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Abstract. Mineral dust is the most abundant aerosol specie by mass in the atmosphere, and it impacts global climate, 

biogeochemistry, and human health. Understanding these varied impacts on the Earth system requires accurate 

knowledge of dust abundance, size, and optical properties, and how they vary in space and time. However, current 

global models show substantial biases against measurements of these dust properties. For instance, recent studies 15 

suggest that atmospheric dust is substantially coarser and more aspherical than accounted for in models, leading to 

persistent biases in modelled impacts of dust on the Earth system. Here, we facilitate more accurate constraints on 

dust impacts by developing a new dataset: Dust Constraints from joint Observational-Modelling-experiMental 

analysis (DustCOMM). This dataset combines an ensemble of global model simulations with observational and 

experimental constraints on dust size distribution and shape to obtain more accurate constraints on three-dimensional 20 

(3-D) atmospheric dust properties than is possible from global model simulations alone. Specifically, we present 

annual and seasonal climatologies of the 3-D dust size distribution, 3-D dust mass extinction efficiency at 550 nm, 

and two-dimensional atmospheric dust loading. Comparisons with independent measurements taken over several 

locations, heights, and seasons show that DustCOMM estimates consistently outperform conventional global model 

simulations. In particular, DustCOMM achieves a substantial reduction in the bias relative to measured dust size 25 

distributions in the 0.5-20 µm diameter range. Furthermore, DustCOMM reproduces measurements of dust mass 

extinction efficiency to almost within the experimental uncertainties, whereas global models generally overestimate 

the mass extinction efficiency. DustCOMM thus provides more accurate constraints on 3-D dust properties, and as 

such, can be used to improve global models or serve as an alternative to global model simulations in constraining dust 

impacts on the Earth system. 30 

1. Introduction 

Even though mineral dust accounts for a substantial fraction of the total mass of aerosol particles in the atmosphere 

and produces important impacts on the Earth system, global models are unable to accurately reproduce dust 

abundance, size, and optical properties (Kinne et al., 2006; Huneeus et al., 2011). Model difficulties in reproducing 
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these atmospheric dust properties are largely associated with their inability to accurately simulate important dust 

processes, such as dust emission, transport, and deposition (e.g. Ginoux et al., 2001; Shao, 2001; Zender et al., 2003; 

Huneeus et al., 2011; Kok et al., 2017). Dust aerosols are emitted from source regions such as the Sahara, the Middle-

East, and Asian deserts, and are deposited after they are transported for thousands of kilometres (Duce et al., 1980; 

Prospero et al., 1981; Weinzierl et al., 2017). Their abundance and long-range transport allow them to play a significant 5 

role in the processes that impact global climate (Boucher et al., 2013), biogeochemistry (e.g. Mahowald et al., 2008, 

2009; Ito et al., 2019), and human health (e.g. Giannadaki et al., 2014). Specifically, dust affects global climate directly 

by influencing the amount of radiation that can reach or leave the atmosphere and the surface (Haywood et al., 2003; 

Kok et al., 2017), or indirectly by changing the amount, reflectivity and lifetime of clouds (e.g. Lohmann & Diehl, 

2006; Doherty & Evan, 2014; Amiri-Farahani et al., 2017). In addition, dust also impacts global biogeochemistry 10 

through deposition of iron and phosphorous-rich micro-nutrients (Mahowald et al., 2008; 2009; Ito et al., 2019), both 

of which are linked to the ability of ocean and land ecosystems to absorb atmospheric carbon dioxide (e.g. Watson et 

al., 2000; Blain et al., 2007). Finally, dust particles are easily inhaled by humans, with smaller dust particles 

penetrating deep into the lungs and leading to cardiopulmonary disease, lung cancer, and eventually death (e.g. 

Giannadaki et al., 2014). Therefore, obtaining accurate constraints on the many impacts of dust on the Earth system 15 

requires accurate knowledge of the sizes, abundance, and optical properties of atmospheric dust particles (Mahowald 

et al., 2014). 

 

Uncertainties in dust aerosol properties directly translate into uncertainties in estimating their impact on the Earth 

system, such as dust radiative impacts (e.g. Huneeus et al., 2011; Zhao et al., 2013; Albani et al., 2014). Several studies 20 

have associated a large part of these uncertainties to the uncertainty in simulating the dust size distributions (e.g. 

Huneeus et al., 2011; Kok, 2011; Evan et al., 2014). Specifically, global models simulate too much fine-mode dust 

(~	# ≤ 	2.5	µ) ) and too little coarse-mode dust (~	# ≥ 	5	µ) ), both at emission and during transport in the 

atmosphere (e.g. Kok 2011; Kok et al., 2017). This bias is particularly problematic because fine dust predominantly 

cools the climate system by extinguishing shortwave (SW) radiation, whereas coarse dust warms it by also 25 

extinguishing longwave (LW) radiation  (e.g. Tegen & Lacis, 1996; Dufresne et al., 2002). Whereas previous 

modelling studies affected by the size bias found that the combined (SW+LW) effect of dust is to cool the climate 

system (e.g. Tegen & Lacis, 1996; Tegen et al., 1996; Colarco et al., 2014), it is unclear whether the dust LW warming 

effect may overcome the dust SW cooling effect when the underestimation of coarse-mode particles is corrected (Kok 

et al., 2017). Since the dust radiative effect is sensitive to the representation of size distribution in global models, 30 

constraining the dust size distribution, and how it varies spatially, is thus important. 

 

In addition to the sensitivity of dust size distribution, dust radiative effects are also sensitive to the shape of dust 

particles (e.g. Kalashnikova & Sokolik, 2004). Global models generally assume that dust particles are spherical 

(Ginoux et al., 2001; Miller et al., 2006; Huneeus et al., 2011), even though observations suggest that they are highly 35 

non-spherical (Okada et al., 2001; Potenza et al., 2016). This idealization in the representation of dust shape in global 

models is used to simplify model physics (e.g. Miller et al., 2006) and the calculation of their optical properties, but 
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recent studies show that neglecting the asphericity of dust in models causes an underestimation of about 30% of dust 

aerosol optical depth (AOD) or extinction produced per unit mass of dust (Potenza et al., 2016; Kok et al., 2017). This 

is largely caused by the greater surface-to-volume ratio of non-spherical particles, compared to that of equal-volume 

spherical particles (e.g. Kalashnikova & Sokolik, 2002, 2004). The assumption of spherical dust in climate models is 

also problematic because the resulting underestimation of dust AOD largely masks the positive bias associated with 5 

the fine dust particles in models, which results in an overestimation of dust AOD and extinction at remote regions 

when the dust emissions are scaled to match the observation of AOD near the source regions (e.g. Kok et al., 2017). 

Hence, to properly constrain dust impacts on radiation, observational constraints must be applied to both the dust size 

distribution and dust shape.  

 10 

Global model simulations of the global dust cycle are thus subject to numerous important biases, which have obscured 

a detailed understanding of the impacts of dust on the Earth system. To address the problem of size and shape biases 

in model simulation of dust properties, we propose a methodology to more accurately obtain 3-D dust properties than 

is possible from global model simulations alone. Specifically, we propose a new product called the Dust Constraints 

from joint Observational-Modelling-experiMental analysis (DustCOMM), which combines an ensemble of global 15 

model simulations with observational and experimental constraints on dust size distribution and shape. DustCOMM 

builds on the results from Kok et al. (2017), however, unlike the globally-averaged results obtained in Kok et al. 

(2017), our product constrains the climatology of 3-D global atmospheric dust properties and it is provided on seasonal 

and annual timescales. Below, section 2 describes the details of the methodology, as well as the data used. In section 

3, we present the constrained spatial distribution of the dust size distribution, mass extinction efficiency and the 20 

atmospheric dust loading, which we evaluate using independent in-situ measurements of dust size distributions and 

mass extinction efficiencies. Section 4 discusses some discrepancies between DustCOMM and measurements, the 

impact of dust asphericity on the DustCOMM product, and the possible use of DustCOMM to improve estimates of 

dust impacts in the global model simulations. Section 5 summarizes the paper. Finally, we note that all the DustCOMM 

dust aerosol properties (dark shaded boxes in Fig. 1) presented in this study are publicly available (Adebiyi et al., 25 

2019a). 

2. Data and Methodology 

We describe here all the steps we took to obtain the DustCOMM products. First, we use three sets of input datasets to 

create the DustCOMM products (Fig. 1): (1) the constrained globally-averaged data from Kok et al., (2017); (2) six 

model simulations of size-resolved dust mass concentrations, from which we estimate the modelled dust size 30 

distribution; and (3) reanalysis datasets of the dust aerosol optical depth. We focus here only on describing the model 

simulations (section 2.1) and the reanalysis products (section 2.2), as details of the in-situ measurements used to 

constrain the globally-averaged datasets are described in Kok et al., (2017). Second, we describe the framework used 

to obtain DustCOMM dust size distribution, mass extinction efficiency, and atmospheric dust loading (section 2.3). 

Finally, we describe the independent measurements we use to evaluate DustCOMM dust size distribution and the dust 35 

mass extinction efficiency in section 2.4. 
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2.1 Model Simulations 

 

We use model outputs of dust aerosol properties from six leading atmospheric global models, namely: the Goddard 

Institute for Space Studies (GISS) ModelE atmospheric general circulation model (Miller et al., 2006); the Weather 5 

Research and Forecasting model coupled with Chemistry updated by the University of Science and Technology of 

China (USTC) suitable for quasi-global simulation (WRF-Chem; Zhao et al., 2010, 2013; Hu et al., 2016); the 

Community Earth System Model (CESM; Hurrell et al., 2013); the Goddard Earth Observing System coupled with 

Chemistry (GEOS-Chem; See Kok et al., 2017); the ARPEGE-Climat model from the Centre National de Recherches 

Météorologiques Earth system model (Michou et al., 2015); and the Integrated Massively Parallel Atmospheric 10 

Chemical Transport (IMPACT; Ito & Kok, 2017 and references therein) model. We use the different simulations from 

global climate and chemical transport models between 2004-2008 (except for WRF-Chem and IMPACT which are 

2007-2016 and 2004 respectively) to capture the general model uncertainties that are associated with the dust emission, 

transport, and deposition processes. The GISS, CESM and GEOS-Chem model simulations are described in Kok et 

al. (2017) and the references therein (see section 5 of their supplementary document). Here, we supplement these 15 

simulations with three additional simulations from the WRF-Chem, ARPEGE-Climat and IMPACT models. The 

WRF-Chem model simulation represents an updated USTC version of the one used in Kok et al. (2017). Further details 

of these three additional model simulations are thus given in the supplementary document. 

 

We obtain the spatially-varying dust size distribution from each of the six model simulations, which we use to define 20 

the spatial variability of the DustCOMM dust size distribution (see Section 2.3.1). Specifically, the spatial variability 

of DustCOMM dust size distribution follows the ensemble of the six model simulations. We summarize the particle 

bin ranges, time periods, spatial resolutions, as well as the meteorology used for each model simulation of the dust 

size distribution in Table 1. All the models use discrete bins that represent the dust particles up to about 10 µm, except 

for the GISS, ARPEGE-Climat, and IMPACT models, which extend beyond the 10µm diameter limit. Four of the 25 

models – WRF-Chem, CESM, ARPEGE-Climat, and IMPACT – have a lower diameter limit smaller than 0.2µm. For 

consistency, we set the lower diameter limits for all the model simulations to the common diameter of 0.2µm, and 

correct the upper diameter limit to 20µm, following the procedures we describe later in section 2.3.1.1. In addition, 

since the time periods are different for the available model dataset (Table 1), we focus on annual and seasonal 

climatologies, which we obtain here from the monthly means of the model outputs.  30 

 

In order to test our hypothesis that integrating experimental and observational constraints on dust size and shape 

distributions can constrain 3-D dust properties more accurately than possible from model simulations alone, we obtain 

a model ensemble of 3-D dust size distribution and mass extinction efficiency and 2-D dust column loading. To do 

so, we interpolated seasonal and annual climatologies of these dust properties to a common resolution of 35 

approximately 2.5o by 2.0o spatial resolution, with 35 levels from the surface to 100 hPa. In addition, we correct each 

modelled dust size distribution to a common particle bin spacing between 0.2-20µm by assuming a power-law 
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distribution between nearby model particle bins. After putting all the model simulations on the same footing in this 

manner, we thus represent the ensemble of the model dust size distribution with the mean, standard deviation and 

range (minimum-maximum value), as a function of particle sizes, horizontal locations, heights, and seasons. Where 

necessary, the 95% confidence interval of the model ensemble is estimated as 1.96 times the standard error (e.g. 

Altman & Bland, 2005). We also perform a similar aggregation and interpolation procedure on the modelled dust 5 

aerosol optical depth and column-integrated atmospheric dust loading, which are used to calculate the column-

integrated dust mass extinction efficiency (MEE) for each model and thus for the model ensemble.  

