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Abstract. We present a method to infer CO2 emissions from individual power plants based on satellite observations of co-14 

emitted nitrogen dioxide (NO2), which could serve as complementary verification of bottom-up inventories or be used to 15 

supplement these inventories. We demonstrate its utility on eight large and isolated US power plants, where accurate stack 16 

emission estimates of both gases are available for comparison. In the first step of our methodology, we infer nitrogen oxides 17 

(NOx) emissions from US power plants using Ozone Monitoring Instrument (OMI) NO2 tropospheric vertical column 18 

densities (VCDs) averaged over the ozone season (May-September) and a “top-down” approach that we previously 19 

developed. Second, we determine the relationship between NOx and CO2 emissions based on the direct stack emissions 20 

measurements reported by continuous emissions monitoring system (CEMS) programs, accounting for coal quality, boiler 21 

firing technology, NOx emission control device type, and any change in operating conditions. Third, we estimate CO2 22 

emissions for power plants using the OMI-estimated NOx emissions and the CEMS NOx/CO2 emission ratio. We find that 23 

the CO2 emissions estimated by our satellite-based method during 2005–2017 are in reasonable agreement with the US 24 

CEMS measurements, with a relative difference of 8% ± 41% (mean ± standard deviation). The broader implication of our 25 

methodology is that it has the potential to provide an additional constraint on CO2 emissions from power plants in regions of 26 

the world without reliable emissions accounting. We explore the feasibility by comparing the derived NOx/CO2 emission 27 

ratios for the US with those from a bottom-up emission inventory for other countries and applying our methodology to a 28 

power plant in South Africa, where the satellite-based emission estimates show reasonable consistency with other 29 

independent estimates. Though our analysis is limited to a few power plants, we expect to be able to apply our method to 30 

more US (and world) power plants when multi-year data records become available from new OMI-like sensors with 31 

improved capabilities, such as the TROPOspheric Monitoring Instrument (TROPOMI) and upcoming geostationary satellites, 32 

such as the Tropospheric Emissions: Monitoring Pollution (TEMPO) instrument. 33 

1 Introduction 34 

Thermal power plants, particularly coal-fired power plants, are among the largest anthropogenic CO2 emitters, 35 

contributing ~40% of energy-related CO2 emissions globally in 2010 (Janssens-Maenhout et al., 2017). Coal-fired power 36 

plants are expected to be one of the primary contributors of CO2 emissions in the coming decades because of abundant world 37 

coal reserves (Shindell and Faluvegi, 2010). Therefore, it is important to accurately monitor global CO2 emissions from 38 

power production in order to better predict climate change (Shindell and Faluvegi, 2010) and to support the development of 39 

effective climate mitigation strategies. 40 
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CO2 emissions from power plants are typically quantified based on bottom-up approaches using fuel consumption and 1 

fuel quality, though fuel properties are not always well known, resulting in uncertainties in the estimated CO2 emissions for 2 

individual plants (Wheeler and Ummel, 2008). Even for US power plants that are considered to have the most accurate 3 

information on fuel usage among world nations, the difference between emissions estimated based on fuel usage and those 4 

reported as part of continuous emissions monitoring systems (CEMS) programs is typically about 20% (Ackermann and 5 

Sundquist, 2008). Thus, emission estimates based on independent data sources, such as satellite observations, are a desirable 6 

complement to validate and improve the current CO2 emissions inventories, especially in countries without CEMS data, 7 

which is the case in most of the world. 8 

Anthropogenic CO2 emissions have been estimated from space-based CO2 observations, but the existing satellite CO2 9 

sensors are designed to provide constraints on natural CO2 sources and sinks (Basu et al., 2013; Houweling et al, 2015), and 10 

thus their capability for monitoring anthropogenic point sources is limited (Nassar et al., 2017). Observations from sensors, 11 

including the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY; Burrows et al., 12 

1995), Greenhouse gases Observing SATellite (GOSAT; Yokota et al., 2009), and Orbiting Carbon Observatory-2 (OCO-2; 13 

Crisp et al., 2015), show statistically significant enhancements over metropolitan regions (Kort et al., 2012; Schneising et al., 14 

2013; Janardanan et al., 2016; Buchwitz et al., 2018; Reuter et al., 2019; Wang et al., 2018). However, very few studies have 15 

focused on individual point sources. Bovensmann et al. (2010) and Velazco et al. (2011) presented a promising satellite 16 

remote sensing concept to infer CO2 emissions for power plants based on the atmospheric CO2 column distribution. Nassar et 17 

al. (2017) presented the first quantification of CO2 emissions from individual power plants using OCO-2 observations. 18 

However, because of the narrow swath (~10 km at nadir) and 16-day repeat cycle of the OCO-2 sensor, the number of clear-19 

day overpasses is too small to allow for the development of a global CO2 emissions database.  20 

In contrast to CO2, inferring NOx emissions from individual power plants using satellite NO2 column retrievals has been 21 

done with a higher degree of confidence (e.g., Duncan et al., 2013; de Foy et al., 2015). The Dutch-Finnish Ozone 22 

Monitoring Instrument (OMI) on NASA’s Earth Observing System Aura spacecraft (Schoeberl et al., 2006) provides near 23 

daily, global NO2 tropospheric VCDs at a spatial resolution of 13×24 km2 (at nadir) (Levelt et al., 2006; 2018; Krotkov et al., 24 

2017), which allows emission signals from individual power plants to be resolved. Beirle et al. (2011) first analyzed isolated 25 

large sources (i.e., megacities and the US Four Corners power plant) by averaging OMI NO2 tropospheric VCDs separately 26 

for different wind directions, which allows for the estimation of NOx emissions and lifetimes by fitting an exponentially 27 

modified Gaussian function. Several follow-up studies (e.g., de Foy et al., 2015; Lu et al., 2015 and Goldberg et al., 2019a) 28 

further developed this approach and inferred NOx emissions from isolated power plants and cities. More recently, we 29 

advanced this approach for sources located in polluted areas to infer NOx emissions for 17 power plants and 53 cities across 30 

China and the US (Liu et al., 2016; 2017). 31 

Since NOx is co-emitted with CO2, NOx emissions inferred from satellite data may be used to estimate CO2 emissions 32 

from thermal power plants. Previous analyses estimated regional CO2 emissions based on satellite-derived NOx emissions 33 

and the NOx to CO2 emission ratios from bottom-up emission inventories (Berezin et al., 2013; Konovalov et al., 2016; 34 

Goldberg et al., 2019b) or co-located satellite retrievals of CO2 and NO2 (Reuter et al., 2014). Hakkarainen et al. (2016) 35 

confirmed the spatial correlation between CO2 spatial anomalies and OMI NO2 VCD enhancements at the regional scale 36 

using satellite observations at higher resolution. Hakkarainen et al. (2019) also showed how overlapping OCO-2 CO2 data 37 

and data of NO2 from the recently launched (October 2017) European Union Copernicus Sentinel 5 precursor 38 

TROPOspheric Monitoring Instrument (TROPOMI) can be used to identify small scale anthropogenic CO2 signatures. 39 

