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Abstract 1 

The chemical composition of fine particulate matters (PM2.5), the size distribution and number 2 

concentration of aerosol particles (NCN) and the number concentration of cloud condensation 3 

nuclei (NCCN) were measured at the northern tip of Taiwan Island during a campaign from April 4 

2017 to March 2018. The parameters of aerosol hygroscopicity (i.e. activation ratio, activation 5 

diameter and kappa) were retrieved from the measurements. Significant variations were found 6 

in the hygroscopicity of aerosols, which were suggested be subject to various pollution sources, 7 

including aged air pollutants originating in the eastern/northern China and transported on the 8 

Asian continental outflows, fresh particles emitted from local sources and distributed by land-9 

sea breeze circulations as well as produced by new particle formation (NPF) processes. Cluster 10 

analysis was applied to the backward trajectories of air masses to investigate their respective 11 

source regions. The results showed that the aerosols associated with Asian continental outflows 12 

were characterized with higher kappa values, whereas higher NCCN and NCN with lower kappa 13 

values were found for aerosols in local air masses. The distinct features in hygroscopicity were 14 

consistent with the characteristics in the chemical composition of PM2.5. Moreover, this study 15 

revealed that the nucleation mode particles from NPF could have participated in the 16 

enhancement of CCN activity, most likely by coagulating with sub-CCN particles, although 17 

the freshly produced  particles were not favored for CCN activation due to their smaller sizes. 18 

Thus, the results of this study suggested that the NPF coupling with coagulation processes can 19 

significantly increase the NCCN in atmosphere. 20 

 21 
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1. Introduction 1 

Aerosols suspended in the atmosphere allow condensation of water vapor under certain super-2 

saturation conditions and subsequently evolve into cloud droplets. Activation of cloud 3 

condensation nuclei (CCN) depends on the size and chemical composition of aerosol particles, 4 

as well as on the meteorological conditions (i.e. water vapor supersaturation (SS), and uplift 5 

force for air parcels) (Seinfeld and Pandis 1998). Among the chemical and physical properties 6 

of aerosols, hygroscopicity plays critical roles in the complex aerosol-cloud interactions 7 

(McFiggans et al., 2006; Lee et al., 2010). Atmospheric aerosols are a mixture of different 8 

chemical species rather than a single compound and exist in various size ranges and mixing 9 

states. A single parameter called kappa (κ) has been developed to evaluate hygroscopicity of 10 

aerosols, which represents a scaled volume fraction of soluble materials in particles and 11 

provides a theoretical framework to derive bulk hygroscopicity for aerosols with internal 12 

mixtures (Petters and Kreidenweis, 2007). However, while the hygroscopicity and CCN 13 

activity of a single component can be characterized in laboratories, the properties of their 14 

mixture in ambient air are difficult to estimate owing to the complexity in physiochemical 15 

characteristics of aerosols. Thus, field investigations have been conducted to study aerosol 16 

hygroscopicity and CCN activity in various environmental settings including rural, urban, 17 

forest and marine boundary layer (Ehn et al., 2007; Massling., 2007; Gunthe et al., 2009; Wu 18 

et al., 2016; Schmale et al., 2017; Park et al., 2018). Furthermore, in-situ measurements of 19 

physicochemical properties of aerosols and CCN in critical geographical areas in climate 20 

system could provide a means of constraining representation of relevant schemes in global 21 

climate models (Khairoutdinov and Randall, 2001; Betancourt and Nenes, 2014; Seinfeld et al., 22 

2016).  23 

 24 

Due to the rapid industrialization and economic development in the East Asia (EA) during the 25 

past few decades, the EA has become one of the most polluted regions in the world where 26 

significant amount of particulate matters (PM) and their precursors were emitted (Streets et al., 27 

2003; Dentener et al., 2006; Zhang et al., 2009). Taiwan is located in the downwind area of the 28 

EA continental outflows, and thereby is influenced by the pollution outbreaks during the winter 29 

monsoon seasons. Besides, the air quality in Taiwan is also known to be affected by the 30 

photochemical production of secondary aerosols. The geographical location thus provides a 31 

strategic platform to investigate the CCN activation of aerosols influenced by a complex 32 

mixture of pollutants (Chou et al., 2005, 2017; Chang et al., 2010; Cheung et al., 2013, 2016; 33 

Li et al., 2016; Lee et al., 2019). Cheung et al. (2013) reported that new particle formation 34 
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(NPF) events occurred frequently during summertime in Taiwan, where the number 1 

concentration of nucleation mode particles formed from photochemical reactions was nearly 2 

ten-fold of that attributed to local primary pollution, indicating the critical impact of NPF on 3 

particle concentration. Previous studies suggested that the freshly formed particles could 4 

further grow into larger particles by up-taking condensable vapors (i.e. organic and sulfuric 5 

vapors) and increased CCN concentration (Merikanto et al., 2009; Pierce et al., 2012); however, 6 

the detailed processes were not clear yet. To date, most of the studies upon CCN and its 7 

interaction with NPF have been conducted in Europe and North America, whereas only a few 8 

short-term intensive studies in East Asia were available despite the frequent NPF observed in 9 

this region (Yue et al., 2011; Leng et al., 2014; Ma et al., 2016). In order to investigate the 10 

hygroscopicity and CCN activity of the aerosols with a complex pollution sources and aging 11 

processes, a one-year observation study on characteristics of aerosols and CCN was conducted 12 

in the northern Taiwan. The aim of this study was to characterize the variations in aerosol 13 

hygroscopicity and CCN activity under the influences of continental outflows and new particle 14 

formation during different seasons. 15 

 16 

2. Methodology 17 

2.1 Observation site and instrumentation 18 

A field study was conducted at the Cape Fuguei Research Station (named CAFÉ, 25.30˚N, 19 