 

2.2 Reanalysis Dust Aerosol Optical Depth 

 10 

We obtain the dust aerosol optical depth from four reanalysis products to constrain the atmospheric dust loading for 

DustCOMM (see section 2.3.3). These four reanalysis products are: the Modern-Era Retrospective analysis for 

Research and Applications, Version 2 (MERRA-2; Gelaro et al., 2017); the Navy Aerosol Analysis and Prediction 

System (NAAPS; Lynch et al., 2016); the Japanese Reanalysis for Aerosol (JRAero; Yumimoto et al., 2017); and the 

Copernicus Atmosphere Monitoring Service (CAMS) interim Reanalysis (CAMSiRA; Flemming et al., 2017). While 15 

the description of each reanalysis product can be found in the supplementary documents, we give a general overview 

in this section. 

 

A key advantage of these reanalysis products is that they assimilate data from several observing systems, and thus 

provide a complete spatial and temporal coverage of atmospheric composition that captures its variabilities and trends 20 

(Buchard et al., 2017). Most of these four reanalysis products assimilate similar satellite and ground-based 

observations of AOD, which includes data from at least one or all of the following observing systems: the Terra and 

Aqua satellites of MODerate resolution Imaging SpectroRadiometer (MODIS), the Advanced Very High Resolution 

Radiometer (AVHRR), the Multi-angle Imaging SpectroRadiometer (MISR), as well as ground-based observation of 

AOD from several Aerosol Robotic Network (AERONET) stations (Lynch et al., 2016; Flemming et al., 2017; Gelaro 25 

et al., 2017; Yumimoto et al., 2017). In addition, some reanalysis products also assimilate other aerosol constituents 

and reactive gases, like carbon monoxide and ozone observations from the Measurements Of Pollution In The 

Troposphere (MOPITT) instrument on the Terra Satellite, Solar Backscatter Ultraviolet (SBUV/2) instruments (from 

various National Oceanic and Atmospheric Administration (NOAA) platforms), and Microwave Limb Sounder (MLS) 

ozone profiles (e.g. Flemming et al., 2017). These observations are mostly bias-corrected before they are assimilated 30 

through radiatively-coupled aerosol models, and used to constrain the different species that constitute the aerosol 

particles in the atmosphere.  

 

Although the total AOD is constrained, errors in each reanalysis model’s treatment of emission, transport, and 

deposition of mineral dust introduce uncertainties. Dust emission and deposition in the assimilation procedure are 35 

either modelled or sometimes constrained by observations. For example, the dust emission for NAAPS is constrained 

by using a regional source tuning that is, in turn, constrained by space-based and ground-based AOD observations 
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(Lynch et al., 2016). Other reanalysis products use dust emissions that are parameterized and model-dependent (e.g. 

Yumimoto et al., 2017). In general, wet deposition is partially constrained by the assimilated global satellite-based 

precipitation information, such as from the NOAA Climate Prediction Center MORPHing technique data (CMORPH). 

Dry deposition is still mostly model dependent, but may also be adjusted based on assimilated AOD. For all the 

reanalysis products, aerosol transport in the atmosphere is constrained by the assimilation of several meteorological 5 

observations of winds and temperature. Hence, in order to constrain the dust AOD, the assimilation procedure takes 

advantage of the best features in both the observations and model simulations. 

 

Similar to our treatment of the model simulations described in section 2.1 above, we use annual and seasonal 

climatologies of dust AOD obtained from monthly averages of the reanalysis products. We use the reanalysis dust 10 

AOD from 2004-2008 for each reanalysis product except for JRAero, for which we use 2011-2015. In order to 

combine the different reanalysis dust AOD products, we interpolate each product to approximately 2.5o by 2.0o spatial 

resolution and estimate the ensemble mean and standard error over each location (see section 2.3.3). 

2.3 Constraining DustCOMM Products 

Our aim is to create a new product – DustCOMM – that constrains the spatial variability of three major properties of 15 

atmospheric dust which determine many of its impacts on the Earth system, namely (1) the atmospheric dust size 

distribution, (2) the dust mass extinction efficiency, and (3) the column-integrated atmospheric dust loading. We do 

so by combining observational, experimental and theoretical constraints on dust properties and abundance with global 

model simulations of the size-resolved spatially-varying dust concentration (Fig. 1). After we present a general 

overview of the methodology here, we describe the details of the methodology and the calculation of the associated 20 

uncertainty estimates in the following sub-sections. 

 

We obtain the first constrained product in our dust climatology, the dust size distribution, by bias correcting the six 

global model simulations (see section 2.3.1; left panel of Fig. 1). Specifically, we bias correct these model simulations 

using the constraint on the globally-averaged dust size distribution from Kok et al. (2017), which was obtained from 25 

measurements of the emitted dust size distribution and model simulations of the globally-averaged dust lifetime. 

Model simulations of the size-resolved dust lifetimes were used because this cannot be readily constrained with 

observations or measurements. Similarly, we use the constraints on the globally-averaged size distribution from Kok 

et al. (2017) to correct modelled size distributions because dust size distribution measurements are insufficient to 

constrain the dust size distribution for every location. After correcting the model simulations of the dust size 30 

distribution, we combine them into a single multi-model constraint on the 3-D dust size distribution. To do this, we 

estimate the sub-bin distributions by fitting the dust size distribution after the bias correction with a generalized 

analytical function based on brittle fragmentation theory (Kok, 2011). We then use the resulting distributions from the 

multiple models to obtain a constraint on the atmospheric dust size distribution, for each horizontal location and height 

level. 35 
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We use these constrained size distributions to obtain our second product, namely the size-integrated 3-D dust mass 

extinction efficiency (section 2.3.2; middle panel in Fig. 1). Specifically, we combine the constrained 3-D dust size 

distribution with the constraint on the size-resolved globally-averaged single-particle dust extinction efficiency at 550 

nm obtained from Kok et al. (2017). This size-resolved single-particle dust extinction efficiency leverages 

measurements of dust index of refraction and also accounts for the non-spherical shape of dust particles. As we did 5 

for the size distribution, we use the globally-averaged dust extinction efficiency here because measurements of dust 

shapes and index of refraction are currently insufficient to constrain this for every location. As with the size 

distribution, we also constrain the mass extinction efficiency over each horizontal location and height level. 

 

We obtain our third product – the column-integrated atmospheric dust loading – by combining the constraint on dust 10 

mass extinction efficiency with dust aerosol optical depth from multiple reanalysis products (section 2.3.3; right panel 

in Fig. 1). Using four state-of-the-art reanalysis products (see section 2.2), we calculate the ensemble average of dust 

aerosol optical depth, accounting for systematic and random errors. We propagate the errors in the dust mass extinction 

efficiency and dust aerosol optical depth to obtain the mean and the uncertainty of the column-integrated atmospheric 

dust loading over each horizontal location. 15 

 

We estimate all DustCOMM products at a horizontal resolution of 2.5o X 1.9o with 35 levels that is up to 100 hPa. 

 

2.3.1 Constraining the 3-D atmospheric dust size distribution. 

 20 

We constrain the spatially-varying atmospheric dust size distributions by combining constraints on the globally-

averaged dust size distribution with an ensemble of simulations of the 3-D spatial variability of the dust size 

distribution (Fig. 1). We obtain the globally-averaged atmospheric size distribution, +,-
.(0)

,0
2
3

, from Kok et al. (2017; 

see their Fig. 2a). This globally-averaged size distribution was obtained by combining constraints on the size 

distribution of emitted dust particles with simulations of the size-resolved dust lifetime. While details can be found in 25 

Kok et al. (2017), a summary of their globally-averaged size distribution is given here as:  
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where the long-square parentheses [ ]3 indicate quantities that are globally averaged, quantities with  .  accents are 

partially constrained by observations, and quantities with E  accents are obtained from model simulations. As reported 

in Kok et al. (2017; hereafter referred to as K17), the constrained globally-averaged size distribution of emitted dust 30 

particles, +,-
.FGHI(0)

,0
2
3
, is based on an analysis of different measurements of the emitted dust size distribution, while 

the size-resolved globally-averaged dust lifetime, [?@(#)]3, is based on an ensemble of global model simulations; K?@AL
3

 

is the mass-weighted mean of [?@(#)]3. The constrained K17 globally-averaged size distribution is normalized such 
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that ∫ +,-
.(0)

,0
2
3
5# = 10GNO

P . Where #;QR represents the maximum geometric diameter above which the contribution 

to extinction is negligible (#;QR = 20µ), see section 2.3.1.1). 

 

We use this constrained K17 globally-averaged atmospheric dust size distribution (Eqn. 1) to bias-correct our 

spatially-varying model simulations of the annually-averaged dust size distribution. This is necessary because models 5 

generally under-estimate coarse dust particles, largely because they assume too much fine dust in the emitted dust size 

distribution (Kok, 2011). For each model, we force the simulated globally-averaged dust size distribution to match the 

K17 constraint on the globally-averaged size distribution (see supplement Fig. S-1), such that: 

 

TUV,WXY, Z, [, #V,W\ = T]V,WXY, Z, [, #V,W\ ∙ ^V,W (2)

_ℎaba			^V,W =
∫ c56

7(#)
5# d

3

0e,fg
0e,fh

5#

	+T]V̅,W(#V,W)2
3

 10 

The annually-averaged 3-D distribution of the dust size distribution for each particle bin j simulated by model k is 

T]V,WXY, Z, [, #V,W\ , and the corresponding simulated globally-averaged dust mass fraction is +T]V̅,W(#V,W)2
3

; Y  is the 

dimension for longitude, Z  is for latitude and [  is for height. Further, the numerator, ∫ +,-
.(0)

,0
2
3

0e,fg
0e,fh

5# , is the 

constraint obtained from Kok et al. (2017), while #V,Wl and #V,Wm respectively denote the lower and upper geometric 

diameter limits of particle bin j	of model k, and j = 1, 2, … ,oV with oV as the total number of dust particle bins for a 15 

given model simulation k. In Eqn. 2, we multiply each simulated dust size distribution T]V,WXY, Z, [, #V,W\ by a correction 

factor ^V,W, that is estimated as the ratio of the fractional contributions of the K17 globally-averaged constraint to that 

obtained from the same model. This correction is done for each bin i of each model k, defined between #V,Wl and #V,Wm. 

The resulting corrected spatially-varying dust size distribution, TUV,WXY, Z, [, #V,W\ is normalized such that the discrete 

sum over each location and height equals unity, that is: ∑ TUV,WXY, Z, [, #V,W\
qe
Wrse

= 1.  20 

 

Each model simulation in the ensemble has a particle size range and spacing that differs from other models (see Table 

1 and section 2.1 for details). In order to combine the corrected size distributions from the different models into a 

single estimate, and to quantify the uncertainty across the different models, each corrected size distribution must be 

in a consistent size range and spacing with other models. We therefore process the corrected size distributions over a 25 

given location as follows: (1) we correct and scale each model’s lower and upper diameter limits to the common 

diameter range of 0.2 – 20 µm (see section 2.3.1.1); and (2) we estimate the sub-bin distribution for each model’s 

bias-corrected size distribution by fitting a generalized analytical function, extending the Kok et al, (2017) theoretical 

expression of dust size distribution to the 3-D dataset (see section 2.3.1.2). 

 30 

2.3.1.1 Correcting model simulations to a common diameter range 
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For all simulations in the model ensemble, we set the lower and upper diameter limits to common limits defined by 

#;<t = 0.2	µ) and #;QR = 20	µ), respectively. The lower diameter limit (#;<t) is based on the lowest common 

diameter included in all the model simulations used in our analysis (Table 1). In addition, possible contaminations by 

other aerosol species are significantly more likely below 0.2	µ) in measurements of dust aerosol particles (e.g. 

Dubovik et al., 2000). For these reasons, we set the lower diameter limit to #;<t = 0.2µ), consistent with previous 5 

studies (e.g. Mahowald et al., 2014, Kok et al., 2017). Further, we set the upper diameter limit to #;QR = 20	µ), 

because most global models generally do not incorporate dust particles beyond 20 µm and also because the 

observational constraints on the size distribution from Kok et al. (2017) is limited to this maximum diameter. Although 

advances in airborne observations in recent years have led to measurements of larger dust particles with #	 > 	#vwx 

in the atmosphere which has shown that the contribution of  #	 > 	20	µ) to shortwave and longwave extinctions are 10 

non-negligible (e.g. Ryder et al., 2013b, 2019; Weinzierl et al., 2009, 2017), there is still a scarcity of these 

measurements, such that an observational constraint on dust particles with #	 > 	#vwx   would be very uncertain (e.g. 

Mahowald et al., 2014). 

