
Cover Letter 

Dear editor, 

 

We have carefully addressed the thoughtful comments of the reviewers and believe that our 

manuscript is now much improved and ready for publication in ACP. In our paper, we present a 

methodology to infer CO2 emissions from power plants using satellite observations of co-emitted 

NO2. Reliable estimates of emissions of this important climate gas are necessary for predicting 

climate change and developing effective mitigation strategies.  

Our work is timely as 1) it is currently not feasible to infer CO2 emissions directly from 

satellite observations of CO2 with current sensors, and 2) CO2 emissions are not reliably 

measured (at stack) and reported for most power plants around the world. We demonstrated our 

methodology on eight US power plants. Though we were limited by current (OMI) sensor 

capabilities, we fully expect that our methodology will be more broadly applied to global power 

plants using improved NO2 data from new and upcoming sensors (TROPOMI, TEMPO), which 

have improved signal-to-noise, finer spatial resolutions, etc.   

    I am looking forward to hearing from you. 

 

Best regards, 

Fei 



Anonymous Referee #1 

General comments 

The manuscript presents a methodology to derive CO2 emissions using satellite-based NO2 

retrievals from OMI instrument. The topic is very interesting as not many studies have 

successfully attempted space-based CO2 emission estimation (while much more common is the 

top-down emission estimation for short-lived gases such as NO2) and most of the previous 

studies only derive emissions for a few sites in the world. The results could be a good addition to 

the existing literature on the subject but I feel this work still does not dramatically improve what 

was achieved in previous studies in terms of emission estimation from CO2 point sources. The 

methodology is reasonable but more effort should be put in proving how this approach could be 

extended to more than the 8 point sources analysed in the manuscript. 

Therefore I would suggest to provide some sort of recommendations (or criteria) on how to apply 

the same approach to other point sources depending on the characteristics of the power plants. 

One possibility could be to test the approach on a few other cases outside US in addition to 

Matimba in order to illustrate the potential differences. 

The manuscript can be published after addressing this issue and the following comments. 

 

Response: We thank Referee #1 for the thoughtful comments.  We have added Figure 8 to 

compare the US ratios derived in this study with the ratios for other countries from a bottom-up 

emission database. We have added Figure 9 to further clarify how to apply our approach to 

power plants outside the US. We have added a new subsection 3.3.1 to discuss the addition. 

 



Figure 8 Comparison of the regressed NOx to CO2 emission ratios derived from the global 

power emissions database (GPED) for different regions versus the correlation coefficient of the 

regression. The blue and red circles denote regions that are subject to more strict standard for 

NOx emissions from power plants (i.e., a NOx ELV of 200 mg/m
3
 or less) and other regions, 

respectively. Y axis: the slope of the regression of the NOx to CO2 emissions with an assumed y-

intercept of zero. Error bars show the standard deviations for the NOx to CO2 emission ratios for 

individual power plants. X axis: correlation coefficient of the regression. The dashed line 

represents 2005 US 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  for bituminous coal derived in this study. The grey shadow 

represents 2005 US 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  ± standard deviation.  

*China switched from being a less strict country to a more strict country in 2014, when most coal-fired power plants 

in China were required to comply with its new emission standards (GB13223-2011). 

 

 

Figure 9 Schematic of our methodology to estimate the NOx to CO2 emission ratios for power 

plants outside the US.  

*China switched from being a less strict country to a more strict country in 2014, when most coal-fired power plants 

in China were required to comply with its new emission standards (GB13223-2011). 

 

To better place the importance of our work into context, we added the following paragraph to the 

conclusions: 

 

“We found that it is feasible to infer CO2 emissions from satellite NO2 observations, but 

limitations of the current satellite data (e.g., spatio-temporal resolution, signal-to-noise) only 

allow us to apply our method to eight large and isolated U.S. power plants. Looking forward, we 

anticipate that these limitations will diminish for the recently launched (October 2017) European 

Union Copernicus Sentinel 5 precursor TROPOMI, and three upcoming (launches expected in 

the early 2020s) geostationary instruments (NASA TEMPO; European Space Agency and  

Copernicus Programme Sentinel-4; Korea Meteorological Administration Geostationary 

Environment Monitoring Spectrometer, GEMS), which are designed to have superior capabilities 

to OMI. For example, higher spatial and temporal resolutions will likely improve the estimation 



of NOx emissions as well as allow for the separation of more power plant plumes from nearby 

sources, thus increasing the number of power plants available for analysis. Therefore, future 

work will be to apply our method to these new datasets, especially after several years of vetted 

data become available. Additional future work will include applying our ratio-regression method 

to other regions of the world with reliable CEMS information, such as Europe, Canada and, more 

recently, China, to develop a more reliable and complete database with region-specific ratios.”  

 

Specific comments 

1. P2 L33 -> There is a recent update to this paper where the anomalies are calculated on global 

scale and also TROPOMI data are used for comparison on local scale. You might want to add 

this as well in your intro: Hakkarainen, J.; Ialongo, I.; Maksyutov, S.; Crisp, D. Analysis of Four 

Years of Global XCO2 Anomalies as Seen by Orbiting Carbon Observatory-2. Remote Sens. 

2019, 11, 850. 

Here also another work it might be worth mentioning: Wang, S., Zhang, Y., Hakkarainen, J., Ju, 

W., Liu, Y., Jiang, F., & He, W. (2018). Distinguishing anthropogenic CO2 emissions from 

different energy intensive industrial sources using OCO-2 observations: A case study in northern 

China. Journal of Geophysical Research: Atmospheres, 123, 9462–9473. 

https://doi.org/10.1029/2018JD029005 

 

Response: We thank for the comments. We have added both references in the introduction of the 

revised manuscript. 

 

2. P7 L19-20 “We assume the NOx to CO2 emission ratio of Matimba is on the upper end of the 

US values, considering that it is not equipped with any NOx control devices, even low-NOx 

burners which are widely installed in US power plants” This step is quite critical if you think 

about extending the method to other sources. You are basically saying that you have to know 

already something on the source before applying the method. . . how do you expect to make this 

choice for other sources? Please comment. 

 

Response: The aim of the method developed by this study is to simplify the information needed 

to derive the NOx to CO2 ratio. The basic information needed for the method is generally 

available. We have clarified this in Section 3.3.1, as follows: 

 

“The application of the method contributes to simplifying the information needed to derive a 

reasonable NOx to CO2 emission ratio. In a bottom-up approach, we often need many details 

including coal type, coal quality, boiler firing type, NOx emission control device type, and 

operating condition of boiler and emission control device when calculating NOx and CO2 

emissions. As demonstrated in Section 2.2, the method developed in this study can derive a 

reasonable estimate of the ratio for power plants without post-combustion NOx control device by 

merely given coal type. Even for regions without reliable emission information, the information 

on coal type, particularly for large power plants, are very likely publicly available. For power 

plants installing post-combustion NOx control technology, we additionally require the removal 

efficiency of the device to derive the ratio. The removal efficiency of post-combustion NOx 

control devices is usually directly reported, as the operation of such devices is very expensive 

and is expected to be subject to strict quality control and assurance standards. ” 

https://doi.org/10.1029/2018JD029005


 

3. Fig. 8 How do your emission estimates for Matimba compare with Reuter 2019 estimate? 

 

Response: Our estimate for Matimba (including the nearby Medupi which has operated since 

2015) is comparable to Reuter 2019 estimate. Our estimate is 1.9–3.0 Gg/h for 2016* (i.e., the 

period from 2015 to 2017); Reuter 2019 estimate is 3.50.8 Gg/h for 2018. It should be noted 

that the Medupi power plant started operation in 2015 with limited capacity and that it still has 

not reached its nominal capacity. Therefore, it is no surprise that our estimate is lower than 

Reuter 2019 estimate. We have added Reuter 2019 estimate in Figure 11 and the related 

discussion in Section 3.3.2, as follows: 

“Figure 11 shows 𝐸𝐶𝑂2
𝑆𝑎𝑡  derived in this study and other independent estimates reported in the 

literature, including two top-down (Nassar et al., 2017; Reuter et al., 2019) and three bottom-up 

estimates (Wheeler and Ummel, 2008; Tong et al., 2018; Oda et al., 2018). Despite the 

uncertainties associated with each of these methods, the CO2 emissions estimates agree 

reasonably well.” 

 

Figure 11 Comparison of 𝐄𝐂𝐎𝟐
𝐒𝐚𝐭  (Gg/h) derived in this study with existing estimates for the 

Matimba power plant during 2005 to 2017. 𝐄𝐂𝐎𝟐
𝐒𝐚𝐭 is inferred based on the NOx to CO2 emissions 

ratio ranging from 𝒓𝒂𝒕𝒊𝒐𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒆𝒅
𝑪𝑬𝑴𝑺  to 𝒓𝒂𝒕𝒊𝒐𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒆𝒅

𝑪𝑬𝑴𝑺  + standard deviation of ratio. The upper 

and lower grey bands denote the emissions inferred from 𝒓𝒂𝒕𝒊𝒐𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒆𝒅
𝑪𝑬𝑴𝑺  and 𝒓𝒂𝒕𝒊𝒐𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒆𝒅

𝑪𝑬𝑴𝑺 + 

standard deviation of ratio, respectively. The grey dots and error bars show the mean of the upper 

and lower grey bands and their uncertainties, respectively. 
aEmissions are estimated for 2009 by Wheeler and Ummel (2008); for 2010 by Tong et al. (2018); for 2014 and 

2016 by Nassar at al. (2017); for 2016 by Reuter et al. (2019); and for 2012 and 2016 by Oda at al. (2018). 

 



 

4. P11 L25 This paper in now published: Reuter, M., Buchwitz, M., Schneising, O., Krautwurst, 

S., O’Dell, C. W., Richter, A., Bovensmann, H., and Burrows, J. P.: Towards monitoring localized 

CO2 emissions from space: co-located regional CO2 and NO2 enhancements observed by the 

OCO-2 and S5P satellites, Atmos. Chem. Phys., 19, 9371-9383, https://doi.org/10.5194/acp-19-

9371-2019, 2019. 

 

Response: Thanks for pointing out this. We have updated the reference in the revised manuscript. 

 

5. Sect. 2.2 Is there any other dataset in addition to EPA’s CEMS you could verify these ratio 

with? 

 

Response: EPA’s CEMS has been widely used to develop emission inventories. To the best of 

our knowledge, all the widely-used regional and global bottom-up emission inventories adopt 

EPA’s CEMS to estimate NOx and CO2 emissions for US power plants. To the best of our 

knowledge, there is no independent dataset available to verify the derived ratios for the US 

power plants. 

 

Technical comments 

P3 L20 “. . .plants.As discussed” there is a space missing here 

 

Response: Thanks for pointing out this. We have updated it in the revised manuscript. 

 

P7 L11 I would change the title with “Application to Matimba power plant” or something like 

that more specific 

 

Response: Thanks. We have changed the title for section 3.3.2 accordingly. 

 



Anonymous Referee #2 

Liu et al. describe a method to estimate CO2 emissions from power plants using satellite 

observations of tropospheric NO2 columns. The method involves the estimation of NOx emissions 

using a top-down approach previously developed by the authors and estimation of CO2 

emissions by applying a NOx/CO2 emission ratio derived from direct stack emission 

measurements of both gases. The topic of the manuscript is important and relevant in the context 

of the ongoing development of the global emission monitoring system intended to support the 

elaboration of climate control and mitigation strategies. Although the idea to use satellite NO2 

measurements to constrain CO2 emissions from fossil fuel burning is not new, application of this 

approach to specifically power plant emissions is a step forward. Another new point of the study 

is the analysis of the relationship between NOx and CO2 emissions from different types of coal-

fired power plants in the US. That said, I keep wondering whether and how the method proposed 

in this manuscript can be proven useful in any scientific or practical applications. The weak 

points of the manuscript and my suggestions to the authors are outlined in my comments below. 

 

Response: We thank Referee #2 for the thoughtful comments, which we address carefully below. 

 

Major comment  

I find that the manuscript lacks clear logic in presenting the ideas and results of the authors. 

Specifically, while the main focus in Section 2 (“Method”) is given to the analysis of the CEMS 

stack measurements in the US in the period from 2005 to 2017, it is not explained and justified 

how the outcome of this analysis can be used for applications outside of the US. Such possible 

applications are illustrated in the manuscript (in Sect. 3.3) by the example of only one power 

plant (Matimba), for which the authors use the NOx/CO2 emission ratio estimated only for 2005 

and even argue that this estimate (based on the US data) is not directly applicable to the 

Matimba plant. Furthermore, if the “regressed” estimates of the NOx/CO2 emission ratio are not 

directly applicable to power plants outside of the US, the application of these approximate 

estimates to the selected 8 power plants inside of the US (presumably to test the method) seems 

to be pointless, as the CEMS measurements provide accurate direct estimates of the NOx/CO2 

emission ratio for any power plant in the US. As for the Matimba power plant, a reasonable 

alternative to using the CEMS measurements would be to get a corresponding estimate of the 

NOx/CO2 emission ratio from the ODIAC inventory. Therefore, in the present form, the 

discussion and evaluation of the method is very confusing and, to some extent, misleading. In this 

respect, I recommend that the authors illustrate the potential of their method and the usefulness 

of the analysis of the US CEMS data by considering a few more power plants outside of the US 

(e.g., in China), paying special attention to the accuracy of the estimates of the NOx/CO2 

emission ratio based on the US CEMS data versus the accuracy of corresponding estimates that 

can be obtained directly from available data of global and regional emission inventories. 