121.54˚E, 10 m a.s.l.) located at the northern tip of Taiwan Island (see Figure 1 for map) from 20 

1 April 2017 to 31 March 2018. The air quality in northern Taiwan exhibited significant 21 

seasonal variations, depending on the origins of polluted air masses. The EA continental 22 

pollution outbreaks dominated during the seasons of winter monsoons, whereas local pollution 23 

associated with southerly flows affected the study site, particularly during summer (Chou et al., 24 

2017). Therefore, this station provides an ideal platform for studies on the aerosol 25 

hygroscopicity and CCN activity under the influences of various pollution sources. 26 

 27 

The aerosol sampling inlets were located at the rooftop of the station and ambient air was drawn 28 

into the instruments through conductive tubing. Figure 2 illustrates the schematics of aerosol 29 

sampling. Two inlets were deployed for aerosol sampling and were equipped with diffusion 30 

dryers filled with silica gel to reduce RH. One of the inlets was for particle size distribution 31 

measurement (13-736 nm), which was carried out by a scanning mobility particle sizer (SMPS, 32 

TSI Inc.). The SMPS system consisted of an electrostatic classifier (TSI 3080) with long-33 

differential mobility analyzer (TSI 3081) and a water-based condensation particle counter 34 
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(WCPC, TSI 3786). The sheath and sample flow rates were 3 and 0.6 lpm, respectively, and 1 

the sample time interval was 5 minutes. The accuracy of particle sizing was checked using 2 

polystyrene latex spheres (PSLs). The nominal diameters of the PSLs were 97±3nm (Part#: 3 

3100A, Thermo Scientific Inc.) and 240±5 nm (Part#: 3240A, Thermo Scientific Inc.). The 4 

averaged modes of the PSLs measured by the SMPS were found to be 100±2.1 and 232.9±0 5 

nm, respectively, and the differences from the nominal diameters were within 3%. Multiple 6 

charge and diffusion loss corrections were applied to the particle size distribution data using 7 

the internal algorithm from the Aerosol Instrument Manager Software. Furthermore, diffusion 8 

loss in sampling tube was corrected according to the algorithm proposed by Holman (1972). 9 

 10 

The sample air from another inlet split into two streams for the CCN (NCCN) and total particle 11 

number concentrations (NCN) measurements, respectively, which were used to calculate the 12 

CCN activation ratio (AR). The instruments for NCCN and NCN measurements were cloud 13 

condensation nuclei counter (CCNC-100, DMT Inc.) and butanol-based condensation particle 14 

counter (BCPC 3022, TSI Inc.). The calibrated super-saturation (SS) condition setting of the 15 

CCN counter was periodically changed from 0.15±0.01, 0.29±0.02, 0.53±0.03 to 0.86±0.05% 16 

with time interval of 21, 13, 13, and 13 minutes (a total of 1 hour for each cycle). The flow 17 

rates for the CCNC and BCPC instruments were 0.5 and 0.3 lpm, respectively, which were 18 

checked routinely during sampling periods by the DryCal flow calibrator (Defender 520, Mesa 19 

Labs Inc.). The SS calibration of CCN counter was conducted using ammonium sulfate 20 

particles at the start, middle and end of the campaign. It should be noted that the CCNC 21 

malfunctioned at the end of Aug 2017, and sampling was resumed from Oct 2017. Hence, data 22 

was not available during that period. 23 

 24 

PM2.5 samples were collected by two sequential sampling systems (PNS 18-3.1DM, Comde-25 

Derenda GmbH) and both samplers were equipped with PM2.5 sharp cut cyclone with 16.7 lpm 26 

sampling flow rate. One sampler was equipped with Teflon filters which were used for the 27 

analysis of soluble ions (i.e. Na+, NH4
+, K+, Mg2+, Ca2+, Cl-, NO3

-, SO4
2-) using ion 28 

chromatograph (IC). Another sampler was equipped with quartz filters which were used for 29 

analysis of carbonaceous components (i.e. organic carbon, OC, and elemental carbon, EC) 30 

using a DRI-20001A carbonaceous aerosol analyzer with IMPROVE-A protocol (Chow et al., 31 

2007). Details of the in-lab analysis are as described previously (Salvador and Chou, 2014). 32 

The sampling duration of each sample set was from 08:00 to 08:00LT (24h), and in total 282 33 

samples were collected during the entire sampling period. Moreover, to assist the data 34 
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interpretation, the hourly average mass concentration of PM2.5, the mixing ratio of trace gases 1 

(i.e. CO, O3, SO2 and NO2) and the meteorological parameters (i.e. wind direction/speed) 2 

reported from the air quality station of Taiwan EPA that collocated with the CAFÉ station were 3 

analyzed in this study. 4 

 5 

2.2 Data processing and analysis for aerosol hygroscopicity 6 

Firstly, the NCCN and NCN data were synchronized into 5 mins averaged data which matched 7 

the time interval for PSD data measured by SMPS. The CCN activation ratio (AR), i.e. the ratio 8 

of  NCCN to NCN, was calculated for a given SS condition. Given the assumption that the 9 

particles are homogeneously internally mixed and larger particles are activated first. Also, the 10 

number concentration of particles out of the measured particle size range is assumed negligible. 11 

