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We thank the reviewers for their valuable comments and suggestions to improve our 

manuscript. We have made revisions accordingly. The point-to-point responses are 

provided below in Italic. The comparison of our manuscript between this version and 

the previous version is also provided. 

 5 

Anonymous Referee #2 

The authors conducted an extensive analysis of local and synoptic meteorological 

influences on daily variability in summertime surface ozone in eastern China for the 

time period of 2013-2018. They derived a multiple linear regression (MLR) equation 

for each grid within the eastern China domain to capture the linear relationships of 10 

daily average ozone concentrations as a function of 10 local meteorological variables 

and 2 synoptic factors, the latter derived using the singular value decomposition 

(SVD) method. Not to be pedantic, it is an overstatement to call the MLR equation a 

model. They further examined synoptic weather patterns (SWPs) over eastern China 

using a self-organizing map (SOM) clustering technique. The MLR and SWPs 15 

provides a rich source of information but the authors were short of making a 

connection between the two. One interesting point from MLR was, as local 

meteorological variables, relative humidity in the central and southern parts of eastern 

China and temperature in the BTH region showing the largest influence on surface 

ozone concentrations. The study would have been more in-depth should the authors 20 

have endeavored to understand the mechanism(s) driving that. Would it be possible to 

use their SWPs to further understand that point? The authors did use their derived 

MLR to validate the calculated surface ozone concentrations under the 6 SWPs, but 

they only showed visual comparisons between the predicted and observed values. It’d 

make a stronger case if they could show some quantitative comparison. Most of 25 

Section 6 “Discussion and conclusions” repeated the results prior to it with the last 

paragraph suggesting the potential significance of the study. There was not really 

much discussion but repetition. I suggest that the section be shortened and changed to 
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“Summary”. Figure 14 is missing from the manuscript. In the huge body of published 

work on surface ozone as a pollutant, the majority has used ppbv as units for ozone, 30 

and indeed in study of atmospheric trace gases mixing ratios have been used 

conventionally. The authors’ use of mass units was a bit peculiar. I suggest that they 

provide unit conversion upon the first appearance of the mass units if they insist upon 

using them. 

Thanks for the valuable comments. The following is our answers to the reviewer's 35 

questions.  

 

  By fitting a linear equation, the MLR predict the response variable by using several 

explanatory variables. As a simple and basic regression model, it has been widely 

used in the prediction of atmospheric pollutants (Kutner et al., 2004; Gao et al., 40 

2019; Li et al., 2019). In this study, the MLR is applied to predict surface ozone in 

eastern China with the predictors of meteorological factors. In this revision, we 

further used the leave-one-out cross validation (Section 2.2, Lines 204-208) to avoid 

overfitting of the MLR. The MLR shows strong performance with a regional mean 

coefficient of determination (R2) of 43% (Figure 5a).  45 

 

In this revision, we combined the MLR and SOM to reveal the most important local 

meteorological factor for ozone variability under each of the six SWPs (Figure S6). 

The MLR was conducted under each of the SWPs with the same procedures for the 

full summer. The most important meteorological variable for ozone over some areas 50 

in eastern China may vary with the prevailing SWP (Figure S6). The dominant driver 

in PRD is meridional wind at 850 hPa under PSW (P1), PS (P2), and PSWPSH (P5), 

demonstrating the significant influences of marine air inflow. Controlled by the 

typhoon system, the most important factor over some coastal areas is zonal wind at 

850 hPa under PTC (P6). The analysis has been added in Lines 486-492. 55 
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  Results from the MLR show that among local meteorological factors, relative 

humidity is the foremost influential variable for summertime surface ozone over most 

locations in the center and south of eastern China including YRD and PRD, while 

temperature is more important in the north including BTH. Such a difference between 60 

the north and south were also found in the eastern United States by previous studies 

(Camalier et al., 2007; Porter et al., 2015). The difference is possibly related with 

both ozone photochemistry and synoptic influences. The relative importance of 

relative humidity and temperature to ozone photochemistry may vary with location, 

because of different atmospheric environments. Moreover, the sensitivities of relative 65 

humidity and temperature to synoptic systems may change with the location as well. 

However, until now, there are no strong evidence to explain it.  

 

  We have added some statistical comparisons between the observations and 

predictions of averaged ozone anomalies under each of the SWPs in Table S1. The 70 

mean absolute error (MAE) ranges 1.0-2.2 µg m-3 and the root mean square error 

(RMSE) ranges 1.4-2.8 µg m-3. 

 

  We have renamed Section 6 as ‘Summary’ and shortened this section. 

 75 

  In the last version, Figure 14 showed the relative anomalies of observed surface 

ozone under the six SWPs, giving an additional explanation of Figures 8d, 9d, 10d, 

11d, 12d, and 13d. In this revision, Figure 14 is moved into the supplement as Figure 

S5. We reserve the regional mean relative anomalies in Table 1. 

 80 

   We used the unit ‘µg m-3’ to keep consistency with that for China national air 

quality standard. For ozone, 1 µg m-3 equals to 0.47 ppbv at 273 K and 1013.25 hPa. 

The unit conversion is added in Lines 116-117.  
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Kutner, M.H., Nachtsheim, C.J., Neter, J., Li, W., 2004. Applied Linear Statistical 85 

Models. McGraw-Hill/Irwin, New York, NY, USA. 

Gao, M., Sherman, P., Song, S., Yu, Y., Wu, Z., and McElroy, M. B.: Seasonal 

prediction of Indian wintertime aerosol pollution using the ocean memory effect, 

Science Advances, 5, eaav4157, 10.1126/sciadv.aav4157, 2019. 

Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.: Anthropogenic 90 

drivers of 2013-2017 trends in summer surface ozone in China, Proc. Natl. Acad. 

Sci. U. S. A., 116, 422, https://doi.org/10.1073/pnas.1812168116, 2019. 

 

Some specific comments: 

1. Line 36: The first sentence covered both human and vegetation health but the 95 

reference cited, Yue et al. (2017), was on vegetation.  

Thanks. A reference for human health is added (Jerrett et al., 2009). 

 

Jerrett, M., Burnett, R. T., Pope, C. A., Ito, K., Thurston, G., Krewski, D., Shi, Y., 

Calle, E., and Thun, M.: Long-term ozone exposure and mortality, N. Engl. J. Med., 100 

360, 1085-1095, https://doi.org/10.1056/NEJMoa0803894, 2009. 

 

2. Lines 78-80: Shen et al. (2017a) is not the first and only reference for such a well-

established point. There is a huge wealth of research on this point dating back to 

decades ago. This seems to be a fairly common problem nowadays, that for an 105 

extensively, long studied topic, only most recent few studies would be cited whereas a 

long list of monumental studies leading up to the recent works tend to be left out. In 

my opinion, we need to do due diligence to cite the references where credit is due.  

Thanks for the points. Several reliable studies are added (Bloomfield e al., 1996; 

Davis et al., 1998; Zanis et al., 2000, 2011; Ordóñez et al., 2005; Camalier et al., 110 

2007). 
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Bloomfield, P., Royle, J. A., Steinberg, L. J., and Yang, Q.: Accounting for 

meteorological effects in measuring urban ozone levels and trends, Atmos. 

Environ., 30, 3067-3077, https://doi.org/10.1016/1352-2310(95)00347-9, 1996. 115 

Camalier, L., Cox, W., and Dolwick, P.: The effects of meteorology on ozone in urban 

areas and their use in assessing ozone trends, Atmos. Environ., 41, 7127-7137, 

https://doi.org/10.1016/j.atmosenv.2007.04.061, 2007. 

Davis, J. M., Eder, B. K., Nychka, D., and Yang, Q.: Modeling the effects of 

meteorology on ozone in Houston using cluster analysis and generalized additive 120 

models, Atmos. Environ., 32, 2505-2520, https://doi.org/10.1016/S1352-

2310(98)00008-9, 1998. 

Ordóñez, C., Mathis, H., Furger, M., Henne, S., Hüglin, C., Staehelin, J., and Prévôt, 

A. S. H.: Changes of daily surface ozone maxima in Switzerland in all seasons from 

1992 to 2002 and discussion of summer 2003, Atmos. Chem. Phys., 5, 1187-1203, 125 

https://doi.org/10.5194/acp-5-1187-2005, 2005. 