More recently, the co-located regional enhancements of CO2 observed by OCO-2 and NO2 observed by TROPOMI were 40 

analysed to infer localized CO2 emissions for six hotspots including one power plant globally (Reuter et al., 2019). As 41 

emissions plumes are significantly longer than the swath width of OCO-2 (10 km), OCO-2 sees only cross sections of 42 
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plumes, which may not be sufficient to infer emission strengths. Because power plant emissions can have substantial 1 

temporal variations (Velazco et al., 2011) and the cross-sectional CO2 fluxes are valid only for OCO-2 overpass times, the 2 

cross-sectional fluxes may not adequately represent the annual or monthly averages, which are required for the development 3 

of climate mitigation strategies. In addition, the cross-sectional fluxes may not be a good approximation for emission 4 

strengths if meteorological conditions are not taken into account (Varon et al., 2018). As compared to the method proposed 5 

in this study, Reuter’s method has the advantage of not requiring a priori emission information. However, there are currently 6 

no satellite instruments with a wide enough swath to allow wider application of Reuter’s method.  7 

In this study, we present a method to estimate CO2 emissions from individual power plants using OMI NO2 observations 8 

and auxiliary CEMS information necessary to estimate NOx to CO2 emission ratios. Such estimates could serve as 9 

complementary verification of bottom-up CO2 inventories or be used to supplement these inventories. For instance, Liu et al. 10 

(2018) used satellite data of SO2 to identify large SO2 sources that were missing from a bottom-up emissions inventory and 11 

created a merged bottom-up/top-down SO2 emissions inventory. We apply our approach to US power plants, which have an 12 

exceptionally detailed CEMS database of NOx and CO2 emissions, in order to validate our method. Using auxiliary CEMS 13 

information, we explore the relationship between NOx and CO2 emissions for individual power plants, assessing variations in 14 

the ratio associated with coal quality, boiler firing type, NOx emission control device technology, and changes in operating 15 

conditions. Understanding the causes of these variations will allow for better informed assumptions when applying our 16 

method to power plants that have no or uncertain information on the factors that affect their emissions ratios. We discuss the 17 

uncertainties and applications of our approach, and the potential of NO2 datasets from new and upcoming satellite 18 

instruments, which will improve the utility of our method for inferring CO2 emissions from power plants around the world. 19 

Finally, we discuss future research directions. 20 

2 Method 21 

In this section, we present our method to infer CO2 emissions (𝐸 𝐶𝑂2

𝑆𝑎𝑡 ) from satellite-derived NOx emissions (𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 ) for 22 

individual coal-fired power plants using the following equation:  23 

𝐸𝐶𝑂2,𝑦
𝑆𝑎𝑡 =

𝐸𝑁𝑂𝑥,𝑦
𝑆𝑎𝑡

𝑟𝑎𝑡𝑖𝑜𝑖,𝑦
𝐶𝐸𝑀𝑆 ,                                           (1) 24 

where i represents coal type and y represents the target year. We demonstrate our method on US power plants since there are 25 

accurate CEMS stack measurements of NOx and CO2 emissions with which to validate 𝐸 𝐶𝑂2

𝑆𝑎𝑡 . In Section 2.1, we describe 26 

how we estimate 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  from OMI NO2 tropospheric VCD observations. In Section 2.2, we discuss how we estimate the ratio 27 

of NOx to CO2 emissions (𝑟𝑎𝑡𝑖𝑜𝑦
𝐶𝐸𝑀𝑆 = 𝐸𝑁𝑂𝑥,𝑦

𝐶𝐸𝑀𝑆/ 𝐸𝐶𝑂2,𝑦
𝐶𝐸𝑀𝑆) from CEMS stack measurements in the US Emissions & Generation 28 

Resource Integrated Database (eGRID; USEPA, 2018). Since post-combustion NOx control systems, including selective 29 

noncatalytic reduction (SNCR) and selective catalytic reduction (SCR), change the relationship between 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆 and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆, 30 

we present separate methods to determine 𝑟𝑎𝑡𝑖𝑜𝑦
𝐶𝐸𝑀𝑆  for power plants without and with post-combustion NOx control 31 

systems in Section 2.2.1 and Section 2.2.2, respectively. We discuss the validation of the estimated 𝐸 𝐶𝑂2

𝑆𝑎𝑡  in Section 3. 32 

2.1 Estimating satellite-derived NOx emissions (𝑬𝑵𝑶𝒙

𝑺𝒂𝒕 ) 33 

From all US coal-fired power plants, we selected 21 power plants for estimating 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 . We chose these plants based on the 34 

magnitude of their annual emissions (i.e., 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆 > 10 Gg/yr in 2005) and relative isolation from other large sources to avoid 35 

“contamination” of a power plant’s NOx plume. Power plants located in urban areas (i.e., within a radius of 100 km from a 36 

city center), or clustered in close proximity (i.e., 50 km) with other large industrial plants were excluded by visual inspection 37 
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using satellite imagery from Google Earth. We used the top 200 largest US cities (ranked by 2018 population as estimated by 1 

the United States Census Bureau, available at https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population) to 2 

select power plants. As discussed below, we were able to estimate 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  for 8 of the 21 plants. The locations of the 8 plants 3 

are shown in Figure 1 and given in Table S1. 4 

We followed the method of Liu et al. (2016; 2017) to estimate 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  for 2005 to 2017. In our analysis, we used OMI NO2 5 

tropospheric VCDs from the NASA OMI standard product, version 3.1 (Krotkov et al., 2017) together with meteorological 6 

wind information from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2; Gelaro 7 

et al., 2017). We only analysed data for the ozone season (May-September), in order to exclude winter data, which have 8 

larger uncertainties and NOx lifetimes are longer. As in our previous study (Liu et al., 2017), we calculated 1-dimensional 9 

NO2 “line densities”, i.e. NO2 per cm, as function of distance for each wind directions separately by integration of the mean 10 

NO2 VCDs (i.e. NO2 per cm2) perpendicular to the wind direction. We then used the changes of NO2 line densities under 11 

calm wind conditions (wind speed < 2 m/s below 500 m) and windy conditions (wind speed > 2 m/s) to fit the effective NOx 12 

lifetime. We then estimated the average NO2 total mass integrated around a power plant on the basis of the 3-year mean 13 

VCDs, in agreement with previous studies (Fioletov et al., 2011; Lu et al., 2015). The NO2 total mass was scaled by a factor 14 

of 1.32 in order to derive total NOx mass following Beirle et al. (2011). The uncertainty associated with the NOx/NO2 ratio 15 

has been discussed in detail in Section 3 of the supplement in Liu et al. (2016). The 3-year average 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  was derived from 16 

the corresponding 3-year average NOx mass divided by the average NOx lifetime of the entire study period (Liu et al., 2017). 17 

Fitting results of insufficient quality (e.g., correlation coefficient of the fitted and observed NO2 distributions <0.9) were 18 

excluded from this analysis, consistent with the criteria in Section 2.2 of Liu et al. (2016). This final filtering left 18 power 19 

plants, of which 8 had valid results for all consecutive 3-year periods between 2005 and 2017. More details of the approach 20 

are documented in Liu et al. (2017). The fitted lifetimes and other fitting parameters for all power plants are given in Table 21 

S1. 22 

We use the Rockport power plant (37.9°N, 87.0°W) in Indiana to demonstrate our approach. This power plant is 23 

particularly well suited for estimating 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 , because it is a large and isolated NOx point source. Figure 2 presents the NO2 24 

