
Anonymous Referee #2 

Liu et al. describe a method to estimate CO2 emissions from power plants using satellite 

observations of tropospheric NO2 columns. The method involves the estimation of NOx emissions 

using a top-down approach previously developed by the authors and estimation of CO2 

emissions by applying a NOx/CO2 emission ratio derived from direct stack emission 

measurements of both gases. The topic of the manuscript is important and relevant in the context 

of the ongoing development of the global emission monitoring system intended to support the 

elaboration of climate control and mitigation strategies. Although the idea to use satellite NO2 

measurements to constrain CO2 emissions from fossil fuel burning is not new, application of this 

approach to specifically power plant emissions is a step forward. Another new point of the study 

is the analysis of the relationship between NOx and CO2 emissions from different types of coal-

fired power plants in the US. That said, I keep wondering whether and how the method proposed 

in this manuscript can be proven useful in any scientific or practical applications. The weak 

points of the manuscript and my suggestions to the authors are outlined in my comments below. 

 

Response: We thank Referee #2 for the thoughtful comments, which we address carefully below. 

 

Major comment  

I find that the manuscript lacks clear logic in presenting the ideas and results of the authors. 

Specifically, while the main focus in Section 2 (“Method”) is given to the analysis of the CEMS 

stack measurements in the US in the period from 2005 to 2017, it is not explained and justified 

how the outcome of this analysis can be used for applications outside of the US. Such possible 

applications are illustrated in the manuscript (in Sect. 3.3) by the example of only one power 

plant (Matimba), for which the authors use the NOx/CO2 emission ratio estimated only for 2005 

and even argue that this estimate (based on the US data) is not directly applicable to the 

Matimba plant. Furthermore, if the “regressed” estimates of the NOx/CO2 emission ratio are not 

directly applicable to power plants outside of the US, the application of these approximate 

estimates to the selected 8 power plants inside of the US (presumably to test the method) seems 

to be pointless, as the CEMS measurements provide accurate direct estimates of the NOx/CO2 

emission ratio for any power plant in the US. As for the Matimba power plant, a reasonable 

alternative to using the CEMS measurements would be to get a corresponding estimate of the 

NOx/CO2 emission ratio from the ODIAC inventory. Therefore, in the present form, the 

discussion and evaluation of the method is very confusing and, to some extent, misleading. In this 

respect, I recommend that the authors illustrate the potential of their method and the usefulness 

of the analysis of the US CEMS data by considering a few more power plants outside of the US 

(e.g., in China), paying special attention to the accuracy of the estimates of the NOx/CO2 

emission ratio based on the US CEMS data versus the accuracy of corresponding estimates that 

can be obtained directly from available data of global and regional emission inventories. 

 

Response: We address the major comment as below. 

 The significance of the method validation for US power plants: 

In our study, we investigate the feasibility of using satellite data of NO2 to infer CO2 emissions, 

which could serve as a complementary verification of bottom-up inventories or be used to 

supplement these inventories.  

We first apply our methodology to U.S. power plants, which have accurate CEMS emissions. We 

systematically identify sources of variation (i.e., coal type and type of NOx control device). The 



high degree of accuracy of the U.S. CEMS data allows us to verify whether our methodology is 

feasible or not. In short, we found that it is feasible, but limitations of the current satellite data 

(e.g., spatio-temporal resolution, signal-to-noise) only allow us to apply our methodology to 

eight power plants. 

Looking forward, we anticipate that current (e.g., TROPOMI) and future sensors (e.g., TEMPO, 

Sentinel-4, GEMS) will reduce the limitations of the satellite data, especially after their time 

records have lengthened, allowing us to apply our methodology to more the US and world power 

plants. 

We have clarified this in the revised abstract, introduction and conclusion. 

 The potential application of the method and the US ratio derived in this study: 

CEMS measurements are available for some power plants in the US, Canada, European Union 

(EU) member states, Japan, South Korea, and, more recently, China. However, there is still a 

significant number of power plants in those countries without CEMS technology, particularly for 

CO2 measurements. For example, EU member states do not require power plants to use CEMS 

for CO2 reporting and the majority of plants in the EU therefore reports CO2 emissions based on 

emission factors (Sloss, 2011). Therefore, we recommend applying our method described in 

Section 2.2 to infer region-specific ratios for those power plants. The method developed in this 

study provides a simplified but reliable method to determine the ratios for those power plants. 