Zanis, P., Monks, P. S., Schuepbach, E., Carpenter, L. J., Green, T. J., Mills, G. P., 

Bauguitte, S., and Penkett, S. A.: In situ ozone production under free tropospheric 

conditions during FREETEX ’98 in the Swiss Alps, J. Geophys. Res.-Atmos., 105, 

24223-24234, https://doi.org/10.1029/2000JD900229, 2000. 130 

Zanis, P., Katragkou, E., Tegoulias, I., Poupkou, A., Melas, D., Huszar, P., and Giorgi, 

F.: Evaluation of near surface ozone in air quality simulations forced by a regional 

climate model over Europe for the period 1991-2000, Atmos. Environ., 45, 6489-

6500, https://doi.org/10.1016/j.atmosenv.2011.09.001, 2011. 

 135 

3. Line 167: What was “daily surface ozone” meant? Daily average or daily maximum 

8-hr average ozone concentrations? Also, the acronym for the latter would be 

DM8(H)A; it’s curious why the authors used “MD8A” instead.  

Thanks. In this study, the ozone-weather relationship is examined using the daily 

mean ozone and meteorological data. We have clarified this in this revision (Lines 140 
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122-123).  

 

  ‘Daily maximum 8-hour average’ can also be stated as ‘maximum daily 8 h mean’ 

(Silver et al., 2018), ‘daily maximum 8-hour running mean’ (Fleming et al., 2018), or 

‘maximum daily average 8-h’ (Lefohn et al., 2018). Conventionally, these expressions 145 

can all be termed as ‘MDA8’.  

 

Silver, B., Reddington, C. L., Arnold, S. R., and Spracklen, D. V.: Substantial changes 

in air pollution across China during 2015-2017, Environ. Res. Lett., 13, 114012, 

https://doi.org/10.1088/1748-9326/aae718, 2018. 150 

Fleming, ZL, et al. 2018 Tropospheric Ozone Assessment Report: Present-day ozone 

distribution and trends relevant to human health. Elem Sci Anth, 6: 12. 

https://doi.org/10.1525/elementa.273. 

Lefohn, AS, et al. 2018 Tropospheric ozone assessment report: Global ozone metrics 

for climate change, human health, and crop/ecosystem research. Elem Sci Anth, 6: 155 

28. https://doi.org/10.1525/elementa.279. 

 

4. Lines 298-299: Not clear where this came from.  

Thanks. The sentence has been revised and the unclear statement has been removed. 

 160 

5. Line 301-302: Was “higher meridional wind” enough to bring in “clean and humid 

marine air to the south” regardless of wind direction?  

Thanks. In summer, the south-westerly monsoon wind prevails over eastern China 

(Figure S3). In most of the days in summer, the meridional wind blows from the south 

to the north. We added the explanation in Lines 320-321 in this revision. 165 

 

6. Lines 305-306: How did the authors know that “the impacts of relative humidity on 

surface ozone are mainly through the chemical processes”?  
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The expressions have been revised (Lines 310-316). Relative humidity can influence 

ozone through various processes. Atmospheric water vapor can directly influence 170 

ozone concentrations by HOx (HOx=OH+H+peroxy radicals) chemistry with 

complicated regimes (Lu et al., 2019b). Moreover, a higher relative humidity is 

usually associated with more fractions of clouds, which can slow the photochemical 

production of surface ozone. In addition, higher relative humidity may somewhat be 

linked with larger atmospheric instability, favoring the dispersion of surface ozone 175 

(Camalier et al., 2007).  

 

7. Line 321: why did R2=0.38 qualify to be “strong”?  

The sentences related to R2 have been revised. In this revision, the leave-one-out cross 

validation is used to avoid overfitting of the MLR. The regional mean cross-validated 180 

R2 over eastern China is 43%, indicating strong performance of the MLR. Because of 

the large sample size (552 samples), the statistical results are at a very high 

significant level, with p value being far below 0.01. 

 

8. Lines 388: why is precipitation included in the indexes? 185 

The air stagnation index used in this study is a common index to assess air mass 

stagnation (Wang and Angell, 1999; Horton et al., 2012). Precipitation is often 

accompanied with deep or shallow convection. So, a day is considered to meet 

stagnation criteria, when daily total precipitation is less than 1 mm, which means a 

dry day. 190 

 

Wang, J.X.L., and J.K. Angell, 1999: Air Stagnation Climatology for the United States 

(1948-1998). NOAA/Air Resources Laboratory ATLAS, No.1. 

Horton, D. E., Harshvardhan, and Diffenbaugh, N. S.: Response of air stagnation 

frequency to anthropogenically enhanced radiative forcing, Environ. Res. Lett., 7, 195 

044034, https://doi.org/10.1088/1748-9326/7/4/044034, 2012.  
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 205 

Abstract 

Ozone pollution in China is influenced by meteorological processes on multiple 

scales. Using multiple linear regression and weather classification, we statistically 

assess the impacts of local and synoptic meteorology on daily variability of surface 

ozone in eastern China in summer during 2013-2018. In this period, summertime 210 

surface ozone in eastern China (110-130oE, 20-42oN) is among the highest in the 

world with regional means of 73.1 and 114.7 µg m-3, respectively, in daily mean and 

daily maximum 8-hour average. By developing a multiple linear regression (MLR) 

model driven by local and synoptic weather factors, we establish a quantitative 

linkage between the daily mean ozone concentrations and meteorology in the study 215 

region. The meteorology described by the MLR model can explain ~4643% of the 

daily variability in summertime surface ozone across eastern China. The model shows 

that synoptic factors contribute to ~37% of the overall meteorological effects on daily 

variability of surface ozone in eastern China. Among local meteorological factors, 

relative humidity is the most influential variable in the center and south of eastern 220 

China including the Yangtze River Delta and the Pearl River Delta regions, while 

temperature is the most influential variable in the north covering the Beijing-Tianjin-

Hebei region. To further examine the synoptic influence of weather conditions 
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explicitly, six predominant synoptic weather patterns (SWPs) over eastern China in 

summer are objectively identified using the self-organizing map clustering technique. 225 

The six SWPs are formed under the integral influence of the East Asian summer 

monsoon, the western Pacific subtropical high, the Meiyu front, and the typhoon 

activities. The results show thatOn regional mean, two SWPs bring about positive 

ozone anomalies (1.1 µg m-3 or 1.7% and 2.7 µg m-3 or 4.6%, respectively), when 

eastern China is under a weak cyclone system or under the impacts of each of 230 

theprevailing southerly wind. The impact of SWPs on the daily variability of surface 

ozone varyvaries largely inside the study area.within eastern China. The maximum 

impact can reach 8 µg m-3 or 16% of the daily mean overin some subregions in 

eastern Chinaareas. A combination of the regression and the clustering approaches 

suggests a strong performance of the MLR model in predicting the sensitivity of 235 

surface ozone in eastern China to the variation of synoptic weather. Our assessment 

highlights the important role of meteorology in modulating ozone pollution over 

China. 

 

1 Introduction 240 

Surface ozone is a major air pollutant detrimental to human health (Jerrett et al., 2009) 

and vegetation growth (Yue et al., 2017). Ozone exposures are estimated to be 

associated with nearover 0.32 million premature deaths globally in one year (Cohen et 

al., 2017; Liang et al., 2018). The dominant source of surface ozone is the 

photochemical oxidation of volatile organic compounds (VOCs) and carbon 245 

monoxide (CO) in the presence of nitrogen oxides (NOx) (Monks et al., 2015). In the 

pastrecent decades, China has been suffering from severe ozone pollution, causing a 

worldwide concern (Verstraeten et al., 2015). High ozone concentrations exceeding 

China national air quality standard (200 and 160 µg m-3, respectively, for hourly and 

8-hourly maximum values) occur frequently in major Chinese cities in the three most 250 

developed regions, the Beijing-Tianjin-Hebei (BTH) region (T. Wang et al., 2006a; G. 
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Li et al., 2017), the Yangtze River Delta (YRD) (Shu et al., 2016, 2019), and the Pearl 

River Delta (PRD) (Y. Wang et al., 2017; H. Wang et al., 2018). An increasing trend 

of 1-3% per year in surface ozone since 2000 is observed at urban and regional 

background sites in the three city clusters (Y. Wang et al., 2012; Zhang et al., 2014; 255 

Ma et al., 2016; Sun et al., 2016; Gao et al., 2017) and at a global baseline station in 

western China (Xu et al., 2016).  