The minimum diameter (Dss) required for the CCN activation with the AR value at a given SS 12 

condition was calculated according to equation (1) (Hung et al., 2014). 13 

 14 

         (1) 15 
 16 

where n(D) is the number concentration while Di and Df are the first and final bin sizes based 17 

on SMPS data, respectively. 18 

 19 

The hygroscopicity parameter () was then calculated as the followings : 20 

 21 

κ ൌ  
ସ஺య

ଶ଻஽೏
య௟௡మௌ೎

      (2) 22 

 23 

A ൌ  
ସఙೄ ೈ⁄ ெೈ

ோ்ఘೈ
             (3) 24 

 25 
where Sc is the water saturation (= SS + 1), Dd is the dry particle diameter and equivalent to 26 

Dss calculated by equation (1), 𝜎ௌ ௐ⁄  is the solution surface tension (0.072 J m-2), 𝜌ௐ is the 27 

water density (997 kg m-3), 𝑀ௐ is the molecular weight of water (0.018 kg mole-1), R is the 28 

universal gas constant (8.314 J K-1 mole-1) and T is ambient temperature.  29 

 30 

The kappa value is used to describe the hygroscopicity of the aerosols; for example, ammonium 31 

nitrate and ammonium sulfate have kappa values of 0.67 and 0.61, respectively, whereas it is ~ 32 

𝐴𝑅 ൌ
𝑁𝐶𝐶𝑁

𝑁𝐶𝑁
ൌ

׬ 𝑛ሺ𝐷ሻ𝑑𝑙𝑛𝐷
𝐷𝑓

𝐷𝑆𝑆

׬ 𝑛ሺ𝐷ሻ𝑑𝑙𝑛𝐷
𝐷𝑓

𝐷𝑖
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0.1-0.2 for organic species (Petters and Kreidenweis, 2007). To remove the outliers in kappa 1 

data, we defined an outlier by values larger or smaller than 1.5 inter-quarter range (IQR) as 2 

following: 3 

 4 

𝑄1 െ 1.5 𝐼𝑄𝑅 𝑜𝑟 𝑄3 ൅ 1.5 𝐼𝑄𝑅                                                 (4) 5 
        6 
where Q1 and Q3 are first and third quarterly of kappa data, and IQR is Q3 minus Q1. 7 

 8 

2.3 Back-trajectories cluster analysis 9 

Five-day backward trajectories of air masses were calculated in every 4 hours using the Hybrid 10 

Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model of NOAA (National 11 

Oceanic and Atmospheric Administration) for the entire sampling period (Stein et al., 2015). 12 

The meteorological data used in the model were the 6-hourly Global Data Assimilation System 13 

(GDAS) archived data with a resolution of 0.5 degree in longitude and latitude. The end-point 14 

of the trajectories was 200 m above ground level at the CAFÉ station. Cluster analysis was 15 

then used to group trajectories into 5 clusters (see Figure 3). The air masses of Clusters 1, 2 16 

and 4 were associated with Asian continental outflows induced by the high pressure system 17 

during autumn to spring seasons. The air-mass members of both Clusters 1 and 2 were 18 

originating in the inlands of the Asian continent, but the movement of Cluster 2 air masses was 19 

faster and from higher altitudes. Air masses in Cluster 4 were also induced by high pressure 20 

system but were moving slowly toward the Pacific Ocean and along marine boundary before 21 

reaching CAFÉ station. In contrast, Clusters 3 and 5 include air masses originating in the 22 

Pacific areas and passing through Taiwan Island during warm seasons. The occurrence 23 

frequency of each cluster is listed in Table 1. The implications of origins and trajectories of air 24 

masses for CCN activation will be discussed in details in Section 3.2. 25 

 26 
3. Results and discussion 27 

In the followings we first present the overall statistics of aerosol hygroscopicity and CCN 28 

activity, and the seasonal and diurnal variations. Then, the features in aerosol hygroscopicity 29 

for respective air mass clusters are depicted. Finally, the implications of NPF for CCN activity 30 

will be discussed. 31 

 32 

3.1. Overall statistics for seasonal and diurnal variations of aerosol hygroscopicity 33 

Statistics of the number concentration of cloud condensation nuclei (NCCN) and total particles 34 
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(NCN) as well as of the activation ratio (AR), activation diameter (DSS) and kappa () values 1 

under four SS conditions are summarized in Table 2. The median NCCN ranged from 820 to1880 2 

cm-3 for SS = 0.15 – 0.86 %. The median κ values calculated for the sampling period ranged 3 

from 0.17 to 0.62 (SS = 0.15 – 0.86 %), which exhibited larger variations than that reported 4 

from coastal sites in Hong Kong (κ: 0.28 – 0.39 for SS: 0.15 – 0.70%, Meng et al. 2014) and 5 

in Noto Peninsula, Japan (κ: 0.19 – 0.37 for SS: 0.13 – 0.81%, Iwamoto et al. 2016). Schmale 6 

et al. (2018) summarized the results of CCN measurements reported from 12 sites on 3 7 

continents. The standardized κ values at SS of 0.5 % were found to be 0.48, 0.41, 0.55, and 8 