 

Response: We address the major comment as below. 

 The significance of the method validation for US power plants: 

In our study, we investigate the feasibility of using satellite data of NO2 to infer CO2 emissions, 

which could serve as a complementary verification of bottom-up inventories or be used to 

supplement these inventories.  

We first apply our methodology to U.S. power plants, which have accurate CEMS emissions. We 

systematically identify sources of variation (i.e., coal type and type of NOx control device). The 



high degree of accuracy of the U.S. CEMS data allows us to verify whether our methodology is 

feasible or not. In short, we found that it is feasible, but limitations of the current satellite data 

(e.g., spatio-temporal resolution, signal-to-noise) only allow us to apply our methodology to 

eight power plants. 

Looking forward, we anticipate that current (e.g., TROPOMI) and future sensors (e.g., TEMPO, 

Sentinel-4, GEMS) will reduce the limitations of the satellite data, especially after their time 

records have lengthened, allowing us to apply our methodology to more the US and world power 

plants. 

We have clarified this in the revised abstract, introduction and conclusion. 

 The potential application of the method and the US ratio derived in this study: 

CEMS measurements are available for some power plants in the US, Canada, European Union 

(EU) member states, Japan, South Korea, and, more recently, China. However, there is still a 

significant number of power plants in those countries without CEMS technology, particularly for 

CO2 measurements. For example, EU member states do not require power plants to use CEMS 

for CO2 reporting and the majority of plants in the EU therefore reports CO2 emissions based on 

emission factors (Sloss, 2011). Therefore, we recommend applying our method described in 

Section 2.2 to infer region-specific ratios for those power plants. The method developed in this 

study provides a simplified but reliable method to determine the ratios for those power plants. 

Many or most power plants in South America, Africa, and Asia (minus China) do not report 

CEMS measurements at all or their observations are of questionable quality. Therefore, bottom-

up emission inventories for NOx and CO2 from these countries are highly uncertain, confounding 

national and international efforts to design effective climate mitigation strategies. We have added 

a new subsection 3.3.1 to discuss how to apply the ratios derived in this study to other regions. 

As suggested, we added the comparison of the ratios derived in this study with those in the 

global coal-fired power plant emissions database (GPED) in Section 3.3.1. GPED is the only 

publicly available bottom-up emission database reporting both NOx and CO2 emissions for 

individual power plants all over the world. The US values show reasonable agreement with other 

countries’ values identified by GPED. The details are as follows: 

“Figure 8 shows the NOx to CO2 emission ratios for 2010 from the global power emissions database 

(GPED; Tong et al., 2018), which is the only publicly-available bottom-up emission database that reports 

both NOx and CO2 emissions for individual power plants for every country. All countries with over 30 

coal-fired power plants in GPED are shown in Figure 8. Not surprisingly, countries with more strict 

standards in place for NOx emissions from power plants (i.e., NOx emission limit value (ELV) < 200 

mg/m3; hereafter referred to as “more strict countries”) have smaller NOx to CO2 ratios (i.e., 1.0 versus 

2.5 on average) than countries with less strict standard (i.e., NOx ELV > 200 mg/m3; hereafter referred to 

as “less strict countries”). Additionally, the correlation coefficients are smaller for more strict countries 

(i.e., 0.82 on average) as compared to less strict countries (i.e., 0.96 on average), because power plants in 

more strict countries are more likely to have installed post-combustion NOx control systems, which likely 

lowered 𝑟𝑎𝑡𝑖𝑜𝑦
𝐶𝐸𝑀𝑆, similar to what occurred in the US over our analysis period (Section 2.2.2).  

We further compare the 2005 US 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  in Table 1 with the GPED NOx to CO2 emission ratios 

for less strict countries. We chose the 2005 value for comparison based on the following considerations. 

In 2005, the US EPA issued the Clean Air Interstate Rule (CAIR) to address the interstate transport of 

ozone and fine particulate matter pollution for eastern US states, which reduced NOx emissions and, thus, 

NOx to CO2 ratios (𝑟𝑎𝑡𝑖𝑜𝑦
𝐶𝐸𝑀𝑆). However, similar comprehensive control strategies have not been adopted 



in less strict countries. In this way, the 2005 values are expected to show better consistency with the NOx 

to CO2 ratios of less strict countries than values for more recent years. Note that the GPED database does 

not give information on ratios by coal type. Therefore, we use 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  for bituminous coal, which 

is the most widely used coal type in coal-fired power plants in most countries.  

The ratios for individual power plants in less strict countries tend to be larger than the US 

𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  for 2005, considering that power plants in those countries may not be equipped with any 

NOx control devices or even low-NOx burners, a technology which is widely installed in US power plants 

with and without post-combustion NOx control devices. Most ratios range from US 2005 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  

to 2005 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  + standard deviation (Figure 8). It is no surprise that some less strict countries 

have ratios higher than this range, which also occurs for some US power plants without post-combustion 

emission controls (Figure 4). However, there are considerable uncertainties in the GPED database given 

the scarcity of reliable emissions information in less strict countries. For example, the GPED NOx and 

CO2 emissions estimates for Turkey and Russia, which are outliers in Figure 8, are subject to more 

assumptions and, thus, larger uncertainties than countries with high-quality country-specific emission data, 

such as China, which has a high-resolution emissions database (CPED; Liu et al., 2015), and India, which 

has a database developed by Argonne National Laboratory (Lu et al., 2011).  

Figure 9 shows a schematic of our methodology to estimate the NOx to CO2 emission ratios for power 

plants outside the US. We adopt different approaches for more and less strict countries. More strict 

countries, including Canada, European Union (EU) member states, Japan, South Korea, and, more 

recently, China, usually use CEMS to monitor emissions, particularly from the largest emitters. For power 

plants with CEMS measurements for both NOx and CO2 emissions, it is straightforward to use the 

measured ratios. However, there is still a significant number of power plants in those countries without 

CEMS technology, particularly for CO2 measurements. For example, EU member states do not required 

power plants to use CEMS for CO2 reporting and the majority of plants in the EU therefore reports CO2 

emissions based on emission factors (Sloss, 2011). Therefore, we recommend applying our method 

described in Section 2.2 to infer region-specific ratios for those power plants. The US 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  

could be a less accurate, but reasonable approximation when no CEMS data are available, considering 

those countries share similar NOx ELVs for power plants as the US. For less strict countries, we 

recommend using the 2005 US values by coal type when ratios from countries with similar NOx emission 

standard are not available. We also recommend assigning a range from 2005 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  to 2005 

𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  + standard deviation, instead of a fixed value, to the ratio for inferring CO2 emissions, 

considering the knowledge on ratios from those regions are too few to narrow the constraint. 

As demonstrated in Section 2.2, our method presented in this study provides a reasonable estimate of 

the ratio for power plants without post-combustion NOx control devices with only knowing coal type. 

Even for regions without reliable emission information, the information on coal type, particularly for 

large power plants, are very likely publicly-available. For power plants that install post-combustion NOx 

control technology, we additionally require the removal efficiency of the device to derive the ratio. The 

removal efficiency of post-combustion NOx control devices is usually directly reported, as the operation 

of such devices is very expensive and is expected to be subject to strict quality control and assurance 

standards. In contrast to bottom-up approaches, many details are required, including coal type, coal 

quality, boiler firing type, NOx emission control device type, and operating condition of boiler and 



emission control device, when calculating NOx and CO2 emissions.” 

 

Figure 8 Comparison of the regressed NOx to CO2 emission ratios derived from the global 

power emissions database (GPED) for different regions versus the correlation coefficient of the 

regression. The blue and red circles denote regions that are subject to more strict standard for 

NOx emissions from power plants (i.e., a NOx ELV of 200 mg/m
3
 or less) and other regions, 

respectively. Y axis: the slope of the regression of the NOx to CO2 emissions with an assumed y-

intercept of zero. Error bars show the standard deviations for the NOx to CO2 emission ratios for 

individual power plants. X axis: correlation coefficient of the regression. The dashed line 

represents 2005 US 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  for bituminous coal derived in this study. The grey shadow 

represents 2005 US 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  ± standard deviation.  

*China switched from being a less strict country to a more strict country in 2014, when most coal-fired power plants 

in China were required to comply with its new emission standards (GB13223-2011). 

 



 

Figure 9 Schematic of our methodology to estimate the NOx to CO2 emission ratios for power 

plants outside the US.  

*China switched from being a less strict country to a more strict country in 2014, when most coal-fired power plants 

in China were required to comply with its new emission standards (GB13223-2011). 

 The recommendation of using the ODIAC inventory to derive the ratios.  

We agree that ODIAC is a great source for CO2 emissions. However, it does not provide NOx 

emissions. It is not practical to calculate the ratios based on ODIAC. 

 

Specific comments 

p.2, l.16-18: I believe that the narrow swath of the OCO-2 sensor is not the main reason for the 

limitations of the novel and promising method proposed by Reuter et al. (2019). I suggest that 

the authors provide a more extensive and accurate discussion (not necessarily in Introduction) of 

the advantages and disadvantages of their approach with respect to that of Reuter et al. (2019). 

 

Response: We have added the discussion in the revised introduction, as follows: 

“More recently, the co-located regional enhancements of CO2 observed by OCO-2 and NO2 

observed by TROPOMI were analysed to infer localized CO2 emissions for six hotspots 

including one power plant globally (Reuter et al., 2019). As emissions plumes are significantly 

longer than the swath width of OCO-2 (10km), OCO-2 sees only cross sections of plumes, which 

may not be sufficient to infer emission strengths. Because power plant emissions can have 

substantial temporal variations (Velazco et al., 2011) and the cross-sectional CO2 fluxes are valid 

only for OCO-2 overpass times, the cross-sectional fluxes may not adequately represent the 

annual or monthly averages, which are required for the development of climate mitigation 

strategies. In addition, the cross-sectional fluxes may not be a good approximation for emission 

strengths if meteorological conditions are not taken into account (Varon et al., 2018). As 

compared to the method proposed in this study, Reuter’s method has the advantage of not 

requiring a priori emission information. However, there are currently no satellite instruments 

with a wide enough swath to allow wider application of Reuter’s method. ” 

 

p.2, l.37: I recommend that the authors avoid boasting about the “novel” method here and 

elsewhere. Actually, the only significant new point of their method is that it is focused on a 



particular source of CO2 emissions (as noted above). A very similar method to constrain CO2 

emissions is described in previous papers (cited in this manuscript) focused on estimating fossil 

fuel burning CO2 emissions in China and in Europe. Certainly, there are differences concerning 

the ways to estimate the NOx emissions and NOx/CO2 emission ratio in the different studies, but 

these differences are mostly of technical nature. Furthermore, the method which was used to 

estimate NOx emissions in this study is identical to that presented by the same authors in their 

previous papers. 

 

Response: We have deleted the term of novel in the revised manuscript. 

 

p.3, l.7-12: It would be useful to explain briefly why a special approximation procedure is 

needed to estimate a NOx/CO2 emission ratio while using the CMES data (i.e. why the NOx/CO2 

emission ratio for any given power plant in the US could not be directly evaluated using the 

corresponding CMES measurements). 

 

Response: CEMS measurements are available for some power plants in the US, Europe, Canada 

and, more recently, China. For those power plants with CEMS measurements, we agree that it is 

more straightforward and accurate to use the measured values. However, there is still a 

significant number of power plants in those countries without CEMS technology, particularly for 

CO2 measurements. The method developed by this study provides a more reliable method to 

determine the ratios for those power plants without CEMS based on CEMS data for other plants. 

We have clarified this in the revised Section 3.3.1, as follows: 

 

“More strict countries, including Canada, European Union (EU) member states, Japan, South 

Korea, and, more recently, China, usually use CEMS to monitor emissions, particularly from the 

largest emitters. For power plants with CEMS measurements for both NOx and CO2 emissions, it 

is straightforward to use the measured ratios. However, there is still a significant number of 

power plants in those countries without CEMS technology, particularly for CO2 measurements. 

For example, EU member states do not require power plants to use CEMS for CO2 reporting and 

the majority of plants in the EU therefore reports CO2 emissions based on emission factors (Sloss, 

2011). Therefore, we recommend applying our method described in Section 2.2 to infer region-

specific ratios for those power plants. The US 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  could be a less accurate, but 

reasonable approximation when no CEMS data are available, considering those countries share 

similar NOx ELVs for power plants as the US.” 

 

P3. l.21. It is quite unusual and inconvenient that the first figure ever mentioned in the 

manuscript is Figure 5 (instead of Figure 1). The order of the figures should be corrected. 

 

Response: Thanks. We have reordered the figures in the revised manuscript. 

 

p.3, l.29-32: The authors should explain the origin and significance of the value “1.32”. Would 

their estimates be less accurate if they assumed that the NOx/NO2 ratio equals, say, to 1.3? 

Further, do the authors imply that if one had a way to measure the NO/NO2 ratio around any 

power plant anywhere in the world with a spatial resolution of 13 km×24 km, then the measured 

NOx/NO2 ratio would be exactly 1.32? Wouldn’t the NOx/NO2 ratio actually strongly vary from 



site to site and would depend on the ozone level (which is frequently not determined by local 

pollution sources) and the age of the plume? Doesn’t the fact that the estimates of the NOx 

lifetime inferred from satellite measurements vary across the 8 power plants within almost a 

factor of 2 (according to Table 2) mean that OH (and therefore O3) levels are quite different in 

plumes from different power plants? Overall, I believe that the uncertainty associated with the 

estimation of the NOx/NO2 ratio should be carefully discussed and evaluated (perhaps, using a 

chemistry transport model). A brief and superficial discussion of this important point in Liu et al. 