 

Surface ozone concentrations in China largely depend on emissions and 

meteorology (Han et al., 2018a, 2019).; Lu et al., 2019a). Anthropogenic and natural 260 

emissions from both native and foreign sources provide precursors for the formation 

of high ozone levels in China (Ni et al., 2018; Han et al., 2019), while meteorology 

can influence surface ozone variations from instantaneous to decadal scale through its 

modulation of various chemical and physical processes (T. Wang et al., 2017). On a 

decadal scale, both observations (Zhou et al., 2013) and simulations (S. Li et al., 265 

2018) show that surface ozone in southern China correlates positively to the strength 

of the East Asian summer monsoon (EASM).  

 

The daily variation of surface ozone in China is sensitive to synoptic weather 

systems, as illustrated by studies for BTH (Zhang et al., 2012; Huang et al., 2015), 270 

YRD (Shu et al., 2016, 2019), PRD (Zhang et al., 2013; Jiang et al., 2015), and other 

regions of China (Tan et al., 2018). Frontal systems can drive the transboundary 

transport of ozone in northern China (Ding et al., 2015; Dufour et al., 20162015). 

Downdrafts in the periphery circulation of a typhoon system can strongly enhance 

surface ozone before the typhoon landing in eastern or southern China (Jiang et al., 275 

2015; Shu et al., 2016). Zhao and Wang (2017) suggested that a stronger western 

Pacific subtropical high (WPSH) can lead to lower surface ozone concentration over 

southern China and higher one over northern China in summer. Moreover, surface 

ozone concentrations also vary with mesoscale weather systems in hours (Hu et al., 
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2018), such as the mountain-valley circulation (T. Wang et al., 2006b) and the land-280 

sea breezes (H. Wang et al., 2018). Despite the valuablethese discussed mechanisms 

ofon how weather systems mentioned above influences influence ozone 

concentrations in China reported by previous studies, quantified ozone anomalies 

resulted from these , there is a lack of quantitative assessments on the influences of 

these weather systems are lackedon ozone pollution.  285 

 

Weather systems aton different scales bring about different changes in local 

meteorological variables and thus surface ozone through their impacts on, which, in 

turn, impact chemistry and physical processes. that modulate surface ozone 

concentrations. However, the relative importance of variouslocal meteorological 290 

factors to surface ozone concentrations inin different regions of China are still unclear. 

Previous studies suggested the importance of temperature, relative humidity, and 

winds to surface ozone in different regions (Lou et al., 2015; Pu et al., 2017; Zhan et 

al., 2018). The key influential meteorological factors vary from citiesregion to cities 

in Chinaregion (Gong et al., 2018; Chen et al., 2019). In general, high ozone episodes 295 

commonly appear under weak wind, high temperature, low humidity, and clear 

conditions. (Bloomfield e al., 1996; Zanis et al., 2000, 2011; Ordóñez et al., 2005). 

These weather conditions can enhance stagnation and production of ozone (Camalier 

et al., 2007; Shen et al., 2017a). Variations of these local meteorological variables 

depend on the dominant weather systems (Davis et al., 1998; Han et al., 2018b; Leung 300 

et al., 2018).  

 

To have a comprehensive and quantitative understanding of how weather influences 

ozone pollution in China is the primary motivation of this study, in which, we aim to 

quantify the impacts of meteorology, specifically the dominant synoptic weather 305 

systems and the key local meteorological variables, on daily variations of surface 

ozone in eastern China, including the three representative megacity clusters, BTH, 
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YRD, and PRD. Surface ozone in China was not regularly and systematically 

monitored until 2012 when real-time hourly ozone data were available online from 

China Ministry of Ecology and Environment (MEE) (http://www.mee.gov.cn/) (T. 310 

Wang et al., 2017). Owing to the limitation of in situ measurement, there is a lack of a 

long-term assessment on the synoptic influence on ozone pollution.  

 

TheIn this study, the ground ozone observations from MEE covering 2013-2018 

period are used. First, we characterize the seasonal variations of surface ozone in 315 

eastern China and the interannual changes during 2013-2018 in summer (June-

August), which is the season of interest in this study. Second, we search for a linkage 

between the daily variation of surface ozone and the local and synoptic 

meteorological factors statistically and develop a multiple linear regression (MLR) 

model based on the linkage. Third, we examine the sensitivity of daily surface ozone 320 

to the variation in synoptic weather systems. Considering the complexity of the 

synoptic meteorology in eastern China (Ding et al., 2017; Han et al., 2018b), we 

employ an objective clustering technique, the self-organizing map (SOM), to identify 

the predominant synoptic weather patterns (SWPs). In the following sections, we 

introduce the data and methods in section 2. The seasonal and interannual variations 325 

of surface ozone in eastern China are characterized in section 3. Section 4 illustrates 

the linkage between ozone variability and meteorology on both local and synoptic 

scales, while section 5 describes sensitivity of surface ozone to various typical SWPs 

over the entire eastern China. Finally, we discuss our results and draw conclusions in 

section 6. 330 

 

2 Data and methods 

2.1 Surface ozone observations and meteorological data 

Hourly surface ozone measurements from the MEE observation network averaged 

over the stations in each city were used in the study. The measurements were 335 
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downloaded from http://beijingair.sinaapp.com/, which were previously archived at 

http://pm25.in, a mirror of data from the official MEE publishing platform 

(http://106.37.208.233:20035/). The network covers 63 cities in eastern China (110-

130oE, 20-42oN) in 2013, increasing to 118 in 2014 and 185 during 2015-2018. 

Locations of the 185 cities are shown in Figure 1, including 13, 26, and 9 cities, 340 

respectively, in BTH, YRD, and PRD. The unit of ozone concentrations in the original 

records and in this study is ‘µg m-3’, with a conversion factor of 1 µg m-3 = 0.47 ppbv 

at 273 K and 1013.25 hPa. 

 

The National Centers for Environmental Prediction (NCEP) Final (FNL) 345 

Operational global analysis data during the same period were acquired from 

https://rda.ucar.edu/datasets/ds083.2/. The data are available on 1o×1o latitude grids 

every 6 hours forat the surface and at 26 layers from 1000 to 10 hPa. We made daily 

averaged pollution and meteorological data in summer from 2013 to 2018. The ozone-

weather relationship is examined using the daily mean data, unless stated otherwise.  350 

 

Using an inverse -distance weighting (Tai et al., 2010), we interpolated the daily 

citypollution measurements from the cities onto the FNL grid (1o latitude and ×1o 

longitude) to produce continuous gridded data. Ozone at each FNL grid was 

calculated with a weighted average of the concentration in the cities within a search 355 

distance (dmax) from that grid, following the equation: 

zj=
∑ (1/di,j)

k
zi

nj

i=1

∑ (1/di,j)
knj

i=1

    (1) 

where zj is the calculated ozone at grid j, zi is the observed ozone in city i, di,j is the 

distance between city i and the center of grid j, nj is the number of the cities within 

dmax from grid j (di,j≤dmax), k is a parameter measuring the influence of distance on 360 

the target grid. We used 2 for k, and 1-degree distance in latitude-longitude grid for 

dmax in the interpolation. The generated gridded ozone data cover most of the 

mainland in eastern China (Figure 1c). The measurements interpolated to the grids 
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were used in this study, unless stated otherwise. 