Many or most power plants in South America, Africa, and Asia (minus China) do not report 

CEMS measurements at all or their observations are of questionable quality. Therefore, bottom-

up emission inventories for NOx and CO2 from these countries are highly uncertain, confounding 

national and international efforts to design effective climate mitigation strategies. We have added 

a new subsection 3.3.1 to discuss how to apply the ratios derived in this study to other regions. 

As suggested, we added the comparison of the ratios derived in this study with those in the 

global coal-fired power plant emissions database (GPED) in Section 3.3.1. GPED is the only 

publicly available bottom-up emission database reporting both NOx and CO2 emissions for 

individual power plants all over the world. The US values show reasonable agreement with other 

countries’ values identified by GPED. The details are as follows: 

“Figure 8 shows the NOx to CO2 emission ratios for 2010 from the global power emissions database 

(GPED; Tong et al., 2018), which is the only publicly-available bottom-up emission database that reports 

both NOx and CO2 emissions for individual power plants for every country. All countries with over 30 

coal-fired power plants in GPED are shown in Figure 8. Not surprisingly, countries with more strict 

standards in place for NOx emissions from power plants (i.e., NOx emission limit value (ELV) < 200 

mg/m3; hereafter referred to as “more strict countries”) have smaller NOx to CO2 ratios (i.e., 1.0 versus 

2.5 on average) than countries with less strict standard (i.e., NOx ELV > 200 mg/m3; hereafter referred to 

as “less strict countries”). Additionally, the correlation coefficients are smaller for more strict countries 

(i.e., 0.82 on average) as compared to less strict countries (i.e., 0.96 on average), because power plants in 

more strict countries are more likely to have installed post-combustion NOx control systems, which likely 

lowered 𝑟𝑎𝑡𝑖𝑜𝑦
𝐶𝐸𝑀𝑆, similar to what occurred in the US over our analysis period (Section 2.2.2).  

We further compare the 2005 US 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  in Table 1 with the GPED NOx to CO2 emission ratios 

for less strict countries. We chose the 2005 value for comparison based on the following considerations. 

In 2005, the US EPA issued the Clean Air Interstate Rule (CAIR) to address the interstate transport of 

ozone and fine particulate matter pollution for eastern US states, which reduced NOx emissions and, thus, 

NOx to CO2 ratios (𝑟𝑎𝑡𝑖𝑜𝑦
𝐶𝐸𝑀𝑆). However, similar comprehensive control strategies have not been adopted 



in less strict countries. In this way, the 2005 values are expected to show better consistency with the NOx 

to CO2 ratios of less strict countries than values for more recent years. Note that the GPED database does 

not give information on ratios by coal type. Therefore, we use 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  for bituminous coal, which 

is the most widely used coal type in coal-fired power plants in most countries.  

The ratios for individual power plants in less strict countries tend to be larger than the US 

𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  for 2005, considering that power plants in those countries may not be equipped with any 

NOx control devices or even low-NOx burners, a technology which is widely installed in US power plants 

with and without post-combustion NOx control devices. Most ratios range from US 2005 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  

to 2005 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  + standard deviation (Figure 8). It is no surprise that some less strict countries 

have ratios higher than this range, which also occurs for some US power plants without post-combustion 

emission controls (Figure 4). However, there are considerable uncertainties in the GPED database given 

the scarcity of reliable emissions information in less strict countries. For example, the GPED NOx and 

CO2 emissions estimates for Turkey and Russia, which are outliers in Figure 8, are subject to more 

assumptions and, thus, larger uncertainties than countries with high-quality country-specific emission data, 

such as China, which has a high-resolution emissions database (CPED; Liu et al., 2015), and India, which 

has a database developed by Argonne National Laboratory (Lu et al., 2011).  