VCD map around Rockport and the fitted results. Figure 3 displays 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  based on 3-year mean VCDs. Each 3-year period is 25 

represented by the middle year with an asterisk (e.g., 2006* denotes the period from 2005 to 2007). For comparison to 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 , 26 

𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆 is from Air Markets Program Data (available at https://ampd.epa.gov/ampd/) and averaged over the period of May to 27 

September. For this particular plant, 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡   is always higher than 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆 during the entire period, except the last two years. 28 

The coefficient of determination for the entire period is R2=0.68. The relative differences for individual 3-year means 29 

(defined as (𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 − 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆)/𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆) range from -20% to 41%, because of the uncertainties of 𝐸𝑁𝑂𝑥

𝑆𝑎𝑡  as discussed in Section 30 

3.2. Both datasets present a declining trend from 2012*. The total declines of 45% and 26% since 2012* in 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  and 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆 31 

are attributed to the 25% decrease in net electricity generation for the plant. The average relative difference of 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  and 32 

𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆 for the 8 plants in this study is 0% ± 33%, ranging from -58% to 72% for individual 3-year periods (Figure 1). 33 

2.2 Estimating NOx to CO2 emission ratios using CEMS data (𝒓𝒂𝒕𝒊𝒐𝑪𝑬𝑴𝑺) 34 

We determined the relationship between 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 for coal-fired power plants using eGRID information about 35 

each plant’s net electric generation, boiler firing technology (e.g., tangential or wall-fired boiler), NOx control device type, 36 

fossil fuel category (i.e., coal, oil, gas and other), and coal quality (i.e., bituminous, lignite, subbituminous, refined and waste 37 

coal). We used data of power plants with more than 99% of the fuel burned being coal as reported in eGRID. We analyzed 38 

the relationship between 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 by coal type, as emission characteristics vary widely by coal type. 39 
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eGRID includes two datasets of emissions for NOx and CO2: 1) calculated from fuel consumption data and 2) observed by 1 

stack monitoring (i.e., 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆). Here we focus on eGRID CEMS data as 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆 are reported to be highly accurate 2 

with an error of less than 5% (e.g., Glenn et al., 2003). 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆 may have larger uncertainties than fuel-based emissions 3 

estimates because of uncertainties in the calculation of flue gas flow (Majanne et al., 2015). Nevertheless, we used 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆to 4 

relate NOx emissions to CO2 emissions, since the primary uncertainty of 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 arises from the calculation of the 5 

flue gas flow, which will cancel in 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆.  6 

2.2.1 Coal-fired power plants without post-combustion NOx control systems 7 

We initially limited our analysis to 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 from coal-fired power plants without post-combustion NOx control 8 

systems in operation in a given year (Table 1). We find that 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 have a strong linear relationship (Figure 4). In 9 

Figure 4a, we compare 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 from power plants (using bituminous coal) by boiler firing type in 2005. We use 10 

bituminous coal-fired plants for illustration, as bituminous coal is the most widely used coal in US power plants. We 11 

analyzed power plants that use cyclone or cell burner boilers separately and exclude them in Figure 4 because they typically 12 

produce higher NOx emissions than other boiler types (USEPA, 2009; available at 13 

https://www3.epa.gov/ttn/chief/ap42/ch01/index.html). A strong linear relationship between 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 is evident with 14 

excellent correlation (R2= 0.93, N = 278), regardless of boiler firing type. Similar linear relationships exist for other years 15 

(e.g., year 2016 in Figure 4b) and other types of coal (Table 1). The slope of the regression of 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆 and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 , 16 

𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 
𝐶𝐸𝑀𝑆 , is assumed by setting the intercept to zero. Table 1 shows 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑,𝑖,𝑦 

𝐶𝐸𝑀𝑆 by coal type and year. In Section 17 

3.1, 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑,𝑖,𝑦 
𝐶𝐸𝑀𝑆 will be applied to approximate 𝑟𝑎𝑡𝑖𝑜𝑖,𝑦 

𝐶𝐸𝑀𝑆 when estimating 𝐸 𝐶𝑂2

𝑆𝑎𝑡  from 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  for the 8 plants (Figure 1) 18 

for years before post-combustion control systems were in operation. 19 

𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 
𝐶𝐸𝑀𝑆  for power plants using bituminous coal decreased from 2005 (Figure 4a) to 2016 (Figure 4b) by 31% on 20 

average because of reductions in NOx emission factors associated with improvements in boiler operations, such as by 21 

optimizing furnace design and operating conditions. The NOx emissions factors, defined as NOx emission rates per net 22 

electricity generation (Gg/TW·h), declined by 33% from 2005 to 2016 (Figure 4c). We interpolated 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 
𝐶𝐸𝑀𝑆 to get 23 

year-specific ratios by coal type for the entire study period, as eGRID data are only available for some years (i.e., 2005, 24 

2007, 2009, 2010, 2012, 2014 and 2016). 25 

In addition, 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 
𝐶𝐸𝑀𝑆 shows significant variation by coal type and year (Figure 5). 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 

𝐶𝐸𝑀𝑆 is 1.7, 1.3 and 0.91 26 

Gg NOx/Tg CO2 for bituminous, subbituminous and lignite coal types in 2005, respectively. A reduction over time in 27 

𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 
𝐶𝐸𝑀𝑆  is observed for all coal types (Figure 5). 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 

𝐶𝐸𝑀𝑆  displays a large decrease of 31%, 36% and 20% from 28 

2005 to 2016 for bituminous, subbituminous, and lignite coal types, respectively.  29 

2.2.2 Coal-fired power plants with post-combustion NOx control systems 30 

Here, we describe how we estimated 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆  for the entire study period for plants that had post-combustion NOx 31 

control systems installed at some time during our study period, 2005–2017. The estimation is based on 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  32 

derived in Section 2.2.1 for plants without post-combustion control systems in operation. We introduce a NOx removal 33 

efficiency parameter, f, to adjust 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  for years after the installation of post-combustion control systems, 34 

𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑:  35 

𝑟𝑎𝑡𝑖𝑜𝑖,𝑦
𝐶𝐸𝑀𝑆−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑,𝑖,𝑦

𝐶𝐸𝑀𝑆 × (1 − 𝑓𝑦) ,                                        (2) 36 

f is commonly measured for individual power plants to describe the performance of their post-combustion NOx control 37 

systems. It is directly reported by some power plant databases, such as the China coal-fired Power plant Emissions Database 38 
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(CPED; Liu et al., 2015). For databases that do not report f, like eGRID used in this study, one can estimate it for an 1 

individual power plant by first estimating the unabated emissions per electricity generation, eunabated, which is the emission 2 

factor before the flue gas enters the post-combustion control system:  3 

𝑓𝑦 =
𝑒𝑢𝑛𝑎𝑏𝑎𝑡𝑒𝑑,𝑦−𝑒𝐶𝐸𝑀𝑆,𝑦

𝑒𝑢𝑛𝑎𝑏𝑎𝑡𝑒𝑑,𝑦
 ,                                           (3) 4 

where eCEMS denotes the actual emission factor in terms of CEMS NOx emissions per net electricity generation (Gg/TW·h). 5 

eunabated for a given year, eunabated,y, is estimated based on the emission per electricity generation for years prior, p, to the 6 

installation of the post-combustion control system, eunabated,p: 7 

𝑒𝑢𝑛𝑎𝑏𝑎𝑡𝑒𝑑,𝑦 = 𝑘𝑦 × 𝑒𝑢𝑛𝑎𝑏𝑎𝑡𝑒𝑑,𝑝 ,                                          (4) 8 

where the scaling factor, ky, is used to account for the change over time in eunabated associated with improvements in boiler 9 

operations discussed in Section 2.2.1. ky is calculated as the ratio of the averaged eunabated (i.e., the slope of the regression of 10 