 365 

2.2 Development of a prediction model of surface ozone 

MLR is an effective and widely-used way to describe the relationship between 

meteorology and air quality and thus to help prediction of air quality (Shen et al., 

2015; Otero et al., 2016; K. Li et al., 2019). MLR establishes a linear function 

between a scalar response and the explanatory variables. In this study, we applied a 370 

stepwise MLR model to quantitatively correlate daily surface ozone in eastern China 

and meteorology in summer. Considering the combined effect of meteorology at 

various scales, we used both local meteorological variables and synoptic circulation 

factors as predictors following Shen et al. (2017b), who showed that, comparing with 

regression models only considering local meteorology, adding the synoptic factors in 375 

a MLR can significantly improve the model performance. The MLR model takes the 

following form:  

�̂�=b+∑ αiXi
K1
i=1 +∑ βjSj

K2
j=1     (2) 

where �̂� is the predicted value of surface ozone, b is the intercept term, Xi is the local 

meteorological variables with a total number of K1, Sj is the synoptic meteorological 380 

factors with a total number of K2, and αi and βj are the regression coefficients. We 

used 10 local meteorological variables (K1=10), i.e.,including relative humidity at 2 m 

(RH2m), cloud fraction (CF), temperature at 2 m (T2m), planetary boundary layer 

height (PBLH), zonal wind at 850 hPa (U850), meridional wind at 850 hPa (V850), 

vertical wind at 850 hPa (W850), wind speed at 850 hPa (WS850), geopotential 385 

height at 850 hPa (HGT850), and sea level pressure (SLP), all of which were 

identified significantly (p<0.05) correlated to the daily variations of surface ozone in 

part of eastern China, as shown in Figure 2. Cloud fraction retrievals at 1o×1o grids 

were from the spaceborne Atmospheric Infrared Sounder (AIRS) instrument 

(AIRS3STD daily product, https://disc.gsfc.nasa.gov/). The other 9 local meteorology 390 

were from FNL data (section 2.1). We computed the anomalies of meteorological 
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variables and ozone on a given day by taking the difference between the value of a 

given meteorological variable (or ozone) on that day and the mean value of the 

meteorological variable (or ozone) in that month. Thus, all the data were detrended 

and the influences of meteorology on the ozone variability on longer time scales 395 

(trends, and annual and seasonal variations) were generally removed. Any anomaly of 

a variable (or ozone) divided by its corresponding monthly mean is referred as 

relative anomaly of that variable (or ozone).) with a unit of %.  

 

WeFor Sj in equation (2), we also usedidentified two synoptic factors generated 400 

fromthrough the singular value decomposition (SVD) of the spatial correlations 

between surface ozone and local meteorological variables in eastern China (Shen et 

al., 2017b). The SVD approach effectively extracted representative signals from the 

spatial distribution of the correlation coefficients. The extracted information was then 

used to characterize the spatial patterns of the meteorological variables aton a 405 

synoptic scale by inversing SVD. For each of the FNL grids in eastern China, we 

constructed the synoptic circulation factors as follows. First, we calculated the 

correlation coefficients between daily mean surface ozone at thata given grid and each 

of the 10 meteorological variables at all the grids in eastern China in summer during 

2013-2018. For example, the correlations for the grid of Nanjing are shown in Figure 410 

S1, which indicates that surface ozone in Nanjing is correlated to the meteorology in 

the surrounding regions. We made a matrix A that consists of the correlation 

coefficients for that grid with elements of 21 (numbers of grids in longitude) × 23 

(numbers of grids in latitude) ×10 (numbers of the local meteorological variables). 

Second, to fit the decomposition, we aligned the dimension of longitude-latitude into 415 

one column and reshaped matrix A into a 483 (longitude×latitude)×10 two-

dimensional matrix F. The SVD decomposed F used the equation: 

F=ULVT    (3) 

where U is 483×10 matrix, L is a 10×10 diagonal matrix with non-negative numbers 
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on the diagonal, V is also a 10×10 matrix. The columns of the three transformations 420 

together characterize SVD modes, with 10 modes in total. Each column of U 

represents the spatial weights of the SVD mode and each column of V represents the 

variable weights in the SVD mode. The spatial and variable weights of the first two 

SVD modes for the Nanjing grid are shown in Figure S2. The pattern of the spatial 

weight of the first SVD mode for the Nanjing grid (Figure S2a) is similar to the 425 

pattern of the correlations between surface ozone and relative humidity (Figure S1a) 

and cloud fraction (Figure S1b). The first SVD mode is more correlated to relative 

humidity and cloud fraction than other variables (Figure S2b). Therefore, the first 

SVD mode for the Nanjing grid is related to chemical processes of ozone. In contrast, 

the second SVD mode for the Nanjing grid is more related to transport than chemical 430 

processes (Figure S2d). Third, we assigned the anomalies of the daily mean values of 

the 10 local meteorological variables in eastern China to a 552 (days in summer of 

2013-2018) ×21 (longitude)×23 (latitude)×10 (meteorology) four-dimensional matrix 

M. At each grid, we normalized the time series of each variable to zero mean and unit 

standard deviation. Then, the magnitude of each SVD mode for every day t was 435 

calculated by inversing SVD: 

Sk,t=Uk
T
MtVk    (4) 

where Uk and Vk respectively are the kth columns of U and V, respectively. Sk,t is a 

scalar depicting the magnitude of the kth SVD mode. Sk,t refers to a newly produced 

meteorological field and reflectsthat represents the influence of synoptic factors 440 

related tometeorology on ozone variability. We implemented the procedure at every 

FNL grid in eastern China. The first two SVD modes can generally explain 55-85% of 

the total variance. They can respectively reflect the dynamical or thermal 

characteristics in theof synoptic meteorology (Shen et al., 2017b). Therefore, we 

applied the primary two SVD modes in the MLR model (K2=2).  445 

 

  We used the leave-one-out cross validation to avoid overfitting of the MLR for each 
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grid. Data during the study period (summer over 2013-2018) included 552-day 

observations. Each time, one observation in the time series was reserved as the test set 

and the remaining ones were used as the training set. The process was repeated until 450 

all observations had been predicted. Every observation was to be a test set once and a 

training set 551 times.  

 

We measured the relative importance of each of the meteorological variables to 

ozone by its relative contributions to the total explained variance of the MLR model. 455 

The weight of each predictor (wi) was calculated from the normalized MLR 

coefficient (zk): 

wi=
zk

2

∑ zk
212

k=1

    (5) 

where zk is: 

zk=
sk

sy
ck    (6) 460 

and 12 is the number of all the predictors is 12, including 10 local and 2 synoptic 

meteorological factors (section 2.2). ck is the regression coefficient, referring to αi or 

βj in equation (2). sk is the standard deviation of a predictor, i.e., Xi or Sj in equation 

(2). sy is the standard deviation of the observed daily surface ozone.  

 465 

2.3 Classification of the synoptic weather patterns 

Weather classification is a well-established tool to characterize atmospheric processes 

aton multiple scales and further to study air pollution-weather relationship (Han et al., 

2018b). The methods for weather classification can be generally categorized into three 

groups: subjective, mixed, and objective, depending on the automatic degree during 470 

the classification process (Huth et al., 2008). The methods can also be categorized in 

more detail according to the basic features of each classification algorithm (Philipp et 

al., 2014). Depending on the study domain and research objectives, different 

meteorological variables including geopotential height, mean sea level pressure, and 
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zonal and meridional winds are used for the classification.  475 

 

SOM, an artificial neural network method with unsupervised learning (Kohonen, 

1990; Michaelides et al., 2007), is widely used in cluster analysis in atmospheric 

sciences (Jiang et al., 2017; Liao et al., 2018; Stauffer et al., 2018) because of its 

superiorities over other algorithms (Liu et al., 2006; Jensen et al., 2012). SOM 480 

performs a nonlinear projection from the input data space to a two-dimensional array 

of nodes objectively. Each node is representative of the input data. SOM allows 

missing values in the input data and can effectively visualize the relationships 

between different output nodes (Hewitson and Crane, 2002).  

 485 

The FNL geopotential height fields (section 2.1) at 850 hPa can well capture the 

synoptic circulation variations over eastern China (Han et al., 2018b). In this study, 

we used geopotential height at 850 hPa in 2013-2018 as the input for SOM. Each of 

the SOM output nodes corresponds to a cluster of SWPs. Finally, we identified six 

predominant SWPs over eastern China in summer. All days in summer of 2013-2018 490 

were included in the clustering results.  