0.30 for rural background, alpine, coastal background, and urban environmental settings, 9 

respectively. The estimated κ value at SS of 0.5 % was 0.31 for this study, which was 10 

significantly lower than that for coastal background and was more similar to that of urban 11 

aerosols. This is likely because the aerosol composition at CAFÉ station were frequently 12 

influenced by urban air pollution, as indicated in previous studies (Chou et al., 2008, 2010, 13 

2017). 14 

 15 

It is noteworthy that both the κ and DSS decrease with the SS, which implies some small and 16 

less hygroscopic particles getting activated at higher SS. Previous studies on size-resolved 17 

chemical composition of PM2.5 at northern Taiwan reported that the size distribution of 18 

aliphatic carbons peaked at 0.12-0.15 µm and 0.62-0.87 µm while that for carbonyl carbons 19 

peaked only at 0.6-0.64 µm (Chou et al., 2005). Cheung et al. (2016) showed that the ultra-fine 20 

particles (i.e. d < 100 nm) collected from Taipei City, an urban site in northern Taiwan, 21 

consisted mostly of organic matters. Moreover, Salvador et al. (2016) revealed that low-22 

molecular-weight organic acids were abundant in the submicron aerosols in Taipei, Taiwan. In 23 

this context, the low hygroscopicity of small aerosols found in this study was consistent with 24 

the results of investigations upon aerosol chemical composition. 25 

 26 

Figure 4 illustrates the monthly median with the first / third quartiles of NCCN, kappa and DSS 27 

under SS of 0.29% and NCN for the entire campaign period. Distinct seasonal variations were 28 

observed in the measurements. Elevated levels of NCN and NCCN were observed in April (spring 29 

time) and July 2017 (summer time) (median 1540-1700 cm-3). During spring and summer of 30 

2017, NPF events were observed frequently which induced an elevated NCN (maximum median: 31 

5650 cm-3 in July 2017). The consistency in NCN and NCCN suggested that the particles 32 

generated by NPF processes could have contributed significantly to the increases in NCCN. On 33 
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the other hand, according to the kappa values, more hygroscopic particles were observed in 1 

June and October 2017. The variations of κ values could be under the influences of several 2 

mechanisms. The EA continental outflows affected the study site frequently in the seasons of 3 

EA winter monsoons, during which more inorganic aerosols could have been transported to the 4 

study site. Strong surface winds of winter monsoons could have also increased the production 5 

of sea salt particles around the coastal site and, thereby, resulted in increases in the kappa values. 6 

In addition, up-taking hygroscopic species during particle growth and coagulation processes 7 

may influence the hygroscopicity of aerosols, which will be discussed in further details later 8 

on. 9 

 10 

Figure 5 depicts the variations in daily chemical composition of PM2.5, where a higher fraction 11 

of inorganic pollutants was found during Apr. – May 2017 and Feb. – Mar. 2018, whereas sea-12 

salt elevated during Oct. 2017 – Jan. 2018. The seasonality of aerosol composition was 13 

consistent with the long-term records of aerosol observation at this site (Chou et al., 2017). 14 

Petters and Kreidenweis (2007) have estimated CCN-derived κ values for inorganic and 15 

organic species, which showed that significantly higher κ values were found for major 16 

inorganics species in aerosols, such as ammonium sulfate, ammonium nitrate, sodium chloride 17 

(kappa: 0.61-1.28), while κ values for organic species were usually lower than 0.2. Thus, 18 

relatively lower kappa values observed during Jul. – Aug. 2017 were consistent to the PM2.5 19 

chemical composition data in which a higher mass fraction of organic carbon was found. 20 

 21 

3.2 Implications of different types of air masses 22 

The air masses reaching this study site are known to be associated with the Asian continental 23 

outflows and/or with local pollution in northern Taiwan (Cheung et al., 2016). Since CO has 24 

longer atmospheric lifetime than NO2, a higher ΔCO/ΔNO2 can be used to indicate influences 25 

of aged regional air pollutants. The averaged median ΔCO/ΔNO2 ratios for the 5 trajectory 26 

clusters were 76, 75, 32, 60 and 33, respectively. A higher ΔCO/ΔNO2 ratio was found in 27 

Clusters 1, 2 and 4, whereas ΔCO/ΔNO2 of Cluster 4 was found slightly lower than that of 28 

Cluster 1 and 2.  This was attributed to the differences in air mass history; the air masses of 29 

both Clusters 1 and 2 were originating in the inland areas of the Asian Continent, whereas the 30 

air masses of Cluster 4 passed through the south of Korea and Japan and came from the east of 31 

CAFÉ station and, thereby, was occasionally impacted by some fresh emissions. The mixing 32 

ratio of O3, a typical secondary pollutant, provided further information about the sources of air 33 

plumes. The results showed that higher O3 levels (43-46 ppb) were found in continental 34 
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outflows (i.e. Cluster 1, 2 and 4) as compared to those of marine air masses (i.e. 26-28 ppb for 1 

Cluster 3 and 5). 2 

 3 

Furthermore, higher κ values were found for CCN transported with the continental outflows, 4 

which ranged from 0.19 to 0.69 for SS of 0.15-0.86 %. On the contrary, lower κ values (0.14 - 5 

0.56) were found for the CCN in air mass of Clusters 3 and 5, which originated in the remote 6 