 

To correct each model simulation to the common diameter range of [#;<t, #;QR], we first create a new particle bin 15 

for the lower and/or upper diameter limit, and then we use the K17 constraints on the globally-averaged size 

distribution (Eqn. 1) to estimate the equivalent fraction of dust mass in that bin. This dust mass fraction is estimated 

in a way that is consistent with the size distribution obtained earlier from Eqn. 2. Specifically, for simulations with a 

lower diameter limit (#V,sel) less than #;<t, we estimate the equivalent dust mass fraction for the bin between #;<t 

and #V,sem (where #V,sem is the upper diameter limit of bin 1; such that #V,sem > #;<t	) by scaling the mass in the 20 

nearest bin with a factor that depends on the globally-averaged size distribution. For instance, the first particle bin of 

the CESM model (Table 1) has a range of K#V,sel, #V,semL = 0.1 − 1.0	µm,	such that we create a new particle bin 

defined by K#;<t, #V,semL = 0.2 − 1.0	µm, and estimate the equivalent dust mass fraction in that new bin. For all 

model simulations, we can denote this procedure mathematically as: 

TUVXY, Z, [, K#;<t, #V,semL\ 	= 	TUVXY, Z, [, K#V,sel, #V,semL\ ∙ {0GH|
(3) 25 

_ℎaba					{0GH| =
∫ c56

7(#)
5# d

3
5#0e,~eg

0GH|

∫ c56
7(#)
5# d

3
5#0e,~eg

0e,~eh

 

The modelled dust size distribution is relatively invariant for fine particles because of the consistent emitted dust size 

distribution (Kok, 2011a & b), and because removal processes for fine dust (wet deposition) do not strongly depend 

on particle size (e.g. Zender et al., 2003). Therefore, we simply estimate {0GH| in Eqn. 3 as the ratio between the 

fractional values of the K17 globally-averaged size distribution in the desired new bin [#;<t, #V,sem] and in the 30 

model’s original bin [#V,sel, #V,sem]. 

 

We also create a new bin with the upper diameter equal to #;QR	for model simulations with an upper diameter limit 

(#V,qem) that differs from #;QR. We do so by scaling the nearest bin by a factor ({0GNO) that also depends, in part, on 



 10 

the constrained K17 globally-averaged size distribution. Because the main removal process for large dust particles 

(# > 10µ)) is dry deposition, which depends strongly on particle size, the relative contribution to the size distribution 

of different particle bins of large particles has substantial spatial variability. To account for this, we use simulations 

of bins with # > #V,qem from other model simulations in order to estimate what model k would have predicted for a 

hypothetical K#V,qem, #;QRL particle bin. That is: 5 

TUVXY, Z, [, K#V,qem, #;QRL\ 	= 	TUVXY, Z, [, K#V,qel, #V,qemL\ ∙ {0GNO
(Y, Z, [) (4Ä) 

_ℎaba					{0GNO(Y, Z, [) =
∫ c56

7(#)
5# d

3
5#0GNO

0e,Åeg

∫ c56
7(#)
5# d

3
5#0e,Åeg

0e,Åeh

∙ ÇÉ(Y, Z, [) 

The factor ÇÉ thus quantifies the ratio of the mass fractions between the model’s largest particle bin (K#V,qel, #V,qemL) 

and the newly created particle bin to extend the simulation to #;QR = 	20	µ) (K#V,qem, #;QRL), as estimated from the 

GISS and ARPEGE-Climat simulations, which have particle bins extending to #;QR (Table 1). We denote these latter 10 

model simulations with a subscript b for the purpose of clarity, and to separate them from the model simulation that 

is being adjusted to the [#;<t, #;QR] size range, which is denoted by a subscript k in Eqn. 4a above. We thus estimate 

ÇÉ as: 

ÇÉ(Y, Z, [) = 	
TUÉXY, Z, [, K#É,qÑl, #É,qÑmL	\

∫ c56
7(#)
5# d

3
5#0Ñ,ÅÑg

0Ñ,ÅÑh

TUÉXY, Z, [, K#É,ÖÑl, #É,ÖÑmL	\

∫ c56
7(#)
5# d

3
5#0Ñ,ÜÑg

0Ñ,ÜÑh

á 	 (4à) 

Where K#É,qÑl, #É,qÑmL is the bin in model b	with dust mass that overlaps in size with the new bin K#V,qem, #;QRL	we 15 

want to estimate for model k; and K#É,ÖÑl, #É,ÖÑmL is the bin that similarly overlaps with K#V,qel, #V,qemL. To account 

for the bin-range mismatch between the model simulation that resolved dust up to #;QR (with subscript b) and the 

model simulation being adjusted to the dust size range up to #;QR (with subscript k), we normalize each bin mass 

fraction by its contribution to the constrained K17 globally-averaged size distribution. For cases where model b is the 

same as model k (i.e. for GISS and ARPEGE-Climat), ÇÉ  reduces to one everywhere. It should be noted that the 20 

correction of Eqn. 4 takes into account the potential difference in the dust deposition between models k and r, by 

considering the differences in the spatial variability of dust loading between similar bins of K#V,qel, #V,qemL and 

K#É,ÖÑl, #É,ÖÑmL. After the dust mass fractions are corrected, they are re-normalized such that the discrete sum between 

#;<t and #;QR equals unity over each location and height. 

 25 

This procedure described above (Eqns. 3-4) can be used to correct either the original modelled dust size distribution 

(section 2.1), or the bias-corrected modelled dust size distribution of Eqn. 2.  

 

2.3.1.2 Estimating the sub-bin distribution of the dust size distribution 

 30 

After setting the corrected dust size distribution from each model to a common diameter range, [#;<t, #;QR], we next 

estimate the sub-bin distribution in order to combine estimates from different models into one dust size distribution 
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product. To do this, we fit a generalized theoretical function of the dust size distribution to the estimated bias-corrected 

dust size distribution from each model over each location and height level (Eqn. 2). Although fitting lognormal modes 

are appropriate for several other aerosol species, Mahowald et al., (2014) highlighted that dust size distributions are 

usually not lognormal and are thus better characterized by a generalized function based on mechanistic understanding 

of dust emission and deposition processes. Therefore, we describe in this section the generalized function and the 5 

fitting procedure used to constrain the dust size distributions.  

 

We define the generalized function for the atmospheric size distribution by considering the theoretical expressions 

that characterize the processes affecting the dust size distribution. The degree of the impact of any of these processes 

on the dust size distribution will depend on the location. For example, the impact of emission processes on the shape 10 

of the dust size distribution is expected to be large close to major dust source regions but less farther from source 

regions. Furthermore, farther from dust source regions, deposition processes are expected to have more impact on the 

size distribution. We therefore assume that the atmospheric size distribution over any location is proportional to the 

dust size distribution at emission,	,-âäfã(0)

,0
, the size-resolved dust lifetime in the atmosphere, ?(#), and any other 

changes to the dust particle size distribution during transport, A(D) (e.g. Weinzierl et al., 2009; Schladitz et al., 2011; 15 

Kok et al., 2017). That is: 

56wév(#)
5#

∝	
56êvWé(#)

5#
∙ ?(#) ∙ ë(#) (5Ä)	 

For the dust size distribution at emission, Kok (2011) suggested that ,-âäfã(0)

,0
 can be represented by a simple 

theoretical expression based on brittle fragmentation theory, which shows good agreement with measurements (e.g. 

Mahowald et al., 2014; Rosenberg et al., 2014). To better represent the variability in dust emission affecting the 20 

emitted size distribution in the different simulations, here we generalize this expression such that: 

56êvWé(#)
5#

=
1
íì
∙ î1 + erfô

ln ú##ì
ù

√2 ln(üì)
†° ∙ a

clú0¢ù
£
d
	 (5à) 

Where #ì and üì are respectively the geometric median diameter by volume and the geometric standard deviation of 

a typical desert soil, § denotes the propagation distance of main cracks in dust aggregates during fragmentation, ^ is 

a tunable parameter primarily affecting the large dust particles, and íì is a normalization constant.  25 

 

The second term in our generalized dust size distribution describes the size-resolved dust lifetime, which global model 

results compiled in Kok et al. (2017) suggest can analytically be approximated as an exponential function of particle 

diameter, such that:  

?(#) ≅ ?P ∙ a
lú0¶ù	 (5ß) 30 

Where ?P  is a constant associated with the lifetime for vanishingly small dust particles, which is determined by 

depositional processes, and ® is a constant that scales the exponential decay of the dust lifetime with particle size. This 

exponential decay of dust lifetime with size is caused by the increase of the gravitational settling speed with particle 

size (e.g. van der Does et al., 2016, 2018).  
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Finally, we account for other changes to the dust size distribution during transport, by assuming that such changes are 

likely described by power-law distribution (e.g. Seinfeld & Pandis, 2016). Maring et al. (2003) highlighted that 

between emission and deposition, changes in dust size distribution cannot be accounted for by simple preferential 

removal of dust particles by gravitational settling. Since such changes in the dust size distribution are difficult to 5 

account for, we represent them with a parameter that can affect the entire size range. In addition, ?(#) and ,-âäfã(0)

,0
 

represent expressions that describe the globally-averaged size distributions, and applying them to a specific location 

requires additional parameter that captures the loss rate as a function of location. To represent all other changes to the 

dust size distribution between emission and deposition, we thus define: 

ë(#) ∝ 	#© (55) 10 

Combining Eqns. 5b—5d, we obtain:  

56wév(#)
5#

=
1
íì
î1 + erf ô

ln ú##™
ù

√2 ln(ü™)
†° a

clú0¢ù
£
d
∙ ?Pa

lú0¶ù ∙ #©	 (5a) 

We combine the two exponential terms in Eqn. 5e in order to reduce the number of fitting parameters. It is worth 

noting that both parameters ® and § are sensitive to the larger particles, as they remain highly uncertain and poorly 

constrained by observation (e.g. Mahowald et al., 2014). The parameter	§ depends on the soil moisture, mineralogy 15 

and other processes (e.g. Mahowald et al., 2014; Rosenberg et al., 2014; Kok et al., 2017), while the parameter ® 

depends on the dust wet and dry deposition rates, as the dust particles are transported away from the source (e.g. Han 

& Zender, 2010; van der Does et al., 2016). To combine them, we define Λ to account for the uncertainty in the 

atmospheric large-size dust particles over every location. The generalized theoretical function for atmospheric size 

distribution therefore becomes: 20 

56wév(#)
5#

=
1
íì∗
∙ î1 + erfô

ln ú##™
ù

√2 ln(ü™)
†° ∙ a

clú0≠ù
£
d
∙ #© (6) 

where íì∗ is a new normalization constant that is obtained from requiring that the integral over Eqn. (6) from #vWØ to 

#vwx yields unity. 

 

To determine the parameters in Eqn. 6 for each height, horizontal location, season, and model simulation, we fit the 25 

generalized size distribution of Eqn. 6 to the corresponding corrected dust size distribution from Eqn. 2 above. To do 

this, we minimize the chi-squared (∞V±) value for each height, location, and for each model k, such that: 

∞V± =≤≥log∂∑
56wév
5#

5#
0e,fg

0e,fh

∏ − logXTUV,W\π

±qe

W

	 (7) 

In each case, we estimate the constrained dust size distribution,	,-
.NIG
,0

(x, y, z), based on the parameters we determine 

from Eqn. 7. In order to restrict the fitted function to physically realistic dust size distributions, we set the following 30 

bounds for the five parameters of Eqn. 6: #™ = 0.25	to	6.0	µ); 	ü™		 = 1.6	to	4.0; Λ = 1	to	30	µ);	^ = 1	to	6; and 
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à = −10	to	4, consistent with previous studies (e.g. Kok, 2011; Kok et al., 2017; Rosenberg et al., 2014;). The 

probabilty distribution of these parameters for all heights, horizontal locations, and model simulations of the annually-

averaged dust size distribution is shown in the supplementary Fig. S-2. Finally, we note here that although our 

generalized theoretical function of Eqn. 6 builds on the brittle fragmentation theory of Kok 2011, it adds analytical 

expressions of dust deposition and dust changes during transport that allow us to better fit different shapes of dust size 5 

distribution over different locations. 

 

2.3.2 Constraining the 3-D dust mass extinction efficiency 

 

After obtaining the constrained atmospheric dust size distributions (section 2.3.1 above), we combine it with 10 

constraints on size-resolved single-particle extinction efficiency at 550 nm, to obtain constraints on the 3-D dust mass 

extinction efficiency (¿¬̂ − )±√ls). That is (see also Kok et al., 2017): 

¿¬̂(Y, Z, [) = ∑
567Q=;(Y, Z, [, #)

5#

0GNO

0äfƒ

3
2≈,#

∆7:R=(#)5# (8) 

where ,-
.NIG(x,»,…,0)

,0
 is the constrained atmospheric dust size distribution at a given location and height with sub-bin 

distribution (Eqn. 6); ≈, = 2.5 ± 0.2 g cm-3 is the globally-averaged density of dust aerosols ( Fratini et al., 2007; 15 

Reid et al., 2008; Kaaden et al., 2009; Sow et al., 2009; Kok et al., 2017) and its error range is expected to account for 

the spatial and temporal variability of dust density (e.g. Tegen & Fung, 1994; Li et al., 2008); and ∆7:R=(#) is the 

globally-averaged size-resolved single-particle extinction efficiency at 550nm wavelength, with the extinction cross-

section normalized by À#±/4 – the projected area of a sphere with diameter D.  

