Reactions

Inorganic photochemistry

#	Reaction	Rate constant
1	$O_2 + h\nu \longrightarrow 2O(^{3}P)$	$j = 6.0 \times 10^{-34}$
2	$O_3 + h\nu \longrightarrow O_2 + O(^3P)$	$j = 10^{-6}$
3	$O_3 + h\nu \longrightarrow O(^1D) + O_2$	$j = 1.2 \times 10^{-7}$
4	$O_2 + O(^3P) \longrightarrow O_3$	$k_0 = 6.0 \times 10^{-34} (T/300)^{-2.4}, k_\infty = 3.0 \times 10^{-12}$
5	$H_2O + O(^1D) \longrightarrow 2OH$	2.2×10^{-10}
6	$HO_2 + O_3 \longrightarrow 2O_2 + OH$	$1.1 \times 10^{-14} \exp\left(-490/T\right)$
7	$O(^{3}P) + OH \longrightarrow O_{2} + H$	$2.2 \times 10^{-11} \exp\left(-120/T\right)$
8	$O(^{3}P) + HO_{2} \longrightarrow OH + O_{2}$	$3 \times ^{-11} \exp(-200/T)$
9	$HO_2 + HO_2 \longrightarrow H_2O_2 + O_2$	$3.0 \times 10^{-13} \times \exp(460/T) + 1.7 \times 10^{-33} \times M \exp(1000/T)$
10	$NO_3 \longrightarrow NO_2 + O(^3P)$	j = 0.099
11	$NO_3 \longrightarrow NO + O_2$	j = 0.04
12	$O_3 + OH \longrightarrow HO_2 + O_2$	$1.7 \times 10^{-12} \exp\left(-940/T\right)$
13	$NO + O_3 \longrightarrow NO_2 + O_2$	$1.7 \times 10^{-12} \exp\left(-1400/T\right)$
14	$NO_2 \longrightarrow NO + O(^3P)$	$j = 4 \times 10^{-3}$
15	$NO_2 + O_3 \longrightarrow NO_3 + O_2$	$3.2 imes 10^{-17}$
16	$NO_2 + NO_3 \longrightarrow N_2O_5$	$k_0 = 2 \times 10^{-30} (T/300)^{-4.4}, k_\infty = 1.4 \times 10^{-12} (T/300)^{-0.7}$
17	$N_2O_5 \longrightarrow NO_2 + NO_3$	$j=2.5\times 10^{-5}$
18	$NO + NO_3 \longrightarrow 2NO_2$	$2.6 imes 10^{-11}$
19	$NO_2 + OH \longrightarrow HNO_3$	$k_0 = 1.8 \times 10^{-30} (T/300)^{-3}, k_\infty = 2.8 \times 10^{-11}$
20	$NO_2 + O(^{3}P) \longrightarrow NO_3$	$k_0 = 2.5 \times 10^{-31} (T/300)^{-1.8}, k_\infty = 2.2 \times 10^{-11} (T/300)^{-0.7}$
21	$NO_2 + O(^3P) \longrightarrow NO + O_2$	1×10^{-11}
22	$HO_2 + NO \longrightarrow NO_2 + OH$	$3.5 \times 10^{-12} \exp{(250/T)}$

 α -pinene (AP) chemistry

#	Reaction	Rate constant
23	$AP + O_3 \longrightarrow 0.75 RO_2 + 0.25 SVOC + 0.8 OH$	8×10^{-17}
24	$AP + OH \longrightarrow 0.75 RO_2 + 0.25 SVOC$	5.4×10^{-11}
25	$AP + NO_3 \longrightarrow 0.75 RO_2 + 0.25 SVOC$	6.2×10^{-12}
26	$RO_2 \longrightarrow Ox_1 RO_2$	$10^8 \exp\left(-7500/T\right)$
27	$NO + RO_2 \longrightarrow 0.75 NO_2 + 0.75 RO + 0.25 RONO_2$	10^{-11}
28	$HO_2 + RO_2 \longrightarrow ROOH$	10^{-11}
29	$2 \operatorname{RO}_2 \longrightarrow 2 \operatorname{RO} + \operatorname{ROOR}$	10^{-13}
30	$RO_2 \longrightarrow RO$	$10^{15} \exp\left(-13000/T\right)$
31	$Ox_1 RO_2 \longrightarrow Ox_2 RO_2$	$7 \times 10^7 \exp(-7500/T)$
32	$NO + Ox_1 RO_2 \longrightarrow 0.75 NO_2 + 0.75 Ox_1 RO + 0.25 Ox_1 RONO_2$	10^{-11}
33	$HO_2 + Ox_1RO_2 \longrightarrow Ox_1ROOH$	10^{-11}
34	$Ox_1RO_2 + RO_2 \longrightarrow Ox_1RO + Ox_1ROOR + RO$	$\sqrt{10^{-12} \times 10^{-13}}$
35	$2\operatorname{Ox}_1\operatorname{RO}_2 \longrightarrow \operatorname{Ox}_1\operatorname{Ox}_1\operatorname{ROOR} + 2\operatorname{Ox}_1\operatorname{RO}$	10^{-12}
36	$Ox_1 RO_2 \longrightarrow Ox_1 RO$	$10^{15} \exp\left(-13000/T\right)$
37	$Ox_2RO_2 \longrightarrow Ox_3RO_2$	$6 \times 10^7 \exp(-7500/T)$
38	$NO + Ox_2RO_2 \longrightarrow 0.75 NO_2 + 0.75 Ox_2RO + 0.25 Ox_2RONO_2$	10^{-11}
39	$HO_2 + Ox_2RO_2 \longrightarrow Ox_2ROOH$	10^{-11}
40	$Ox_2RO_2 + RO_2 \longrightarrow Ox_2RO + Ox_2ROOR + RO$	$\sqrt{10^{-11} \times 10^{-13}}$
41	$Ox_1RO_2 + Ox_2RO_2 \longrightarrow Ox_1RO + Ox_2Ox_1ROOR + Ox_2RO$	$\sqrt{10^{-12} \times 10^{-11}}$
42	$2\operatorname{Ox}_2\operatorname{RO}_2 \longrightarrow \operatorname{Ox}_2\operatorname{Ox}_2\operatorname{ROOR} + 2\operatorname{Ox}_2\operatorname{RO}$	10 ⁻¹¹
43	$Ox_2RO_2 \longrightarrow Ox_2RO$	$10^{15} \exp\left(-13000/T\right)$
44	$NO + Ox_3RO_2 \longrightarrow 0.75 NO_2 + 0.75 Ox_3RO + 0.25 Ox_3RONO_2$	10 ⁻¹¹
45	$HO_2 + Ox_3RO_2 \longrightarrow Ox_3ROOH$	10^{-11}
46	$Ox_3RO_2 + RO_2 \longrightarrow Ox_3RO + Ox_3ROOR + RO$	$\sqrt{10^{-10} \times 10^{-13}}$
47	$Ox_1RO_2 + Ox_3RO_2 \longrightarrow Ox_1RO + Ox_3Ox_1ROOR + Ox_3RO$	$\sqrt{10^{-12} \times 10^{-10}}$
48	$Ox_2RO_2 + Ox_3RO_2 \longrightarrow Ox_2RO + Ox_3Ox_2ROOR + Ox_3RO$	$\sqrt{10^{-11} \times 10^{-10}}$
49	$2Ox_3RO_2 \longrightarrow Ox_3Ox_3ROOR + 2Ox_3RO$	10^{-10}
50	$Ox_3RO_2 \longrightarrow Ox_3RO$	$10^{15} \exp\left(-13000/T\right)$