NOx emissions on electricity generation) in year, t, to that in year, p.  11 

To assess the reliability of 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑, we selected all power plants which had post-combustion devices installed 12 

between 2005 and 2016. Figure 6 shows a scatterplot of 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆 (i.e., the ratio of 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆to 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 for individual plants) 13 

and 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑. We used the NOx emissions factor in 2005, eunabated,2005, to predict the unabated emission factor in 14 

2016, eunabated,2016, following Equations (3) and (4) in order to quantify the removal efficiencies for 2016, f2016. 15 

𝑟𝑎𝑡𝑖𝑜2016
𝐶𝐸𝑀𝑆−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  is based on the estimated f2016 and 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑,2016

𝐶𝐸𝑀𝑆  from Section 2.2.1. 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆 and 16 

𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  show good correlation (R2 = 0.64), which increases our confidence that the estimated removal 17 

efficiencies approximate the actual efficiencies. The slight underestimation suggested by the slope of 0.85 arises from 18 

uncertainties in estimating unabated NOx emission factors (eunabated,y) using Equation (4) and thus removal efficiencies (f), 19 

which is a major source of error of 𝐸𝐶𝑂2
𝑆𝑎𝑡 for power plants that install post-combustion NOx control systems (see details in 20 

Section 3.2). 21 

3 Results and Discussion 22 

In Section 3.1, we present 𝐸𝐶𝑂2
𝑆𝑎𝑡  for our eight selected power plants and, in Section 3.2, we discuss the uncertainties 23 

associated with 𝐸𝐶𝑂2
𝑆𝑎𝑡. In Section 3.3, we compare the US ratios derived in this study with those from a bottom-up inventory 24 

for other regions to explore the potential of applying our method to regions outside the US. We finally apply our approach to 25 

one power plant in South Africa, which has several independent estimates for its CO2 emissions as presented in the scientific 26 

literature. Table 2 shows three-year means of 𝐸𝑁𝑂2
𝑆𝑎𝑡 , 𝐸𝑁𝑂2

𝐶𝐸𝑀𝑆, 𝐸𝐶𝑂2
𝑆𝑎𝑡 and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆for eight power plants (Figure 1). Table 3 lists 27 

the mean and the standard deviation of the relative differences between 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆 and 𝐸𝑁𝑂𝑥

𝑆𝑎𝑡 , and 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆 and 𝐸𝐶𝑂2

𝑆𝑎𝑡 for all eight 28 

power plants. 29 

3.1 Satellite-derived CO2 emissions (𝑬𝑪𝑶𝟐

𝑺𝒂𝒕 ) 30 

Figure 7a is a scatterplot of 𝐸𝐶𝑂2
𝑆𝑎𝑡 and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 for the eight power plants (Figure 1), seven of which did not have post-31 

combustion NOx control systems installed during the study period, 2005–2017. The comparison shows a good correlation, 32 

R2, of 0.66. The average 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆for all power plants is 2.0 Gg/h and the average 𝐸𝐶𝑂2

𝑆𝑎𝑡 is 1.8 Gg/h. The relative difference for 33 

individual three-year means (defined as (𝐸𝐶𝑂2
𝑆𝑎𝑡 − 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆)/𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆) is 8% ± 41% (mean ± standard deviation). For example, 34 

Figure 3 shows 𝐸𝐶𝑂2
𝑆𝑎𝑡 for the Rockport power plant, which typically has a positive bias as compared to 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 because of a 35 

positive bias in 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 . 36 



7 

 

Figure 7b presents the generally consistent time series between 𝐸𝐶𝑂2
𝑆𝑎𝑡 and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆, with their annual averages for the eight 1 

power plants exhibiting a declining trend of 5%/yr and 3%/yr from 2006* to 2016* for 𝐸𝐶𝑂2
𝑆𝑎𝑡 and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆, respectively. The 2 

reduction in net electricity generation is the driving force underlying the emission changes, which decreased by 37% for the 3 

eight power plants from 2005 to 2016, as power producers shut down coal-fired units in favor of cheaper and more flexible 4 

natural gas as well as solar and wind (USEIA, 2018). It is interesting to note that the temporal variations in 𝐸𝐶𝑂2
𝑆𝑎𝑡 are not as 5 

“smooth” as those in 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆 , which results from fluctuations in 𝐸𝑁𝑂𝑥

𝑆𝑎𝑡 . Such fluctuations are caused by uncertainties 6 

associated with 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 as discussed in Section 3.2. For example, changes in VCDs do not necessarily relate linearly with NOx 7 

emissions (e.g., Figure 2 in Duncan et al., 2013) because of temporal variations in meteorology, and nonlinear NOx 8 

chemistry (Valin et al, 2013) and transport. Averaging VCDs for a long-term period (3 years in this study) helps reduce those 9 

influences, but small fluctuations may still exist.  10 

3.2 Uncertainties 11 

We estimated the uncertainty of 𝐸𝐶𝑂2
𝑆𝑎𝑡  based on the fit performance of 𝐸𝑁𝑂𝑥

𝑆𝑎𝑡   and comparison with 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆 . The major 12 

sources of uncertainty are (a) 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  (Liu et al., 2016); (b) 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑

𝐶𝐸𝑀𝑆 ; and (c) f. We give the estimated uncertainties of 13 

each source for individual power plants in Table S2.  14 

𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  : The uncertainty of 𝐸𝑁𝑂𝑥

𝑆𝑎𝑡  is quantified following the method described in Liu et al. (2017), accounting for errors 15 

arising from the fit procedure, the NOx/NO2 ratio and OMI NO2 VCD observations (Liu et al., 2016). The number of 1.32 16 

used for scaling the NO2 to NOx ratio is based on assumptions presented in section 6.5.1 of Seinfeld and Pandis (2006) for 17 

“typical urban conditions and noontime sun”. Note that conditions are quite similar in this study because of the overpass time 18 

of OMI close to noon, the selection of cloud-free observations, the focus on the ozone season, and the focus on polluted 19 

regions. A case study of CTM simulations shows an identical value of 1.32 for Paris in summer (Shaiganfar et al., 2017). 20 

The simulated NOx/NO2 ratio at the OMI overpass time within the boundary layer (up to 2 km) in a chemistry–climate 21 

model, EMAC (Jöckel et al., 2016), was 1.28 + 0.08 for polluted (NOx>1×1015 molec cm-2) regions for the July 1, 2005, and 22 

1.32 + 0.06 on average for the ozone season. However, the coarse grid of EMAC (2.8◦ × 2.8◦ in latitude and longitude) may 23 

not capture the true range of variation of the NOx/NO2 ratio. Therefore, we assumed an uncertainty of 20% arising from the 24 

NOx/NO2 ratio, double than the standard deviation of the EMAC ratio.  25 

Additionally, the tropospheric air mass factors (AMF) used in NO2 retrievals are based on relatively coarsely-resolved 26 

surface albedo data and a priori NO2 vertical profile shapes, likely causing low-biased VCDs over strong emission sources 27 