 

3 Seasonal and interannual variations of surface ozone in eastern China 

Figure 3 and Figure 4, respectively, show the seasonal and interannual variations of 

the regional mean surface ozone concentrations in eastern China and the three 495 

subregions (BTH, YRD, and PRD) during 2013-2018. Among n cities with air quality 

monitoring in a given region, if ozone levels exceed the national air quality standard 

in m cities, we defined the ratio of m to n as the regional exceedance probability of 

ozone (Figure 3c). Higher regional exceedance probability implies ozone pollution 

over wider surface areas in that region. Primary pollutant (Figure 3d) is defined in the 500 

Air Quality Index (AQI) system, in which, AQI for an individual air pollutant is 

calculated based on the concentrations of thethat pollutant. When the individual AQI 
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of a pollutant on a day is both above 50 and the largest among all the pollutants on, 

that day this pollutant is defined as the primary pollutant on that day.  

 505 

On the regional average, the seasonality of daily mean ozone is similar to that of 

daily maximum 8-hour average (MDA8) ozone in eastern China, as well as in the 

three subregions (BTH, YRD, and PRD) (Figures 3a and 3b). In BTH, both daily 

mean and MDA8 have a unimodal seasonal pattern and peak in June, being 99.5 and 

158.4 µg m-3, respectively. The extremely high ozone in June leads to a simultaneous 510 

seasonal maximum in both probability of the regional exceedance (46.9% of the cities 

with ozone measurements in BTH) and primary pollutant (68.7% of the days in June) 

(Figures 3c and 3d). The seasonal peak of surface ozone in BTH mainly results from 

enhanced photochemistry due to stronger solar radiation and lower humidity (Hou et 

al., 2014). Surface ozone over YRD reaches a seasonal maximum in May (82.6 and 515 

127.7 µg m-3, respectively, for daily mean and MDA8 ozone), earlier than that over 

BTH. While the seasonal peak over PRD occurs the latest in October (71.5 and 118.1 

µg m-3, respectively, for daily mean and MDA8 ozone). Although the temperature is 

higher in summer than in the other seasons, the EASM brings more cloudy weather, 

stronger convection, and clearer air from the oceans, weakening the production and 520 

accumulation of surface ozone over YRD and PRD (Hou et al., 2015; S. Li et al., 

2018). The pre-monsoon and post-monsoon peak of surface ozone were also found in 

YRD and PRD, respectively (He et al., 2008; T. Wang et al., 2009). 

 

On the regional and seasonal averageaverages, daily mean and MDA8 ozone over 525 

eastern China in summer are 73.1 and 114.7 µg m-3, respectively. Among the three 

city clusterssubregions, summertime surface ozone is highest in BTH (88.3 and 143.7 

µg m-3, respectively, for daily mean and MDA8 ozone), second highest in YRD (72.9 

and 114.7 µg m-3), and lowest in PRD (51.0 and 91.9 µg m-3) (Figures 3a and 3b). 

These regional differences among the three city clusterssubregions appear similar to 530 
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these in the Ozone Monitoring Instrument (OMI) tropospheric column ozone (Figure 

1). The regional exceedance probability of ozone over eastern China reaches 17.7% in 

summer, accompanied with a high percentage (45.6%) of ozone being the primary 

pollutant. Among the three subregions, BTH has the highest regional exceedance 

probability of ozone (35.1%) and the probability of ozone being the primary pollutant 535 

(55.8%) are largest in BTH.%). 

 

A rapid increasing trend in summertime surface ozone over China after 2012 was 

observed in recent studies (Lu et al., 2018; Silver et al., 2018; Shen et al., 20192019a; 

K. Li et al., 2019). We examine the regional mean trendtrends over eastern China in 540 

daily, daytime (7:00-18:00), and nighttime (19:00-6:00) means (Figure 4). Significant 

(p<0.05) summer increasing trends (p<0.05) of approximately 3-6 µg m-3 or 4-8% per 

year are found over eastern China, BTH, and YRD during 2013-2018, while the 

increasing trend over PRD during the period is insignificant (p>0.05). Silver et al. 

(2018) found the annual mean MDA8 ozone has increased significantly (p<0.05) at 545 

around ~50% of the over 1000 stations across China from 2015 to 2017, with a 

median rate of 4.6 µg m-3 year-1. The increasing trend over eastern China was also 

captured by the OMI satellite records of tropospheric ozone, reported by Shen et al. 

(20192019a). The absolute increasing trend (in a unit of µg m-3) in daytime is higher 

than that in nighttime, whereas the relative increasing trend (in a unit of %) in daytime 550 

is lower than that in nighttime (Figures 4e-4h vs. Figures 4i-4l). The increasing ozone 

trend over China may result from both meteorology and anthropogenic emissions. 

During 2013-2017, the anthropogenic emissions of NOx in China declined (Zheng et 

al., 2018) but the anthropogenic emissions of VOCs changed little (Zheng et al., 2018; 

Shen et al., 2019b). K. Li et al. (2019) suggested the ~40% decrease of fine particulate 555 

matter (PM2.5) is the primary reason for the increasing trend of surface ozone in 

summer during 2013-2017, as the aerosol sink of hydroperoxy radicals was weakened 

and thus ozone production was enhanced. Figure 44b demonstrates a strong increase 
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in summertime surface ozone over BTH from 2016 to 2017, which is probably related 

to the hot extremes in 2017 (Herring et al., 2019). The sudden decline in summertime 560 

surface ozone over PRD from 2016 to 2017 (Figure 4d) is likely associated with the 

extremely heavy precipitation in 2017 (Herring et al., 2019). 

 

4 Meteorological drivers for summertime surface ozone in eastern China 

Meteorological factors can individually or integrally modulate surface ozone 565 

concentration through their impacts on relevant chemical, dynamical, and thermal 

processes in the atmosphere. Figure 2 shows a simple way to examine the overall 

effect of each of the meteorological variables statistically by correlating surface ozone 

with a selected set- of local meteorological variables during 2013-2018 summer. 

Among all the meteorological variables, relative humidity shows the highest 570 

correlation with surface ozone in eastern China on regional mean. (r=-0.39). Relative 

humidity can influence ozone through various processes. Atmospheric water vapor 

can directly influence ozone concentrations by HOx (HOx=OH+H+peroxy radicals) 

chemistry in complicated ways (Zanis et al., 2002; Jacob et al., 2009; Lu et al., 

2019b). Moreover, a higher relative humidity is usually associated with more fractions 575 

of clouds, which can slow the photochemical production of surface ozone. Higher 

relative humidity may also somewhat be linked with larger atmospheric instability, 

favoring the dispersion of surface ozone (Camalier et al., 2007). The correlation map 

of cloud fraction is similar to that of relative humidity (Figures 2a and 2b). The 

correlation of temperature with ozone is higher in the north than in the south over 580 

eastern China (Figure 2c), which may dueis similar to lower humidity in the 

north.pattern found in the eastern United States (Camalier et al., 2007; Shen et al., 

2016). Meridional wind at 850 hPa is positively correlated to surface ozone positively 

in the north but negatively in the most areas of the south (Figure 2f). In summer, the 

south-westerly monsoon wind prevails over eastern China (Figure S3). Higher 585 

meridional wind brings clean and humid marine air to the south, while it transports 
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ozone and its precursors from the south to the north. All the meteorological variables 

are not independent with each other. For example, relative humidity is strongly 

correlated with cloud fraction. A higher relative humidity is usually associated with 

more fractions of clouds, which can slow the photochemical production of surface 590 

ozone. The impacts of relative humidity on surface ozone are mainly through the 

chemical processes. In addition, higher relative humidity may somewhat be linked 

with larger atmospheric instability, favoring the dispersion of surface ozone (Camalier 

et al., 2007). Overall, the meteorological variables that are related to photochemistry 

processes (relative humidity, cloud fraction, and temperature) have more significant 595 

correlation than transport-related variables (zonal, meridional, and vertical winds and 

wind speed) (Figure 2), implying greater effects of chemical process than physical 

transport. S. Li et al. (2018) also suggested the chemical process is the uppermost 

factor controlling surface ozone levels over eastern China in summer.  