Pacific region and passed through Taiwan Island during summertime. This result was 7 

reasonable since aged polluted air masses contained more inorganic species (with higher κ 8 

values), while the organic species (with lower κ values) contributed a higher fraction to the 9 

aerosol mass loading in urban areas of Taiwan (Chou et al., 2010, 2017). On the other hand, 10 

higher NCCN and NCN were found in Clusters 3 and 5 compared to that in Clusters 1 and 2 (see 11 

Table 3). This could be due to the substantial production of new particles during warmer 12 

seasons (Cheung et al., 2013, 2016). 13 

 14 

3.3 Implications of New Particle Formation 15 

As described in Section 3.1, large variations in NCCN and kappa values were found in summer 16 

during which NPF events occurred frequently. A NPF event is defined as the increase of the 17 

number concentration of nucleation mode particles, and those particles are growing into Aitken 18 

and/or accumulation mode size range (≥ 25nm) and last for a few hours until they disappear 19 

into the atmosphere by condensation/coagulation sinks (Dal Maso et al., 2005). In total 53 NPF 20 

events were observed during the entire study period and among which 31 were observed in 21 

warm months (from June to September 2017), representing an occurrence frequency of 58.5%. 22 

Investigations reported that NPF occurred more frequently during summer (34.6 - 42.8%) and 23 

occasionally during spring (11.5%) in urban areas of northern Taiwan (Cheung et al., 2013, 24 

2016). Figure 6 illustrates the median particle size distribution for NPF and non-NPF days as 25 

well as the quartiles. The particle number concentration for NPF events was significantly higher 26 

than that for non-NPF case. In addition, large variations were associated with the particle size 27 

below 100 nm in NPF events, suggesting that a large amount of ultra-fine particles formed.  28 

 29 

In Figure 7, diurnal variations in particle size distribution for NPF and non-NPF cases are 30 

presented along with the aerosol hygroscopic parameters DSS, κ and AR at SS = 0.29 %. In the 31 

plot of particle size distribution for NPF events, a banana feature (growth of particle diameter 32 

indicated by the geometric mean diameter, GMD) is obviously illustrated, which is typical for 33 
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NPF process (Dal Maso et al., 2005; Cheung et al., 2011), while relatively stable particle size 1 

distribution exhibites for non-NPF periods with the particles of 50-60 nm dominate throughout 2 

a day. 3 

 4 

On NPF days, a nucleation burst as indicated by a surge in nucleation mode particles (N30, 5 

number concentration of particle size ≤ 30 nm) from 06:00 to 10:00 LT was observed (as shown 6 

in Figure 7). Note that the number concentration of Aitken mode particles (indicated by N30-7 

100, for particle size between 30 to 100 nm) increased consistently, implying coagulation was 8 

active during the period. NCCN started to increase significantly around 07:00 LT. It was found 9 

that the increasing rate of NCN was higher than that of NCCN, which in turn resulted in the 10 

decreases in AR. The increases in NCCN were attributed to coagulation processes. Figure 8 11 

illustrates schematically the CCN enhancement by coagulation processes at the initial stage of 12 

a NPF event. Once the NPF process starts, the freshly formed nucleation mode particles could 13 

get coagulated with the pre-existing particles, with either CCN or sub-CCN sizes. The 14 

preexisting sub-CCN particles coagulate with the newly formed particles and, as a result, grow 15 

rapidly into CCN and thereby increase the NCCN. On the other hand, the new particles could 16 

also coagulate with the preexisting CCN, which should not increase the NCCN but will result in 17 

an increase in the size of CCN. The observation of this study (see Figure 7) showed that DSS 18 

slightly increased from about 80 nm at 04:00 LT to 87nm at 08:00 LT, suggesting that 19 

preexisting CCN particles were still predominant in this stage despite the production of “new 20 

CCN” has resulted in the increases in NCCN. Several observational studies reported that 21 

enhancement of CCN number concentrations were associated with NPF process (Sihto et al., 22 

2011; Yue et al., 2011; Leng et al., 2014; Wu et al., 2015). However, the time for the newly 23 

formed nano-particles growing to CCN sizes ranges from a few hours to more than a day 24 

(Keriminen et al., 2018). Hence the enhancement of CCN at the initial stage of a NPF event as 25 

observed in this study cannot be explained by the growth of new particles, and was most likely 26 

due to coagulation among the newly formed particles and pre-existing particles. 27 

 28 

At a later stage, because the coagulation sink exceeds the production rate of new particles, the 29 

NCN turn to decrease, whereas the NCCN keeps the increasing trend for the production of new 30 

CCN by coagulation among particles.  As a result of increases in NCCN and decreases in NCN, a 31 

significant increase in AR is expected. This has been observed in this study. Figure 7 illustrates 32 

that the AR on NPF days increased rapidly since 10:00 LT, in phase with the drastic decreases 33 

in the number density of N30 and N30-100. Agreeing with the earlier stage, the increased NCCN 34 

https://doi.org/10.5194/acp-2019-519
Preprint. Discussion started: 25 July 2019
c© Author(s) 2019. CC BY 4.0 License.