(e.g., Russell et al., 2011; McLinden et al., 2014; Griffin et al., 2019). The average AMF uncertainty of ~30% (see Table 2 in 28 

Boersma et al., 2007) likely contributes to the underestimation of emissions from some power plants in this study. Both 29 

random and systematic (bias) uncertainties in VCDs directly propagates into the uncertainty of 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  (see details in the 30 

supplement of Liu et al. (2016) and Section 3.4 of Liu et al. (2017)).  31 

The overall uncertainties of 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  range from 57% to 64% for all power plants in our analysis, which is comparable with 32 

the level of differences between 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  and 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆 . We expect this uncertainty to be less for new (e.g., TROPOMI) and 33 

upcoming (e.g., NASA Tropospheric Emissions: Monitoring Pollution, TEMPO) OMI-like sensors, which have enhanced 34 

capabilities relative to OMI. Further details are provided in Text S1 of the Supplement. 35 

𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆 : For power plants without post-combustion devices, 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑

𝐶𝐸𝑀𝑆  derived from the regression (Figure 4a 36 

& b) and the plant-specific CEMS measurements are within 15%, which is assumed as the uncertainty of the ratio for all 37 

power plants.  38 

f: For power plants with post-combustion devices, an additional uncertainty of 20% is applied to reflect the difference 39 

between the predicted and the true removal efficiency as suggested by Figure 6.  40 
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We assume that their contributions to the overall uncertainty are independent. We then define the total uncertainty, 1 

expressed as a 95% confidence interval, as the sum of the root of the quadratic sum of the aforementioned contribution. The 2 

overall uncertainties of 𝐸𝐶𝑂2
𝑆𝑎𝑡 are ~60% for all power plants in our analysis.  3 

However, it is worth noting that this uncertainty estimate is rather conservative. The mean and the standard deviation of 4 

the relative differences between 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆 and 𝐸𝑁𝑂𝑥

𝑆𝑎𝑡 , and 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆 and 𝐸𝐶𝑂2

𝑆𝑎𝑡 for all eight power plants provide a good alternative 5 

measure of uncertainties (Table 3). The relative differences are rather small, which are 0% ± 33% and 8% ± 41% (mean ± 6 

standard deviation) for NOx and CO2, respectively. We additionally calculate the geometric standard deviations (GSDs) of 7 

the difference between 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆 and 𝐸𝐶𝑂2

𝑆𝑎𝑡 from 2006* to 2016* for individual power plants in Table S2. The small values of 8 

GSDs ranging from 1.07 to 1.31 further improve our confidence in the accuracy of the derived emissions in this study. 9 

3.3 Application 10 

In this section, we assess the feasibility of applying our method to infer CO2 emissions (𝐸𝐶𝑂2
𝑆𝑎𝑡) for power plants outside the 11 

US. We first compare the NOx to CO2 emission ratios derived from this study with those from a bottom-up emission 12 

database in Section 3.3.1. We then apply the US ratio to a power plant in South Africa in Section 3.3.2. 13 

3.3.1 Comparison with bottom-up ratios 14 

Figure 8 shows the NOx to CO2 emission ratios for 2010 from the global power emissions database (GPED; Tong et al., 15 

2018), which is the only publicly-available bottom-up emission database that reports both NOx and CO2 emissions for 16 

individual power plants for every country. All countries with over 30 coal-fired power plants in GPED are shown in Figure 8. 17 

Not surprisingly, countries with more strict standards in place for NOx emissions from power plants (i.e., NOx emission limit 18 

value (ELV) < 200 mg/m3; hereafter referred to as “more strict countries”) have smaller NOx to CO2 ratios (i.e., 1.0 versus 19 

2.5 on average) than countries with less strict standard (i.e., NOx ELV > 200 mg/m3; hereafter referred to as “less strict 20 

countries”). Additionally, the correlation coefficients are smaller for more strict countries (i.e., 0.82 on average) as compared 21 

to less strict countries (i.e., 0.96 on average), because power plants in more strict countries are more likely to have installed 22 

post-combustion NOx control systems, which likely lowered 𝑟𝑎𝑡𝑖𝑜𝑦
𝐶𝐸𝑀𝑆, similar to what occurred in the US over our analysis 23 

period (Section 2.2.2).  24 

We further compare the 2005 US 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  in Table 1 with the GPED NOx to CO2 emission ratios for less strict 25 

countries. We chose the 2005 value for comparison based on the following considerations. In 2005, the US EPA issued the 26 

Clean Air Interstate Rule (CAIR) to address the interstate transport of ozone and fine particulate matter pollution for eastern 27 

US states, which reduced NOx emissions and, thus, NOx to CO2 ratios (𝑟𝑎𝑡𝑖𝑜𝑦
𝐶𝐸𝑀𝑆). However, similar comprehensive control 28 

strategies have not been adopted in less strict countries. In this way, the 2005 values are expected to show better consistency 29 

with the NOx to CO2 ratios of less strict countries than values for more recent years. Note that the GPED database does not 30 

give information on ratios by coal type. Therefore, we use 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  for bituminous coal, which is the most widely used 31 

coal type in coal-fired power plants in most countries.  32 

The ratios for individual power plants in less strict countries tend to be larger than the US 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  for 2005, 33 

considering that power plants in those countries may not be equipped with any NOx control devices or even low-NOx burners, 34 

a technology which is widely installed in US power plants with and without post-combustion NOx control devices. Most 35 

ratios range from US 2005 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  to 2005 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑

𝐶𝐸𝑀𝑆  + standard deviation (Figure 8). It is no surprise that some 36 

less strict countries have ratios higher than this range, which also occurs for some US power plants without post-combustion 37 

emission controls (Figure 4). However, there are considerable uncertainties in the GPED database given the scarcity of 38 

reliable emissions information in less strict countries. For example, the GPED NOx and CO2 emissions estimates for Turkey 39 

and Russia, which are outliers in Figure 8, are subject to more assumptions and, thus, larger uncertainties than countries with 40 
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high-quality country-specific emission data, such as China, which has a high-resolution emissions database (CPED; Liu et al., 1 

2015), and India, which has a database developed by Argonne National Laboratory (Lu et al., 2011).  2 

Figure 9 shows a schematic of our methodology to estimate the NOx to CO2 emission ratios for power plants outside the 3 

US. We adopt different approaches for more and less strict countries. More strict countries, including Canada, European 4 

Union (EU) member states, Japan, South Korea, and, more recently, China, usually use CEMS to monitor emissions, 5 

particularly from the largest emitters. For power plants with CEMS measurements for both NOx and CO2 emissions, it is 6 

straightforward to use the measured ratios. However, there is still a significant number of power plants in those countries 7 

without CEMS technology, particularly for CO2 measurements. For example, EU member states do not require power plants 8 

to use CEMS for CO2 reporting and the majority of plants in the EU therefore reports CO2 emissions based on emission 9 

factors (Sloss, 2011). Therefore, we recommend applying our method described in Section 2.2 to infer region-specific ratios 10 

for those power plants. The US 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  could be a less accurate, but reasonable approximation when no CEMS data 11 

are available, considering those countries share similar NOx ELVs for power plants as the US. For less strict countries, we 12 

recommend using the 2005 US values by coal type when ratios from countries with similar NOx emission standard are not 13 

available. We also recommend assigning a range from 2005 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  to 2005 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑

𝐶𝐸𝑀𝑆  + standard deviation, 14 

instead of a fixed value, to the ratio for inferring CO2 emissions, considering the knowledge on ratios from those regions are 15 

too few to narrow the constraint. 16 

As demonstrated in Section 2.2, our method presented in this study provides a reasonable estimate of the ratio for power 17 

plants without post-combustion NOx control devices with only knowing coal type. Even for regions without reliable 18 

emission information, the information on coal type, particularly for large power plants, are very likely publicly-available. For 19 

power plants that install post-combustion NOx control technology, we additionally require the removal efficiency of the 20 

device to derive the ratio. The removal efficiency of post-combustion NOx control devices is usually directly reported, as the 21 

operation of such devices is very expensive and is expected to be subject to strict quality control and assurance standards. In 22 

contrast to bottom-up approaches, many details are required for calculating NOx and CO2 emissions, including coal type, 23 

coal quality, boiler firing type, NOx emission control device type, and operating condition of boiler and emission control 24 

device. 25 

3.3.2 Application to Matimba power plant in South Africa 26 

We apply the methodology shown in Figure 9 to estimate CO2 emissions from a South African power plant, Matimba, 27 

which is a strong isolated NOx point source (Figure 10). It is a well-studied power plant, having had its emissions estimated 28 

using several different methods as reported in the literature. We estimate 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  for Matimba from 2005 to 2017 based on 29 

OMI NO2 observations following the approach in Section 2.1. Matimba uses subbituminous coal with a calorific value of ~ 30 

20 MJ/kg (Makgato and Chirwa, 2017). We apply the ratio ranging from 2005 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  to 2005 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑

𝐶𝐸𝑀𝑆  + 31 

standard deviation to Matimba, following the methodology in Figure 9, considering that South Africa is a less strict country 32 

without any post-combustion NOx control devices (Pretorius et al., 2015). Our derived 𝐸𝐶𝑂2
𝑆𝑎𝑡  is shown in Figure 11 and 33 

fluctuates over time. The growth after 2008* is most likely caused by the increased unit operating hours driven by the desire 34 

to meet fully the demand for electricity in South Africa after a period of rolling blackouts (2007–2008) (Duncan et al., 2016). 35 

The decline afterwards may be associated with the tripping of generating units at the Matimba because of overload and 36 

shortage of coal as reported by South African government news agency (available at https://www.sanews.gov.za/south-37 

africa/eskom-alone-cannot-solve-our-energy-challenges). The increase in 2016* may be associated with a newly-built power 38 

plant, Medupi, which began limited operations in 2015. Note that the range of 𝐸𝐶𝑂2
𝑆𝑎𝑡 (grey band) in Figure 11 represents the 39 

emissions based on a range of NOx-to-CO2 ratios, not the uncertainty. We calculate the uncertainty of 𝐸𝐶𝑂2
𝑆𝑎𝑡 for Matimba 40 

following Section 3.2 with an additional uncertainty of ~50% to reflect the fact that the ratio may range from 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  41 
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to 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  + standard deviation. The overall uncertainty of 𝐸𝐶𝑂2

𝑆𝑎𝑡 for Matimba is 81%, as shown by the error bars in 1 

Figure 11. 2 

Figure 11 shows 𝐸𝐶𝑂2
𝑆𝑎𝑡 derived in this study and other independent estimates reported in the literature, including two top-3 

down (Nassar et al., 2017; Reuter et al., 2019) and three bottom-up estimates (Wheeler and Ummel, 2008; Tong et al., 2018; 4 

Oda et al., 2018). Despite the uncertainties associated with each of these methods, the CO2 emissions estimates agree 5 

reasonably well, but we do not have sufficient information to understand the differences between these estimates. However, 6 

Tong et al. (2018) present in their CPED database both CO2 and NOx emissions, which allows us to determine that the 7 

difference between 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  and the CPED bottom-up estimate contributes significantly to the difference in CO2 estimates from 8 

the two methods. 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  for Matimba is 3.8 Mg/h for 2010*, which is 65% smaller than the estimate by Tong et al. (2018) for 9 

2010. It is not surprising to see such differences considering the uncertainties of satellite-derived NOx emissions and bottom-10 

up estimates for power plants without reliable CEMS measurements. For instance, 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  is potentially underestimated 11 

because of the bias in the OMI NO2 standard product (version 3.1) associated with a low-resolution static climatology of 12 

surface Lambert-Equivalent Reflectivity (OMLER) (Kleipool et al., 2008). We perform a sensitivity analysis by using the 13 

preliminary new version of the OMI NO2 product, which uses new geometry dependent Moderate Resolution Imaging 14 

Spectroradiometer (MODIS)-based surface reflectivity. The inferred 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  based on the new product is over 10% higher than 15 

version 3.1. The bottom-up estimates for Matimba are subject to significant uncertainties as well. For example, Tong et al. 16 

(2018) used national total fuel consumption of the power sector for South Africa as reported by the International Energy 17 

Agency to estimate fuel consumption at the plant level as detailed fuel consumption for each plant is not currently available. 18 

Additionally, they used default NOx emission factors obtained from the literature because of the absence of country-specific 19 

measurement data. 20 

4 Conclusions 21 

In our study, we investigated the feasibility of using satellite data of NO2 from power plants to infer co-emitted CO2 22 

emissions, which could serve as complementary verification of bottom-up inventories or be used to supplement these 23 

inventories that are highly uncertain in many regions of the world. For example, our estimates will serve as an independent 24 

check of CO2 emissions that will be inferred from satellite retrievals of future CO2 sensors (Bovensmann et al., 2010). 25 

Currently, uncertainties in CO2 emissions from power plants confound national and international efforts to design effective 26 

climate mitigation strategies.  27 

We estimate NO2 and CO2 emissions during the “ozone season” from individual power plants from satellite observations 28 

of NO2 and demonstrate its utility for US power plants, which have accurate CEMS with which to evaluate our method. We 29 

systematically identify the sources of variation, such as types of coal, boiler, and NOx emission control device, and change in 30 

operating conditions, which affect the NOx to CO2 emissions ratio. Understanding the causes of these variations will allow 31 

for better informed assumptions when applying our method to power plants that have no or uncertain information on the 32 

factors that affect their emissions ratios. For example, we estimated CO2 emissions from the large and isolated Matimba 33 

power plant in South Africa, finding that our emissions estimate shows reasonable agreement with other independent 34 

estimates. 35 

We found that it is feasible to infer CO2 emissions from satellite NO2 observations, but limitations of the current satellite 36 

data (e.g., spatio-temporal resolution, signal-to-noise) only allow us to apply our method to eight large and isolated U.S. 37 

power plants. Looking forward, we anticipate that these limitations will diminish for the recently launched (October 2017) 38 

TROPOMI, and three upcoming (launches expected in the early 2020s) geostationary instruments (NASA TEMPO; 39 

European Space Agency and Copernicus Programme Sentinel-4; Korea Meteorological Administration Geostationary 40 
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Environment Monitoring Spectrometer, GEMS), which are designed to have superior capabilities to OMI. High resolution 1 

TROPOMI observations are capable of describing the spatio-temporal variability of NO2, even in a relatively small city like 2 

Helsinki (Ialongo et al., 2019) and allow estimates of NOx emissions to be calculated for shorter timeframes (Goldberg et al., 3 