 600 

  Combining the effects of different meteorological variables, we applied the MLR 

model (section 2.2) using predictors of both local and synoptic factors (section 2.2) to 

simulate summertime daily surface ozone in eastern China. The MLR model was 

developed using the observation data in 2013-2017 and evaluated with observation 

data in 2018.using the leave-one-out cross validation to avoid overfitting. The MLR 605 

model performs strongly as it can explain 3014-65% variations in the observed 

surface ozone concentrations in 2013-2017, yielding a regional mean coefficient of 

determination (R2) of 4643% (Figure 5c).5a). The mean absolute error (MAE) and the 

root mean square error (RMSE) of regional mean ozone anomalies in eastern China 

between observations and predictions by the MLR are 12.0 and 7.1 µg m-3, 610 

respectively (Figure 6a). Geographically, the model performs better in the south 

(R2=0.5251 in YRD and R2=0.5449 in PRD) than in the north (R2=0.4442 in BTH) 

(Figure 5c). In the validation period, the model also shows strong performance 

(R2=0.38 in eastern China) (Figure 5d). Moreover, we simulated surface ozone 
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considering5a). Compared with the simulation that only considers the local 615 

meteorological variables (Figure 5a) and only the synoptic factors (Figure 5b) in the 

MLR model. Compared with the two simulations (Figures 5a and 5b),, the model 

performance is overall improved in areas in eastern China when both local and 

synoptic meteorological factors are considered (Figure 5cFigures 5a vs. 5b). Shen et 

al. (2017b) found that, compared with thea MLR model describingthat describes 620 

monthly PM2.5 in the United States driven by only theusing local 

meteorologymeteorological factors, the inclusion of the synoptic meteorological 

factors in the MLR model increases R2 from 34% to 43%. In addition, we We also 

conducted the stepwise MLR model using local and synoptic meteorology without 

detrending the input data. The results show that meteorology can explain 3918% of 625 

the increasing trend in the regional mean of summertime surface ozone over eastern 

China from 2013 to 2018, and the explained variance is 23%, 5316%, 41%, and 

5744% for BTH, YRD, and PRD, respectively (Figure S3S4).  

 

  We applied the MLR model to identify the dominant meteorological drivers for 630 

ozone variability (section 2.2). Synoptic factors diagnosed by SVD are the most 

pronounced drivers in ~45% areas of eastern China and contribute to 30-60% of the 

meteorological effects on surface ozone over these locations (Figure 6b). The regional 

mean contributions of the synoptic factors are 37% over eastern China and 41% over 

BTH, YRD, and PRD (Figure 6b). Among the local meteorology, relative humidity is 635 

dominant over ~4851% areas of eastern China, mainly in the central and the southern 

regions including YRD and PRD (Figure 6c). Relative humidity is estimated to 

account for ~30% of the meteorological impacts on daily surface ozone variation in 

YRD and PRD on the regional scale (Figures 7c and 7d), although at5c), although on 

a city scale in PRD, Zhao et al. (2016) suggested that sea level pressure is the most 640 

significant variable for MDA8 ozone in Hong Kong. Air temperature is the most 

important local meteorological variable in ~1517% areas of eastern China, 
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specifically in the north including BTH (Figure 6c). Temperature is estimated to 

account for 20% of the meteorological impact in BTH (Figure 7b5c). The importance 

of temperature to surface ozone over BTH was also suggested by Chen et al. (2019). 645 

Previous studies found that temperature and relative humidity showed pronounced 

impact on ozone in the north and south of the eastern USUnited States, respectively 

(Camalier et al., 2007; Porter et al., 2015). The difference of the most influential 

variables between the south and north in eastern China is similar to that in the eastern 

United States. In Europe, Otero et al. (2016) suggested that temperature is the most 650 

important local meteorological driver over a major part of Europe. On regional 

average, the second most important meteorological variable for the daily surface 

ozone variation in eastern China, BTH, YRD, and PRD is temperature, relative 

humidity, geopotential height at 850 hPa, sea level pressure, and meridional wind at 

850 hPa, respectively (Figure 76).   655 

 

5 Synoptic impacts on summertime surface ozone in eastern China 

In the last section, we have shown that both local and synoptic meteorological factors 

are important forto surface ozone variations in eastern China. The synoptic factors 

used there were extracted via an inversing SVD process and do not stand for specific 660 

weather systems. In this section, we will further showinvest how the specificdifferent 

synoptic weather systems influence surface ozone in eastern China by looking into the 

typical SWPs. Atmospheric circulations over eastern China in summer are largely 

regulated by the evolution of the components of EASM, for instance, the western 

Pacific subtropical high (WPSH),WPSH, the subtropical westerly jet, the Meiyu front, 665 

and the Southwest Vortex (Ding and Chan, 2005). Among these systems, the WPSH 

can largely modulate the seasonal migration of the rain belt over eastern China. 

Typhoon is also an influential weather system, especially on the southeast coastal 

regions. The main features of the synoptic circulations over eastern China during 

2013-2018 can be represented by six predominant SWPs (Figures 8-137-12), which 670 
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were identified by an objective approach, SOM (section 2.3). The occurrence 

frequency of these SWPs is shown in Figures 8-137-12. We name the six SWPs by 

their dominant weather systems or prevailing wind, including Pattern 1 featured 

southwesterly wind (P1 or PSW), Pattern 2 featured Southerly wind (P2 or PS), 

Pattern 3 featured Northeast Cold Vortex (P3 or PNECV), Pattern 4 featured a weak 675 

cyclone (P4 or PWC), Pattern 5 featured strong WPSH (P5 or PSWPSH), and Pattern 

6 featured typhoon systems (P6 or PTC) (Table 1). 

 

To compare the differences of meteorological conditions among the six SWPs, we 

calculated the daily EASM index (EASMI) and WPSH index (WPSHI) representing 680 

the strength of EASM and WPSH respectively. The two indexes were normalized to 

zero mean and unit standard deviation. The averaged anomalies of the normalized 

indexes under each SWP are shown in Figures 8-137-12 and Table 1. The EASMI is a 

shear vorticity index defined as the difference of the regional mean zonal wind at 850 

hPa between 5-15oN, 90-130oE and 22.5-32.5oN, 110-140oE in B. Wang and Fan 685 

(1999) recommended by B. Wang et al. (2008). The WPSHI is defined by the 

accumulative enhancement of geopotential height above the WPSH characteristic 

isoline (5880 gpm at 500 hPa) averaged over the area north to 10oN. The WPSHI is 

adopted by the National Climate Center in China (https://cmdp.ncc-cma.net) in the 

monitoring and diagnosis of the atmospheric circulation. Using the WPSHI, Zhao and 690 

Wang (2017) found a significant correlation between the WPSH and the first 

empirical orthogonal function (EOF) pattern of surface ozone in China. Moreover, we 

used the averaged anomalies of the meteorological variables in a SWP to describe that 

SWP. We used the averaged ozone anomaly (in µg m-3) (Figures 8-137-12) and the 

averaged relative ozone anomaly (the ozone anomaly divided by the monthly ozone 695 

mean, in %) (Table 1 and Figure 14S5) under a SWP to assess the influence of that 

SWP on ozone (Han et al., 2018b). Furthermore, a common index for air stagnation 

(Horton et al., 2012) is used to assess the impact of air stagnation on surface ozone. 
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For each FNL grid, when the daily average wind speed at 10 m, daily average wind 

speed at 500 hPa, and the daily total precipitation on a day are respectively less than 700 

3.2 m s-1, 13 m s-1, and 1 mm, the day is considered as a stagnant day forat that grid. 

The National Oceanic and Atmospheric Administration (NOAA) Climate Prediction 

Center (CPC) precipitation data 

(https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globalprecip.html) were used in 

the calculation of the air stagnation index.  705 

 

The characteristics of the six SWPs and their impacts on surface ozone are briefly 

summarized in Table 1. PSW (P1) is the most common circulation pattern occurring in 

25% days of summer during 2013-2019 (Figure 8b7b). Characterized with weak 

EASM conditions, PSW is dominated by an anomalous anticyclone located in the 710 

southeast of eastern China (Figure 8e7e). In PSW, the enhanced meridional wind 

brings clear marine air to the south of eastern China (Figure 8j7j), where the 

meridional wind is significantly correlated to surface ozone (Figure 2f). The enhanced 

zonal wind from the anomalous anticyclonic circulation (Figure 8e7e) increases the 

ozone export from the south of eastern China (Yang et al., 2014). The negative 715 

anomalies of temperature (Figure 8g7g), and positive anomalies of relative humidity 

(Figure 8f7f) and cloud fraction (Figure 8h7h) in the south are all unfavorable for 

photochemical processes. In consequence, PSW reduces ozone levels in the south 

(Figure 8c7c) by enhancing the dispersion and suppressing the production of ozone. 