Figure 9 shows a schematic of our methodology to estimate the NOx to CO2 emission ratios for power 

plants outside the US. We adopt different approaches for more and less strict countries. More strict 

countries, including Canada, European Union (EU) member states, Japan, South Korea, and, more 

recently, China, usually use CEMS to monitor emissions, particularly from the largest emitters. For power 

plants with CEMS measurements for both NOx and CO2 emissions, it is straightforward to use the 

measured ratios. However, there is still a significant number of power plants in those countries without 

CEMS technology, particularly for CO2 measurements. For example, EU member states do not required 

power plants to use CEMS for CO2 reporting and the majority of plants in the EU therefore reports CO2 

emissions based on emission factors (Sloss, 2011). Therefore, we recommend applying our method 

described in Section 2.2 to infer region-specific ratios for those power plants. The US 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  

could be a less accurate, but reasonable approximation when no CEMS data are available, considering 

those countries share similar NOx ELVs for power plants as the US. For less strict countries, we 

recommend using the 2005 US values by coal type when ratios from countries with similar NOx emission 

standard are not available. We also recommend assigning a range from 2005 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  to 2005 

𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  + standard deviation, instead of a fixed value, to the ratio for inferring CO2 emissions, 

considering the knowledge on ratios from those regions are too few to narrow the constraint. 

As demonstrated in Section 2.2, our method presented in this study provides a reasonable estimate of 

the ratio for power plants without post-combustion NOx control devices with only knowing coal type. 

Even for regions without reliable emission information, the information on coal type, particularly for 

large power plants, are very likely publicly-available. For power plants that install post-combustion NOx 

control technology, we additionally require the removal efficiency of the device to derive the ratio. The 

removal efficiency of post-combustion NOx control devices is usually directly reported, as the operation 

of such devices is very expensive and is expected to be subject to strict quality control and assurance 

standards. In contrast to bottom-up approaches, many details are required, including coal type, coal 

quality, boiler firing type, NOx emission control device type, and operating condition of boiler and 



emission control device, when calculating NOx and CO2 emissions.” 

 

Figure 8 Comparison of the regressed NOx to CO2 emission ratios derived from the global 

power emissions database (GPED) for different regions versus the correlation coefficient of the 

regression. The blue and red circles denote regions that are subject to more strict standard for 

NOx emissions from power plants (i.e., a NOx ELV of 200 mg/m
3
 or less) and other regions, 

respectively. Y axis: the slope of the regression of the NOx to CO2 emissions with an assumed y-

intercept of zero. Error bars show the standard deviations for the NOx to CO2 emission ratios for 

individual power plants. X axis: correlation coefficient of the regression. The dashed line 

represents 2005 US 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  for bituminous coal derived in this study. The grey shadow 

represents 2005 US 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  ± standard deviation.  

*China switched from being a less strict country to a more strict country in 2014, when most coal-fired power plants 

in China were required to comply with its new emission standards (GB13223-2011). 

 



 

Figure 9 Schematic of our methodology to estimate the NOx to CO2 emission ratios for power 

plants outside the US.  

*China switched from being a less strict country to a more strict country in 2014, when most coal-fired power plants 

in China were required to comply with its new emission standards (GB13223-2011). 

 The recommendation of using the ODIAC inventory to derive the ratios.  

We agree that ODIAC is a great source for CO2 emissions. However, it does not provide NOx 

emissions. It is not practical to calculate the ratios based on ODIAC. 

 

Specific comments 

p.2, l.16-18: I believe that the narrow swath of the OCO-2 sensor is not the main reason for the 

limitations of the novel and promising method proposed by Reuter et al. (2019). I suggest that 

the authors provide a more extensive and accurate discussion (not necessarily in Introduction) of 

the advantages and disadvantages of their approach with respect to that of Reuter et al. (2019). 