 20 

We obtain ∆7:R= from Kok et al. (2017), which constrained the dust extinction efficiency by combining measurements 

of the dust index of refraction and probability distribution of dust particle shape with the single-scattering database of 

Meng et al., (2010). Specifically, Kok et al. (2017) estimated the globally-averaged values of the real and imaginary 

dust index of refraction as Õ = 1.53	 ± 	0.03 and  log(−k) = −2.5	 ± 	0.3 (Sokolik et al., 1993; Patterson et al., 1977; 

Dubovik et al., 2002; K. Kandler et al., 2009; Kim et al., 2011; Denjean et al., 2016), and both are assumed to be 25 

normally distributed. Dust particle shapes were represented by the dust aspect ratio – the ratio of the major and minor 

axes of an ellipsoid best fit to the irregularly-shaped 2-D image of a dust particle – and the height-to-width ratio. 

Kandler et al., (2007) showed that the deviation of measured dust aspect ratios from a sphere can be approximated by 

a log-normal distribution, with typical values ranging from 1 – a perfect sphere – to about 3, and median between 

~1.5—1.9. Based on aggregates of measurements (Okada et al., 2001; Reid et al., 2003; Kandler et al., 2007; Chou et 30 

al., 2008; Kandler et al., 2009, 2011; Scheuvens et al., 2011; Scheuvens & Kandler, 2014), Kok et al. (2017) estimated 

the median and geometric standard deviation for the distribution of the dust aspect ratio as – 1.7	 ± 	0.3 and 0.6	 ±

	0.2, respectively. Similarly, based on limited available measurements of dust height-to-width ratio (Okada et al., 

2001; Chou et al., 2008; Veghte & Freedman, 2014),  Kok et al. (2017) used a mean value of 0.333 (see details in the 

supplementary document of Kok et al., 2017). By combining these constraints on the optical properties and shape of 35 

the ensemble of dust particles in Earth’s atmosphere with the single-scattering database of Meng et al. (2010), Kok et 
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al. (2017) obtained a constraint on the globally-averaged size-resolved extinction efficiency ∆7:R=(#), which explicitly 

accounts for the enhancement of extinction by the asphericity of dust. Specifically, they found that accounting for dust 

asphericity enhances the extinction produced by a unit mass loading of dust by 29 ± 5% over the extinction calculated 

from Mie theory for spherical dust particles, which is used in most climate models.  

 5 

We use this constrained K17 globally-averaged Q.:R= to constrain ϵ–— (Eqn. 8) for every location. We thus neglect any 

regional variation in Q.:R= because measurements of dust shapes and index of refraction are currently insufficient to 

constrain ϵ–— on a regional basis. In addition, since measurements of dust refractive index needed to constrain ϵ–— at 

other wavelengths are also scarce, we limit our estimate here only to the 550 nm wavelength. We use 550 nm as the 

wavelength of choice because measurements to validate our estimate of ϵ–—  and the observational constraints to 10 

estimate the dust atmospheric loading are mostly available at mid-visible wavelength. 

 

2.3.3 Constraining the 2-D atmospheric dust loading 

 

We now combine the above-estimated mass extinction efficiency at 550 nm (section 2.3.2) with dust aerosol optical 15 

depth at the same wavelength, to constrain the atmospheric column dust loading (“7 − √	)l±) (Kaufman et al., 2005; 

Kok et al., 2017). Because our constraints on dust size distributions are normalized to unity, and also to ensure that 

our estimates of dust loading produce the same extinction as those from reanalysis dataset or satellite measurements, 

we use this approach to estimate the atmospheric dust loading, such that:  

“7(Y, Z) =
”̂,(Y, Z)
¿v̂(Y, Z)

	 (9) 20 

where ¿v̂	(unit:	m±	gls) is the vertically-integrated 2-D mass extinction efficiency calculated from ¿¬̂, and ”̂,(Y, Z) 

is obtained from an ensemble of reanalysis dust aerosol optical depth products.  

 

The ensemble dust aerosol optical depth (AOD) climatology is obtained from the average of four different reanalysis 

products (MERRA-2, JRAero, NAAPS, and CAMSiRA; see section 2.2 for details). This individual reanalysis dataset 25 

assimilate several satellite and ground-based measurements from multiple platforms, including MODIS (Terra and 

Aqua), AVHRR and MISR satellites, as well as from the ground-based AERONET stations (Lynch et al., 2016; 

Mccarty et al., 2016; Flemming et al., 2017; Yumimoto et al., 2017). As such the assimilation procedure takes 

advantage of the best features in both the observations and model simulations, thus producing column-integrated dust 

AOD that is largely representative of what is observed, based on validation studies (e.g. Buchard et al., 2017).  30 

 

Despite the advantage of assimilating observational datasets, estimating a realistic overall error in the dust AOD across 

the reanalysis datasets is difficult, yet important. Here, we estimate the total error (ü, ) by considering both the 

systematic error (ü™»™) and random error (üÉwØ,) inherent in the reanalysis-derived dust AOD. As such, we estimate 

the uncertainty in dust AOD as: ü,(Y, Z) = 	ÿü™»™± (Y, Z) +	üÉwØ,
± (Y, Z). We define the üÉwØ, as the standard error 35 
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between the four datasets, which represents that part of the total uncertainty that does not correlate across the four 

reanalysis dust AOD data sets. For instance, üÉwØ, may be associated with differences in the assimilating systems for 

the different reanalysis products. In contrast, the ü™»™ is expected to correlate between the four data sets since most of 

the reanalysis datasets use similar observational datasets. Hence, we assume that the ü™»™ will be proportional to the 

mean dust AOD, such that Ÿ⁄¤⁄
(x,»)

¬‹(x,»)
= í,. We estimate the proportionality constant, í,, by requiring that the relative 5 

error is the same as the relative error obtained from annually-averaged climatology of dust AOD from Ridley et al. 

(2016), which leveraged observational datasets similar to those used for the reanalysis dataset, but propagated many 

of the relevant uncertainties. From that, we deduce that í, = ÿŸ›
fi

¬›
fi −

ŸÑflƒ‹
fi

¬‹
fi 	, where  ”‡ and ü‡ are the mean and error 

estimates of the observationally-constrained dust AOD from Ridley et al. (2016) respectively. We estimate í, = 0.26 

for annual climatology (between 2004-2008), averaged over regions that are constrained by Ridley et al. (2016) and 10 

account for about 95% of the global dust AOD. Similarly, we estimate 0.31, 0.22, 0.24, 0.28 for December-February, 

March-May, June-August, and September-November seasonal climatologies, respectively. 

 

2.3.4 Quantifying the uncertainties in DustCOMM products 
 15 

For each DustCOMM product above – the constrained dust size distribution, dust mass extinction efficiency and dust 

atmospheric loading - we describe here how we estimate the most likely value and quantify the uncertainty over each 

location. Specifically, we use a non-parametric procedure based on the bootstrap method (Efron & Gong, 1983; 

Chernick, 2007). We use this method because the complexity of the equations (Eqns. 1-9) prevents a parametric 

quantification of error, and the bootstrap approach allows us to nonetheless propagate the uncertainty in the various 20 

physical variables used to estimate each product. Using this method, we further assume that the set of input variables 

in relevant equations above are independent, and are represented by defined probability distributions. Thus, we 

estimate the probability distribution of the resulting products by randomly sampling (with replacement) the probability 

distribution of each of the input variables for a large number of times (Õ ≈ 1,500).  

 25 

In practice, the procedure uses the following steps to determine the dust size distribution, mass extinction efficiency 

and atmospheric loading, and their uncertainties:  

1. We randomly-select a realization of the globally-averaged size distribution from Kok et al. (2017), which in 

turn was obtained in that study by randomly-selecting a realization of the emitted dust size distribution and 

the dust lifetime (Eqn. 1).  30 

2. We use this randomly-selected constrained K17 globally-averaged size distribution to correct a randomly-

selected model simulation (Eqn. 2).  

3. After this model simulation is corrected, we then scale the resulting 3-D dust size distribution between #;<t 

and #;QR following Eqns. 3 & 4.  
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4. We thereafter estimate the constrained dust size distribution, ,-
.NIG
,0

(Y, Z, [, #) , and obtain the sub-bin 

distribution by fitting the generalized theoretical expression (Eqn. 6) and minimizing the chi-square over 

each location (Eqn. 7).  

5. We randomly select a realization of the globally-averaged size-resolved single-particle extinction efficiency, 

∆7:R=(#), from Kok et al. (2017). This realization is also similarly estimated by randomly-selecting from the 5 

distribution of the dust index of refraction and dust shape distribution parameters, as explained in section 

2.3.2.  

6. We then use the randomly-selected ∆7:R=(#)  and ,-
.NIG
,0

(Y, Z, [, #)  to estimate the dust mass extinction 

efficiency over each location, ¿¬̂(Y, Z, [, #), following Eqn. 8. This uses a randomly-selected dust density 

value (≈,) from its assumed normal distribution.  10 

7. Similarly, assuming a normal distribution for the dust AOD, we randomly estimate the ”̂,(Y, Z) value within 

the range of its uncertainty, ü,(Y, Z).  

8. We use this ”̂,(Y, Z) and the vertically-integrated value of dust mass extinction efficiency, ¿v̂(Y, Z), to 

estimate the atmospheric dust loading, “7(Y, Z), following Eqn. 9.  

9. We repeated step 1-8 for Õ = 1500 times, thereby producing a probability distribution for  ,-
.NIG
,0

(Y, Z, [, #), 15 

¿¬̂(Y, Z, [, #), and  “7(Y, Z) for each location and height. We report the mean, median, 1-sigma uncertainty 

range (68% of the distribution), and the 95% confidence interval (95% CI) of those distributions (Adebiyi et 

al., 2019a). 

 

The above procedure propagates various uncertainties in the estimation of each product. These include the 20 

measurement uncertainties and the uncertainties in model simulations. First, the measurement uncertainties are 

associated with the K17 globally-averaged size distribution and the globally-averaged extinction efficiency (Fig. 1), 

and these are propagated equally to every location. In addition, we estimated the correlated systematic error in the 

dust AOD (section 2.3.3), associated with the assimilated observational dataset, and this is also propagated. Second, 

the uncertainty in model simulations is associated with the spread of the model dust size distribution which is different 25 

for every location. This model uncertainty is, in turn, a result of many processes, such as dust emission, deposition, 

and transport processes in the models (Ginoux et al., 2001; Huneeus et al., 2011; Zhao et al., 2013). Our procedure 

constrains these model uncertainties (see supplementary Fig. S-1), while retaining the spatial distribution of the model 

ensemble. 

 30 

To quantify the size-resolved discrepancies in the DustCOMM size distribution, we quantify the bias with respect to 

independent measurements as follows (e.g. Lee et al., 2009): 

‚W
©Ww™ =

1
ov

≤ „‰√sP 	Â
ÊW,v
Á

ËW,v
Á È

qä

vrs

(10) 
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where m sums over the ov in-situ measurements of the dust size distribution available in the literature (see Table 2), 

ËW,v
Á  is the )Íℎ measurement of the mass fraction contained in measurement bin j, and ÊW,v

Á 	 is the corresponding 

)Íℎ DustCOMM dust mass fraction for the same diameter range as measured and collocated with the measurement 

– i.e. ÊW,v
Á = 	∫

,-.NIG
,0

5#0fg
0fh

. ‚W©Ww™ is the log-mean normalized bias and it represents the average number of orders of 

magnitude bias for each bin j.  5 

 

We also estimate the performance of DustCOMM mass extinction efficiency by quantifying the reduced chi-square 

(∞Î±) defined as the chi-squared per degree of freedom (e.g. Bevington et al., 1993):  

∞Î± =
1
ÏÎ
≤ Ì

ËvÎ −	¿¬̂,v
üvÎ

Ó

qä

vrs

(11) 

where ËvÎ  is the )Íℎ  measurement of the dust mass extinction efficiency with error defined as üvÎ , ¿¬̂,v  is the 10 

corresponding )Íℎ DustCOMM dust extinction efficiency (¿¬̂) collocated with the measurement, and	ÏÎ is the number 

of degrees of freedom given as ov − 1 . A value of ∞Î± ≈ 1  in Eqn. 11 indicates there is  agreement between 

DustCOMM and observations that is in accordance with the measurement errors, while ∞Î± ≫ 1  indicates that 

DustCOMM estimates do not fully capture the observations (e.g. Andrae et al., 2010). 

 15 

To facilitate comparison between DustCOMM and model evaluations, Eqns. 10 & 11 are also used to evaluate the 

performance and calculate the discrepancies between the measurements and the model ensemble. 

 

2.3.5 DustCOMM at other timescales 

 20 

While we describe above the procedure that constrains the annually-averaged dust size distribution, dust mass 

extinction efficiency and atmospheric dust loading, a similar procedure as highlighted above can also be used to 

constrain the three products at any other timescale, such as at daily, monthly, or seasonal timescale. For this study, we 

only consider the seasonally-averaged and annually-averaged products. 