(2016) is certainly insufficient. 

 

Response: The number of 1.32 used for scaling up the NO2 to NOx is based on the typical 

assumptions made in the section 6.5.1 of Seinfeld and Pandis (2006) for “typical urban 

conditions and noontime sun” following the recommendation by Beirle et al. (2011). We agree 

that the NO/NO2 ratio might vary locally. But these local variations are not expected to be 

significant over spatial scales of ~100−200 km and annual temporal averaging. We included 

increased uncertainty of the NOx/NO2 ratio from 10% to 20% when calculating the overall 

uncertainties. We recognize that uncertainties resulting from the NOx/NO2 ratio may be better 

understood when more direct measurements are available in the future. We have clarified this in 

the Section 3.2 of the revised manuscript, as follows: 

“The number of 1.32 used for scaling the NO2 to NOx ratio is based on assumptions presented in 

section 6.5.1 of Seinfeld and Pandis (2006) for “typical urban conditions and noontime sun”. 

Note that conditions are quite similar in this study because of the overpass time of OMI close to 

noon, the selection of cloud-free observations, the focus on the ozone season, and the focus on 

polluted regions. A case study of CTM simulations shows an identical value of 1.32 for Paris in 

summer (Shaiganfar et al., 2017). The simulated NOx/NO2 ratio at the OMI overpass time within 

the boundary layer (up to 2 km) in a chemistry–climate model, EMAC (Jöckel et al., 2016), was 

1.28 + 0.08 for polluted (NOx>1×10
15

 molec cm
-2

) regions for the July 1, 2005, and 1.32 + 0.06 

on average for the ozone season. However, the coarse grid of EMAC (2.8
◦
 × 2.8

◦
 in latitude and 

longitude) may not capture the true range of variation of the NOx/NO2 ratio. Therefore, we 

assumed an uncertainty of 20% arising from the NOx/NO2 ratio, double than the standard 

deviation of the EMAC ratio. ” 

 

Table S1: The authors provided some useful supplementary information for Sect. 2.1 in Table S1, 

but this table is not mentioned and discussed anywhere in the manuscript. 

 

Response: Thanks for pointing out this. We have introduced the table in the revised manuscript, 

as follows: 

“The locations of the 8 plants are shown in Figure 1 and given in Table S1.” 

“The fitted lifetimes and other fitting parameters for all power plants are given in Table S1.” 

 

p.4, l.3-33: I suggest the authors provide an additional figure illustrating the NO2 plume from 

the Rockport power plant along with a corresponding Gaussian fit. 

 

Response: Thanks. We have added it as Figure 2 in the revised manuscript. 

 



 
 

Figure 2 Mean OMI NO2 tropospheric VCDs around the Rockport power plant (Indiana, USA) 

for (a) calm conditions, (b) northeasterly winds and (c) their difference (northeasterly − calm) for 

the period of 2005 – 2017. The location of Rockport is labelled by a black dot. (d) NO2 line 

densities around Rockport. Crosses: NO2 line densities for calm (blue) and northeasterly winds 

(red) as function of the distance x to Rockport center. Grey line: the fit result. The numbers 

indicate the net mean wind velocities (windy − calm) from MERRA-2 (w) and the fitted lifetime 

τ. 

 

p.5, l.5: It would be helpful if the authors explained here what is the purpose of creating 

“continuous and consistent records of ratio_CEMS...”. Are these records supposed to be helpful 

for estimating CO2 emissions inside of the US (although accurate estimates of the NOx/CO2 

ration are already provided by CEMS for each power plant) or outside of the US (although the 

applicability of the CEMS data outside of the US is very questionable)? 

 

Response: The sentence indicates that 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆 for plants prior to and after installing post-

combustion NOx control systems is continuous and consistent, because the estimation is based on 



𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  for plants without post-combustion control systems in operation. We have deleted 

the terms of continuous and consistent in the revised manuscript to prevent misunderstanding. 

 

Sect. 3.2: In my opinion, the uncertainties of the emission estimates inferred from the OMI 

measurements are well characterized by the standard deviations reported in Table 3. However, 

these “data-based” uncertainty estimates are not discussed in the manuscript. The present 

discussion of the uncertainties, however, looks very superficial. I suggest the authors provide a 

separate table (e.g., in the Supporting information) reporting the uncertainties associated with 

each power plant and with each individual factor contributing to the total uncertainty. Also, I 

wonder how a reader acquainted with the basic knowledge of the mathematical statistics is 

supposed to interpret the values of the uncertainty reported in this section. Do these values 

represent the standard deviation (that is, the confidence interval corresponding to the 68.3 

percentile)? If so, does the fact that the uncertainty estimates range from 62%–96% mean that 

there is a significant chance that a true value of the emissions can be below zero (assuming that 

the error distribution is Gaussian)? My suggestion is to consider reporting the so huge 

uncertainties in terms of the geometric standard deviation (thus assuming that the error 

distribution is log-normal). 

 

Response: We agree that the standard deviation reported in Table 3 is a good indicator of the 

uncertainty. We also calculate the geometric standard deviation of the difference between 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆 

and 𝐸𝐶𝑂2
𝑆𝑎𝑡 from 2006* to 2016* for individual power plants in Table S2 as an alternative measure 

to reflect the uncertainty following the suggestion of the reviewer. In the revised manuscript, we 

have added the discussion on this “data-based” uncertainty analysis, as follows: 

 

“The mean and the standard deviation of the relative differences between 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆 and 𝐸𝑁𝑂𝑥

𝑆𝑎𝑡 , and 

𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆 and 𝐸𝐶𝑂2

𝑆𝑎𝑡 for all eight power plants provide a good alternative measure of uncertainties 

(Table 3). The relative differences are rather small, which are 0% ± 33% and 8% ± 41% (mean ± 

standard deviation) for NOx and CO2, respectively. We additionally calculate the geometric 

standard deviations (GSDs) of the difference between 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆 and 𝐸𝐶𝑂2

𝑆𝑎𝑡 from 2006* to 2016* for 

individual power plants in Table S2. The small values of GSDs ranging from 1.07 to 1.31 further 

improve our confidence in the accuracy of the derived emissions in this study.” 

We have added a separate Table S2 to list the contributors to the overall uncertainties as 

suggested by the reviewer. We report the derived uncertainties as a 95% confidence interval (CI). 

Note that we adjust our uncertainty estimates for some contributors. We increased the 

uncertainty of the NOx/NO2 ratio from 10% to 20% (see response to the comments on the 

NOx/NO2 ratio). We decreased the uncertainty arising from the variations of fitted lifetimes by 

wind direction from 40% to 20%, because the average of the standard deviation of lifetimes for 

all wind directions decreased from 40% in Liu et al. (2016) to 20% in this study. The details are 

given in section 1 of the supplement, as follows: 

“The uncertainty analysis is similar to the procedure described in our previous work (Liu et al., 

2016), based on the fit performance and the dependencies on the a priori settings as determined 

in sensitivity studies. We report the derived uncertainties as a 95% confidence interval (CI). Here 

we briefly list the sources of uncertainties and how they are quantified. Further details are 

provided in Section 3 of the Supplement of Liu et al. (2016). In summary, we conclude that: 



 Choice of integration and fit intervals: Uncertainties arising from the choice of 

integration and fit intervals are about 10% for the lifetime and 20% for the total NO2 

mass, respectively, based on our sensitivity analysis by changing integration and fit 

intervals. 

 Fit errors: The fit errors expressed as 95% confidence interval (CI) are derived from the 

least-squares fit routine directly for individual sources. They are typically on the order of 

10% for both lifetime and total NO2 mass, both of which are propagated into the 

uncertainty of 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 . In addition, the standard deviation of fitted lifetimes for all wind 

direction sectors is regarded as a measure of uncertainty to reflect the reliability of 

lifetimes, which is 20% on average for all power plants. 

 Wind fields: The uncertainty associated with the wind data is 30%. The choice of wind 

layer height and the uncertainties of wind fields themselves contribute to the overall 

uncertainty. 

 The derived NOx emissions are affected by the uncertainty of the NO2 tropospheric 

VCDs (~30%) and the NOx/NO2 ratio (~20%). 

 Effects of a possible systematic change of NO2 tropospheric VCDs from calm to windy 

conditions result in an uncertainty of ~10%. 

 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  contributes to an uncertainty of 15%.  

 For power plants with post-combustion NOx control devices, an additional uncertainty of 

20% comes from the predicted NOx removal efficiency of the devices. 

The uncertainties of each contributor for individual power plants are listed in Table S2. We 

assume that their contributions to the total uncertainty are independent and define the total 

uncertainty as the root of the quadratic sum of the aforementioned contributions.” 

 

p.7, l.19,20: If the authors believe that the NOx/CO2 emission ratio at Matimba is on the upper 

end of the US values, then perhaps they should have used a maximum value of the NOx/CO2 

emission ratios among all of the US power plants without NOx emission control. Anyway, it is 

not clear how the standard deviation of ratio_regressed was evaluated? Is it the standard 

deviation of the slope of a linear fit or the standard deviation of the original NOx/CO2 emission 

ratios from the CMES data? 

 

Response: We assume the NOx to CO2 emission ratio of Matimba is on the upper end of the US 

values, considering South Africa has not implemented improvements in boiler operations to 

decrease the ratio, such as optimizing furnace design and operating conditions, as in the US. We 

thus use the ratio for year 2005, instead those for more recent years to infer CO2 emissions for 

the entire period. The standard deviation is that of the NOx/CO2 emission ratios for individual 

power plants from CEMS. We believe the ratio of Matimba is more likely to range from 2005 

𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  to 2005 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑

𝐶𝐸𝑀𝑆  + standard deviation, instead of being 2005 

𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆 , considering that it is not equipped with any NOx control devices, even low-NOx 

burners which are widely installed in US power plants. But we don’t use the maximum value of 

the ratio in this study, because it may be related with some plant-specific operating conditions, 

which is not applicable to other plants. We have clarified how to apply the ratios derived in this 

study to other regions in Section 3.3.1. 

 



p.7, l.29-31: According to Reuter et al. (2019), the CO2 emission estimates for the Matiba power 

plant are available also from the ODIAC inventory. The authors could consider using the 

corresponding estimates for comparison. 

 

Response: Thanks. We have added the estimates from ODIAC in Figure 11 of the revised 

manuscript. 𝐸𝐶𝑂2
𝑆𝑎𝑡 derived in this study shows reasonable agreement with the ODIAC. 

 

Conclusions: This section looks unusually short for ACP. Furthermore, instead of providing a 

clear and logical summary of the major findings of the study, the authors preferred to speculate 

about possible future developments of their method. Accordingly, I believe this section needs to 

be re-written and significantly extended. 

 

Response: We have extended the conclusion substantially to provide a summary of the major 

findings, as follows: 

 

“In our study, we investigated the feasibility of using satellite data of NO2 from power plants to 

infer co-emitted CO2 emissions, which could serve as complementary verification of bottom-up 

inventories or be used to supplement these inventories that are highly uncertain in many regions 

of the world. For example, our estimates will serve as an independent check of CO2 emissions 

that will be inferred from satellite retrievals of future CO2 sensors (Bovensmann et al., 2010). 

Currently, uncertainties in CO2 emissions from power plants confound national and international 

efforts to design effective climate mitigation strategies.  

We estimate NO2 and CO2 emissions during the “ozone season” from individual power plants 

from satellite observations of NO2 and demonstrate its utility for US power plants, which have 

accurate CEMS with which to evaluate our method. We systematically identify the sources of 

variation, such as types of coal, boiler, and NOx emission control device, and change in operating 

conditions, which affect the NOx to CO2 emissions ratio. Understanding the causes of these 

variations will allow for better informed assumptions when applying our method to power plants 

that have no or uncertain information on the factors that affect their emissions ratios. For 

example, we estimated CO2 emissions from the large and isolated Matimba power plant in South 

Africa, finding that our emissions estimate shows reasonable agreement with other independent 

estimates. 

We found that it is feasible to infer CO2 emissions from satellite NO2 observations, but 

limitations of the current satellite data (e.g., spatio-temporal resolution, signal-to-noise) only 

allow us to apply our method to eight large and isolated U.S. power plants. Looking forward, we 

anticipate that these limitations will diminish for the recently launched (October 2017) 

TROPOMI, and three upcoming (launches expected in the early 2020s) geostationary 

instruments (NASA TEMPO; European Space Agency and Copernicus Programme Sentinel-4; 

Korea Meteorological Administration Geostationary Environment Monitoring Spectrometer, 

GEMS), which are designed to have superior capabilities to OMI. As demonstrated in Ialongo et 

al. (2019), high resolution TROPOMI observations are capable of describing the spatio-temporal 

variability of NO2, even in a relatively small city like Helsinki. Higher spatial and temporal 

resolutions will likely reduce uncertainties in estimates of NOx emissions as well as allow for the 

separation of more power plant plumes from nearby sources, thus increasing the number of 

power plants available for analysis. Therefore, future work will be to apply our method to these 



new datasets, especially after several years of vetted data become available. Additional future 

work will include applying our method to other regions of the world with reliable CEMS 

information, such as Europe, Canada and, more recently, China, to develop a more reliable and 

complete database with region-specific ratios. ” 

 

Figure 2: Do the emissions shown in this figure correspond to the ozone season only? If so, this 

should be indicated in the figure caption. The regression coefficients could be reported only with 

one or two digits after the point. Is there a reason for showing a linear regression with the 

intercept term in the panel (c) and without the intercept in other panels? 