12 
 

was suggested a result of the coagulation between nucleation mode particles and the Aiken 1 

mode particles in sub-CCN size range, which thus grew into CCN size range. However, as 2 

more and more “new CCN” formed along with the NPF processes, which would become 3 

majority in the CCN population and thereby shift the size distribution of CCN to the left (as 4 

shown in Figure 8). This inference was evidenced by the observation in this study, where the 5 

decrease in DSS from 87 nm at 08:00 LT to 74 nm at 15:00 LT was found. It should be noted 6 

that the transport of external CCN during the particle growth process could also increase the 7 

CCN concentration; however, this influence should be minor because it cannot explain the 8 

simultaneous changes in NCN and AR. 9 

 10 

It was found that the kappa values exhibited a decreasing trend in the early stage of NPF and 11 

turned to an increase from 0.26 to 0.41 during the later stage. Similar increase of κ values 12 

during the particle growth period was also observed in a suburban region of northern China (Li 13 

et al., 2017). The κ values reached ~ 0.4 after the growth process, which was likely a result of 14 

a mixture of hygroscopic species like ammonium sulfate (κ = 0.61) and organic matters (κ = 15 

0.1 – 0.2). This is evidenced by the measurement of chemical composition as shown in Figure 16 

5, where the PM2.5 was composed mostly of sulfate and organic carbon, particularly during the 17 

warm months with frequent NPF events. Note that the chemical composition of ultrafine 18 

particles at urban Taipei was dominated by organic carbon (Cheung et al., 2016), which 19 

generally has lower κ values. Therefore, coagulation of the ultrafine organic particles and the 20 

larger preexisting CCN particles may have reduced the kappa values of the CCN during the 21 

initial stage of NPF.  22 

 23 

In contrast, the increases in kappa during the later NPF course suggested that the “new CCN” 24 

were dominated by hygroscopic species. The field studies at North China Plain found two types 25 

of NPF events (Yue et al., 2010, Ma et al. 2016), including sulfur-rich NPF, i.e., condensation 26 

and neutralization of sulfuric acid contributed most to the growth of the new particles with high 27 

particle hygroscopicity, and sulfur-poor NPF, i.e., condensation of organic compounds had a 28 

higher contribution to the growth with a lower particle hygroscopicity. Our results showed that 29 

the NPF events in northern Taiwan were characterized by elevated levels in both sulfur and 30 

organic matters (as shown in Figure 5). In particular, the submicron particles in northern 31 

Taiwan were found enriched in sulfate (Cheung et al., 2016) and organic acids (Salvador et al., 32 

2016). Thus it was inferred that the preexisting sub-CCN particles were more hygroscopic, 33 

which resulted in the increases in kappa when they evolved into CCN through coagulation with 34 
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ultrafine particles. The growth of sub-CCN particles at the study site could also be due to 1 

condensation of organic compounds. However, as illustrated in Figure 8, the composition of 2 

“new CCN” are dominated by the preexisting sub-CCN particles and thereby characterized 3 

with high kappa values. In this context, the increases in NCCN during the NPF events were 4 

unlikely contributed from the condensation growth of newly formed particles.  5 

 6 

The result of this study is similar to the previous studies which indicated that an enhancement 7 

of CCN number was associated with the NPF process. The increase of CCN was observed in a 8 

few hours (Yue et al., 2011; Wu et al., 2015; Leng et al., 2014) to a few days after the start of 9 

the NPF (Sihto et al., 2011). However, distinct responses of the CCN activation diameter were 10 

observed. Sihto et al. (2011) indicated that DSS increased gradually with the increased of NCCN, 11 

whereas Wu et al. (2015) showed a decrease in DSS once NPF process occurred and increased 12 

in the later stage. In the present work, DSS slightly increased once NPF started, and then 13 

decreased in later stage of the NPF event (see Figure 7 and 8). The discrepancy observed in 14 

respective studies showed the complexity in the particle growth processes. Nevertheless, the 15 

results of this study suggest that NPF coupling with coagulation is an important process to 16 

enhance the number of CCN in the study region. 17 

 18 

4. Conclusion 19 

This study presented the observation of aerosol hygroscopicity parameters, including κ, CCN 20 

activation diameter (DSS) and activation ratio (AR = NCCN/NCN), at a coastal research station 21 

(CAFÉ) in northern Taiwan during a 1-year campaign from April 2017 to March 2018. The 22 

parameters exhibited distinct seasonal variations. High levels of NCN and NCCN were 23 

consistently observed in spring and summer, whereas kappa elevated in autumn and exhibited 24 

minimal in summer. Measurements of the chemical composition of PM2.5 and cluster analysis 25 

of the backward trajectories were deployed to elucidate the seasonality observed in the 26 

hygroscopicity of aerosols. The results of this study indicated that aerosols associated with 27 

Asian continental outflows contained more inorganic species and thereby were characterized 28 

with higher κ values, as comparing to those associated with local urban pollution which 29 

consisted substantially of organic matters. 30 

 31 

The higher levels of NCCN and NCN found in spring and summer were attributed mainly to the 32 

NPF events occurred frequently during warm months. A two-stage hypothesis was proposed 33 

according to the results of this study for the implications of NPF for CCN activity. At the early 34 
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stage of a NPF event, new particles formed and resulted in increases in N30 and thereby NCN, 1 

which was followed immediately by increases in the number density of Aiken mode particles 2 

(N30-100). The new particles coagulated with preexisting sub-CCN particles, which thereby 3 

evolved into “new CCN” and resulted in the increases in NCCN. The new particles coagulated 4 

also with the preexisting CCN and resulted in increases in Dss before the “new CCN” became 5 

predominant. At the later stage, along with the NPF and coagulation processes, N30, N30-100 and 6 

NCN decreased for the larger coagulation sink, whereas generation of “new CCN” continued 7 

and resulted in increases in NCCN and a significant enhancement in AR. The activation diameter 8 

got smaller (Dss) as the “new CCN” overwhelming in the CCN population at this stage. 9 