 25 

First, to constrain the dust size distribution at any specific timescales, we correct an ensemble of model size 

distributions at that timescale in a way similar to Eqn. 2 above. However, unlike Eqn. 2 that uses the constrained 

globally-averaged size distribution, here we use the constrained annually-averaged dust size distribution over every 

location. That is: 

TUéV,WXY, Z, [, #V,W\ = T]éV,WXY, Z, [, #V,W\ ∙
∫

567Q=;
5# (Y, Z, [, #)0e,fg

0e,fh
5#

T]V,WXY, Z, [, #V,W\
(12) 30 

 

where ,-
.NIG
,0

  is  the DustCOMM annually-averaged dust size distribution at a given 3-D location, obtained from the 

procedure described in Section 2.3.1, while T]  and T]é are the annually-averaged and specific time-averaged model 



 18 

simulations of the dust size distribution respectively. Using an ensemble of model simulations, as we do above, the 

resulting corrected time-averaged dust size distributions, TUé, are also taken through the steps highlighted in section 

2.3.4 to calculate the mean and the uncertainty of the constrained dust size distribution (,-flãä
ã

,0
) at that particular 

timescale. 

 5 

Second, to constrain the dust mass extinction at any specific timescale (¿̂é¬), we combine the constrained dust size 

distribution at that timescale, ,-flãä
ã

,0
, with the globally-averaged extinction efficiency, ∆7:R=. This similarly follows Eqn. 

8 above. We note here that the uncertainty range of ∆7:R=  also accommodates the location-dependent and time-

dependent variability in the dust index of refraction and dust particle shape, consistent with previous studies (e.g. 

Dubovik et al., 2002). Hence, using ∆7:R= propagates the uncertainty in the measurements that determine the dust mass 10 

extinction efficiency estimate at that timescale. Finally, we constrain the dust loading at any specific timescale (“7é) 

using the constrained ¿̂é¬ and dust AOD at that same timescale, similarly following Eqn. 9.  

 

2.4 Description of measurements used for evaluation 

 15 

We use several types of published measurements to evaluate the dust size distribution and dust mass extinction 

efficiency from both DustCOMM and the model ensemble. We select 21 studies that measured dust properties – 14 

of these reported dust size distributions, and 11 of these reported dust mass extinction or scattering efficiencies (Table 

2). These measurements were taken both near and far from dust-dominated regions (Table 2 and supplementary Fig. 

S-3). While some measurements were taken close to (or over) some of the northern hemisphere deserts – such as the 20 

Sahara, Middle East, and Asian deserts - no measurements were taken close to the southern hemisphere deserts. 12 of 

the 21 studies obtained measurements near the Sahara Desert, while one measurement each was taken near the Middle 

East (Sde Boker, Israel), and Asian (Qinghai Province, China) deserts. Other measurements represent dust properties 

at different distances of transport away from the dust sources.  

 25 

Except for four measurements, most of the data are taken during airborne field campaigns that often occur over a wide 

geographical area, several altitude levels, and several days (Table 2). As such, studies often report measurements that 

represent the averages of the dust properties taken during the campaign. Details of the flight path, showing the 

locations where dust particles are encountered, are not always reported. To use these measurements, we therefore 

define a representative location and altitude for each measurement based on the area where the majority of dust was 30 

encountered. In addition, since the measurements often represent average of several days and sometimes multiple 

months, we also compare them against seasonal averages of the DustCOMM and model ensemble estimates.  

 

Below, we give a broad overview of the measurements of the dust size distribution and mass extinction efficiency, 

and further information on each study, including the instruments used, can be found in the supplementary document. 35 
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2.4.1 Dust size distribution measurements 

 

Dust size distribution measurements are taken using a variety of instruments with different sizing methodologies (e.g. 

Reid et al., 2003). These instruments generally fall within the categories of sample collectors (e.g. D’Almeida, 1987; 

McConnell et al., 2008), cascade impactors (e.g. Chou et al., 2008; Kandler et al., 2009) and aerodynamic particle 5 

sizers (e.g. Otto et al., 2007), and optical particle counters or spectrometers (e.g. Chou et al., 2008; Clarke et al., 2004; 

Otto et al., 2007). The first category of instruments, sample collectors, are usually installed behind filters or thermal 

denuders to remove non-dust particles. The aerosol samples are then analysed using electron or light microscopy 

techniques, where they are counted and sized either manually or using an automated software. This type of 

measurement yields dust size distribution with respect to geometric diameters. For the second category of instruments, 10 

cascade impactors and particle sizers, aerosol particles are usually accelerated through a jet outlet, and sometimes 

collected on a substrate. Using these instruments, the aerosols are sized based on the mass-to-drag characteristics of 

the particles. Dust particle sizes measured using these types of instruments are associated with the aerodynamic 

diameter. Finally, the optical particle counters generally determine particle sizes in optical diameters based on the 

amount of light they scatter. Another category is the imaging probe whereby the particle image is detected by linear 15 

photodiode array providing a two-dimensional	projection	of	the	particle (Baumgardner et al., 2017; Ryder et al., 

2018). For many of the studies we use here, these instruments are sometimes combined to verify the accuracy of the 

measurements (e.g. Ryder et al., 2013a). For all dust size distribution measurements, the studies that used aerodynamic 

or optical sizing instruments eventually report the measured size distribution in geometric diameters.  

 20 

An important consideration is the elevation at which the dust size distributions are measured. With the exception of 

two studies (D’Almeida, 1987; Kandler et al., 2011) that took measurements at ground stations, most measurements 

were performed solely aboard aircrafts with in-cabin or wing-mounted instruments. Ground stations were equipped 

with stationary instruments to collect aerosol samples or stationary optical particle counters to measure size 

distributions directly. For aircraft measurements, size distributions are often measured during flight segments at 25 

constant altitude – also called horizontal legs. For the dust size distributions, our criteria for selection of studies are as 

follows: (1) the measured size range of the data should extend into the coarse dust (D > 5 um) size range; (2) the study 

should report the original in-situ measurements, instead of (lognormal) fits to the actual measurements; and (3) each 

study’s measurements should be taken with commonly-used instrumentation in order to ensure some consistency with 

measurements taken by other studies. 30 

 

Regardless of the instrument used, most dust size distribution measurements are subject to uncertainties associated 

with measurement type or presence of other aerosol species, such as biomass burning aerosols. The contamination by 

other aerosol species is common for fine-mode dust particles, especially dust particles less than ~0.5µm (e.g. Dubovik 

et al., 2000; Clarke et al., 2004), since to the instruments these aerosols are indistinguishable from dust particles of 35 

the same size. This causes a high bias in the fine-mode of measured dust size distributions (e.g. Clarke et al., 2004). 

Another important measurement error arises from assumptions made about the non-sphericity of dust particles. For 
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example, during the microscopy analysis, particle diameters are usually determined as the volume-equivalent 

geometric diameters based on 2-dimensional images (Chou et al., 2008). Because of the asphericity of dust aerosols, 

this could introduce biases (e.g. Huang et al, in prep.; Okada et al., 2001). Since dust particles have a small height-to-

width ratio (Okada et al., 2001), the resulting size distribution may overestimate dust particle diameters. In the case 

of cascade impactors and particle sizers, unusual dust particle shapes and the possibility of particle bouncing off the 5 

substrate may lead to significant bias, especially for coarse-mode particles. For in-cabin measurements, studies have 

shown that the loss rate of coarse dust particles can be substantial due to the aircraft’s instrument inlet, therefore 

leading to lower sampling rate and size bias (e.g. von der Weiden et al., 2009). For dust measurements that used optical 

particle counters, irregularly-shaped dust particles are often assumed to be spherical in order to convert them to 

volume-equivalent geometric diameters, but light scattering between spherical and non-spherical particles are 10 

different. In addition, optical particle counters also make assumptions about the refractive index to derive the dust size 

distribution, and are affected by the non-monotonic increase in the intensity of scattered light with particle size (e.g. 

Weinzierl et al., 2011; Ryder et al., 2018). Unlike the optical particle counters that require assumption regarding dust 

refractive index and shape to convert scattered light intensity to particle size, the imaging probes are not subject to 

these uncertainties (Baumgardner et al., 2017; Ryder et al., 2018). Nevertheless, these assumptions often lead to biases, 15 

that many studies try to account for to various degrees (e.g. Ryder et al., 2013a, 2013b, 2018).  

 

2.4.2 Mass extinction efficiency measurements 

 

In the literature, the term dust mass extinction efficiency (MEE) is sometimes used interchangeably with the mass 20 

scattering efficiency (MSE; e.g. Hand & Malm, 2007). This is because, for typical solar wavelength at 550 nm, dust 

particles scatter more radiation than they absorb for D ≤ 10 µm. Despite the strong scattering by these particles, larger 

particles (D ≥ 10 µm) often exhibit substantial absorption relative to scattering in the visible wavelength (e.g. Ryder 

et al., 2018). In order to put all the measurements in the same equal footing, we convert the reported dust MSE in 

some of these studies to dust MEE, by using measured scattering albedo value of 0.95 ± 0.03 (e.g. Haywood, 2003; 25 

Clarke et al., 2004; Ryder et al., 2018).  

 

Mass extinction efficiencies (MEE) that are reported in the literature are generally derived using two methods: 

regression and theoretical methods (e.g. Hand & Malm, 2007). The regression method calculates the dust MEE as the 

slope between the dust extinction coefficient (m-1) and the dust mass concentration (g m-3). In this case, the dust 30 

samples are typically collected using filters, while aerosol extinction is measured using nephelometers. The difficulty, 

however, is that measured total aerosol extinction from the nephelometer may be influenced by several aerosol species 

other than dust particles. Some studies ignore the impact of other aerosol species, and derive the dust MEE using the 

total aerosol extinction and the collected dust mass concentration (e.g. Li et al., 1996). Others take advantage of the 

linear relationship between the aerosol extinction and mass concentrations in order to separate the column MEE into 35 

constituents that correspond to each aerosol species, using a multivariate linear regression method (e.g. Andreae et al., 

2002; Maring et al., 2003). Such calculations therefore require that all the aerosol species contributing to the extinction 
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are included. With this in mind, the regression-derived MEE is therefore subject to several systematic and random 

errors, including instrument uncertainties (Hand and Malm, 2007). 

 

The theoretical method calculates the dust MEE using the measured size distributions of dust mass or number 

concentration (Seinfeld & Pandis, 2016). This may take the form of calculating the dust MEE directly using the dust 5 

size distribution and the estimate of single-particle extinction efficiency, or indirectly by first calculating the size-

resolved dust extinction coefficient, using dust size distribution, and then combining the result with dust mass 

concentration. In either case, the dust density, shape and index of refraction are needed. While assumptions of dust 

density and index of refraction are typically based on previously reported measurements, dust shapes are generally 

assumed to be spherical, which is contrary to observations (e.g., Okada et al., 2001; Kandler et al., 2007). This is a 10 

major disadvantage that may result in an underestimation of the derived dust extinction efficiency (e.g. Kok et al., 

2017). Another source of error is associated with the instrument used to measure the aerosol size distribution, which 

may assume certain mixing properties of the observed aerosols. For mobility measurements (differential mobility 

analyzer, DMA), optical measurements (optical particle counter, OPC) or aerodynamic measurements (aerodynamic 

particle sizer, APS), aerosols are often assumed to be internally mixed (e.g. Quinn et al., 2002; Clarke et al., 2004).  15 

In contrast, for an impactor, aerosols are often assumed to be externally mixed (e.g. Chiapello et al., 1999; Osborne et 

al., 2008).  

 

Despite the differences between both methods used to derive dust MEE from observed quantities, previous studies 

have highlighted that they both produce similar values within measurement uncertainties (e.g. Maring et al., 2000; 20 

Quinn et al., 2004). In addition, for measurements where only the mean dust MEE/MSEs are reported, but not the 

uncertainty estimates, we estimate here in this study what the measured uncertainty estimate could be by assuming 

that its relative uncertainty (that is the ratio of the presumed uncertainty to the reported mean) is proportional to the 

mean relative uncertainty that is calculated from other measurements. While this estimated uncertainty may likely not 

be representative of the specific field campaign to which the measurement was taken, they are likely representative of 25 

the seasonal values over the region.  

  

3 Results 

 

In this section, we present the DustCOMM products obtained using the methodology and data described above. We 30 

first present the dust particle size distribution (PSD; section 3.1) and then the dust mass extinction efficiency (MEE; 

section 3.2). In each case, we evaluate the DustCOMM and the model ensemble products against available in-situ 

measurements. We show that DustCOMM products generally reproduce observations better than model ensemble 

estimates. We then compare the spatial variability of the DustCOMM products against the model ensemble. In section 

3.3, we compare the atmospheric dust loading obtained from both DustCOMM and the model ensemble, and we 35 

examine the spatial distribution of the uncertainty in all DustCOMM products in section 3.4. 
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3.1 Dust Size Distribution  

3.1.1 Evaluation of DustCOMM against measurements 

 

We evaluate DustCOMM and the model ensemble PSD against available in-situ measurements taken during field 

campaigns (Figs. 2 & 3). We compare these location-based measurements against season-averaged DustCOMM and 5 

model ensemble estimates. The reason for using the seasonal averages is justified in section 2.4 above. An additional 

justification for the comparison between the individual measurements and the season-averaged DustCOMM and 

model ensemble estimates is that the variability of the normalized dust PSD within each season is relatively small,  

especially for dust with # ≤ 10	µ) (e.g. McConnell et al., 2008; Mahowald et al., 2014). Furthermore, most of these 

measurements are campaign averages often over a variety of cases that could be representative of the season-averaged 10 

size distribution.  