 

Response: For comparison to 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  and 𝐸𝐶𝑂2

𝑆𝑎𝑡, we use emissions averaged over the ozone season 

derived from Air Markets Program Data (available at https://ampd.epa.gov/ampd/). However, 

Air Markets Program Data do not provide information about each plant’s boiler firing types (e.g., 

tangential or wall-fired boiler), NOx control device type, fossil fuel type (with categories of coal, 

oil, gas and other), and coal type (with categories of bituminous, lignite, subbituminous, refined 

and waste coal), which are required to get reasonable ratio. Thus, we choose eGRID as the data 

source for Figure2. We use eGRID annual emissions in Figure 2, because eGRID does not 

provide CO2 emissions specifically for the ozone season.  

 

We have changed the regression coefficients to two digits after the point. We intent to show the 

linear regression without intercept in panels (a) and (b), because the regression slope was 

calculated requiring zero intercept for deriving 𝒓𝒂𝒕𝒊𝒐𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒆𝒅
𝑪𝑬𝑴𝑺 . 

 

Figure 8: The meaning of a shaded band should be clearly explained in the figure caption. I 

suggest also to supply the emission estimates inferred from the OMI observations with the error 

bars corresponding to the mean of the standard deviations reported in Table 3. 

 

Response: We have added the explanation for the shaded band in the revised caption, as follows: 

“The upper and lower grey bands denote the emissions inferred from 𝒓𝒂𝒕𝒊𝒐𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒆𝒅
𝑪𝑬𝑴𝑺  and 

𝒓𝒂𝒕𝒊𝒐𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒆𝒅
𝑪𝑬𝑴𝑺 + standard deviation of ratio, respectively.” 

We have added error bars in the revised figure. 

 

 
 

https://ampd.epa.gov/ampd/
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Abstract. We present a novel method to infer CO2 emissions from individual power plants based on satellite observations of 14 

co-emitted nitrogen dioxide (NO2) and ), which could serve as complementary verification of bottom-up inventories or be 15 

used to supplement these inventories. We demonstrate its utility on eight large and isolated US power plants, where accurate 16 

stack emission estimates of both gases are available for comparison. In the first step of our methodology, we infer nitrogen 17 

oxides (NOx) emissions from isolatedUS power plants using Ozone Monitoring Instrument (OMI) NO2 tropospheric vertical 18 

column densities (VCDs) averaged over the ozone season (May-September) and a “top-down” approach that we previously 19 

developed. Second, we determine the relationship between NOx and CO2 emissions based on the direct stack emissions 20 

measurements reported by continuous emissions monitoring system (CEMS) programs, accounting for coal typequality, 21 

boiler firing typetechnology, NOx emission control device type, and changesany change in operating conditions. Third, we 22 

estimate CO2 emissions of the ozone season for a plantpower plants using the OMI-estimated NOx emissions and the CEMS 23 

NOx/CO2 emission ratio. We find that the CO2 emissions estimated by our satellite-based method during 2005–2017 are in 24 

reasonable agreement with the US CEMS measurements, with a relative difference of 8% ± 41% (mean ± standard 25 

deviation) for the selected US power plants in our analysis. Total uncertainty in the inferred CO2 estimates is partly 26 

associated with the uncertainty associated with the OMI NO2 VCD data, so we expect that it will decrease when our method 27 

is applied to OMI-like sensors with improved capabilities, such as TROPOspheric Monitoring Instrument (TROPOMI) and 28 

geostationary Tropospheric Emissions: Monitoring Pollution (TEMPO). The broader implication of our methodology is that 29 

it has the potential to provide an additional constraint on CO2 emissions from power plants in regions of the world without 30 

reliable emissions accounting. We explore the feasibility by comparing the derived NOx/CO2 emission ratios for the US with 31 

those from a bottom-up emission inventory for other countries and applying our methodology to a power plant in South 32 

Africa, where the satellite-based emission estimates show reasonable consistency with other estimatesindependent estimates. 33 

Though our analysis is limited to a few power plants, we expect to be able to apply our method to more US (and world) 34 

power plants when multi-year data records become available from new OMI-like sensors with improved capabilities, such as 35 

the TROPOspheric Monitoring Instrument (TROPOMI) and upcoming geostationary satellites, such as the Tropospheric 36 

Emissions: Monitoring Pollution (TEMPO) instrument. 37 

1 Introduction 38 

Thermal power plants, particularly coal-fired power plants, are among the largest anthropogenic CO2 emitters, 39 

contributing ~40% of energy-related CO2 emissions globally in 2010 (Janssens-Maenhout et al., 2017). Coal-fired power 40 
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plants are expected to be one of the primary contributors of CO2 emissions in the coming decades because of abundant world 1 

coal reserves (Shindell and Faluvegi, 2010). Therefore, it is important to accurately monitor global CO2 emissions from 2 

power production in order to better predict climate change (Shindell and Faluvegi, 2010) and to support the development of 3 

effective climate mitigation strategies. 4 

CO2 emissions from power plants are typically quantified based on bottom-up approaches using fuel consumption and 5 

fuel quality, though fuel properties are not always well known, resulting in uncertainties in the estimated CO2 emissions for 6 

individual plants (Wheeler and Ummel, 2008). Even for US power plants that are considered to have the most accurate 7 

information on fuel usage among world nations, the difference between emissions estimated based on fuel usage and those 8 

reported as part of continuous emissions monitoring systems (CEMS) programs is typically about 20% (Ackermann and 9 

Sundquist, 2008). Thus, emission estimates based on independent data sources, such as satellite observations, are a desirable 10 

complement to validate and improve the current CO2 emissions inventories, especially in countries without CEMS data, 11 

which is the case in most of the world. 12 

Anthropogenic CO2 emissions have been estimated from space-based CO2 observations, but the existing satellite CO2 13 

sensors are designed to provide constraints on natural CO2 sources and sinks (Basu et al., 2013; Houweling et al, 2015), and 14 

thus their capability for monitoring anthropogenic point sources is limited (Nassar et al., 2017). Observations from sensors, 15 

including the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY; Burrows et al., 16 

1995), Greenhouse gases Observing SATellite (GOSAT; Yokota et al., 2009), and Orbiting Carbon Observatory-2 (OCO-2; 17 

Crisp et al., 2015), show statistically significant enhancements over metropolitan regions (Kort et al., 2012; Schneising et al., 18 

2013; Janardanan et al., 2016; Buchwitz et al., 2018; Reuter et al., 2019).; Wang et al., 2018). However, very few studies 19 

have focused on individual point sources. Bovensmann et al. (2010) and Velazco et al. (2011) presented a promising satellite 20 

remote sensing concept to infer CO2 emissions for power plants based on the atmospheric CO2 column distribution. Nassar et 21 

al. (2017) and Reuter et al. (2019) presented the onlyfirst quantification of CO2 emissions from individual power plants using 22 

OCO-2 observations. However, due tobecause of the narrow swath (~10 km at nadir) and 16-day repeat cycle of the OCO-2 23 

sensor, their method cannot be currently applied to generatethe number of clear-day overpasses is too small to allow for the 24 

development of a global CO2 emissions database.  25 

In contrast to CO2, inferring NOx emissions from individual power plants using satellite NO2 column retrievals has been 26 

done with a higher degree of confidence (e.g., Duncan et al., 2013; de Foy et al., 2015). The Dutch-Finnish Ozone 27 

Monitoring Instrument (OMI) on NASA’s Earth Observing System Aura spacecraft (Schoeberl et al., 2006) provides near 28 

daily, global NO2 tropospheric vertical column densities (VCDs) at a spatial resolution of 13×24 km2 (at nadir) (Levelt et al., 29 

2006; 2018; Krotkov et al., 2017), which allows emission signals from individual power plants to be resolved. Beirle et al. 30 

(2011) first analyzed isolated large sources (i.e., megacities and the US Four Corners power plant) by averaging OMI NO2 31 

tropospheric VCDs separately for different wind directions, which allows to determinefor the estimation of NOx emissions 32 

and lifetimes by fitting an exponentially modified Gaussian function. Several follow-up studies (e.g., de Foy et al., 2015; Lu 33 

et al., 2015 and Goldberg et al., 2019a) further developed this approach and inferred NOx emissions from isolated power 34 

plants and cities. More recently, we advanced this approach for sources located in polluted areas to infer NOx emissions for 35 

17 power plants and 53 cities across China and the US (Liu et al., 2016; 2017). 36 

Since NOx is co-emitted with CO2, NOx emissions inferred from satellite data may be used to estimate CO2 emissions 37 

from thermal power plants. Previous analyses estimated regional CO2 emissions based on satellite-derived NOx emissions 38 

and the NOx to CO2 emission ratios from bottom-up emission inventories (Berezin et al., 2013; Konovalov et al., 2016; 39 

Goldberg et al., 2019b) or co-located satellite retrievals of CO2 and NO2 (Reuter et al., 2014). Hakkarainen et al. (2016) 40 

confirmed the spatial correlation between CO2 spatial anomalies and OMI NO2 VCD enhancements at the regional scale 41 

using satellite observations at higher resolution. More recently, the co-located regional enhancements of CO2 observed by 42 
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OCO-2 and NO2 observed by TROPOMI were analysed to monitor localized CO2 emissions (Reuter et al., 1 

2019).Hakkarainen et al. (2019) also showed how overlapping OCO-2 CO2 data and data of NO2 from the recently launched 2 

(October 2017) European Union Copernicus Sentinel 5 precursor TROPOspheric Monitoring Instrument (TROPOMI) can be 3 

used to identify small scale anthropogenic CO2 signatures. 4 

More recently, the co-located regional enhancements of CO2 observed by OCO-2 and NO2 observed by TROPOMI were 5 

analysed to infer localized CO2 emissions for six hotspots including one power plant globally (Reuter et al., 2019). As 6 

emissions plumes are significantly longer than the swath width of OCO-2 (10 km), OCO-2 sees only cross sections of 7 

plumes, which may not be sufficient to infer emission strengths. Because power plant emissions can have substantial 8 

temporal variations (Velazco et al., 2011) and the cross-sectional CO2 fluxes are valid only for OCO-2 overpass times, the 9 

cross-sectional fluxes may not adequately represent the annual or monthly averages, which are required for the development 10 

of climate mitigation strategies. In addition, the cross-sectional fluxes may not be a good approximation for emission 11 

strengths if meteorological conditions are not taken into account (Varon et al., 2018). As compared to the method proposed 12 

in this study, Reuter’s method has the advantage of not requiring a priori emission information. However, there are currently 13 

no satellite instruments with a wide enough swath to allow wider application of Reuter’s method.  14 

In this study, we present a novel method to estimate CO2 emissions from individual power plants using OMI NO2 15 

observations and auxiliary CEMS information on necessary to estimate NOx to CO2 emission ratios. Such estimates could 16 

serve as complementary verification of bottom-up CO2 inventories or be used to supplement these inventories. For instance, 17 

Liu et al. (2018) used satellite data of SO2 to identify large SO2 sources that were missing from a bottom-up emissions 18 

inventory and created a merged bottom-up/top-down SO2 emissions inventory. We apply our approach to US power plants, 19 

which have an exceptionally detailed CEMS database of NOx and CO2 emissions, in order to validate our method. Using 20 

auxiliary CEMS information, we explore the relationship between NOx and CO2 emissions for individual power plants, 21 

assessing variations in the ratio associated with coal quality, boiler firing type, NOx emission control device technology, and 22 

changes in operating conditions. Understanding the causes of these variations will allow for better informed assumptions 23 

when applying our method to power plants that have no or uncertain information on the factors that affect their emissions 24 

ratios. We discuss the uncertainties and limitationsapplications of our approach. Finally, we present the application of our 25 

method to power plants in South Africa. We discuss other, and the potential applications in conclusion, including to otherof 26 

NO2 datasets from new and upcoming satellite instruments, which will improve the utility of our method for inferring CO2 27 

emissions from power plants around the world. Finally, we discuss future research directions. 28 

2 Method 29 

In this section, we present a novelour method to infer CO2 emissions (𝐸 𝐶𝑂2

𝑆𝑎𝑡 ) from satellite-derived NOx emissions (𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 ) 30 

for individual coal-fired power plants using the following equation:  31 

𝐸𝐶𝑂2,𝑦
𝑆𝑎𝑡 =

𝐸𝑁𝑂𝑥,𝑦
𝑆𝑎𝑡

𝑟𝑎𝑡𝑖𝑜𝑖,𝑦
𝐶𝐸𝑀𝑆 ,                                           (1) 32 

where i represents coal type and y represents the target year. We demonstrate our method on US power plants since there are 33 

accurate CEMS stack measurements of NOx and CO2 emissions with which to validate 𝐸 𝐶𝑂2