Moreover, the investigation results showed that the kappa of CCN exhibited a decrease at the 10 

early stage and an increasing trend during the second stage. It was inferred accordingly that the 11 

newly formed particles were composed mostly of organic matters that “diluted” the 12 

hygroscopicity of preexisting CCN at the early stage, whereas the sub-CCN particles consisted 13 

of highly hygroscopic components dominated in the later stage of the event. 14 

 15 

The seasonal characteristics of hygroscopicity and CCN activity under the influences of a 16 

complex mixture of pollutants from different regional and/or local pollution sources have been 17 

illustrated in this study, and the impacts of NPF was demonstrated. Nevertheless, the mixing 18 

state and chemical composition of the aerosols, in particular the organic content of the sea spray 19 

aerosols, would critically influence the aerosol hygroscopicity in coastal areas. Hence further 20 

investigations are necessitated to understand the atmospheric processing involved in the CCN 21 

activation which would in turn affect cloud formation and the regional climate. 22 
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Table 1. Statistics on the occurrence of respective air mass clusters for each month during the 1 

study period. 2 

 3 

  4 

17-Apr 66 (36.7%) 17 (9.4%) 20 (11.1%) 43 (23.9%) 34 (18.9%) 0 (0.0%)
17-May 30 (16.1%) 12 (6.5%) 18 (9.7%) 95 (51.1%) 31 (16.7%) 0 (0.0%)
17-Jun 10 (5.6%) 0 (0.0%) 105 (58.3%) 43 (23.9%) 22 (12.2%) 0 (0.0%)
17-Jul 0 (0.0%) 0 (0.0%) 26 (14.0%) 3 (1.6%) 157 (84.4%) 0 (0.0%)
17-Aug 0 (0.0%) 4 (2.2%) 129 (69.4%) 20 (10.8%) 33 (17.7%) 0 (0.0%)
17-Sep 50 (27.8%) 12 (6.7%) 26 (14.4%) 24 (13.3%) 68 (37.8%) 0 (0.0%)
17-Oct 96 (51.6%) 31 (16.7%) 1 (0.5%) 41 (22.0%) 14 (7.5%) 3 (1.6%)
17-Nov 96 (53.3%) 42 (23.3%) 2 (1.1%) 39 (21.7%) 0 (0.0%) 1 (0.6%)
17-Dec 88 (47.3%) 84 (45.2%) 0 (0.0%) 9 (4.8%) 0 (0.0%) 5 (2.7%)
18-Jan 77 (41.4%) 77 (41.4%) 7 (3.8%) 21 (11.3%) 0 (0.0%) 4 (2.2%)
18-Feb 90 (53.6%) 50 (29.8%) 3 (1.8%) 25 (14.9%) 0 (0.0%) 0 (0.0%)
18-Mar 58 (31.2%) 38 (20.4%) 16 (8.6%) 65 (34.9%) 6 (3.2%) 3 (1.6%)
All data 661 (30.2%) 367 (16.8%) 353 (16.1%) 428 (19.5%) 365 (16.7%) 16 (0.7%)

Month
n (%) n (%) n (%) n (%) n (%) n (%)

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Undefined
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Table 2. Statistics for the number concentrations of cloud condensation nuclei (NCCN) and 1 

total particles (NCN), kappa value (κ), activation diameter (Dss) and activation ratio (AR) 2 

under four different SS conditions during the study period. 3 

 4 

 5 

SS (%) Median 1Q 3Q
0.15 820 520 1180
0.29 1220 720 1800
0.53 1670 1010 2540
0.86 1880 1140 2840

NCN (cm-3) 2880 1830 4690

0.15 0.62 0.45 0.85
0.29 0.41 0.27 0.57
0.53 0.29 0.19 0.45
0.86 0.17 0.11 0.26
0.15 101.8 91.4 113.4
0.29 75.1 66.1 85.1
0.53 55.2 48.8 63.8
0.86 47.8 42.9 56.3
0.15 0.261 0.164 0.380
0.29 0.405 0.276 0.517
0.53 0.576 0.430 0.684

0.86 0.651 0.511 0.749

NCCN (cm-3)

κ

DSS (nm)

AR
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Table 3. Statistics for the number concentration of cloud condensation nuclei (NCCN), kappa 1 
value (κ), activation diameter (DSS), activation ratio (AR), and concentrations of major air 2 
pollutants (i.e. CO, NO2, O3, and PM2.5). 3 
 4 

 5 

NCCN (cm
-3

) 850 (520-1230) 830 (550-1080) 820 (480-1300) 770 (520-1130) 760 (500-1180)

Kappa 0.69 (0.5-0.96) 0.69 (0.5-0.96) 0.56 (0.4-0.69) 0.56 (0.4-0.85) 0.56 (0.41-0.77)

DSS (nm) 98.2 (88.2-109.4) 98.2 (88.2-109.4) 107.5 (98.2-117.6) 105.5 (91.4-117.6) 105.5 (94.7-117.6)

AR 0.31 (0.18-0.42) 0.36 (0.24-0.45) 0.19 (0.1-0.27) 0.27 (0.2-0.34) 0.16 (0.11-0.23)

NCCN (cm
-3

) 1170 (730-1660) 1050 (660-1480) 1410 (850-2360) 1190 (680-1920) 1510 (880-2140)