 

Model simulations of dust PSD generally show substantial errors when compared against measurements. In each of 

the 12 studies used in Fig. 2, the model ensemble overestimates the observed fine-mode particles (defined here as # ≤

2.5µ) ) and underestimates the coarse-mode particles (defined here as # ≥ 5	µ) ). In some of the cases, the 15 

overestimation extends above # = 2.5µ) and the underestimation below # = 5µ). Nevertheless, these differences 

are apparent in all the comparisons, and consistent with previous studies indicating more coarse-mode dust particles 

are in the atmosphere than models account for (e.g. van der Does et al., 2016, 2018; Kok et al., 2017; Ryder et al., 

2018).  

 20 

In contrast, the DustCOMM dust PSD shows overall better agreement against measurement than the model ensemble 

(Fig. 2).  This improved agreement includes a substantial reduction of the underestimation of coarse-mode dust, as 

well as a reduction of the overestimation of some fine-mode particle sizes. Although DustCOMM better reproduces 

the measurements for # ≥ 0.5µ), it shows poorer agreement for # ≤ 0.5	µ) (e.g. Fig. 2e, h, i, j), underestimating 

the measurements by about one to two orders of magnitude. For example, during DARPO (Fig. 2e; Wagner et al., 25 

2009) and BACEX (Fig. 2h; Jung  et al., 2013), the differences between DustCOMM PSD and the measurements are 

about two orders of magnitude.  The # ≤ 0.5	µ) size range is also the size range in which measurements of dust PSD 

are potentially contaminated by the presence of other aerosol species (see section 2.3.1 and section 4.1). In addition 

to the disagreement for # ≤ 0.5	µ), there is also some disagreement for # ≥ 10	µ) (e.g. Fig. 2d, e, h), although for 

fewer cases. Overall, the DustCOMM dust PSDs significantly better represent the measurements in the 0.5 ≤ #	 ≤30 

20	µ) size range than the model ensemble. 

 

DustCOMM also shows better agreement than the model ensemble against measurements of the dust PSD as a function 

of altitude (Fig. 3). We highlight here measurements taken from three campaigns: (1) the ACE-2 campaign (June/July, 

1997) in the vicinity of Canary Islands (Otto et al., 2007); (2) the Fennec project (June 2011) between the Canary 35 

Islands and Mauritania/Mali (Ryder et al., 2013a); and (3) the AER-D campaign in August 2015 near Cape Verde 

Island (Ryder et al., 2018). All three cases show that a significant fraction of coarse-mode dust particles, including 
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with # ≥ 10	µ), are transported off the coast of North Africa. We compare these measurements at selected altitude 

of 2500 m  (2700 m for ACE-2), 4000 m, 5500 m, and 6000 m (7000 m for ACE-2). Similar to Fig. 2 above, the 

DustCOMM dust PSD agrees better with the measurements than the model ensemble for these measurements at similar 

2-D location but at different altitudes. For dust particles with # ≤ 0.5	µ), the DustCOMM size distributions also 

differ from the measurements by about an order of magnitude (similar to Fig. 2) for altitude at 2500 m. However, this 5 

difference increases to more than two orders of magnitude above ~4000 m altitude.  

 

In summary, the overall differences between the in-situ measurements and DustCOMM are significantly smaller than 

the differences between the measurements and the model ensemble, especially for # ≥ 0.5	µ). To quantify this, we 

report the log-mean bias in each bin following Eqn. 10 and using all the measurements shown in Fig. 2 & 3. 10 

DustCOMM shows an overall reduction in the bias relative to the model ensemble, except for dust particles with # ≤

0.5	µ) (Fig. 4). For # ≤ 0.5	µ), model shows an average (95% CI) positive log-mean bias of 0.26 (-0.08 — +0.6), 

while DustCOMM shows an average negative log-mean bias of -0.92 (-1.18 — -0.73). In contrast, DustCOMM shows 

a remarkable reduction in the average log-mean bias in the 0.5 ≤ #	 ≤ 10	µ) size range; for instance, the bias for the 

5 – 10 µ) bin is ~90% less than it is for the model ensemble. DustCOMM also shows a substantially reduced bias in 15 

the 10 ≤ #	 ≤ 20	µ)  size range, although the bias here remains substantially negative, indicating a persistent 

underestimation of these coarse particles. On average, DustCOMM reduces the log-mean bias for dust particles with 

# ≥ 0.5	µ) by about 46%, relative to the model ensemble. 

 

3.1.2 Global comparison between DustCOMM and the model ensemble 20 

 

Considering that the DustCOMM dust PSD agrees better with in-situ measurements than the model ensemble, we now 

compare the differences between DustCOMM and model ensemble PSDs. Specifically, we first compare the 

differences in the shape of the globally-averaged dust size distribution between DustCOMM and the model ensemble 

(section 3.1.2.1). Second, we examine the changes in the spatial variability of the DustCOMM and model dust mass 25 

fraction as a function of particle size range (section 3.1.2.2). 

 

3.1.2.1 Differences in dust size distribution 

 

As we already concluded based on in-situ measurements, climate models globally overestimate fine-mode dust 30 

particles (# ≤ 2.5	µ)) and under-estimate coarse-mode dust particles (# ≥ 5	µ)), relative to globally-averaged 

DustCOMM dust PSD (compare black and coloured lines in Fig. 5a). On average, simulations in our model ensemble 

overestimate the dust mass fraction of the fine mode by ~14%, and underestimate that of the coarse mode by ~15%. 

The degree of this deviation from DustCOMM depends on the model, and can be as much as 50% in the fine mode or 

37% in the coarse mode. 35 
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While the globally-averaged dust PSDs clearly show marked differences, it is also important to quantitatively examine 

the variability of the dust PSD for all locations. The variability of dust PSDs in the atmosphere is influenced by dust 

emission, transport, and deposition processes, and it can be assessed by considering metrics such as the volume median 

diameter (e.g. Maring et al., 2003; Formenti et al., 2011; Mahowald et al., 2014). Thus, the probability distributions 

of the volume median diameters (VMD) for the model simulations are generally biased towards smaller VMD values, 5 

with different peak diameters for each model. WRFChem and IMPACT show the lowest VMD at ~1.9 µm, and 

ARPEGE-Climat shows the highest VMD at ~5.5µm (Fig. 5a). In contrast, the DustCOMM VMD peaks around 5 

µm. The probability distribution also shows that that the DustCOMM VMD lies between approximately 2.5 µm and 

6.5 µm at most heights and locations (Fig. 5b). This range is consistent with the range of measured VMD (3-6 µm) 

for coarse-mode dust particles generally reported in the literature and compiled by Reid et al. (2003; see their Table 10 

1). It also falls within the range of values measured at near-source regions and farther downwind. For instance, the 

VMD calculated from dust particle size distributions measured at Cape Verde, off the coast of North Africa (Ryder et 

al., 2018) is about 5.5µm. Farther downstream where dust particles are likely to deposit after long-range transport, the 

VMD values near Puerto Rico is approximately 4µm (Maring et al, 2003). It is noteworthy however, that some studies 

(e.g. Carlson & Caverly, 1977; Weinzierl et al., 2009) have reported measured VMD values that exceed 13 µm, but 15 

these studies often include giant-mode dust particles with # ≥ 20µ), whereas we limited our analysis to dust with 

# ≤ 20µ) (see Section 2.3.1.1). Overall, DustCOMM shows better consistency with observations of VMD than 

model simulations. 

 

3.1.2.2 Changes in spatial variability of dust mass fraction 20 

 

Although coarse-mode particles dominate the dust mass fraction near source regions and fine-mode particles dominate 

the dust mass fraction in the far remote regions, there are considerable changes in the spatial variability of the dust 

mass fraction between DustCOMM and the model ensemble (left and middle panels of Fig. 6). As highlighted above 

in section 3.1.2.1, there is a general decrease of DustCOMM dust mass fraction for particles between 0.2 − 2.5µ) 25 

and 2.5 − 5µ), relative to the model ensemble (right panel of Fig. 6). In contrast, there is an overall increase of 

DustCOMM dust mass fraction for particles between 5 − 10µ) and 10−20µ). These changes cause DustCOMM to 

produce generally better agreement against in-situ measurements than the model ensemble, as shown in section 3.1.1 

above. Overall, the most significant changes in DustCOMM dust mass fraction, relative to the model ensembles, are 

near dust-dominated regions, resulting in a decrease of up to 26% and an increase of up to 29% for dust particles 30 

between 2.5 − 5µ) and 10 − 20µ) respectively.  

 

These changes in the dust mass fraction gradually decrease away from the dust-dominated regions. This is evident, 

for example, over the North Atlantic basin, where dust from the Sahara Desert is transported to the Caribbean and 

South America. Models generally simulate fewer large dust particles (# ≥ 5µ)), and thus transport only a small 35 

fraction to the Caribbean. But observational evidence shown earlier in Figs. 2h & l indicates that dust in Barbados 

includes a significant fraction of coarse dust. Thus, the east-west gradient and the overall increase of the DustCOMM 
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dust mass fraction over the North Atlantic helps resolve the underestimation of long-range transported coarse particles, 

such as near Barbados (Fig. 6; e.g. Weinzierl et al., 2017). 

 

The vertical distribution of the DustCOMM dust mass fraction shows differences with the model ensemble that are 

consistent with the globally-averaged differences (Fig. 7) – that is, DustCOMM dust mass fractions are lower than for 5 

the model ensemble for particles between 0.2 − 2.5µ) and 2.5 − 5µ), and higher for particles between 5 − 10µ) 

and 10 − 20µ). It is noteworthy here that vertical changes in the dust PSD in DustCOMM are based on model 

simulations, causing a similarity in the shape of the vertical profile of the dust mass fraction between DustCOMM and 

the model ensemble. Finally, similar changes in the spatial variability of the annually-averaged dust mass fraction are 

apparent in the seasonally-averaged values. 10 

 

3.2 Dust Mass Extinction Efficiency 

3.2.1 Evaluation of DustCOMM against measurements 

 

We evaluate the dust mass extinction efficiency (MEE – m2g-1) of DustCOMM and the model ensemble against 15 

measurement (Fig. 8). These measurements span from those taken near dust source regions such as the Saharan, 

Middle East and Asian deserts, to those taken farther downwind from source regions (Table 2). Higher values of dust 

MEE are expected where fine-mode dust particles dominate, because smaller dust particles scatter light more 

efficiently per unit mass at visible wavelengths. In contrast, dust MEE decreases as the coarse-mode fraction increases. 

Thus, observed dust MEE values generally range between ~0.3-0.8 m2g-1 at approximately 550 nm. 20 

 

DustCOMM shows better agreement with measurements of dust MEE than the model ensemble (Fig. 8). DustCOMM 

dust MEE estimates are within the measurement uncertainty range for most of the 11 studies used here. Notable 

exceptions are the comparison at Sde Boker, Israel (Andreae et al., 2002) and Qinghai Province, China (Li et al., 

2000), where both the DustCOMM and the model ensemble underestimate the measured MEE. Nevertheless, the 25 

DustCOMM estimates better reproduce the lower values of dust MEE near dust sources, and the higher values farther 

downstream. For example, lower dust MEE values near the Sahara Desert, between Niamey and the Canary Islands 

(generally below 0.6 m2g-1), and higher values farther downstream, such as over Barbados, are better reproduced by 

DustCOMM. DustCOMM dust MEE also compares well against measurements at the same location but for different 

seasons. An example is the measurements over Cape Verde, off the coast of North Africa (Haywood et al., 2003; 30 

Ryder et al., 2018), taken in September 2000 and August 2015. For both cases, DustCOMM estimates compare better 

with the observed dust MEE, while the model ensemble over-estimates the values in both cases. 

  

DustCOMM also reproduces the observed dust MEE values with strong spatial gradient, measured during the same 

campaign (INDOEX) over the Arabian Sea and Indian Ocean (Quinn et al., 2002). Dust particles emitted from Middle 35 

East deserts can get transported over the Arabia sea, and are deposited over the Indian Ocean where strong 

precipitation occurs year-round (e.g. Kulshrestha et al., 1996). Since dust MEE increases with distance from source 
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regions due to deposition of larger dust particles, the measured dust MEE values increase from 0.5 m2g-1 measured in 

the Arabian Sea to 0.75 m2g-1 in the Indian Ocean, south of the equator. DustCOMM captures much of this gradient, 

and is in better quantitative agreement than the model ensemble estimate (Fig. 8).  