 

Response: We have added the discussion in the revised introduction, as follows: 

“More recently, the co-located regional enhancements of CO2 observed by OCO-2 and NO2 

observed by TROPOMI were analysed to infer localized CO2 emissions for six hotspots 

including one power plant globally (Reuter et al., 2019). As emissions plumes are significantly 

longer than the swath width of OCO-2 (10km), OCO-2 sees only cross sections of plumes, which 

may not be sufficient to infer emission strengths. Because power plant emissions can have 

substantial temporal variations (Velazco et al., 2011) and the cross-sectional CO2 fluxes are valid 

only for OCO-2 overpass times, the cross-sectional fluxes may not adequately represent the 

annual or monthly averages, which are required for the development of climate mitigation 

strategies. In addition, the cross-sectional fluxes may not be a good approximation for emission 

strengths if meteorological conditions are not taken into account (Varon et al., 2018). As 

compared to the method proposed in this study, Reuter’s method has the advantage of not 

requiring a priori emission information. However, there are currently no satellite instruments 

with a wide enough swath to allow wider application of Reuter’s method. ” 

 

p.2, l.37: I recommend that the authors avoid boasting about the “novel” method here and 

elsewhere. Actually, the only significant new point of their method is that it is focused on a 



particular source of CO2 emissions (as noted above). A very similar method to constrain CO2 

emissions is described in previous papers (cited in this manuscript) focused on estimating fossil 

fuel burning CO2 emissions in China and in Europe. Certainly, there are differences concerning 

the ways to estimate the NOx emissions and NOx/CO2 emission ratio in the different studies, but 

these differences are mostly of technical nature. Furthermore, the method which was used to 

estimate NOx emissions in this study is identical to that presented by the same authors in their 

previous papers. 

 

Response: We have deleted the term of novel in the revised manuscript. 

 

p.3, l.7-12: It would be useful to explain briefly why a special approximation procedure is 

needed to estimate a NOx/CO2 emission ratio while using the CMES data (i.e. why the NOx/CO2 

emission ratio for any given power plant in the US could not be directly evaluated using the 

corresponding CMES measurements). 

 

Response: CEMS measurements are available for some power plants in the US, Europe, Canada 

and, more recently, China. For those power plants with CEMS measurements, we agree that it is 

more straightforward and accurate to use the measured values. However, there is still a 

significant number of power plants in those countries without CEMS technology, particularly for 

CO2 measurements. The method developed by this study provides a more reliable method to 

determine the ratios for those power plants without CEMS based on CEMS data for other plants. 

We have clarified this in the revised Section 3.3.1, as follows: 

 

“More strict countries, including Canada, European Union (EU) member states, Japan, South 

Korea, and, more recently, China, usually use CEMS to monitor emissions, particularly from the 

largest emitters. For power plants with CEMS measurements for both NOx and CO2 emissions, it 

is straightforward to use the measured ratios. However, there is still a significant number of 

power plants in those countries without CEMS technology, particularly for CO2 measurements. 

For example, EU member states do not require power plants to use CEMS for CO2 reporting and 

the majority of plants in the EU therefore reports CO2 emissions based on emission factors (Sloss, 

2011). Therefore, we recommend applying our method described in Section 2.2 to infer region-

specific ratios for those power plants. The US 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  could be a less accurate, but 

reasonable approximation when no CEMS data are available, considering those countries share 

similar NOx ELVs for power plants as the US.” 

 

P3. l.21. It is quite unusual and inconvenient that the first figure ever mentioned in the 

manuscript is Figure 5 (instead of Figure 1). The order of the figures should be corrected. 

 

Response: Thanks. We have reordered the figures in the revised manuscript. 

 

p.3, l.29-32: The authors should explain the origin and significance of the value “1.32”. Would 

their estimates be less accurate if they assumed that the NOx/NO2 ratio equals, say, to 1.3? 

Further, do the authors imply that if one had a way to measure the NO/NO2 ratio around any 

power plant anywhere in the world with a spatial resolution of 13 km×24 km, then the measured 

NOx/NO2 ratio would be exactly 1.32? Wouldn’t the NOx/NO2 ratio actually strongly vary from 



site to site and would depend on the ozone level (which is frequently not determined by local 

pollution sources) and the age of the plume? Doesn’t the fact that the estimates of the NOx 

lifetime inferred from satellite measurements vary across the 8 power plants within almost a 

factor of 2 (according to Table 2) mean that OH (and therefore O3) levels are quite different in 

plumes from different power plants? Overall, I believe that the uncertainty associated with the 

estimation of the NOx/NO2 ratio should be carefully discussed and evaluated (perhaps, using a 

chemistry transport model). A brief and superficial discussion of this important point in Liu et al. 