𝑆𝑎𝑡 . In Section 2.1, we describe 34 

how towe estimate 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  from OMI NO2 tropospheric VCD observations. In Section 2.2, we discuss how towe estimate the 35 

ratio of NOx to CO2 emissions (𝑟𝑎𝑡𝑖𝑜𝑦
𝐶𝐸𝑀𝑆 = 𝐸𝑁𝑂𝑥,𝑦

𝐶𝐸𝑀𝑆/ 𝐸𝐶𝑂2,𝑦
𝐶𝐸𝑀𝑆) from CEMS stack measurements in the US Emissions & 36 

Generation Resource Integrated Database (eGRID; USEPA, 2018). Since post-combustion NOx control systems, including 37 

selective noncatalytic reduction (SNCR) and selective catalytic reduction (SCR), change the correlationrelationship between 38 
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𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆 and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆, we present separate methods to determine 𝑟𝑎𝑡𝑖𝑜𝑦
𝐶𝐸𝑀𝑆 for power plants without and with post-combustion 1 

NOx control systems in Section 2.2.1 and Section 2.2.2, respectively. We discuss the validation of the estimated 𝐸 𝐶𝑂2

𝑆𝑎𝑡  in 2 

Section 3.   3 

2.1 Estimating satellite-derived NOx emissions (𝑬𝑵𝑶𝒙

𝑺𝒂𝒕 ) 4 

From all US coal-fired power plants, we selected 21 power plants for estimating 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 . We chose these plants based on the 5 

magnitude of their annual emissions (i.e., 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆 (i.e., > 10 Gg/yr in 2005) and relative isolation from other large sources and 6 

relative isolation from other large sources to avoid “contamination” of a power plant’s NOx plumes by NOx from other 7 

sources.plume. Power plants located in urban areas (i.e., within a radius of 100 km from a city centerscenter), or clustered in 8 

close proximity (i.e., 50 km) with other large industrial plants arewere excluded by visual inspection using satellite imagery 9 

from Google Earth. TheWe used the top 200 largest US cities (rankranked by 2018 population as estimated by the United 10 

States Census Bureau, available at https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population) are used to 11 

select power plants. As discussed below, we arewere able to estimate 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  for 8 of the 21 plants. The locations of the 8 12 

plants are shown in Figure 51 and given in Table S1. 13 

We followfollowed the method of Liu et al. (2016; 2017) to estimate 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  for 2005 to 2017. In our analysis, we useused 14 

OMI NO2 tropospheric VCDs from the NASA OMI standard product, version 3.1 (Krotkov et al., 2017) together with 15 

meteorological wind information from the Modern-Era Retrospective Analysis for Research and Applications, version 2 16 

(MERRA-2; Gelaro et al., 2017). We only analyzeanalysed data for the ozone season (May-September), in order to exclude 17 

winter data, which have larger uncertainties and NOx lifetimes are longer NOx lifetime.. As in our previous study (Liu et al., 18 

2017), we calculated 1-dimensional NO2 “line densities”, i.e. NO2 per cm, as function of distance for each wind directions 19 

separately by integration of the mean NO2 VCDs (i.e. NO2 per cm2) perpendicular to the wind direction. We thenuse used the 20 

changes of NO2 line densitiesVCDs under calm wind conditions (wind speed < 2 m/s below 500 m) and windy conditions 21 

(wind speed > 2 m/s) to fit the effective NOx lifetime. We then estimateestimated the average NO2 total mass integrated 22 

around a power plant on the basis of the 3-year mean VCDs, in agreement with previous studies (Fioletov et al., 2011; Lu et 23 

al., 2015). The NO2 total mass iswas scaled by a factor of 1.32 in order to derive total NOx mass following Beirle et al. 24 

(2011).  The NO/NO2 ratio might differ locally in plumes, but the influence is not expected to be dramatic on the scales of 25 

the OMI footprint (at least 13 km×24 km), considering the overpass time of OMI close to noon, the selection of cloud-free 26 

observations, and the focus on the ozone season and polluted regions with generally high tropospheric ozone.(2011). The 27 

uncertainty associated with the NO/NO2 ratio has been discussed in detail in Section 3 of the supplement in Liu et al. (2016). 28 

The 3-year average 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  iswas derived from the corresponding 3-year average NOx mass divided by the average NOx 29 

lifetime of the entire study period (Liu et al., 2017). Fitting results of insufficient quality (e.g., correlation coefficient of the 30 

fitted and observed NO2 distributions <0.9) arewere excluded from this analysis, consistent with the criteria in Section 2.2 of 31 

Liu et al. (2016). This final filtering leavesleft 18 power plants, of which 8 havehad valid results for all consecutive 3-year 32 

periods between 2005 and 2017. More details of the approach are documented in Liu et al. (2017). The fitted lifetimes and 33 

other fitting parameters for all power plants are given in Table S1. 34 

We use the Rockport power plant (37.9°N, 87.0°W) in Indiana to demonstrate our approach. This power plant is 35 

particularly well suited for estimating 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 , because it is a large and isolated NOx point source. Figure 12 presents the NO2 36 

VCD map around Rockport and the fitted results. Figure 3 displays 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  based on 3-year mean VCDs. For simplicity, 37 

theEach 3-year period is represented by the middle year with an asterisk (e.g., 2006* denotes the period from 2005 to 2007). 38 

For comparison to 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 , 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆 averaged over the period of May to September is derivedis from Air Markets Program Data 39 

(available at https://ampd.epa.gov/ampd/)./) and averaged over the period of May to September. For this particular plant, 40 
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𝐸𝑁𝑂𝑥
𝑆𝑎𝑡   andis always higher than 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆 show positive biases (of varying magnitude) during the entire period, except the last 1 

two years. The coefficient of determination for the entire period is R2=0.68. The relative differences for individual 3-year 2 

means (defined as (𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 − 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆)/𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆) range from -20% to 41%, because of the uncertainties of 𝐸𝑁𝑂𝑥

𝑆𝑎𝑡  as discussed in 3 

Section 3.2. Both datasets present a declining trend from 2012*. The total declines of 45% and 26% since 2012* in 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  and 4 

𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆  are attributed to the 25% decrease in net electricity generation for the plant. The average relative difference of 5 

𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  and 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆 for the 8 plants in this study is 0% ± 33%, ranging from -58% to 72% for individual 3-year periods (Figure 6 

51). 7 

2.2 Estimating NOx to CO2 emission ratios using CEMS data (𝒓𝒂𝒕𝒊𝒐𝑪𝑬𝑴𝑺) 8 

We determinedetermined the observed relationship between 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 for coal-fired power plants using eGRID 9 

information about each plant’s net electric generation, boiler firing typestechnology (e.g., tangential or wall-fired boiler), 10 

NOx control device type, fossil fuel type (with categories ofcategory (i.e., coal, oil, gas and other), and coal type (with 11 

categories ofquality (i.e., bituminous, lignite, subbituminous, refined and waste coal). We only useused data of power plants 12 

with more than 99% of the fuel burned being coal as reported in eGRID. We analyzeanalyzed the relationship between 13 

𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 by coal type, as emission characteristics vary widely by coal type. 14 

eGRID includes two setsdatasets of emission dataemissions for NOx and CO2: 1) calculated from fuel consumption data 15 

and 2) observed by stack monitoring (i.e., 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆). Here we focus on eGRID CEMS data as 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆 are reported to 16 

be highly accurate with an error of less than 5% (e.g., Glenn et al., 2003). 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆 may have larger uncertainties than fuel-17 

based emissions estimates due tobecause of uncertainties in the calculation of flue gas flow (Majanne et al., 2015). 18 

Nevertheless, we useused 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆to relate NOx emissions to CO2 emissions, since the primary uncertainty of 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆 19 

arises from the calculation of the flue gas flow, which will cancel in 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆.  20 

2.2.1 Coal-fired power plants without post-combustion NOx control systems 21 

We firstinitially limited our analysis to 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 from coal-fired power plants without post-combustion NOx 22 

control systems in operation in a given year (Table 1). We find that 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆  have a strong linear relationship 23 

(Figure 24). In Figure 2a4a, we compare 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 from power plants (using bituminous coal) by boiler firing type in 24 

2005. We use bituminous coal-fired plants for illustration, as bituminous coal is the most widely used coal in US power 25 

plants. We analyzeanalyzed power plants that use cyclone or cell burner boilers separately and exclude them in Figure 24 26 

because they typically produce higher NOx emissions than other boiler types (USEPA, 2009; available at 27 

https://www3.epa.gov/ttn/chief/ap42/ch01/index.html). A strong linear relationship between 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 is evident with 28 

excellent correlation (R2= 0.93, N = 278), regardless of boiler firing typestype. Similar linear relationships exist for other 29 

years (e.g., year 2016 in Figure 2b4b) and other types of coal (Table 1). The slope of the regression of 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆, 30 

𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 
𝐶𝐸𝑀𝑆 , is assumed by setting the intercept to zero. Table 1 shows 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑,𝑖,𝑦 

𝐶𝐸𝑀𝑆 by coal type and year. In Section 31 

3.1, 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑,𝑖,𝑦 
𝐶𝐸𝑀𝑆 will be applied to approximate 𝑟𝑎𝑡𝑖𝑜𝑖,𝑦 

𝐶𝐸𝑀𝑆 when estimating 𝐸 𝐶𝑂2

𝑆𝑎𝑡  from 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  for the 8 plants in Section 32 

2.1(Figure 1) for years before post-combustion control systems were in operation. 33 

𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 
𝐶𝐸𝑀𝑆  for power plants using bituminous coal decreased from 2005 (Figure 2a4a) to 2016 (Figure 2b4b) by 31% 34 

on average because of reductions in NOx emission factors associated with improvements in boiler operations, such as by 35 

optimizing furnace design and operating conditions. The NOx emissions factors, defined as NOx emission rates per net 36 

electricity generation (Gg/TW·h)), declined by 33% from 2005 to 2016 (Figure 2c4c). We interpolateinterpolated 37 
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𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 
𝐶𝐸𝑀𝑆 to get year-specific ratios by coal type for the entire study period, as eGRID data are only available for some 1 

years (i.e., 2005, 2007, 2009, 2010, 2012, 2014 and 2016). 2 

In addition, 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 
𝐶𝐸𝑀𝑆 shows significant variation by coal type and year (Figure 35). 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 

𝐶𝐸𝑀𝑆 is 1.7, 1.3 and 3 

0.91 Gg NOx/Tg CO2 for bituminous, subbituminous and lignite coal types in 2005, respectively. A reduction over time in 4 

𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 
𝐶𝐸𝑀𝑆  is observed for all coal types (Figure 35). 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 

𝐶𝐸𝑀𝑆  displays a large decrease of 31%, 36% and 20% 5 

from 2005 to 2016 for bituminous, subbituminous, and lignite coal types, respectively.  6 

2.2.2 Coal-fired power plants with post-combustion NOx control systems 7 

Here, we describe how we create continuous and consistent records ofestimated 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆 for the entire study period for 8 

plants that had post-combustion NOx control systems installed at some time during our study period, 2005–2017. The 9 

estimation is based on 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  derived in Section 2.2.1 for plants without post-combustion control systems in 10 

operation. We introduce a NOx removal efficiency parameter, f, to adjust 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  for years after the installation of 11 

post-combustion control systems, 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑:  12 

𝑟𝑎𝑡𝑖𝑜𝑖,𝑦
𝐶𝐸𝑀𝑆−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑,𝑖,𝑦

𝐶𝐸𝑀𝑆 × (1 − 𝑓𝑦) ,                                        (2) 13 

f is commonly measured for individual power plants to describe the performance of their post-combustion NOx control 14 

systems. It is directly reported by some power plant databases, such as the China coal-fired Power plant Emissions Database 15 

(CPED; Liu et al., 2015). For databases that do not report f, like eGRID used in this study, one can estimate it for an 16 

individual power plant by first estimating the unabated emissions per electricity generation, eunabated, which is the emission 17 

factor before the flue gas enters the post-combustion control system:  18 

𝑓𝑦 =
𝑒𝑢𝑛𝑎𝑏𝑎𝑡𝑒𝑑,𝑦−𝑒𝐶𝐸𝑀𝑆,𝑦

𝑒𝑢𝑛𝑎𝑏𝑎𝑡𝑒𝑑,𝑦
 ,                                           (3) 19 

where eCEMS denotes the actual emission factor in terms of CEMS NOx emissions per net electricity generation (Gg/TW·h). 20 

eunabated for a given year, eunabated,y, is estimated based on the emission per electricity generation for years prior to, p, to the 21 

installation of the post-combustion control system, eunabated,p: 22 

𝑒𝑢𝑛𝑎𝑏𝑎𝑡𝑒𝑑,𝑦 = 𝑘𝑦 × 𝑒𝑢𝑛𝑎𝑏𝑎𝑡𝑒𝑑,𝑝 ,                                          (4) 23 

where the scaling factor, ky, is used to account for the change over time in eunabated associated with improvements in boiler 24 

operations discussed in Section 2.2.1. ky is calculated as the ratio of the averaged eunabated (i.e., the slope of the regression of 25 

NOx emissions on electricity generation) in year, t, to that in year, p.  26 

To assess the reliability of 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑, we selectselected all power plants which had post-combustion devices 27 

installed between 2005 and 2016. Figure 46 shows a scatterplot of 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆 (i.e., the ratio of 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆to 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 for individual 28 

plantplants) and 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 for these power plants.. We useused the NOx emissions factor in 2005, eunabated,2005, to 29 

predict the unabated emission factor in 2016, eunabated,2016, following Equations (3) and (4) in order to quantify the removal 30 

efficiencies for 2016, f2016. 𝑟𝑎𝑡𝑖𝑜2016
𝐶𝐸𝑀𝑆−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 is based on the estimated f2016 and 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑,2016

