Supplement of

Significant contribution of organics to aerosol liquid water content in winter in Beijing, China

Xiaoai Jin¹, Yuying Wang^{1,2}, Zhanqing Li³, Fang Zhang¹, Weiqi Xu^{4,5}, Yele Sun^{4,5}, Xinxin Fan¹, Guangyu Chen⁶, Hao Wu¹, Qiuyan Wang², Jingye Ren¹, and Maureen Cribb³

¹State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System
²Science, Beijing Normal University, Beijing 100875, China
²School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
³Department of Atmospheric and Oceanic Science, and Earth System Science Interdisciplinary Center, University of Maryland,
⁶Faculty of Geographical Science, Beijing Normal University, Beijing 100829, China

Correspondence to: Zhanqing Li (zli@atmos.umd.edu), Yuying Wang (wyy_bnu@126.com)

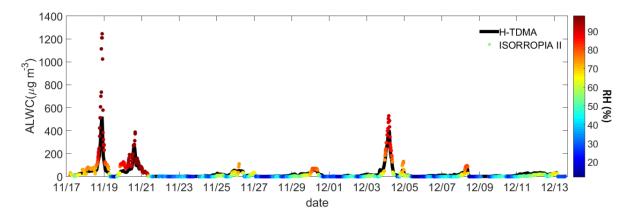


Figure S1. The time series of ALWC calculated from the measured growth factor and simulated from ISORROPIA II model.

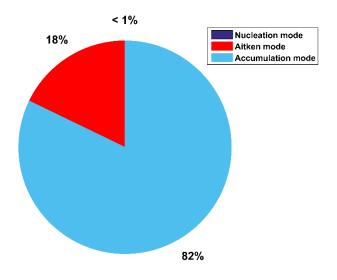


Figure S2. The contribution of particles of different modes to ALWC_{HTDMA}.