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Rolletter et al. performed extensive measurements to investigate the a-pinene pho-
tooxidation by OH under atmospherically relevant conditions. One important and inter-
esting finding is that the measured pinonaldehyde yield is only 0.05, the lowest yield
ever reported (previous measurements range from 0.06 to 0.87). Further, by com-
paring measurements and 0-D box model results based on different mechanisms, the
authors pointed out that both Master Chemical Mechanism and theoretical study by
Vereecken et al. (2007) lead to significantly higher pinonaldehyde yields.
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Two critical parameters in determining the pinonaldehyde yield and HOx concentra-
tions are the fraction of OH adding onto the less-substituted olefinic carbon (denoted
as BROH_less_sub) and the ring-opening fraction of activated hydroxy alkyl radicals
(denoted as BRring-open). In current manuscript, these two parameters are described
solely on the bases of previous theoretical calculations. Undiscussed are the exper-
imentally constrained BROH_less_sub and BRring-open for a-pinene+OH photoxida-
tion recently reported1. We suggest that BROH_less_sub is ~70%, based on the OH
addition branching ratio for 2-methyl 2-butene, a compound sharing similar substitu-
tions around the C-C double bond with a-pinene2. Using this constraint, we recom-
mend BRring-open is very high (suggested to be 97%) based on the isomer distri-
bution of a-pinene hydroxy nitrates. We recommend that Rolletter et al. implement
these experimentally-constrained values into their box model simulations and evaluate
the model performance in terms of both a-pinene oxidation products and HOx budget.
We further suggest the authors rephrase their discussions on the mechanism for ace-
tone formation. In current manuscript (Figure 1, Page 3 Line 17, etc), it is implied that
acetone is directly formed from the decomposition of ring-opened alkoxy radical. Both
theoretical and experimental studies1, 3 have shown, however, that decomposition is
negligible for the ring-opened alkoxy radical. The non-linear relationship between ace-
tone and consumed «-pinene as observed in this study provides further evidence that
secondary formation of acetone is an important (perhaps the dominant) source of ace-
tone from a-pinene oxidation.
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