 

DustCOMM also shows better agreement than the model ensemble against the observed dust MEE averaged over all 5 

measurements (see the last column of Fig. 8). DustCOMM shows a very small difference with the mean of the 

measurement estimates [0.007 m2g-1 (95% CI is -0.04—0.08)], whereas the model ensemble mean (95% CI) 

overestimates the measurements by 0.12 (-0.17 – 0.4) m2g-1 – that is about 94% reduction in the mean bias. We further 

assess DustCOMM performance by calculating the reduced chi-square (∞±; Eqn. 11); a value of ∞± > 1 highlights the 

degree that a model does not fit the observations within the uncertainty range (e.g. Andrae et al., 2010). DustCOMM 10 

shows a ∞± value of 1.19 , in comparison to the model ensemble with  ∞± value of 8.70 (Fig. 8), thereby showing a 

substantial improvement. 

 

3.2.2 Global comparison between DustCOMM and model ensemble 
 15 

After showing that DustCOMM better reproduces measurements of dust MEE than the model ensemble, we now 

compare the spatial variability of the DustCOMM and model ensemble dust MEE. To do so, we estimate the column-

integrated dust MEE for DustCOMM and model ensembles over each location (Fig. 9 a & b). Both DustCOMM and 

model estimates show smaller values of dust MEE over dust-dominated regions and higher values farther downwind 

– like over the Inter Tropical Convergence Zone (ITCZ), the eastern Pacific Ocean and the polar regions. Although 20 

DustCOMM and model ensemble estimates are thus spatially similar, important differences exist. Near dust-

dominated regions, DustCOMM dust MEE values are lower than model ensembles, but farther downstream, 

DustCOMM values are higher than model ensembles. This regional difference in dust MEE values corresponds to 

similar difference in dust mass fraction, with fractional increase in coarse-mode dust over dust-dominated regions than 

farther downstream (compare Fig. 9 & 6). In addition, there is also a gradual east-to-west changes in the dust MEE 25 

values as coarser dust particles are deposited away from dust sources, consistent with similar changes in dust mass 

fraction shown earlier in Fig. 6. The globally-averaged DustCOMM dust MEE values are lower than predicted by the 

model ensemble. The global mean of dust MEE for DustCOMM and model ensembles are 0.68 (Min-Max: 0.22— 

1.1) m2 g-1 and 0.95 (Min-Max: 0.30— 1.98) m2 g-1 respectively. 

 30 

3.3 Global comparison of atmospheric dust load between DustCOMM and models 

 

After obtaining the DustCOMM dust MEE as described in the previous section, we combine this with the reanalysis-

derived dust AOD (Eqn. 9; see also section 2.3.3) to obtain the atmospheric dust loading. We find that the DustCOMM 

dust column loading is generally larger than the model ensemble estimate (Fig. 10a & b). DustCOMM shows 35 

substantially larger dust column loading than the model ensemble over desert regions, such as the Middle East, and 

Asian deserts. The relative increase of dust load in DustCOMM over the Asian desert is more than twice the increases 
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over the Middle East desert. DustCOMM also shows larger dust column loading over most parts of the North African 

desert, except some parts that includes the north-western section and the coastal regions which show smaller dust 

column loading than the model ensemble. Although reanalysis-derived mean dust AOD over North Africa is 

substantially lower than the model ensemble, it is within the uncertainty estimates, which is higher over this region 

(see supplementary Fig. S-4; see also Ridley et al., 2016). In addition, DustCOMM estimates over the Australian 5 

deserts show a lower dust column loading than the model ensemble, similarly corresponding to lower reanalysis-

derived dust AOD (Fig. 10c & supplementary Fig. S-4). Overall, globally-averaged DustCOMM dust column loading 

is about 46% higher than the model ensemble. 

 

3.4 Spatial distribution of DustCOMM relative uncertainty 10 

 

We examine here the spatial distribution of the DustCOMM relative uncertainty– that is, the uncertainty characterizing 

68% of the distribution of each variable over each location divided by the mean value of that variable at that location. 

We do this for the dust mass fraction for the particle bins shown in Fig. 6 & 7, the dust MEE, and the dust load (Fig. 

11). 15 

 

The relative uncertainties in the DustCOMM fine-mode fraction (# = 0.2 − 2.5µ)) are higher mostly near emission 

regions (Fig. 11a), while the relative uncertainties in the coarse-mode fractions are higher over remote regions, 

especially for # = 10 − 20µ) (Fig. 11d). These uncertainties are, in part, directly associated with the uncertainties 

in the measurement constraints. The globally-averaged constrained dust size distribution (Eqn. 1) has a higher relative 20 

uncertainty for the # ≤ 	1	µ) and # ≥ 	10	µ) diameter range than for the 1 ≤ # ≤ 10	µ) diameter range (see Fig. 

2 in Kok et al., 2017), and we propagate these uncertainties over every location. In addition, the spatial distribution 

for the relative uncertainties in the dust mass fraction is similar to that of the model ensembles (supplementary Fig. S-

5), which is also propagated into the DustCOMM product.  

 25 

The relative uncertainties in DustCOMM dust MEE are mostly higher over dust-dominated regions (Fig. 11e). The 

dust MEE is influenced by the uncertainty in the constrained globally-averaged extinction efficiency, which in-turn is 

partially due to uncertainties in the in-situ emission measurements of index of refraction and dust particle shapes (see 

Fig. 1b in Kok et al., 2017), all of which are propagated into the DustCOMM dust MEE. In addition, the relative 

uncertainties in the dust MEE are also affected by the uncertainty in the dust size distribution. Thus, the spatial 30 

distribution of dust MEE relative uncertainty is particularly informed by the uncertainties in the fine-mode and coarse-

mode dust particles (compare Fig. 11a & d with 11e). For the most part, uncertainties in the fine-mode dust fraction 

appears to dominate the uncertainties in dust MEE, more than the uncertainties in the coarse-mode dust fractions. 

 

The relative uncertainties in the DustCOMM dust column loading are mostly higher over remote regions, where the 35 

mean dust load is small (Fig. 11f). Though the dust column loading is influenced by the uncertainties in dust MEE, 
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the spatial distribution of the relative uncertainties in dust load is largely informed by the uncertainties in the reanalysis 

dust AOD (see supplementary Fig. S-4).  

 

4 Discussion 
 5 

We presented the DustCOMM products in the previous section, where we showed that both the dust particle size 

distribution (PSD) and the dust mass extinction efficiency (MEE) are reproduced more accurately than by an ensemble 

of model simulations. Despite the overall agreement with observations, there are some disagreements highlighting 

potential limitations of our methodology. In this section, we discuss these disagreements between DustCOMM and 

measurements and provide possible insights into these discrepancies (section 4.1). We also discuss the impact of dust 10 

sizes and asphericity on DustCOMM dust mass extinction efficiency (section 4.2), and we highlight the limitations in 

using modelling constraints as part of DustCOMM estimates (section 4.3). We end by highlighting how our 

constrained DustCOMM products can be used by the research community to potentially improve estimates of dust 

impacts on the Earth system (section 4.4).  

 15 

4.1 Cause of discrepancy between DustCOMM and size distribution measurements  

 

The evaluation of the DustCOMM PSD shows an underestimation of dust with # ≤ 0.5µ) and # ≥ 10µ) (Figs. 2, 

3 & 4). This is in contrast to the ensemble of model simulations overestimating the dust mass fractions for # ≤ 0.5µ), 

and underestimating the dust mass fraction substantially more than DustCOMM for # ≥ 10µ).  Although the 20 

comparison between date-specific individual measurements and season-averaged DustCOMM dust PSD is expected 

to induce errors, this difference cannot explain the apparently systematic difference between measurements and the 

DustCOMM dust PSD for both # ≤ 0.5µ)  and # ≥ 10µ)  (Fig. 4). We provide here possible reasons for this 

disagreement between DustCOMM and observations. 

 25 

First, DustCOMM’s underestimation of dust with # ≤ 0.5µ) may be caused by contamination of the measured size 

distributions by other aerosol species for # ≤ 0.5µ). Studies have shown that a substantial fraction of aerosols with 

# ≤ 0.5µ) are not mineral dust, even in dust-dominated regions (Chou et al., 2008; Kandler et al., 2009; Weinzierl 

et al., 2009). For example, during the Saharan Mineral Dust Experiment (SAMUM) over southern Morocco, Kandler 

et al. (2009) showed that more than 50% of the measured particles with # ≤ 0.5µ) are ammonium sulphates or 30 

mixture of sulphate and dust. Even when strict measurement techniques are used to separate other non-mixing aerosol 

components, the aerosol mixing state for # ≤ 0.5µ) often leads to outer coating of available dust particles, thus 

leading to a higher particle volume that overestimates the true dust size (Weinzierl et al., 2009). In addition, campaign 

logistics often require that some measurements of dust properties are taken close to major cities, where contaminations 

by other aerosol species, such as biomass-burning aerosols or urban pollutions are possible (e.g. McConnell et al., 35 

2008; Wagner et al., 2009). For example, Clarke et al. (2004) highlighted that the presence of biomass-burning 

aerosols (e.g. soot) led to a variability of about 2 orders of magnitude for measured size distributions with diameter 
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less than # ≤ 0.6µ)  during the ACE-Asia campaign. This variability is consistent with the average difference 

between our estimates and the observations for # ≤ 0.5µ). After separating out the contamination of the soot-mode 

from the dust size distribution, their resulting dust PSD generally agrees with our estimate within the uncertainty range 

(Fig. 2f). Thus, the large variability of the measured size distribution is indicative of the potential problems with the 

representation of dust particles with # ≤ 0.5µ).  5 

 

Second, the constraint on the globally-averaged dust size distribution could also underestimate the contribution from 

dust with # ≤ 0.5µ). A key input to this constraint is the emitted dust size distribution, but there is a dearth of 

measurements of the mass fraction of emitted dust with # ≤ 0.5µ) , leading to uncertainty in constraining the 

globally-averaged emitted dust size distribution with # ≤ 0.5µ) (Kok et al, 2017). Moreover, the measurements of 10 

emitted dust size distribution with # ≤ 0.5µ) that do exist (e.g. Fratini et al., 2007; Sow et al., 2009; see Fig. 1c in 

Kok et al., 2017) indeed show a larger dust mass fraction than represented in the constraint on the globally-averaged 

emitted dust size distribution. Therefore, more measurements of the size distribution of emitted dust particles 

extending to very fine sizes are needed.  

 15 

Third, the underestimation of dust with # ≥ 10	µ) by both DustCOMM and the model ensemble might be caused by 

biases in both global model simulations and the constraints on the global dust size distribution used by DustCOMM. 

Similar to # ≤ 0.5µ), the experimental constraint on the emitted dust size distribution with # ≥ 10	µ) also has a 

large uncertainty because of limited available measurements (Kok 2011). In addition, since spatial and temporal 

variability of large dust particles (# ≥ 10µ) ) strongly depend on the model simulation of dust emission and 20 

deposition processes, uncertainties in these processes will influence the constraints on DustCOMM dust size 

distribution. For example, if the giant mineral dust particles are transported far away from the source regions as 

suggested by observations (e.g., van der Does et al., 2018), the lack of this mechanism would result in a negative bias 

of the simulated dust atmospheric lifetime (e.g. Huneeus et al., 2011). And since modelling constraints of globally-

averaged dust lifetime are used to constrain the globally-averaged size distribution (Eqn. 1), such systematic negative 25 

bias may have contributed to the underestimation of dust particles with # ≥ 10µ). Although our methodology partly 

constrains dust deposition globally, it does not constrain regional variability in dust deposition, and we expect that 

such uncertainties may increase as a function of distance away from dust-dominated regions. We note here that 

regional observational constraints on dust lifetime are currently not available, and stronger modelling constraints that 

may account for the underestimation of coarse dust particles in the atmosphere are a subject for future work. 30 

 

4.2 Impacts of dust sizes and asphericity on DustCOMM dust mass extinction efficiency 

The dust MEE is partially determined by the dust size distribution (Eqn. 8). Despite the good agreement between 

DustCOMM and the measurements of dust MEE (Fig. 8), the size discrepancies in the dust size distribution for 

particles with # ≤ 0.5	µ) and # ≥ 10	µ)  (Figs. 2, 3 & 4) affect the estimation of dust MEE. Dust with # ≤ 0.5	µ) 35 

has a large single-particle MEE, whereas dust with # ≥ 10	µ) has a small single particle MEE (see supplementary 
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Fig. S-6). Consequently, errors due to the possible overestimation of both size fractions at least partially cancel each 

other.   