Kappa 0.41 (0.3-0.57) 0.41 (0.26-0.63) 0.33 (0.27-0.46) 0.37 (0.24-0.51) 0.37 (0.27-0.46)

DSS (nm) 73.7 (66.1-82) 73.7 (63.8-85.9) 79.1 (71-85.1) 76.4 (68.5-88.2) 79.1 (71-88.2)

AR 0.43 (0.28-0.53) 0.46 (0.34-0.54) 0.34 (0.22-0.49) 0.42 (0.33-0.52) 0.29 (0.2-0.4)

NCCN (cm
-3

) 1510 (960-2140) 1370 (810-1970) 2180 (1310-3270) 1510 (970-2760) 2500 (1600-3430)

Kappa 0.35 (0.23-0.45) 0.32 (0.21-0.45) 0.29 (0.21-0.36) 0.29 (0.17-0.4) 0.26 (0.17-0.36)

DSS (nm) 52.4 (47.8-59.4) 53.3 (47.8-61.5) 57.3 (52.1-61.8) 55.4 (49.6-66.1) 58.4 (54.4-67.3)

AR 0.59 (0.42-0.69) 0.61 (0.47-0.68) 0.54 (0.33-0.66) 0.59 (0.48-0.7) 0.46 (0.34-0.61)

NCCN (cm-3) 1700 (1110-2420) 1430 (910-2090) 2370 (1620-3490) 1680 (1090-3150) 2740 (1710-3900)

Kappa 0.19 (0.12-0.26) 0.19 (0.12-0.29) 0.17 (0.12-0.22) 0.15 (0.09-0.24) 0.14 (0.09-0.21)

DSS (nm) 46.1 (41.4-53.3) 46.1 (40-53.5) 49.6 (44.5-55.2) 50.1 (42.9-59.4) 51.4 (44.6-59.4)

AR 0.65 (0.5-0.74) 0.67 (0.53-0.75) 0.59 (0.47-0.72) 0.64 (0.56-0.75) 0.54 (0.43-0.68)

2390 (1660-3620) 2260 (1400-3270) 4660 (3070-6710) 2610 (1740-4750) 4680 (3110-6990)

170 (130-240) 160 (120-230) 150 (120-200) 170 (120-230) 140 (90-210)

2 (1.2-3.9) 1.8 (1.1-3.5) 4.3 (1.9-7.2) 2.4 (1.2-4.6) 3.3 (1.7-6.3)

46 (38-56) 45 (36-50) 26 (16-39) 43 (28-54) 28 (19-41)

13.2 (9.2-21.1) 11.6 (7.5-18.7) 10.5 (6.2-15.6) 14 (7.4-22.8) 11 (5.9-21)

cluster 1 cluster 5cluster 4cluster 2 cluster 3

NCN (cm
-3

)

CO (ppb)

NO2 (ppb)

O3 (ppb)

PM2.5 (μg m
-3

)

Parameters

SS (%)

0.15

0.29

0.53

0.86
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 1 
 2 

Figure 1. The geographical location of CAFÉ research station (25.30˚N 121.54˚E), which is 3 

exactly at the northern tip of Taiwan Island in the East Asia.   4 
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1 
Figure 2. Schematic diagram for NCN, NCCN and PSD measurements. 2 
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 1 
Figure 3. Cluster classification of 120h backward trajectories during measurement period (upper 2 

panel) and air masses heights were shown in lower panel. Air masses with both clusters 1 and 2 3 

were originating in the inlands of the Asian Continent, but the movement of cluster 2 air masses 4 

was faster and from higher elevation. Air masses in cluster 4 were pushed by high pressure system 5 

towards the south of Korea and Japan, then moved along marine boundary slowly before reaching 6 

CAFÉ station, while Cluster 3 and 5 represent air masses originated in the South China Sea and 7 

remote Pacific region, respectively.  8 
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 1 

 2 
 3 

Figure 4. Seasonal variations in the number concentration of total particles (NCN) and the number 4 

concentration of cloud condensation nuclei (NCCN), kappa value (κ) and activation diameter (DSS) 5 

measured for SS= 0.29%. Solid lines: median values, whereas shadows show upper and lower 6 

quartiles.  7 
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 1 
 2 

Figure 5. Daily mass fraction of major PM2.5 chemical components measured during 1 April 2017 3 

– 31 March 2018.  4 
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 1 

 2 

Figure 6.  Particle size distributions observed for NPF and non-NPF events. Solid lines: median, 3 

shadow: first and third quartiles, and dash lines: fitted PSD.  4 
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 1 
Figure 7. Diurnal variations of particle size distribution and geometric mean diameter (GMD), 2 

activation ratio (AR), Kappa (κ), activation diameter (DSS), particle number concentrations of N30, 3 

and N30-100, and NCN as well as NCCN for NPF and non-NPF events. CCN and related parameters 4 

were measured under SS = 0.29%. GMD were calculated based on the multiple curves fitting result 5 

by DOFIT model which one to three modes were defined depends on the particle size distribution 6 

data. 7 

  8 
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 1 

 2 

 3 

Figure 8. Schematic diagram of the CCN enhancement at the initial stage of NPF process: i) 4 

Nucleation mode particles formed once NPF started, ii) DSS increased slightly while NCCN 5 

increased in Stage I when existing CCN particles grew into larger size, and iii) DSS decreased while 6 

NCCN continued to increase in Stage II when sub-CCN particles grew to sufficiently large to act as 7 

CCN.  8 
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