(2016) is certainly insufficient. 

 

Response: The number of 1.32 used for scaling up the NO2 to NOx is based on the typical 

assumptions made in the section 6.5.1 of Seinfeld and Pandis (2006) for “typical urban 

conditions and noontime sun” following the recommendation by Beirle et al. (2011). We agree 

that the NO/NO2 ratio might vary locally. But these local variations are not expected to be 

significant over spatial scales of ~100−200 km and annual temporal averaging. We included 

increased uncertainty of the NOx/NO2 ratio from 10% to 20% when calculating the overall 

uncertainties. We recognize that uncertainties resulting from the NOx/NO2 ratio may be better 

understood when more direct measurements are available in the future. We have clarified this in 

the Section 3.2 of the revised manuscript, as follows: 

“The number of 1.32 used for scaling the NO2 to NOx ratio is based on assumptions presented in 

section 6.5.1 of Seinfeld and Pandis (2006) for “typical urban conditions and noontime sun”. 

Note that conditions are quite similar in this study because of the overpass time of OMI close to 

noon, the selection of cloud-free observations, the focus on the ozone season, and the focus on 

polluted regions. A case study of CTM simulations shows an identical value of 1.32 for Paris in 

summer (Shaiganfar et al., 2017). The simulated NOx/NO2 ratio at the OMI overpass time within 

the boundary layer (up to 2 km) in a chemistry–climate model, EMAC (Jöckel et al., 2016), was 

1.28 + 0.08 for polluted (NOx>1×10
15

 molec cm
-2

) regions for the July 1, 2005, and 1.32 + 0.06 

on average for the ozone season. However, the coarse grid of EMAC (2.8
◦
 × 2.8

◦
 in latitude and 

longitude) may not capture the true range of variation of the NOx/NO2 ratio. Therefore, we 

assumed an uncertainty of 20% arising from the NOx/NO2 ratio, double than the standard 

deviation of the EMAC ratio. ” 

 

Table S1: The authors provided some useful supplementary information for Sect. 2.1 in Table S1, 

but this table is not mentioned and discussed anywhere in the manuscript. 

 

Response: Thanks for pointing out this. We have introduced the table in the revised manuscript, 

as follows: 

“The locations of the 8 plants are shown in Figure 1 and given in Table S1.” 

“The fitted lifetimes and other fitting parameters for all power plants are given in Table S1.” 

 

p.4, l.3-33: I suggest the authors provide an additional figure illustrating the NO2 plume from 

the Rockport power plant along with a corresponding Gaussian fit. 

 

Response: Thanks. We have added it as Figure 2 in the revised manuscript. 

 



 
 

Figure 2 Mean OMI NO2 tropospheric VCDs around the Rockport power plant (Indiana, USA) 

for (a) calm conditions, (b) northeasterly winds and (c) their difference (northeasterly − calm) for 

the period of 2005 – 2017. The location of Rockport is labelled by a black dot. (d) NO2 line 

densities around Rockport. Crosses: NO2 line densities for calm (blue) and northeasterly winds 

(red) as function of the distance x to Rockport center. Grey line: the fit result. The numbers 

indicate the net mean wind velocities (windy − calm) from MERRA-2 (w) and the fitted lifetime 

τ. 

 

p.5, l.5: It would be helpful if the authors explained here what is the purpose of creating 

“continuous and consistent records of ratio_CEMS...”. Are these records supposed to be helpful 

for estimating CO2 emissions inside of the US (although accurate estimates of the NOx/CO2 

ration are already provided by CEMS for each power plant) or outside of the US (although the 

applicability of the CEMS data outside of the US is very questionable)? 