Negative anomalies of -1.5 (-2.4%) and -6.6 µg m-3 (-13%) in the regional mean 720 

ozone are respectively observed over YRD and PRD (Figures 8c, respectively (Figure 

7c and 14aTable 1). In contrast, the lower cloud fraction (Figure 8h7h) and higher 

temperature (Figure 8g7g) in the north stimulate ozone production. Surface ozone 

over BTH increases by 3.4 µg m-3 (3.6%) from the regional mean in PSW (Figures 

8cFigure 7c and 14aTable 1).  725 
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PS (P2) is the second frequent SWP (Figure 9b8b), characterized with strong 

EASM and weak WPSH (Figure 9a). In8a). Under PS, the FNL meteorological data 

illustrateshow frequent stagnation events (Figure 9l8l), low humidity (Figure 9f8f), 

and low cloud fraction (Figure 8h) over most of eastern China. In contrast to PSW, the 730 

zonal wind has negative anomalies (Figure 9e8e) in PS, reducing ozone export from 

the south of eastern China. Overall, an increase of 1.1 µg m-3 (1.7%) in the regional 

mean ozone concentrations is resulted in eastern China is observed inunder PS 

(Figures 9cFigure 8c and 14bTable 1).  

 735 

PNECV (P3) is a typical pattern for Meiyu, an important climate phenomenon over 

the middle and lower reaches of the Yangtze River duringfrom early June to mid-July 

(Figure 10a),9a). PNECV is characterized by persistent rainfall (Ding and Chan, 

2005). Under a combined effect of the Northeast Cold Vortex and the WPSH, Meiyu 

front forms and maintains over YRD (He et al., 2007). Meiyu in PNECV increases 740 

relative humidity (Figure 10f9f) and decreases air stagnation (Figure 10l9l) over 

YRD. Consequently, PNECV reduces surface ozone concentrations by 1.3 µg m-3 

(1.7%) over YRD (Figures 10cFigure 9c and 14cTable 1). Meantime, more sunny 

days with high temperature (Figure 10g9g) and low moisture (Figure 10f9f) occur in 

the north to YRD, affected by the northwesterly and downward airflows from the 745 

Northeast Cold Vortex (Figure 10a9a). As a result, positive ozone anomalies are 

observed in the regions north of YRD (Figure 10c9c). 

 

PWC (P4) features the weakest WPSH, when a weak extratropical cyclone locates 

over the east of the mainland China (Figure 11a10a). The extratropical cyclone is 750 

probably formed by thean eastward movement of the Southwest Vortex or thea 

transition from a typhoon. Pushed by the cyclone, the WPSH retreats (Y. Li et al., 

2018). The weak pressure gradient over the mainland of eastern China (Figure 

11a10a) in PWC results in more stable weather conditions. The anomalies of the 
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meteorological variables in PWC show opposite spatial patterns to those in PSW 755 

(Figure 87 vs Figure 1110). With the favorable meteorological conditions except 

temperature, PWC enhances ozone over the south, with. PWC statistically increased 

regional mean values ofozone by 5.2 µg m-3 (7.5%) over YRD and 6.7 µg m-3 (11.8%) 

over PRD (Figures 11cFigure 10c and 14dTable 1). Mean negative ozone anomalies 

of -4.8 µg m-3 (-5.1%) are observed over BTH in PWC (Figure 10c and Table 1).  760 

 

PSWPSH (P5) occurs in late summer (Figure 12a11b), when Meiyu breaks in the 

Yangtze River and the rain belt jumpsshifts to North China (Ding and Chan, 2005). In 

PSWPSH, the WPSH is the strongest and extends westward the mostly (Figure 

12a11a). Thus, relative humidity is lower than the seasonal mean over YRD and 765 

higher than the seasonal mean over BTH (Figure 12f11f). Meantime, stable weather 

conditions occur more frequently over YRD (Figure 12l11l). Therefore, ozone 

accumulates over YRD in PSWPSH with a regional mean enhancement of 1.8 µg m-3 

(2.5%) (Figures 12cFigure 11c and 14eTable 1). Surface ozone decreases by 0.8 

(1.4%) and 5.0 µg m-3 (8.9%)%), respectively, over BTH and PRD under this SWP 770 

(Figures 12cFigure 11c and 14eTable 1). 

 

PTC (P6) is a typical typhoon weather pattern that is over the southeast coast of the 

mainland China (Figure 13a12a). Forced by a typhoon system, the WPSH in PTC 

migrates further north than under the other SWPs. The typhoon system brings clear 775 

and moist marine air to coastal citiesareas in eastern China, reducing surface ozone by 

6.8 µg m-3 (9.2%) over YRD (Figures 13cFigure 12c and 14fTable 1). Shu et al. 

(2017) identified that SWPs like PTC can lead to clean PM2.5 episodes in YRD. 

However, the cyclonic circulation enhances ozone transport from the central part of 

eastern China to the downwind regions in the south including PRD. The collective 780 

effect of higher temperature, lower humidity, and heavier downdrafts, PTC increases 

surface ozone in PRD by 7.9 µg m-3 (15.5%) (Figures 13cFigure 12c and 14fTable 1). 
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Lam et al. (2018) found ozone increases by 16.8 µg m-3 at urban stations in Hong 

Kong of PRD, when the synoptic circulation controlling PRD is featured typhoon in 

the vicinity of Taiwan, similar to PTC. They also suggested that this SWP is 785 

associated with the interannual variations of ozone pollution in Hong Kong.  

 

We further compared the SWPs analysis with that from the MLR model discussed 

in section 4. We evaluate the performance of the MLR model under the six SWPs 

based on the predicted (Figures 7d, 8d, 9d, 10d, 11d, 12d, and 13d) and observed 790 

(Figures 7c, 8c, 9c, 10c, 11c, 12c, and 13c12c) ozone anomalies. The comparison 

shows that the ozone anomalies predicted by the MLR have spatial variations and 

magnitudes similar to those in the observations under each of the SWPs. The MAE of 

averaged ozone anomalies under each of the SWPs ranges 1.0-2.2 µg m-3, and the 

RMSE ranges 1.4-2.8 µg m-3 (Table S1). The MLR model can well capture the ozone 795 

anomalies under the six predominant SWPs (Figures 8-137-12). For example, the 

negative ozone anomaly over PRD under PSW (P1) featured weak EASM (Figures 

8c7c vs. 8d7d), the negative ozone anomaly over YRD under PNECV (P3) featured 

Meiyu (Figures 10c9c vs. 10d)9d), and the positive ozone anomaly over PRD caused 

byunder PTC (P6) featured typhoon (Figures 13c12c vs. 13d12d). Since the MLR 800 

model only considers the meteorological influence on surface ozone, the consistency 

between the regression and the clustering results suggests that the mean observed 

ozone anomalies under a SWP can adequately reflect the sensitivityresponse of daily 

ozone variation to meteorology. The noise of day-to-day variations of chemistry and 

emissions in the surface ozone data can be largely removed by long-term average of 805 

ozone anomalies under a SWP from the big data set of surface ozone (Han et al., 

2018b).  

 

6 Discussion and conclusions 

In addition, we applied the MLR to reveal the most important local meteorological 810 
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factor for daily ozone variability under each of the six SWPs (Figure S6). The MLR 

was conducted under each of the SWPs with the same procedures in the full summer. 

The most important meteorological variable for ozone over some areas in eastern 

China may vary with the prevailing SWP (Figure S6). The dominant driver in PRD is 

meridional wind at 850 hPa under PSW, PS, and PSWPSH, demonstrating the 815 

significant influences of marine air inflow. Controlled by the typhoon system, the 

most important factor over some coastal areas is zonal wind at 850 hPa under PTC. 

