2.1 1.9 1.3 

 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 2010* 3.0 1.4 1.4 2.2 1.7 2.1 1.9 1.4 

(Gg/h) 2011* 3.0 1.3 1.3 2.1 1.5 2.0 2.0 1.4 
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2012* 3.0 1.3 1.3 2.0 1.5 1.9 1.9 1.4 

 

2013* 2.8 1.3 1.3 1.9 1.3 1.9 1.9 1.4 

 

2014* 2.6 1.1 1.4 1.9 1.3 2.0 1.8 1.3 

 

2015* 2.4 1.1 1.2 1.8 1.2 1.8 1.7 1.1 

  2016* 2.2 1.0 1.0 1.7 1.2 1.7 1.5 0.9 

(𝐸𝐶𝑂2

𝑆𝑎𝑡-

𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆)/ 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 2005-2017 33% -12% 75% 7% -30% 4% 31% -41% 

https://doi.org/10.5194/acp-2019-521
Preprint. Discussion started: 8 July 2019
c© Author(s) 2019. CC BY 4.0 License.



20 

 

Table 3 Summary of relative difference between satellite-derived NOx emissions (𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 ) and bottom-up NOx emissions 

(𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆), satellite-derived CO2 emissions (𝐸𝐶𝑂2

𝑆𝑎𝑡) and bottom-up CO2 emissions (𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆) for 8 US power plants during May 

to September from 2005 to 2017. The 3-year periods are represented by the middle year with an asterisk. 

 

Year 
NOx CO2 

Mean Standard Deviation Mean Standard Deviation 

2006* 15% 29% 17% 39% 

2007* 10% 29% 16% 38% 

2008* 5% 30% 14% 39% 

2009* -3% 34% 6% 39% 

2010* -1% 38% 9% 46% 

2011* -5% 31% 3% 40% 

2012* -3% 31% 5% 41% 

2013* -4% 38% 4% 49% 

2014* -3% 36% 7% 46% 

2015* -8% 35% 2% 41% 

2016* -2% 29% 8% 22% 
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