 

Response: The sentence indicates that 𝑟𝑎𝑡𝑖𝑜𝐶𝐸𝑀𝑆 for plants prior to and after installing post-

combustion NOx control systems is continuous and consistent, because the estimation is based on 



𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  for plants without post-combustion control systems in operation. We have deleted 

the terms of continuous and consistent in the revised manuscript to prevent misunderstanding. 

 

Sect. 3.2: In my opinion, the uncertainties of the emission estimates inferred from the OMI 

measurements are well characterized by the standard deviations reported in Table 3. However, 

these “data-based” uncertainty estimates are not discussed in the manuscript. The present 

discussion of the uncertainties, however, looks very superficial. I suggest the authors provide a 

separate table (e.g., in the Supporting information) reporting the uncertainties associated with 

each power plant and with each individual factor contributing to the total uncertainty. Also, I 

wonder how a reader acquainted with the basic knowledge of the mathematical statistics is 

supposed to interpret the values of the uncertainty reported in this section. Do these values 

represent the standard deviation (that is, the confidence interval corresponding to the 68.3 

percentile)? If so, does the fact that the uncertainty estimates range from 62%–96% mean that 

there is a significant chance that a true value of the emissions can be below zero (assuming that 

the error distribution is Gaussian)? My suggestion is to consider reporting the so huge 

uncertainties in terms of the geometric standard deviation (thus assuming that the error 

distribution is log-normal). 

 

Response: We agree that the standard deviation reported in Table 3 is a good indicator of the 

uncertainty. We also calculate the geometric standard deviation of the difference between 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆 

and 𝐸𝐶𝑂2
𝑆𝑎𝑡 from 2006* to 2016* for individual power plants in Table S2 as an alternative measure 

to reflect the uncertainty following the suggestion of the reviewer. In the revised manuscript, we 

have added the discussion on this “data-based” uncertainty analysis, as follows: 

 

“The mean and the standard deviation of the relative differences between 𝐸𝑁𝑂𝑥
𝐶𝐸𝑀𝑆 and 𝐸𝑁𝑂𝑥

𝑆𝑎𝑡 , and 

𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆 and 𝐸𝐶𝑂2

𝑆𝑎𝑡 for all eight power plants provide a good alternative measure of uncertainties 

(Table 3). The relative differences are rather small, which are 0% ± 33% and 8% ± 41% (mean ± 

standard deviation) for NOx and CO2, respectively. We additionally calculate the geometric 

standard deviations (GSDs) of the difference between 𝐸𝐶𝑂2
𝐶𝐸𝑀𝑆 and 𝐸𝐶𝑂2

𝑆𝑎𝑡 from 2006* to 2016* for 

individual power plants in Table S2. The small values of GSDs ranging from 1.07 to 1.31 further 

improve our confidence in the accuracy of the derived emissions in this study.” 

We have added a separate Table S2 to list the contributors to the overall uncertainties as 

suggested by the reviewer. We report the derived uncertainties as a 95% confidence interval (CI). 

Note that we adjust our uncertainty estimates for some contributors. We increased the 

uncertainty of the NOx/NO2 ratio from 10% to 20% (see response to the comments on the 

NOx/NO2 ratio). We decreased the uncertainty arising from the variations of fitted lifetimes by 

wind direction from 40% to 20%, because the average of the standard deviation of lifetimes for 

all wind directions decreased from 40% in Liu et al. (2016) to 20% in this study. The details are 

given in section 1 of the supplement, as follows: 

“The uncertainty analysis is similar to the procedure described in our previous work (Liu et al., 

2016), based on the fit performance and the dependencies on the a priori settings as determined 

in sensitivity studies. We report the derived uncertainties as a 95% confidence interval (CI). Here 

we briefly list the sources of uncertainties and how they are quantified. Further details are 

provided in Section 3 of the Supplement of Liu et al. (2016). In summary, we conclude that: 



 Choice of integration and fit intervals: Uncertainties arising from the choice of 

integration and fit intervals are about 10% for the lifetime and 20% for the total NO2 

mass, respectively, based on our sensitivity analysis by changing integration and fit 

intervals. 