2019c). Higher spatial and temporal resolutions will likely reduce uncertainties in estimates of NOx emissions as well as 4 

allow for the separation of more power plant plumes from nearby sources, thus increasing the number of power plants 5 

available for analysis. Therefore, future work will be to apply our method to these new datasets, especially after several years 6 

of vetted data become available. Additional future work will include applying our method to other regions of the world with 7 

reliable CEMS information, such as Europe, Canada and, more recently, China, to develop a more reliable and complete 8 

database with region-specific ratios.  9 
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Figures 1 

 2 

Figure 1 Locations of the power plants investigated in this study. The bar charts denote the relative differences, defined as (ESat− 3 
ECEMS)/ECEMS, averaged over 2005–2017, for NOx (blue) and CO2 (red) emissions. The upward and downward bars represent positive and 4 
negative differences, respectively. The Monticello power plant installed SNCR to control NOx emissions in 2008. The other power plants 5 
are not equipped with post-combustion NOx control devices. 6 
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1 
Figure 2 Mean OMI NO2 tropospheric VCDs around the Rockport power plant (Indiana, USA) for (a) calm conditions, (b) northeasterly 2 

wind and (c) their difference (northeasterly − calm) for the period of 2005 – 2017. The location of Rockport is labelled by a black dot. (d) 3 

NO2 line densities around Rockport. Crosses: NO2 line densities for calm (blue) and northeasterly winds (red) as function of the distance x 4 

to Rockport center. Grey line: the fitted results for NO2 line densities for northeasterly winds. The numbers indicate the net mean wind 5 

velocities (windy − calm) from MERRA-2 (w), the fitted lifetime (τ), and the coefficient of determination (R2) of the fit. 6 
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 1 

Figure 3 𝑬𝑵𝑶𝒙

𝑺𝒂𝒕  (Mg/h; orange solid lines – right axis) and 𝑬𝑪𝑶𝟐

𝑺𝒂𝒕  (Gg/h; blue solid line – left axis) for the Rockport power plant from 2005 2 

to 2017. 𝑬𝑵𝑶𝒙

𝑪𝑬𝑴𝑺 and 𝑬𝑪𝑶𝟐

𝑪𝑬𝑴𝑺 (dashed lines) are also shown. The 3-year periods are represented by the middle year with an asterisk (e.g., 3 

2006* denotes the period from 2005 to 2007). 4 

 5 

 6 

Figure 4 Scatter plots of 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆 versus 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆for all the US bituminous coal-fired electric generating units for (a) 2005 and (b) 2016. 7 

Values are color coded by firing type. (c) Scatter plot of 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆 versus electricity generation of the same units for years 2005 (triangle) and 8 

2016 (square). Only plants without post-combustion NOx control devices within a given year are used. The electricity generation data are 9 
also from eGRID. The lines in all three panels represent the computed linear regressions. 10 
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 1 

Figure 5 Interannual trends of 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 
𝐶𝐸𝑀𝑆 for power plants using bituminous, subbituminous and lignite coal types and without post-2 

combustion NOx control devices in a given year. Error bars show the standard deviations for ratios of 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆 to 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆for individual power 3 

plants. 4 

 5 

Figure 6 Scatterplot of 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  as compared to 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆 for 2016. All 44 coal-fired power plants that operated post-6 
combustion devices after 2005 and before 2016 (including 2016) are used in the plot. The sizes of the circles denote the magnitude of the 7 

NOx reduction efficiency of post-combustion control devices estimated in this study. The line represents the linear regression of 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆 8 

to 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑. 9 
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Figure 7 (a) Scatterplot of 𝐸𝐶𝑂2

𝑆𝑎𝑡 for eight power plants as compared to 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 from 2006* to 2016*. The solid lines represent the ratio of 

1:1. The dashed lines represent the ratio of 1:1.5 and 1.5:1, respectively. (b) Interannual trends of the averaged 𝐸𝐶𝑂2

𝑆𝑎𝑡 (blue lines) and 

𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 (pink lines) are for all power plants analyzed in this study from 2006*–2016*, as normalized to the 2006* value. The whiskers 

denote the maximum and minimum values. 

 

 

Figure 8 Comparison of the regressed NOx to CO2 emission ratios derived from the global power emissions database (GPED) for different 

regions versus the correlation coefficient of the regression. The blue and red circles denote regions that are subject to more strict standard 

for NOx emissions from power plants (i.e., a NOx ELV of 200 mg/m3 or less) and other regions, respectively. Y axis: the slope of the 

regression of the NOx to CO2 emissions with an assumed y-intercept of zero. Error bars show the standard deviations for the NOx to CO2 

emission ratios for individual power plants. X axis: correlation coefficient of the regression. The dashed line represents 2005 US 

𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  for bituminous coal derived in this study. The grey shadow represents 2005 US 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑

𝐶𝐸𝑀𝑆  ± standard deviation.  

*China switched from being a less strict country to a more strict country in 2014, when most coal-fired power plants in China were 

required to comply with its new emission standards (GB13223-2011). 
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Figure 9 Schematic of our methodology to estimate the NOx to CO2 emission ratios for power plants outside the US.  

*China switched from being a less strict country to a more strict country in 2014, when most coal-fired power plants in China were 

required to comply with its new emission standards (GB13223-2011). 

 

 

 

Figure 10 Mean OMI NO2 tropospheric VCDs around the Matimba power plant (Lephalale, South Africa) for (a) calm, (b) southwesterly 

wind conditions and (c) their difference (southwesterly − calm) for the period of 2005 – 2017. The location of Matimba is represented by a 

black dot.  
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Figure 11 Comparison of 𝐄𝐂𝐎𝟐

𝐒𝐚𝐭  (Gg/h) derived in this study with existing estimates for the Matimba power plant during 2005 to 2017. 

𝐄𝐂𝐎𝟐

𝐒𝐚𝐭 is inferred based on the NOx to CO2 emissions ratio ranging from 𝒓𝒂𝒕𝒊𝒐𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒆𝒅
𝑪𝑬𝑴𝑺  to 𝒓𝒂𝒕𝒊𝒐𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒆𝒅

𝑪𝑬𝑴𝑺  + standard deviation of ratio. The 

upper and lower grey bands denote the emissions inferred from 𝒓𝒂𝒕𝒊𝒐𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒆𝒅
𝑪𝑬𝑴𝑺  and 𝒓𝒂𝒕𝒊𝒐𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒆𝒅

𝑪𝑬𝑴𝑺 + standard deviation of ratio, 

respectively. The grey dots and error bars show the mean of the upper and lower grey bands and their uncertainties, respectively. 
aEmissions are estimated for 2009 by Wheeler and Ummel (2008); for 2010 by Tong et al. (2018); for 2014 and 2016 by Nassar at al. (2017); for 2016 by 

Reuter et al. (2019); and for 2012 and 2016 by Oda at al. (2018). 
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Table 1 The slope (𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆 ), coefficient of determination, standard deviation and sample number of the linear 

regression of 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆 and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 by year for all US power plants without post-combustion NOx control devices from 2005 to 

2016.  