𝐶𝐸𝑀𝑆  from Section 2.2.1. 31 

𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆 and 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 show good correlation (R2 = 0.64), which increases our confidence that the estimated 32 

removal efficiencies approximate the actual efficiencies well. The slight underestimation suggested by the slope of 0.85 33 

arises from the uncertainties in estimating unabated NOx emission factors (eunabated,y) using Equation (4) and thus removal 34 

efficiencies, (f), which is a major source of error of 𝐸𝐶𝑂2
𝑆𝑎𝑡 for power plants that install post-combustion NOx control systems 35 

(see details in Section 3.2) contributing to the overall uncertainties of 𝐸𝐶𝑂2
𝑆𝑎𝑡.). 36 
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3 Results and Discussion 1 

In Section 3.1, we present 𝐸𝐶𝑂2
𝑆𝑎𝑡  for our eight selected power plants and, in Section 3.2, we discuss the uncertainties 2 

associated with 𝐸𝐶𝑂2
𝑆𝑎𝑡 . WeIn Section 3.3, we compare the US ratios derived in this study with those from a bottom-up 3 

inventory for other regions to explore the potential of applying our method to regions outside the US. We finally apply 4 

theour approach to one power plantsplant in South Africa, which has several independent estimates for its CO2 emissions as 5 

presented in the scientific literature. Table 2 shows three-year means of 𝐸𝑁𝑂2
𝑆𝑎𝑡 , 𝐸𝑁𝑂2

𝐶𝐸𝑀𝑆, 𝐸𝐶𝑂2
𝑆𝑎𝑡 and  in Section 3.3𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆for eight 6 

power plants (Figure 1). Table 3 lists the mean and the standard deviation of the relative differences between 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆 and 7 

𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 , and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 and 𝐸𝐶𝑂2
𝑆𝑎𝑡 for all eight power plants. 8 

3.1 Satellite-derived CO2 emissions (𝑬𝑪𝑶𝟐

𝑺𝒂𝒕 ) 9 

Figure 6a7a is a scatterplot of 𝐸𝐶𝑂2
𝑆𝑎𝑡 and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 for the 8eight power plants (Figure 5), 71), seven of which did not have 10 

post-combustion NOx control systems installed during the study period, 2005–2017. The comparison shows a good 11 

correlation, R2, of 0.66. 𝐸𝐶𝑂2
𝑆𝑎𝑡 and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆for individual power plants are tabulated in Table 2 and their relative difference with 12 

CEMS measurements are listed in Table 3. The average 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆for all power plants is 2.0 Gg/h and the average 𝐸𝐶𝑂2

𝑆𝑎𝑡 is 1.8 13 

Gg/h. The relative difference for individual 3three-year means (defined as (𝐸𝐶𝑂2
𝑆𝑎𝑡 − 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆)/𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆) is 8% ± 41% (mean ± 14 

standard deviation). For example, Figure 13 shows 𝐸𝐶𝑂2
𝑆𝑎𝑡 for the Rockport power plant, which typically has a positive bias as 15 

compared to 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆 because of a positive bias in 𝐸𝑁𝑂𝑥

𝑆𝑎𝑡 . The average 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆for all power plants is 2.0 Gg/h and the average 16 

𝐸𝐶𝑂2
𝑆𝑎𝑡 is 1.8 Gg/h. The relative difference for individual three-year means (defined as (𝐸𝐶𝑂2

𝑆𝑎𝑡 − 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆)/𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆) is 8% ± 41% 17 

(mean ± standard deviation). For example, Figure 3 shows 𝐸𝐶𝑂2
𝑆𝑎𝑡 for the Rockport power plant, which typically has a positive 18 

bias as compared to 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆 because of a positive bias in 𝐸𝑁𝑂𝑥

𝑆𝑎𝑡 . 19 

The time series between 𝐸𝐶𝑂2
𝑆𝑎𝑡 and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆are generally consistent, with their annual averages for the 8eight power plants 20 

exhibiting a declining trend of 5%/yr and 3%/yr from 2006* to 2016* for 𝐸𝐶𝑂2
𝑆𝑎𝑡 and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆, respectively. The reduction in net 21 

electricity generation is the driving force underlying the emission changes, which has decreased by 37% for the 8eight power 22 

plants from 2005 to 2016, as power producers shut down coal-fired units in favor of cheaper and more flexible natural gas as 23 

well as solar and wind (USEIA, 2018). It is interesting to note that the temporal variations in 𝐸𝐶𝑂2
𝑆𝑎𝑡 are not as “smooth” as 24 

those in 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆 , which results from fluctuations in 𝐸𝑁𝑂𝑥

𝑆𝑎𝑡 . Such fluctuations are caused by uncertainties associated with 25 

𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 as discussed in Section 3.2. For example, changes in VCDs do not necessarily relate linearly with NOx emissions (e.g., 26 

Figure 2 in Duncan et al., 2013) due tobecause of temporal variations in meteorology, and nonlinear NOx chemistry (Valin et 27 

al, 2013) and transport. Averaging VCDs for a long-term period (3 years in this study) helps reduce those influences, but 28 

small fluctuations may still exist.  29 

3.2 Uncertainties 30 

We estimateestimated the uncertainty of 𝐸𝐶𝑂2
𝑆𝑎𝑡 based on the fit performance of 𝐸𝑁𝑂𝑥

𝑆𝑎𝑡   and comparison with 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆. The 31 

major sources of uncertainty include (a) the fitted NOx lifetimes andare (a) 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  (Liu et al., 2016); (b) 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑

𝐶𝐸𝑀𝑆 ; and (c) 32 

f. We assume that their contributions to the total uncertainty are independent and define the total uncertainty as their root 33 

mean squareWe give the estimated uncertainties of each source for individual power plants in Table S2.  34 

(a) The uncertainty of the fitted NOx lifetimes and 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  are : The uncertainty of 𝐸𝑁𝑂𝑥

𝑆𝑎𝑡  is quantified following the method 35 

described in Liu et al. (2017), accounting for errors arising from both the fit procedure, the NOx/NO2 ratio and OMI NO2 36 

VCD observations (Liu et al., 2016). ParticularlyThe number of 1.32 used for scaling the NO2 to NOx ratio is based on 37 

assumptions presented in section 6.5.1 of Seinfeld and Pandis (2006) for “typical urban conditions and noontime sun”. Note 38 
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that conditions are quite similar in this study because of the overpass time of OMI close to noon, the selection of cloud-free 1 

observations, the focus on the ozone season, and the focus on polluted regions. A case study of CTM simulations shows an 2 

identical value of 1.32 for Paris in summer (Shaiganfar et al., 2017). The simulated NOx/NO2 ratio at the OMI overpass time 3 

within the boundary layer (up to 2 km) in a chemistry–climate model, EMAC (Jöckel et al., 2016), was 1.28 + 0.08 for 4 

polluted (NOx>1×1015 molec cm-2) regions for the July 1, 2005, and 1.32 + 0.06 on average for the ozone season. However, 5 

the coarse grid of EMAC (2.8◦ × 2.8◦ in latitude and longitude) may not capture the true range of variation of the NOx/NO2 6 

ratio. Therefore, we assumed an uncertainty of 20% arising from the NOx/NO2 ratio, double than the standard deviation of 7 

the EMAC ratio.  8 

Additionally, the tropospheric air mass factors (AMF) used in NO2 retrievals are based on relatively coarsely -resolved 9 

surface albedo data and a priori NO2 vertical profile shapes, likely causing low-biased VCDs over strong emission sources 10 

(e.g., Russell et al., 2011; McLinden et al., 2014; Griffin et al., 2019). The average AMF uncertainty of ~30% (see Table 2 in 11 

Boersma et al., 2007) likely contributes to the underestimation of emissions from some power plants in this study. Both 12 

random and systematic (bias) uncertainties in VCDs directly propagates into the uncertainty of 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  (see details in the 13 

supplement of Liu et al. (2016) and Section 3.4 of Liu et al. (2017)).  14 

The overall uncertainties of 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  range from 6057% to 9564% for all power plants in our analysis, which is comparable 15 

with the level of differences between 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  and 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆. We expect this uncertainty to be less for new (e.g., TROPOMI) and 16 

upcoming (e.g., NASA Tropospheric Emissions: Monitoring Pollution, TEMPO) OMI-like sensors, which have enhanced 17 

capabilities relative to OMI. Further details are provided in Text S1 of the Supplement. 18 

(b)𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆 : For power plants without post-combustion devices, 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑

𝐶𝐸𝑀𝑆  derived from the regression (Figure 19 

2a4a & b) and the plant-specific CEMS measurements are found to be within 15%, which is assumed as the uncertainty of 20 

the ratio to be applied tofor all power plants.  21 

(c)f: For power plants with post-combustion devices, an additional uncertainty of 20% is applied to reflect the difference 22 

between the predicted and the true removal efficiency as suggested by Figure 46.  23 

We assume that their contributions to the overall uncertainty are independent. We then define the total uncertainty, 24 

expressed as a 95% confidence interval, as the sum of the root of the quadratic sum of the aforementioned contribution. The 25 

overall uncertainties of 𝐸𝐶𝑂2
𝑆𝑎𝑡 range from 62%–96are ~60% for theall power plants in our analysis.  26 

However, it is worth noting that this uncertainty estimate is rather conservative. For power plants,The mean and the 27 

standard deviation of the relative differences between 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆 and 𝐸𝑁𝑂𝑥

𝑆𝑎𝑡 , and 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆 and 𝐸𝐶𝑂2

𝑆𝑎𝑡  𝐸𝐶𝑂2
𝑆𝑎𝑡are for all eight power 28 

plants provide a good alternative measure of uncertainties (Table 3). The relative differences are rather small, which are 0% 29 

± 33% and 8% ± 41% (mean ± standard deviation) (Figure 6a).for NOx and CO2, respectively. We additionally calculate the 30 

geometric standard deviations (GSDs) of the difference between 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆 and 𝐸𝐶𝑂2

𝑆𝑎𝑡 from 2006* to 2016* for individual power 31 

plants in Table S2. The small values of GSDs ranging from 1.07 to 1.31 further improve our confidence in the accuracy of 32 

the derived emissions in this study. 33 

3.3 Application 34 

We apply the approach proposed in this study to estimate CO2 emissions from a power plant in South Africa, aiming to In 35 

this section, we assess the capabilityfeasibility of the approachapplying our method to provide constraint oninfer CO2 36 

emissions (𝐸𝐶𝑂2
𝑆𝑎𝑡) for regionspower plants outside the US. We chose South Africa, a country without reliable emissions 37 

accounting, as We first compare the NOx to CO2 emission ratios derived from this study with those from a bottom-up 38 

emission database in Section 3.3.1. We then apply the US ratio to a power plant in South Africa in Section 3.3.2. 39 
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3.3.1 Comparison with bottom-up ratios 1 

Figure 8 shows the area of interest, because we found NOx to CO2 emission ratios for 2010 from the global power 2 

emissions database (GPED; Tong et al., 2018), which is the only publicly-available information on coal typebottom-up 3 

emission database that reports both NOx and CO2 emissions for individual power plants for every country. All countries with 4 

over 30 coal-fired power plants in GPED are shown in Figure 8. Not surprisingly, countries with more strict standards in 5 

place for NOx emissions from power plants (i.e., NOx emission limit value (ELV) < 200 mg/m3; hereafter referred to as 6 

“more strict countries”) have smaller NOx to CO2 ratios (i.e., 1.0 versus 2.5 on average) than countries with less strict 7 

standard (i.e., NOx ELV > 200 mg/m3; hereafter referred to as “less strict countries”). Additionally, the correlation 8 

coefficients are smaller for more strict countries (i.e., 0.82 on average) as compared to less strict countries (i.e., 0.96 on 9 

average), because power plants in more strict countries are more likely to have installed post-combustion NOx control status 10 

for its power plants. systems, which likely lowered 𝑟𝑎𝑡𝑖𝑜𝑦
𝐶𝐸𝑀𝑆, similar to what occurred in the US over our analysis period 11 

(Section 2.2.2).  12 

We further compare the 2005 US 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  in Table 1 with the GPED NOx to CO2 emission ratios for less strict 13 

countries. We chose the 2005 value for comparison based on the following considerations. In 2005, the US EPA issued the 14 

Clean Air Interstate Rule (CAIR) to address the interstate transport of ozone and fine particulate matter pollution for eastern 15 

US states, which reduced NOx emissions and, thus, NOx to CO2 ratios (𝑟𝑎𝑡𝑖𝑜𝑦
𝐶𝐸𝑀𝑆). However, similar comprehensive control 16 

strategies have not been adopted in less strict countries. In this way, the 2005 values are expected to show better consistency 17 

with the NOx to CO2 ratios of less strict countries than values for more recent years. Note that the GPED database does not 18 

give information on ratios by coal type. Therefore, we use 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  for bituminous coal, which is the most widely used 19 

coal type in coal-fired power plants in most countries.  20 

The power plant of Matimba (including the nearby Medupiratios for individual power plants in less strict countries tend to 21 

be larger than the US 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  for 2005, considering that power plants in those countries may not be equipped with any 22 

NOx control devices or even low-NOx burners, a technology which is widely installed in US power plants with and without 23 

post-combustion NOx control devices. Most ratios range from US 2005 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  to 2005 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑

𝐶𝐸𝑀𝑆  + standard 24 

deviation (Figure 8). It is no surprise that some less strict countries have ratios higher than this range, which also occurs for 25 

some US power plants without post-combustion emission controls (Figure 4). However, there are considerable uncertainties 26 

in the GPED database given the scarcity of reliable emissions information in less strict countries. For example, the GPED 27 

NOx and CO2 emissions estimates for Turkey and Russia, which are outliers in Figure 8, are subject to more assumptions and, 28 

thus, larger uncertainties than countries with high-quality country-specific emission data, such as China, which has operated 29 

sincea high-resolution emissions database (CPED; Liu et al., 2015) in South Africa are ), and India, which has a database 30 

developed by Argonne National Laboratory (Lu et al., 2011).  31 

Figure 9 shows a schematic of our methodology to estimate the NOx to CO2 emission ratios for power plants outside the 32 

US. We adopt different approaches for more and less strict countries. More strict countries, including Canada, European 33 

Union (EU) member states, Japan, South Korea, and, more recently, China, usually use CEMS to monitor emissions, 34 

particularly suitable for application of our method, becausefrom the largest emitters. For power plants with CEMS 35 

measurements for both NOx and CO2 emissions, it is straightforward to use the measured ratios. However, there is still a 36 

significant number of power plants in those countries without CEMS technology, particularly for CO2 measurements. For 37 

example, EU member states do not require power plants to use CEMS for CO2 reporting and the majority of plants in the EU 38 

therefore reports CO2 emissions based on emission factors (Sloss, 2011). Therefore, we recommend applying our method 39 

described in Section 2.2 to infer region-specific ratios for those power plants. The US 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  could be a less accurate, 40 

but reasonable approximation when no CEMS data are available, considering those countries share similar NOx ELVs for 41 

power plants as the US. For less strict countries, we recommend using the 2005 US values by coal type when ratios from 42 
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countries with similar NOx emission standard are not available. We also recommend assigning a range from 2005 1 

𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  to 2005 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑

𝐶𝐸𝑀𝑆  + standard deviation, instead of a fixed value, to the ratio for inferring CO2 emissions, 2 

considering the knowledge on ratios from those regions are too few to narrow the constraint. 3 

As demonstrated in Section 2.2, our method presented in this study provides a reasonable estimate of the ratio for power 4 

plants without post-combustion NOx control devices with only knowing coal type. Even for regions without reliable 5 

emission information, the information on coal type, particularly for large power plants, are very likely publicly-available. For 6 

power plants that install post-combustion NOx control technology, we additionally require the removal efficiency of the 7 

device to derive the ratio. The removal efficiency of post-combustion NOx control devices is usually directly reported, as the 8 

operation of such devices is very expensive and is expected to be subject to strict quality control and assurance standards. In 9 

contrast to bottom-up approaches, many details are required, including coal type, coal quality, boiler firing type, NOx 10 

emission control device type, and operating condition of boiler and emission control device, when calculating NOx and CO2 11 

emissions. 12 

3.3.2 Application to Matimba power plant in South Africa 13 

We apply the methodology shown in Figure 9 to estimate CO2 emissions from a South African power plant, Matimba, 14 

which is a strong isolated NOx point source (Figure 7).10). It is a well-studied power plant, having had its emissions 15 

estimated using several different methods as reported in the literature. We estimate 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  for Matimba from 2005 to 2017 16 

based on OMI NO2 observations following the approach in Section 2.1. Matimba useuses subbituminous coal with thea 17 

calorific value of ~ 20 MJ/kg (Makgato and Chirwa, 2017). We assume the NOx to CO2 emission ratio of Matimba is on the 18 

upper end of the US values, considering that it is not equipped with any NOx control devices, even low-NOx burners which 19 

are widely installed in US power plants We apply(Pretorius et al., 2015). We thus use the ratio ranging from 2005 20 

𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  to 2005 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑

𝐶𝐸𝑀𝑆  + standard deviation to Matimba, following the methodology in Figure 9, considering 21 

that South Africa is a less strict country without any post-combustion NOx control devices (Pretorius et al., 2015). for 22 

subbituminous coal listed in Table 1 to infer 𝐸𝐶𝑂2
𝑆𝑎𝑡 based on 𝐸𝑁𝑂𝑥

𝑆𝑎𝑡 . TheOur derived 𝐸𝐶𝑂2
𝑆𝑎𝑡 is shown in Figure 811 and fluctuates 23 

over time. Note that the range of 𝐸𝐶𝑂2
𝑆𝑎𝑡 in Figure 8 represents the emissions based on a range of NOx-to-CO2 ratios, not the 24 

uncertainty. The overall uncertainty of 𝐸𝐶𝑂2
𝑆𝑎𝑡 is ~70% for the Matimba power plant. The growth after 2008* is most likely 25 

caused by the increased unit operating hours driven by the desire to meet fully the demand for electricity in South Africa 26 

after a period of rolling blackouts (2007–2008) (Duncan et al., 2016). The decline afterwards may be associated with the 27 

tripping of generating units at the Matimba due to overload and the shortage of coal supply. The newly-built power plant of 28 

Medupi contributes to the increase from 2015*.because of overload and shortage of coal as reported by South African 29 

government news agency (available at https://www.sanews.gov.za/south-africa/eskom-alone-cannot-solve-our-energy-30 

challenges). The increase in 2016* may be associated with a newly-built power plant, Medupi, which began limited 31 

operations in 2015. Note that the range of 𝐸𝐶𝑂2
𝑆𝑎𝑡 (grey band) in Figure 11 represents the emissions based on a range of NOx-32 

to-CO2 ratios, not the uncertainty. We calculate the uncertainty of 𝐸𝐶𝑂2
𝑆𝑎𝑡 for Matimba following Section 3.2 with an additional 33 

uncertainty of ~50% to reflect the fact that the ratio may range from 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  to 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑

𝐶𝐸𝑀𝑆  + standard deviation. 34 

The overall uncertainty of 𝐸𝐶𝑂2
𝑆𝑎𝑡 for Matimba is 81%, as shown by the error bars in Figure 11. 35 

Figure 8 compares11 shows 𝐸𝐶𝑂2
𝑆𝑎𝑡 derived in this study withand other publicly availableindependent estimates and shows 36 

reasonable agreement. reported in 𝐸𝐶𝑂2
𝑆𝑎𝑡 falls between the estimates based on OCO-2 CO2 observationsliterature, including 37 

two top-down (Nassar et al., 2017; Reuter et al., 2019) and twothree bottom-up estimates including (Wheeler and Ummel (, 38 

2008) and; Tong et al. (., 2018). We make a further comparison; Oda et al., 2018). Despite the uncertainties associated with 39 

each of NOx these methods, the CO2 emissions esttimatesestimates agree reasonably well, but we do not have sufficient 40 

information to understand the differences between these estimates. However, Tong et al. (2018), the only) present in their 41 
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CPED database that reports both CO2 and NOx emissions, in orderwhich allows us to shed light on the reason fordetermine 1 

that the difference. The differences between 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  and the CPED bottom-up estimates contributeestimate contributes 2 

significantly to the differences ofdifference in CO2 estimates from the two methods. 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  for Matimba is 3.8 Mg/h for 2010*, 3 

which is 65% smaller than the estimate by Tong et al. (2018) for 2010. It is not surprising to see such differences considering 4 

the uncertainties of satellite-derived NOx emissions and bottom-up estimates for power plants without reliable CEMS 5 

measurements. On one handFor instance, 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  is potentially underestimated, due to because of the bias in the OMI NO2 6 

standard product (version 3.1) associated with a low-resolution static climatology of surface Lambert-Equivalent Reflectivity 7 

(OMLER) (Kleipool et al., 2008). We perform a sensitivity analysis by using the preliminary new version of the OMI NO2 8 

product, which uses new geometry dependent Moderate Resolution Imaging Spectroradiometer (MODIS-)-based surface 9 

reflectivity. The inferred 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  based on the new product increases byis over 10%. On the other hand, the% higher than 10 

version 3.1. The bottom-up estimates for Matimba are subject to significant uncertainties as well. For example, Tong et al. 11 

(2018) used national total fuel consumption of the power sector for South Africa as reported by the International Energy 12 

Agency is used to estimate fuel consumption at the plant level as detailed fuel consumption for each plant is not currently 13 

available. Additionally, due to the absence of country-specific measurement data,they used default NOx emission factors 14 

obtained from the literature are applied (Tong et al., 2018).because of the absence of country-specific measurement data. 15 

4 Conclusions 16 

We present a method to estimate CO2 emissions of ozone season from individual power plants from satellite observations 17 

of co-emittedIn our study, we investigated the feasibility of using satellite data of NO2 from power plants to infer co-emitted 18 

CO2 emissions, which could serve as complementary verification of bottom-up inventories or be used to supplement these 19 

inventories that are highly uncertain in many regions of the world. For example, our estimates will serve as an independent 20 

check of CO2 emissions that will be inferred from satellite retrievals of future CO2 sensors (Bovensmann et al., 2010). 21 

Currently, uncertainties in CO2 emissions from power plants confound national and international efforts to design effective 22 

climate mitigation strategies.  23 

We estimate NO2 and CO2 emissions during the “ozone season” from individual power plants from satellite observations 24 

of NO2 and demonstrate its utility for US power plants, which have accurate CEMS with which to evaluate our method. 25 

WhileWe systematically identify the uncertainty associated with sources of variation, such as types of coal, boiler, and NOx 26 

emission control device, and change in operating conditions, which affect the NOx to CO2 emissions ratio. Understanding the 27 

causes of these variations will allow for better informed assumptions when applying our method to power plants that have no 28 

or uncertain information on the factors that affect their emissions ratios. For example, we estimated CO2 emissions from the 29 

large and isolated Matimba power plant in South Africa, finding that our emissions estimate shows reasonable agreement 30 

with other independent estimates. 31 

We found that it is relatively high when applied to OMIfeasible to infer CO2 emissions from satellite NO2 observations, but 32 

limitations of the current satellite data, we expect that the uncertainty will be less (e.g., spatio-temporal resolution, signal-to-33 

noise) only allow us to apply our method to eight large and isolated U.S. power plants. Looking forward, we anticipate that 34 

these limitations will diminish for the recently launched European Union Copernicus Sentinel 5 precursor (TROPOMI, 35 

launch (October 2017),) TROPOMI, and thethree upcoming NASA geostationary Earth Venture one (TEMPO, 36 

launch(launches expected in the early 2020s), both of which ) geostationary instruments (NASA TEMPO; European Space 37 

Agency and Copernicus Programme Sentinel-4; Korea Meteorological Administration Geostationary Environment 38 

Monitoring Spectrometer, GEMS), which are designed to have superior capabilities. For example, higher spatiotemporal to 39 

OMI. High resolution TROPOMI observations are capable of describing the spatio-temporal variability of NO2, even in a 40 
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relatively small city like Helsinki. (Ialongo et al., 2019) and allow estimates of NOx emissions to be calculated for shorter 1 

timeframes (Goldberg et al., 2019c). Higher spatial and temporal resolutions will likely improve the estimationreduce 2 

uncertainties in estimates of NOx emissions as well as allow for the separation of more power plant plumes from nearby 3 

sources, thus increasing the number of power plants available for analysis. Therefore, future work will be to apply our 4 

method to these new datasets, especially after several years of vetted TROPOMI data become available.  5 

We explore the feasibility of estimating CO2 emissions from power plants in regions of the world without reliable 6 

emissions accounting by applying our method to a South African plant. The emissions estimates for the power plant of 7 

Matimba show reasonable agreement with existing estimates. The ratios derived in this study have the potential to be applied 8 

to power plants located in other regions by carefully investigating their coal type and NOx control devices, in order to 9 

provide an additional constraint on CO2 emissions. FutureAdditional future work will include applying our method to other 10 

regions of the world with reliable CEMS information, such as Europe, Canada and, more recently, China, to develop a more 11 

reliable and complete database with region-specific ratios. This method will also serve as an independent approach to check 12 

CO2 emissions based on satellite retrievals of CO2 average mixing ratio from future CO2 sensors with improved accuracy 13 

and extended the spatial coverage (Bovensmann et al., 2010). 14 
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 1 

 2 

Figure 1 Locations of the power plants investigated in this study. The bar charts denote the relative differences, defined as (ESat− 3 
ECEMS)/ECEMS, averaged over 2005–2017, for NOx (blue) and CO2 (red) emissions. The upward and downward bars represent positive and 4 
negative differences, respectively. The Monticello power plant installed SNCR to control NOx emissions in 2008. The other Other power 5 
plants are not equipped with post-combustion NOx control devices. 6 
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1 
Figure 2 Mean OMI NO2 tropospheric VCDs around the Rockport power plant (Indiana, USA) for (a) calm conditions, (b) northeasterly 2 

wind and (c) their difference (northeasterly − calm) for the period of 2005 – 2017. The location of Rockport is labelled by a black dot. (d) 3 

NO2 line densities around Rockport. Crosses: NO2 line densities for calm (blue) and northeasterly winds (red) as function of the distance x 4 

to Rockport center. Grey line: the fitted results for NO2 line densities for northeasterly winds. The numbers indicate the net mean wind 5 

velocities (windy − calm) from MERRA-2 (w), the fitted lifetime (τ), and the coefficient of determination (R2) of the fit. 6 
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 1 