 Fit errors: The fit errors expressed as 95% confidence interval (CI) are derived from the 

least-squares fit routine directly for individual sources. They are typically on the order of 

10% for both lifetime and total NO2 mass, both of which are propagated into the 

uncertainty of 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡 . In addition, the standard deviation of fitted lifetimes for all wind 

direction sectors is regarded as a measure of uncertainty to reflect the reliability of 

lifetimes, which is 20% on average for all power plants. 

 Wind fields: The uncertainty associated with the wind data is 30%. The choice of wind 

layer height and the uncertainties of wind fields themselves contribute to the overall 

uncertainty. 

 The derived NOx emissions are affected by the uncertainty of the NO2 tropospheric 

VCDs (~30%) and the NOx/NO2 ratio (~20%). 

 Effects of a possible systematic change of NO2 tropospheric VCDs from calm to windy 

conditions result in an uncertainty of ~10%. 

 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  contributes to an uncertainty of 15%.  

 For power plants with post-combustion NOx control devices, an additional uncertainty of 

20% comes from the predicted NOx removal efficiency of the devices. 

The uncertainties of each contributor for individual power plants are listed in Table S2. We 

assume that their contributions to the total uncertainty are independent and define the total 

uncertainty as the root of the quadratic sum of the aforementioned contributions.” 

 

p.7, l.19,20: If the authors believe that the NOx/CO2 emission ratio at Matimba is on the upper 

end of the US values, then perhaps they should have used a maximum value of the NOx/CO2 

emission ratios among all of the US power plants without NOx emission control. Anyway, it is 

not clear how the standard deviation of ratio_regressed was evaluated? Is it the standard 

deviation of the slope of a linear fit or the standard deviation of the original NOx/CO2 emission 

ratios from the CMES data? 

 

Response: We assume the NOx to CO2 emission ratio of Matimba is on the upper end of the US 

values, considering South Africa has not implemented improvements in boiler operations to 

decrease the ratio, such as optimizing furnace design and operating conditions, as in the US. We 

thus use the ratio for year 2005, instead those for more recent years to infer CO2 emissions for 

the entire period. The standard deviation is that of the NOx/CO2 emission ratios for individual 

power plants from CEMS. We believe the ratio of Matimba is more likely to range from 2005 

𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆  to 2005 𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑

𝐶𝐸𝑀𝑆  + standard deviation, instead of being 2005 

𝑟𝑎𝑡𝑖𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑒𝑑
𝐶𝐸𝑀𝑆 , considering that it is not equipped with any NOx control devices, even low-NOx 

burners which are widely installed in US power plants. But we don’t use the maximum value of 

the ratio in this study, because it may be related with some plant-specific operating conditions, 

which is not applicable to other plants. We have clarified how to apply the ratios derived in this 

study to other regions in Section 3.3.1. 

 



p.7, l.29-31: According to Reuter et al. (2019), the CO2 emission estimates for the Matiba power 

plant are available also from the ODIAC inventory. The authors could consider using the 

corresponding estimates for comparison. 

 

Response: Thanks. We have added the estimates from ODIAC in Figure 11 of the revised 

manuscript. 𝐸𝐶𝑂2
𝑆𝑎𝑡 derived in this study shows reasonable agreement with the ODIAC. 

 

Conclusions: This section looks unusually short for ACP. Furthermore, instead of providing a 

clear and logical summary of the major findings of the study, the authors preferred to speculate 

about possible future developments of their method. Accordingly, I believe this section needs to 

be re-written and significantly extended. 

 

Response: We have extended the conclusion substantially to provide a summary of the major 

findings, as follows: 

 

“In our study, we investigated the feasibility of using satellite data of NO2 from power plants to 

infer co-emitted CO2 emissions, which could serve as complementary verification of bottom-up 

inventories or be used to supplement these inventories that are highly uncertain in many regions 

of the world. For example, our estimates will serve as an independent check of CO2 emissions 

that will be inferred from satellite retrievals of future CO2 sensors (Bovensmann et al., 2010). 

Currently, uncertainties in CO2 emissions from power plants confound national and international 

efforts to design effective climate mitigation strategies.  