Reactions specified with k_0 and k_∞ are pressure-dependent reactions with the rate constant at a specific pressure given by

5
$$k = \frac{k_0 * M}{1 + \frac{M}{k_\infty}} * 0.6^{(1 + (\log(\frac{k_0 * M}{k_\infty}))^2)^{-1}}$$

(1)

Volatility class temperature dependence

To show the temperature dependence of the volatility classes, we shift them using the Clausius-Claperyon equation and the enthalpy of vaporization estimation equation from Donahue et al 2011 and Epstein and Donahue 2009.

5
$$C^{\circ}(T) = C^{\circ}(300K) \exp\left[\frac{\Delta H_{300K}^{\text{vap}}}{R} \left(\frac{1}{300K} - \frac{1}{T}\right)\right]$$
 (2)

$$\Delta H_{300K}^{\text{vap}} = -5.7 \log_{10} C^{\circ}(300K) + 129 \text{ kJ mole}^{-1}$$
(3)

Figure 1. The rate constant of auto-oxidation plotted for the base-case scenario (black), assuming an order of magnitude change over the temperature range (blue), and using a Clausius-Claperyon relation to fix the rate constant at 298 K and varying it using a second barrier height ± 500 K from the base-case (red).

Kernels

The kernels are matrixes showing the change in volatility (decades of $\log_{10} C^{\circ}$) along the *x* direction and oxygenation (O:C) along the *y* for each type of RO₂ termination. The change is an offset to a reference value of $\log_{10} C^{\circ}$ and O:C representing the peroxy radical that reacted to form the products. For dimers this reference value is the arithmetic mean of these values for the two reacting peroxy radicals

5 the two reacting peroxy radicals.

For example if an Ox_1RO_2 , with reference $\log_{10} C^\circ = 1$ and O:C = 0.6, and an Ox_2RO_2 , with reference $\log_{10} C^\circ = -1$ and O:C = 0.8, react to form a dimer, the new reference value will be $\log_{10} C^\circ = 0$ and O:C = 0.7. If we look at the dimer kernel in the first cell, we see that 2% of the product from this reaction would end up at a $\log_{10} C^\circ = 0 - 8 = -8$ and O:C = 0.7 + 0.1 = 0.8 and so on for the rest of the table.

10

All the products called "RO" and " $Ox_n RO$ " in the reaction mechanism above will either go through the fragmentation or the functionalization kernel below. The fragmentation kernel is implemented by assuming a certain fraction of the RO and $Ox_n RO$ in the reaction scheme fragments rather than functionalizes leading to a spread in products across lower and higher volatilities. The probability of fragmentation increases as the carbon backbone of a molecule is destabilized by increasing oxidation and is given in our implementation by $(O:C)^{\frac{1}{6}}$.

Dimer Kernel

-8	-7	-6	-5	O:C
.02	.16	.08	0	+0.1
.01	.13	.30	.1	+0.0
0	0	.05	.15	-0.1

15

-4	-3	-2	-1	O:C
.02	.16	.08	0	+0.1
.01	.13	.30	.1	+0.0
0	0	.05	.15	-0.1

 $RO_2 + HO_2$ and $RO_2 + NO$ Kernel

Fragmentation Kernel

-	-
n	n
2	u
_	-

25

-2	-1	0	+1	+2	+3	+4	O:C
0	0	0	0	.02	.04	.08	+0.4
.02	.01	.02	.03	.04	.05	.02	+0.3
.04	.04	.04	.03	.02	.01	.01	+0.2
.02	.08	.06	.04	.03	0	0	+0.1
.00	.04	.12	.06	.03	0	0	+0.0

RO Functionalization Kernel

-3	-2	-1	0	1	O:C
.05	.08	.07	.04	0	+0.0
.02	.07	.18	.20	.12	-0.1
0	.02	.04	.08	.03	-0.2