Figure 3 𝑬𝑵𝑶𝒙

𝑺𝒂𝒕  (Mg/h; orange solid lines – right axis) and 𝑬𝑪𝑶𝟐

𝑺𝒂𝒕  (Gg/h; blue solid line – left axis) for the Rockport power plant during 2 

from 2005 to 2017. 𝑬𝑵𝑶𝒙

𝑪𝑬𝑴𝑺 and 𝑬𝑪𝑶𝟐

𝑪𝑬𝑴𝑺 (dashed lines) are also shown. The 3-year periods are represented by the middle year with an 3 

asterisk (e.g., 2006* denotes the period from 2005 to 2007). 4 

 5 

 6 

 7 

Figure 24 Scatter plots of 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆 versus 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆for all the US bituminous coal-fired electric generating units for (a) 2005 and (b) 2016. 8 

Values are color coded by firing type. (c) Scatter plot of 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆 versus electricity generation of the same units for years 2005 (triangle) and 9 

2016 (square). Only plants without post-combustion NOx control devices within a given year are used. The electricity generation data are 10 
also from eGRID. The lines in all three panels represent the computed linear regressions. 11 

 12 
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 1 

Figure 35 Interannual trends of 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑 
𝐶𝐸𝑀𝑆 for power plants using bituminous, subbituminous and lignite coal types and without post-2 

combustion NOx control devices in a given year. Error bars show the standard deviations for ratios of 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆 to 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆for individual power 3 

plants. 4 

 5 

Figure 46 Scatterplot of the ratio of 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  as compared to 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆 for 2016. All 44 coal-fired power plants that 6 
operated post-combustion techniquesdevices after 2005 and before 2016 (including 2016) are used in the plot. The sizes of the circles 7 
denote the magnitude of the NOx reduction efficiency of post-combustion control devices estimated in this study. The line represents the 8 

linear regression of 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆 to 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑. 9 
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Figure 5  The bar charts denote the relative differences, defined as (ESat− ECEMS)/ECEMS, averaged over 2005–2017, for NOx (blue) and 

CO2 (red) emissions. The upward and downward bars represent positive and negative differences, respectively. The Monticello power 

plant installed SNCR to control NOx emissions in 2008. Other power plants are not equipped with post-combustion NOx control devices. 

 

 

 

Figure 67 (a) Scatterplot of 𝐸𝐶𝑂2

𝑆𝑎𝑡  for 8eight power plants as compared to 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆  from 2006* to 2016*. The straight solid andlines 

represent the ratio of 1:1. The dashed lines represent the ratio of 1:1.5 and 1:1.5:1, respectively. (b) Interannual trends of the averaged 

𝐸𝐶𝑂2

𝑆𝑎𝑡 (blue lines) and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 (pink lines) areis for all power plants analyzed in this study from 2006*–2016*, as normalized to the 2006* 

value. The whiskers denote the maximum and minimum values. 
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Figure 8 Comparison of the regressed NOx to CO2 emission ratios derived from the global power emissions database (GPED) for different 

regions versus the correlation coefficient of the regression. The blue and red circles denote regions that are subject to more strict standard 

for NOx emissions from power plants (i.e., a NOx ELV of 200 mg/m3 or less) and other regions, respectively. Y axis: the slope of the 

regression of the NOx to CO2 emissions with an assumed y-intercept of zero. Error bars show the standard deviations for the NOx to CO2 

emission ratios for individual power plants. X axis: correlation coefficient of the regression. The dashed line represents 2005 US 

𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  for bituminous coal derived in this study. The grey shadow represents 2005 US 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑

𝐶𝐸𝑀𝑆  ± standard deviation.  

*China switched from being a less strict country to a more strict country in 2014, when most coal-fired power plants in China were 

required to comply with its new emission standards (GB13223-2011). 

 

 

 

Figure 9 Schematic of our methodology to estimate the NOx to CO2 emission ratios for power plants outside the US.  
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*China switched from being a less strict country to a more strict country in 2014, when most coal-fired power plants in China were 

required to comply with its new emission standards (GB13223-2011). 

 

 

 

Figure 10 Mean OMI NO2 tropospheric VCDs around the Matimba power plant (Lephalale, South Africa) for (a) calm, (b) southwesterly 

wind conditions and (c) their difference (southwesterly − calm) for the period of 2005 – 2017. The location of Matimba is 

labelledrepresented by a black dot.  
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Figure 811 Comparison of 𝐄𝐂𝐎𝟐

𝐒𝐚𝐭  (Gg/h) derived in this study with existing estimates for the Matimba power plant during 2005 to 2017. 

𝐄𝐂𝐎𝟐

𝐒𝐚𝐭 is inferred based on the NOx to CO2 emissions ratio ranging from 𝒓𝒂𝒕𝒊𝒐𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒆𝒅
𝑪𝑬𝑴𝑺  to 𝒓𝒂𝒕𝒊𝒐𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒆𝒅

𝑪𝑬𝑴𝑺  + standard deviation of ratio. The 

upper and lower grey bands denote the emissions inferred from 𝒓𝒂𝒕𝒊𝒐𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒆𝒅
𝑪𝑬𝑴𝑺  and 𝒓𝒂𝒕𝒊𝒐𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒆𝒅

𝑪𝑬𝑴𝑺 + standard deviation of ratio, 

respectively. The grey dots and error bars show the mean of the upper and lower grey bands and their uncertainties, respectively. 
aEmissions are estimated for 2009 by Wheeler and Ummel (2008); for 2010 by Tong et al. (2018); and for 2014 and 2016 by Nassar at al. (2017); for 2016 

by Reuter et al. (2019); and for 2012 and 2016 by Oda at al. (2018). 
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Table 1 The slope (𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆 ), coefficient of determination, standard deviation and sample number of the linear 

regression of 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆 and 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 by year for all US power plants without post-combustion NOx control devices from 2005 to 

2016.  

Coal type Year 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  R2 

Standard 

deviation 

Sample 

numbera 

Bituminous 

2005 1.74 0.93 0.63 278 

2007 1.75 0.91 0.68 286 

2009 1.49 0.88 0.64 241 

2010 1.48 0.86 0.60 235 

2012 1.33 0.87 0.56 190 

2014 1.28 0.87 0.41 136 

2016 1.20 0.87 0.45 66 

Subbituminous 

2005 1.31 0.65 0.73 226 

2007 1.18 0.61 0.61 221 

2009 1.02 0.66 0.56 230 

2010 1.00 0.67 0.59 216 

2012 0.93 0.74 0.51 200 

2014 0.89 0.74 0.39 165 

2016 0.84 0.70 0.39 111 

Lignite 

2005 0.91 0.74 0.33 20 

2007 0.86 0.82 0.35 22 

2009 0.88 0.91 0.32 16 

2010 0.83 0.94 0.37 18 

2012 0.76 0.91 0.40 15 

2014 0.82 0.92 0.37 12 

2016 0.73 0.78 0.09 9 

aThe sample number generally decreases from 2005 to 2016 as power plants installed post-combustion NOx control devices 

over time. 



 

Table 2 Summary of effective NOx lifetimes, satellite-derived NOx emissions (𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 ), CO2 emissions (𝐸𝐶𝑂2

𝑆𝑎𝑡) and bottom-up 

NOx emissions (𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆), CO2 emissions (𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆) for 8 US power plants during May to September from 2005 to 2017. The 3-

year periods are represented by the middle year with an asterisk. 

  

Category Year Four Corners 

& San Juan 

Independence Intermountain Martin Lake Monticello Navajo Rockport White Bluff 

NOx lifetime 2005-2017 2.7 2.5 2.2 2.3 3.2 2.3 2.4 4.3 

 

2006* 10.5 2.0 4.0 2.4 1.1 4.6 2.9 1.0 

 

2007* 10.0 1.7 4.1 2.3 1.1 4.4 3.0 0.9 

 

2008* 9.4 1.6 3.7 2.0 0.8 4.5 2.6 0.9 

 

2009* 7.2 1.2 3.9 2.1 0.7 3.9 2.7 0.7 

𝐸𝑁𝑂𝑥

𝑆𝑎𝑡  2010* 6.8 1.0 4.4 2.1 0.6 3.6 2.5 0.9 

(Mg/h) 2011* 6.5 0.9 3.6 1.8 0.7 2.5 2.5 0.8 

 

2012* 6.3 0.9 3.4 1.6 0.6 2.3 2.7 0.8 

 

2013* 5.6 0.8 3.5 1.8 0.5 1.9 2.5 0.6 

 

2014* 4.4 0.7 3.5 1.7 0.8 2.2 2.3 0.5 

 

2015* 3.8 0.8 3.0 1.4 0.7 2.1 1.4 0.4 

  2016* 3.5 1.2 1.7 1.2 0.6 2.5 1.5 0.7 

 

2006* 7.4 1.8 3.0 1.8 1.5 3.8 2.0 1.7 

 

2007* 7.3 1.8 3.1 1.8 1.4 3.9 2.1 1.6 

 

2008* 6.8 1.8 2.9 1.8 1.3 3.8 2.0 1.6 

 

2009* 6.5 1.6 2.9 1.8 1.2 3.4 2.1 1.8 

𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆 2010* 6.2 1.6 2.8 1.7 1.1 2.8 2.1 1.8 

(Mg/h) 2011* 6.2 1.4 2.5 1.5 1.0 2.2 2.2 1.9 

 

2012* 6.1 1.3 2.4 1.4 0.9 1.9 2.1 1.9 

 

2013* 5.6 1.3 2.4 1.3 0.9 1.9 2.0 2.0 

 

2014* 5.2 1.2 2.5 1.3 0.8 1.9 1.9 1.9 

 

2015* 4.3 1.2 2.0 1.3 0.8 1.7 1.8 1.5 

  2016* 3.9 1.1 1.5 1.2 0.8 1.6 1.6 1.2 

(𝐸𝑁𝑂𝑥

𝑆𝑎𝑡 -

𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆)/ 𝐸𝑁𝑂𝑥

𝐶𝐸𝑀𝑆 2005-2017 10% -22% 38% 20% -29% 21% 20% -56% 

 

2006* 6.1 1.6 2.3 2.7 1.2 2.6 2.3 0.8 

 

2007* 5.9 1.5 2.4 2.6 1.3 2.6 2.5 0.8 

 

2008* 5.6 1.4 2.3 2.3 1.1 2.8 2.4 0.8 

 

2009* 4.1 1.1 2.6 2.4 1.0 2.5 2.6 0.6 

𝐸𝐶𝑂2

𝑆𝑎𝑡 2010* 3.7 1.0 3.0 2.5 0.9 2.5 2.5 0.9 

(Gg/h) 2011* 3.4 1.0 2.6 2.2 1.0 1.7 2.5 0.8 

 

2012* 3.3 1.0 2.5 2.1 1.0 1.7 2.9 0.9 

 

2013* 3.1 0.9 2.6 2.3 0.8 1.5 2.7 0.6 

 

2014* 2.5 0.8 2.8 2.2 1.2 1.8 2.6 0.6 

 

2015* 2.3 0.9 2.4 1.8 1.1 1.7 1.7 0.5 

  2016* 2.2 1.4 1.4 1.6 1.0 2.0 1.7 0.8 

 

2006* 3.1 1.5 1.7 2.4 1.9 2.2 1.8 1.2 

 

2007* 3.1 1.5 1.7 2.4 1.8 2.2 1.9 1.2 

 

2008* 3.0 1.5 1.6 2.4 1.8 2.2 1.8 1.2 

 

2009* 3.1 1.4 1.5 2.3 1.7 2.1 1.9 1.3 

 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 2010* 3.0 1.4 1.4 2.2 1.7 2.1 1.9 1.4 

(Gg/h) 2011* 3.0 1.3 1.3 2.1 1.5 2.0 2.0 1.4 



 

 

2012* 3.0 1.3 1.3 2.0 1.5 1.9 1.9 1.4 

 

2013* 2.8 1.3 1.3 1.9 1.3 1.9 1.9 1.4 

 

2014* 2.6 1.1 1.4 1.9 1.3 2.0 1.8 1.3 

 

2015* 2.4 1.1 1.2 1.8 1.2 1.8 1.7 1.1 

  2016* 2.2 1.0 1.0 1.7 1.2 1.7 1.5 0.9 

(𝐸𝐶𝑂2

𝑆𝑎𝑡-

𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆)/ 𝐸𝐶𝑂2

𝐶𝐸𝑀𝑆 2005-2017 33% -12% 75% 7% -30% 4% 31% -41% 
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Table 3 Summary of relative difference between satellite-derived NOx emissions (𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 ) and bottom-up NOx emissions 

(𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆), satellite-derived CO2 emissions (𝐸𝐶𝑂2

𝑆𝑎𝑡) and bottom-up CO2 emissions (𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆) for 8 US power plants during May 

to September from 2005 to 2017. The 3-year periods are represented by the middle year with an asterisk. 

Year 
Relative Difference for NOx Relative Difference for CO2 

Mean Standard Deviation Mean Standard Deviation 

2006* 15% 29% 17% 39% 

2007* 10% 29% 16% 38% 

2008* 5% 30% 14% 39% 

2009* -3% 34% 6% 39% 

2010* -1% 38% 9% 46% 

2011* -5% 31% 3% 40% 

2012* -3% 31% 5% 41% 

2013* -4% 38% 4% 49% 

2014* -3% 36% 7% 46% 

2015* -8% 35% 2% 41% 

2016* -2% 29% 8% 22% 

 