Coal type Year 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  R2 

Standard 

deviation 

Sample 

numbera 

Bituminous 

2005 1.74 0.93 0.63 278 

2007 1.75 0.91 0.68 286 

2009 1.49 0.88 0.64 241 

2010 1.48 0.86 0.60 235 

2012 1.33 0.87 0.56 190 

2014 1.28 0.87 0.41 136 

2016 1.20 0.87 0.45 66 

Subbituminous 

2005 1.31 0.65 0.73 226 

2007 1.18 0.61 0.61 221 

2009 1.02 0.66 0.56 230 

2010 1.00 0.67 0.59 216 

2012 0.93 0.74 0.51 200 

2014 0.89 0.74 0.39 165 

2016 0.84 0.70 0.39 111 

Lignite 

2005 0.91 0.74 0.33 20 

2007 0.86 0.82 0.35 22 

2009 0.88 0.91 0.32 16 

2010 0.83 0.94 0.37 18 

2012 0.76 0.91 0.40 15 

2014 0.82 0.92 0.37 12 

2016 0.73 0.78 0.09 9 

aThe sample number generally decreases from 2005 to 2016 as power plants installed post-combustion NOx control devices 

over time. 



 

Table 2 Summary of effective NOx lifetimes, satellite-derived NOx emissions (𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 ), CO2 emissions (𝐸𝐶𝑂2

𝑆𝑎𝑡) and bottom-up 

NOx emissions (𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆), CO2 emissions (𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆) for 8 US power plants during May to September from 2005 to 2017. The 3-

year periods are represented by the middle year with an asterisk. 

Category Year Four Corners 

& San Juan 

Independence Intermountain Martin Lake Monticello Navajo Rockport White Bluff 

NOx lifetime 2005-2017 2.7 2.5 2.2 2.3 3.2 2.3 2.4 4.3 

 

2006* 10.5 2.0 4.0 2.4 1.1 4.6 2.9 1.0 

 

2007* 10.0 1.7 4.1 2.3 1.1 4.4 3.0 0.9 

 

2008* 9.4 1.6 3.7 2.0 0.8 4.5 2.6 0.9 

 

2009* 7.2 1.2 3.9 2.1 0.7 3.9 2.7 0.7 

𝐸𝑁𝑂𝑥

𝑆𝑎𝑡  2010* 6.8 1.0 4.4 2.1 0.6 3.6 2.5 0.9 

(Mg/h) 2011* 6.5 0.9 3.6 1.8 0.7 2.5 2.5 0.8 

 

2012* 6.3 0.9 3.4 1.6 0.6 2.3 2.7 0.8 

 

2013* 5.6 0.8 3.5 1.8 0.5 1.9 2.5 0.6 

 

2014* 4.4 0.7 3.5 1.7 0.8 2.2 2.3 0.5 

 

2015* 3.8 0.8 3.0 1.4 0.7 2.1 1.4 0.4 

  2016* 3.5 1.2 1.7 1.2 0.6 2.5 1.5 0.7 

 

2006* 7.4 1.8 3.0 1.8 1.5 3.8 2.0 1.7 

 

2007* 7.3 1.8 3.1 1.8 1.4 3.9 2.1 1.6 

 

2008* 6.8 1.8 2.9 1.8 1.3 3.8 2.0 1.6 

 

2009* 6.5 1.6 2.9 1.8 1.2 3.4 2.1 1.8 

𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆 2010* 6.2 1.6 2.8 1.7 1.1 2.8 2.1 1.8 

(Mg/h) 2011* 6.2 1.4 2.5 1.5 1.0 2.2 2.2 1.9 

 

2012* 6.1 1.3 2.4 1.4 0.9 1.9 2.1 1.9 

 

2013* 5.6 1.3 2.4 1.3 0.9 1.9 2.0 2.0 

 

2014* 5.2 1.2 2.5 1.3 0.8 1.9 1.9 1.9 

 

2015* 4.3 1.2 2.0 1.3 0.8 1.7 1.8 1.5 

  2016* 3.9 1.1 1.5 1.2 0.8 1.6 1.6 1.2 

(𝐸𝑁𝑂𝑥

𝑆𝑎𝑡 -

𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆)/ 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆 2005-2017 10% -22% 38% 20% -29% 21% 20% -56% 

 

2006* 6.1 1.6 2.3 2.7 1.2 2.6 2.3 0.8 

 

2007* 5.9 1.5 2.4 2.6 1.3 2.6 2.5 0.8 

 

2008* 5.6 1.4 2.3 2.3 1.1 2.8 2.4 0.8 

 

2009* 4.1 1.1 2.6 2.4 1.0 2.5 2.6 0.6 

𝐸𝐶𝑂2

𝑆𝑎𝑡 2010* 3.7 1.0 3.0 2.5 0.9 2.5 2.5 0.9 

(Gg/h) 2011* 3.4 1.0 2.6 2.2 1.0 1.7 2.5 0.8 

 

2012* 3.3 1.0 2.5 2.1 1.0 1.7 2.9 0.9 

 

2013* 3.1 0.9 2.6 2.3 0.8 1.5 2.7 0.6 

 

2014* 2.5 0.8 2.8 2.2 1.2 1.8 2.6 0.6 

 

2015* 2.3 0.9 2.4 1.8 1.1 1.7 1.7 0.5 

  2016* 2.2 1.4 1.4 1.6 1.0 2.0 1.7 0.8 

 

2006* 3.1 1.5 1.7 2.4 1.9 2.2 1.8 1.2 

 

2007* 3.1 1.5 1.7 2.4 1.8 2.2 1.9 1.2 

 

2008* 3.0 1.5 1.6 2.4 1.8 2.2 1.8 1.2 

 

2009* 3.1 1.4 1.5 2.3 1.7 2.1 1.9 1.3 

 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 2010* 3.0 1.4 1.4 2.2 1.7 2.1 1.9 1.4 

(Gg/h) 2011* 3.0 1.3 1.3 2.1 1.5 2.0 2.0 1.4 

 

2012* 3.0 1.3 1.3 2.0 1.5 1.9 1.9 1.4 



 

 

2013* 2.8 1.3 1.3 1.9 1.3 1.9 1.9 1.4 

 

2014* 2.6 1.1 1.4 1.9 1.3 2.0 1.8 1.3 

 

2015* 2.4 1.1 1.2 1.8 1.2 1.8 1.7 1.1 

  2016* 2.2 1.0 1.0 1.7 1.2 1.7 1.5 0.9 

(𝐸𝐶𝑂2

𝑆𝑎𝑡-

𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆)/ 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 2005-2017 33% -12% 75% 7% -30% 4% 31% -41% 
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Table 3 Summary of relative difference between satellite-derived NOx emissions (𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 ) and bottom-up NOx emissions 

(𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆), satellite-derived CO2 emissions (𝐸𝐶𝑂2

𝑆𝑎𝑡) and bottom-up CO2 emissions (𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆) for 8 US power plants during May 

to September from 2005 to 2017. The 3-year periods are represented by the middle year with an asterisk. 

Year 
Relative Difference for NOx Relative Difference for CO2 

Mean Standard Deviation Mean Standard Deviation 

2006* 15% 29% 17% 39% 

2007* 10% 29% 16% 38% 

2008* 5% 30% 14% 39% 

2009* -3% 34% 6% 39% 

2010* -1% 38% 9% 46% 

2011* -5% 31% 3% 40% 

2012* -3% 31% 5% 41% 

2013* -4% 38% 4% 49% 

2014* -3% 36% 7% 46% 

2015* -8% 35% 2% 41% 

2016* -2% 29% 8% 22% 

 