 

6 Summary 

Meteorology can influence surface ozone variability on different time scales, from 820 

long-term trends to sub-daily scalevariations. Based on surface ozone observations in 

eastern China during 2013-2018 from MEE, we characterized the seasonal and 

interannual variations of surface ozone in eastern China. The measurements show that 

surface ozone pollution in the study region is severest in summer and the severity 

goesis in a rapid increasing trend during the study period. We then focused on the 825 

meteorological influence on the daily variability of summertime surface ozone in 

eastern China. We took daily anomalies of meteorological and ozone values to remove 

the variabilities on scales longer time scalesthan daily variations in these datasets. We 

estimated the local and synoptic meteorological impacts on daily variability of surface 

ozone using a MLR model and a SOM clustering technique. SynopticThe MLR is 830 

driven by local meteorological variables and synoptic weather factors identified by 

the SVD analysis were combined with local meteorological variables to drive the 

MLR model. The regression model.  

 

The MLR suggests that on regional average, meteorology can explain 4643% 835 

variations in the summertime daily surface ozone in eastern China, with an explained 

variance of up to 65% over some locations (Figure 5c5a). The regression model also 

shows that meteorology contributes to 3918% of the increasing trend in the regional 
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mean of summertime surface ozone over eastern China from 2013 to 2018. Exploiting 

the MLR, we also identified the key meteorological variables that are mostly 840 

responsible for daily variations of summertime surface ozone in eastern China during 

2013-2018. Among the local meteorological variables, relative humidity is the 

foremost over most areas in the center and south of eastern China including YRD and 

PRD, while temperature is the foremost in the north including BTH (Figure 5c).  

 845 

Exploiting the MLR model, we also identified the key meteorological variables that 

are mostly responsible for variations of summertime surface ozone in eastern China 

during 2013-2018. On regional average, the synoptic circulation factors constructed 

by the SVD analysis were estimated to contribute to 37% of the meteorological 

impact over eastern China and 41% over BTH, YRD, and PRD (Figure 6b). Among 850 

the local meteorological variables, relative humidity is the foremost over most 

locations in the center and south of eastern China including YRD and PRD, while 

temperature is more important in the north including BTH (Figure 6c).  

 

  We assessed the impacts of the dominant synoptic weather systems on surface 855 

ozone using cluster analysis. Employing the SOM, the summer synoptic circulations 

over eastern China during 2013-2018 were objectively classified into six predominant 

SWPs (Figures 8-137-12). The six SWPs control the variations of the key 

meteorological variables and thus impact the transport and production of ozone. 

regionally. Among the six SWPs, the SWP (PS) featured southerly wind, strong 860 

EASM and weak WPSH (Figure 8), and the SWP (PWC) featured a weak 

extratropical cyclone and the weakest WPSH (Figure 10) tend to increase the regional 

mean surface ozone in eastern China. In contrast, the other four SWPs (namely, PSW, 

PNECV, PSWPSH, and PTC) tend to reduce regional mean surface ozone in eastern 

China (Figures 7, 9, 11, and 12). As the predominant meteorological controlling 865 

variables of surface ozone vary greatly in space (Figures 2 and 65), strong differences 
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are found in surface ozone concentrations under every SWP between northern and 

southern parts of eastern China or between eastern and western parts of eastern China 

(Figures 8-14). Daily7-12). Under the dominant SWP, daily mean surface ozone 

overin some regions inareas of eastern China can maximally increase or decrease 870 

maximally by 8 µg m-3 or 16% impacted byof the dominant SWP.mean (Table 1).  

 

Among the six SWPs, the SWP (PS) featured southerly wind, strong EASM and 

weak WPSH (Figure 9a), and the SWP (PWC) featured a weak extratropical cyclone 

and the weakest WPSH (Figure 11a) tend to increase the regional mean surface ozone 875 

in eastern China (Figures 9c and 11c). For specific regions in eastern China, PS and 

PWC statistically enhance ozone in YRD and PRD. However, mean negative ozone 

anomalies are observed over some locations in PS and PWC, such as BTH in PWC.  

 

In contrast, the other four SWPs (namely, PSW, PNECV, PSWPSH, and PTC) tend 880 

to reduce regional mean surface ozone in eastern China. PSW is a SWP featured 

southeasterly wind and weak EASM (Figure 8a) and it leads to overall ozone 

reduction in the south of eastern China including YRD and PRD (Figure 8c). When 

eastern China is influenced by the Northeast Cold Vortex, the WPSH, and the Meiyu 

front (Figure 10a), PNECV tends to reduce ozone over YRD (Figure 10c). Whereas, 885 

ozone likely increases over some subregions in eastern China in the four SWPs. 

PSWPSH featured the strongest and the most extensive WPSH (Figure 12a) can 

enhance ozone over YRD, although it may reduce regional mean ozone over eastern 

China (Figure 12c). When the atmospheric circulation is controlled by the typhoon 

systems with their centers around Taiwan, southeast to the mainland of China (Figure 890 

13a), PTC reduces ozone in YRD, while enhances ozone in PRD (Figure 13c).  

 

This study provides some new insights on the relationship between meteorology 

and air pollution, by untangling the complex response of surface ozone to different 
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SWPs and local meteorological variables. The most significant meteorological 895 

variables for surface ozone in eastern China were identified regionally, which was 

rarely investigated by previous studies (Gong et al., 2018; Zhan et al., 2018; Chen et 

al., 2019). Extending from previous studies, we quantified ozone anomalies in eastern 

China resulting from the prominent synoptic weather systems such as the WPSH (Shu 

et al., 2016; Zhao and Wang, 2017), the extratropical cyclones (Zhang et al., 2013; 900 

Liao et al., 2017), the Meiyu front, and typhoon (Jiang et al., 2015; Lam et al., 2018). 

These systems are important drivers for variations of air pollutants over eastern China 

(Ding et al., 2017). The relationship between weather and ozone is examined in one 

specific season, summer. Averagedmean ozone anomalies under a SWP in a relatively 

long term (six years over 2013-2018) was were used to represent the ozone sensitivity 905 

to that SWP. This method is also applicable for a full year, as it can remove the 

seasonal differences in the pollutant concentrations of pollution and the frequency of 

SWPs (Han et al., 2018b). No consideration of seasonal differences in ozonepollutant 

concentrations and meteorology can lead to biases in addressing daily variations of a 

pollutant (e.g. Zhang et al., 2013, 2016; Liao et al., 2017).  910 

 

In this study, the developed MLR and cluster techniques can well describe the 

meteorological impacts on the surface ozone variation in eastern China. Both 

regression and clustering analyses show strong performance, so they can be effective 

tools for air quality forecast. Many previous studies have reported the significance of 915 

local meteorology to the prediction of daily ozone in China (Zhao et al., 2016), 

however, few have included the meteorology at a synoptic scale. Here, we 

emphasized the synoptic role in the meteorological effects on surface ozone. The 

constructed synoptic factors by the SVD analysis can be a useful predictor for short-

term forecast of surface ozone. Regarding the time scale, this study focused on the 920 

day-to-day variations of surface ozone. Investigating the meteorological influences on 

a shorter time scale, such as diurnal variations, should be one of the directions for 
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future work. The regression and clustering approaches can also be applied to project 

the potential effects of climate change on ozone variations in the future (Shen et al., 

2017b). In the MLR regression analysis, we focused on the meteorological effects 925 

without direct consideration of variations in emissions, assuming emissions in a 

season are more or less constant.Here, we emphasize the importance of synoptic 

meteorology to the daily variations of surface ozone. The constructed synoptic factors 

by the SVD analysis can be a useful predictor for forecasting such daily variations. As 

ozone responses nonlinearly to variations in meteorology, emissions, and chemistry 930 

(Wu et al., 2009), the developed MLR model cannot fully describe the importance of 

meteorology to surface ozone predict daily ozone variations yet. Therefore, future 

work is needed to address the the nonlinearity issue. need to be addressed in the 

future. Future work can also be conducted on the sensitivity of the diurnal ozone 

variation to meteorology and on the impact of climate change on future surface ozone 935 

levels regionally and globally (Shen et al., 2017b).  
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