We estimate NO2 and CO2 emissions during the “ozone season” from individual power plants 

from satellite observations of NO2 and demonstrate its utility for US power plants, which have 

accurate CEMS with which to evaluate our method. We systematically identify the sources of 

variation, such as types of coal, boiler, and NOx emission control device, and change in operating 

conditions, which affect the NOx to CO2 emissions ratio. Understanding the causes of these 

variations will allow for better informed assumptions when applying our method to power plants 

that have no or uncertain information on the factors that affect their emissions ratios. For 

example, we estimated CO2 emissions from the large and isolated Matimba power plant in South 

Africa, finding that our emissions estimate shows reasonable agreement with other independent 

estimates. 

We found that it is feasible to infer CO2 emissions from satellite NO2 observations, but 

limitations of the current satellite data (e.g., spatio-temporal resolution, signal-to-noise) only 

allow us to apply our method to eight large and isolated U.S. power plants. Looking forward, we 

anticipate that these limitations will diminish for the recently launched (October 2017) 

TROPOMI, and three upcoming (launches expected in the early 2020s) geostationary 

instruments (NASA TEMPO; European Space Agency and Copernicus Programme Sentinel-4; 

Korea Meteorological Administration Geostationary Environment Monitoring Spectrometer, 

GEMS), which are designed to have superior capabilities to OMI. As demonstrated in Ialongo et 

al. (2019), high resolution TROPOMI observations are capable of describing the spatio-temporal 

variability of NO2, even in a relatively small city like Helsinki. Higher spatial and temporal 

resolutions will likely reduce uncertainties in estimates of NOx emissions as well as allow for the 

separation of more power plant plumes from nearby sources, thus increasing the number of 

power plants available for analysis. Therefore, future work will be to apply our method to these 



new datasets, especially after several years of vetted data become available. Additional future 

work will include applying our method to other regions of the world with reliable CEMS 

information, such as Europe, Canada and, more recently, China, to develop a more reliable and 

complete database with region-specific ratios. ” 

 

Figure 2: Do the emissions shown in this figure correspond to the ozone season only? If so, this 

should be indicated in the figure caption. The regression coefficients could be reported only with 

one or two digits after the point. Is there a reason for showing a linear regression with the 

intercept term in the panel (c) and without the intercept in other panels? 

 

Response: For comparison to 𝐸𝑁𝑂𝑥
𝑆𝑎𝑡  and 𝐸𝐶𝑂2

𝑆𝑎𝑡, we use emissions averaged over the ozone season 

derived from Air Markets Program Data (available at https://ampd.epa.gov/ampd/). However, 

Air Markets Program Data do not provide information about each plant’s boiler firing types (e.g., 

tangential or wall-fired boiler), NOx control device type, fossil fuel type (with categories of coal, 

oil, gas and other), and coal type (with categories of bituminous, lignite, subbituminous, refined 

and waste coal), which are required to get reasonable ratio. Thus, we choose eGRID as the data 

source for Figure2. We use eGRID annual emissions in Figure 2, because eGRID does not 

provide CO2 emissions specifically for the ozone season.  

 

We have changed the regression coefficients to two digits after the point. We intent to show the 

linear regression without intercept in panels (a) and (b), because the regression slope was 

calculated requiring zero intercept for deriving 𝒓𝒂𝒕𝒊𝒐𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒆𝒅
𝑪𝑬𝑴𝑺 . 

 

Figure 8: The meaning of a shaded band should be clearly explained in the figure caption. I 

suggest also to supply the emission estimates inferred from the OMI observations with the error 

bars corresponding to the mean of the standard deviations reported in Table 3. 

 

Response: We have added the explanation for the shaded band in the revised caption, as follows: 

“The upper and lower grey bands denote the emissions inferred from 𝒓𝒂𝒕𝒊𝒐𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒆𝒅
𝑪𝑬𝑴𝑺  and 

𝒓𝒂𝒕𝒊𝒐𝒓𝒆𝒈𝒓𝒆𝒔𝒔𝒆𝒅
𝑪𝑬𝑴𝑺 + standard deviation of ratio, respectively.” 

We have added error bars in the revised figure. 
 

https://ampd.epa.gov/ampd/