 

In addition to the impact of dust sizes, dust asphericity also has a substantial impact on the dust MEE. The DustCOMM 

constraint on dust MEE leverages measurements of dust shape to represent dust particles as an ensemble of tri-axial 5 

ellipsoids (Meng et al., 2010; Kok et al., 2017). In contrast, most models use Mie theory, which approximates dust as 

spherical particles. Thus, the difference between single-particle dust MEE used in DustCOMM and calculated using 

Mie theory shows the impact of dust asphericity is substantial for both small and lager dust particles, increasing 

extinction for particles with # ≥ 1µ) (supplementary Fig. S-6). This implies that typical global model simulations, 

which contain too much fine-mode dust particles and approximate dust as spherical, the overestimation of the dust 10 

extinction due to the fine size bias could (partially) cancel out the underestimation of the dust extinction due to the 

treatment as dust spherical shapes, leading to nonetheless reasonable agreement with measured dust MEE. However, 

for DustCOMM, both the size bias and dust asphericity are accounted for, thereby producing better agreement with 

measurements (Fig. 8). In addition, accounting for dust asphericity could allow dust particles to stay longer in the 

atmosphere because asphericity reduces dust settling speed (Ginoux, 2003), which may in turn lead to a more accurate 15 

estimation of dust deposition mass fluxes onto land and ocean ecosystems (e.g. van der Does et al., 2016; 2018). 

 

4.3 Limitations in using modelling constraints 

 

We used modelling constraints in DustCOMM where observational constraints were either not available or 20 

insufficient. For example, modelling constraints are used for the regional differences in dust size distribution and 

extinction efficiency because the measurements to constrain these parameters on a regional basis across the different 

dust-source regions are currently insufficient. To further reduce the uncertainty associated with using modelling 

constraints, we used an ensemble of six model simulations. In addition to the uncertainties associated with model 

simulations of dust emission and deposition processes that may influence the constraints on dust size distributions as 25 

highlighted in section 4.1, there are other limitations in the modelling constraints that can influence DustCOMM 

estimates.  

 

First, one such limitation is the uncertainty in the dust mass spatial distribution of the model ensemble, which directly 

determines the spatial distribution of dust mass for DustCOMM estimates. Variability in dust emission rates influence 30 

the distribution of simulated size-resolved atmospheric dust loading, and consequently the 3-D dust mass fractions. In 

addition, ensemble model simulations of dust emission and transport are driven by different meteorological datasets 

(Table 1), which represent the actual historical meteorology with various degrees of accuracy (e.g. Evan, 2018). Dust 

transport is also influenced by model resolution and sub-grid parameterizations of wind and turbulence, which differ 

between models (e.g., Zender et al., 2003; Cakmur et al., 2004). Although averaging over multiple models and over 35 

long time periods reduces random errors, systematic errors that affect different models similarly would affect the 

model ensemble (e.g. Ridley et al., 2012), and would impact the spatial distribution of dust mass (e.g. Johnson et al. 
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2012; Ridley et al., 2016). In addition, uncertainties in the vertical distribution of size-resolved dust mass fractions 

directly affect DustCOMM dust size distributions. Since we use the globally-averaged size-resolved extinction 

efficiency to constrain the dust MEE over every location (Eqn. 8), the spatial distribution of dust MEE is thus partially 

determined by the dust size distribution, effectively propagating any uncertainty in model simulations of the spatial 

distribution.  5 

 

Second, some errors may have been introduced while scaling and fitting the different model dust size distributions to 

a common diameter range (section 2.3.1). For the scaling procedure (section 2.3.1.1), the variance of the dust mass 

fraction in all the bins, including the newly-created ones, are of similar orders of magnitude, thus errors introduced 

through this process are small relative to the magnitude of errors in the dust mass fraction. In addition, the resulting 10 

dust size distributions are dependent on the specific function and set of parameters used in the fitting procedure 

(section 2.3.1.2), which may also introduce some errors.  

 

Third, our constraints on the dust atmospheric loading use ensemble estimates of reanalysis-derived dust AOD, which 

depends in part on the assimilated aerosol observations, in part on the numerical simulation of dust sources and sinks, 15 

and in part on the numerical simulation of other aerosol species. Although some of the reanalysis products try to 

constrain these dust processes using space-based observations (e.g. Lynch et al., 2016; see supplementary 

information), the impact of the uncertainties associated with each process on the DustCOMM estimates of the 

atmospheric dust loading is beyond the scope of the study. 

 20 

Finally, this study primarily uses climatologies of modelled dust size distribution between 2004-2008, except for 

WRF-Chem and IMPACT (see Table 1), and it also scales dust mass loading using the 2004-2008 reanalysis products 

(see section 2.3.3 & 2.2). Thus, any application of our methodology to a different time periods is expected to have 

some errors. While these errors are expected to be small for the dust size distribution and dust mass extinction 

efficiency, they may have a substantial impact on the dust mass loading, depending on the inter-annual variability in 25 

the reanalysis-derived products and also on the assimilated observations 

 

4.4 Possible use of DustCOMM to improve estimates of dust impacts on the Earth system. 

 

Given that DustCOMM estimates of dust aerosol properties are in better agreement with measurements than the 30 

model ensemble, DustCOMM could be used to obtain improved constraints on dust impacts on the Earth system than 

is possible from current global models. Specifically, DustCOMM dust properties could be used as an alternative to 

global model simulations in constraining dust impacts, such as the dust direct radiative impact or dust impacts on 

biogeochemistry and human health. For instance, dust radiative heating rates in the atmosphere strongly depend on 

the ability of dust particles to absorb shortwave and longwave radiation (e.g. Perlwitz and Miller, 2010). In turn, such 35 

absorption depends on the dust size distribution, which strongly influences the optical parameters like the dust 

absorption optical thickness (e.g. Tegen and Lacis, 1996). With improved constraints on the dust size distribution 
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and therefore the dust optical properties, DustCOMM could be used to determine the dust (shortwave and longwave) 

heating rates in the atmosphere more accurately than possible with current global model simulations. As a result, our 

constraints on dust size distribution could be used to better quantify radiative effects of dust, especially in the 

longwave spectrum which have remained very uncertain (Dufresne et al., 2002; Di Biagio et al., 2017a; Kok et al., 

2017; Song et al., 2018). Furthermore, since recent studies associate much of the biases in dust properties, such as 5 

the dust aerosol optical depth, deposition fluxes and surface dust concentration, to model biases in dust size 

distribution (Evan et al., 2014; Huneeus et al., 2011), DustCOMM estimates can therefore serve as a better alternative. 

For example, DustCOMM’s improved constraints on atmospheric dust loading and dust size distribution could 

contribute to better estimates of size-resolved dust concentration near the surface (e.g. Whicker et al., 2018). Over 

the ocean, such constraints on size-resolved dust concentration could potentially be used for constraints on dust 10 

deposition fluxes that are more accurate than possible from global model simulations.  

 

In addition to being used as an alternative to global model simulations, DustCOMM could also be used to improve 

the simulation of dust aerosol properties in global models. Incorporating DustCOMM products in the simulation 

process can potentially be achieved when the aerosol module is coupled with the global model in either the so-called 15 

online or offline modes (e.g. Tegen, 2003; Pérez et al., 2011; Han et al., 2012). In the online mode, the simulated 

dust size distributions could be adjusted (“nudged”) to match the DustCOMM constraints on dust size distribution, 

similar to what is often done with meteorological fields (e.g. Kooperman et al., 2012). Alternatively, the 3-D dust 

size distribution could also be corrected offline after the simulated size distribution is obtained but before dust impacts 

such as on radiation are estimated (e.g. Weaver et al., 2002). Specifically, the modelled dust size distribution can be 20 

corrected by minimizing the differences between the DustCOMM and the modelled size distributions for a specific 

timescale (see section 2.3.5). Whether simulated dust properties are corrected in the online or offline modes, using 

DustCOMM to bias correct global model simulations could produce better estimation of dust impacts, such as dust 

impacts on radiation, clouds and precipitation, biogeochemistry, and human health. 

 25 

An example of dust impacts that can be substantially improved by DustCOMM product are dust radiative effects. 

These radiative effects are sensitive to dust particle sizes and shapes, which are both constrained substantially more 

accurately in DustCOMM than in models (Fig. 2-6). Smaller dust particles (# ≤ 2.5µ)) scatter more shortwave 

radiation and cool the climate while larger dust particles (# ≥ 5µ)) absorb more longwave radiation and warm the 

climate. Thus, correcting both biases of too much fine dust and not enough coarse dust in models (Figs. 4 & 5), as we 30 

do here in DustCOMM, decreases the shortwave cooling and increases the longwave warming (e.g. Otto et al., 2011; 

Kok et al., 2017). Using the 3-D DustCOMM size distribution to correct modelled dust properties could yield more 

accurate estimates of dust radiative effects. 

 

In addition, simulated dust impacts on clouds and precipitation can also be improved using DustCOMM dust aerosol 35 

properties. For the interactions of dust particles with clouds, it is important to know the number of particles that are 

activated above a given particle size as cloud condensation nuclei or ice nuclei (e.g. Andreae & Rosenfeld, 2008; 
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DeMott et al., 2015). Therefore, in regions with significant dust loading, accurate estimates of dust size distribution 

can be key to accurate simulations of precipitation initiation and aerosol-cloud interactions, including dust aerosol 

indirect and semi-direct effects (e.g. Sassen, 2003; Doherty and Evan, 2014). Since DustCOMM represent the dust 

size distribution more accurately than model simulations, it could be used to improve the simulated dust impacts on 

clouds, precipitation and aerosol-cloud interactions. 5 

 

Another key advantage of DustCOMM over global model simulations is that it propagates many observational, 

experimental, and modelling uncertainties of dust properties, which can be propagated into the calculation of dust 

impacts on the Earth system. For instance, experimental uncertainties associated with the emitted dust size 

distributions are propagated into the DustCOMM 3D dust size distribution, and experimental uncertainties in the dust 10 

index of refraction and dust particle shapes are propagated into the DustCOMM mass extinction efficiency at 550 nm 

wavelength (e.g,. Kok et al. 2017). In addition, our methodology propagates the uncertainty due to the spread in model 

predictions of the dust spatial distribution, although substantial biases in the model ensemble might exist (see section 

4.3 for example). 

  15 

Finally, it is worth noting that DustCOMM can be readily updated as more accurate constraints on dust properties and 

abundance become available. Current constraints in DustCOMM can also be expanded to include more information 

about dust properties. For instance, a next step could be to include constraints on the dust vertical concentration profile 

over every location, in order to more accurately estimate dust deposition, and dust concentration at the surface and in 

3D. For this, lidar-based retrieval of vertical dust extinction profiles from Cloud-Aerosol Lidar and Infrared Pathfinder 20 

Satellite Observations (CALIPSO) can be combined with the corresponding constraints on dust mass extinction 

efficiency from this study to obtain constraints on the dust vertical concentration profile. Another addition could be 

constraining the relative contribution of each dust source region to the 3D dust load, which can be combined with 

constraints on optical properties of dust emitted from each region (Di Biagio et al., 2017b, 2019; Green et al., 2018) 

to obtain more accurate quantifications of dust radiative impacts. Given that dust particles with D ≥ 20 µm can 25 

contribute substantially to dust extinction both in the shortwave and longwave spectrum (Ryder et al., 2019), future 

versions of DustCOMM could be extended to a diameter range beyond 20 µm as more measurements of dust size 

distribution with D ≥ 20 µm become available. 

 

5 Summary and Conclusions 30 

 

In this study, we presented a new dataset of atmospheric dust aerosol properties called the ‘Dust Constraints from 

Joint Observational-Modelling-experiMental Analysis’ – DustCOMM. DustCOMM combines observational and 

experimental constraints on dust properties and abundance with an ensemble of global model simulations of dust 

spatial distribution to obtain more accurate 3-D annual and seasonal climatologies of dust properties and abundance 35 

than possible with global model simulations alone. Here, we presented three DustCOMM products: the three-

dimensional (3-D) dust size distribution, 3-D dust mass extinction efficiency, and two-dimensional dust loading. First, 
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we obtained constraints on the 3-D dust size distribution by combining constraints on the globally-averaged dust size 

distribution with an ensemble of model simulations of the spatial variability of the dust size distribution. Second, we 

combined the resulting 3-D dust size distribution with constraints on the size-resolved globally-averaged dust 

extinction efficiency, which accounts for the substantial asphericity of dust aerosols, to constrain the 3-D dust mass 

extinction efficiency. Finally, we used the resulting column-integrated dust mass extinction efficiency with an 5 

ensemble of reanalysis-derived dust aerosol optical depth to constrain the atmospheric dust column loading. 

 

By comparing DustCOMM estimates of dust size distribution and dust mass extinction efficiency against independent 

in-situ measurements, we showed that DustCOMM reproduces observations substantially better than an ensemble of 

model simulations (Figs. 2-4, & 8). Models generally overestimate the contribution of fine-mode dust (# ≤ 2.5µ)) 10 

and underestimate the contribution of coarse-mode dust (# ≥ 5µ)), consistent with previous studies (e.g. Mahowald 

et al., 2014; Kok et al., 2017). In contrast, the DustCOMM size distribution is in substantially better agreement with 

measurements for different locations, heights and seasons over the 0.5 ≤ D ≤ 20 µ) size range. However, there 

remain some discrepancies between DustCOMM and measurements, notably an underestimation of dust with # ≤

0.5µ). Potential reasons for these discrepancies include contamination of measured dust size distribution by other 15 

aerosol species for	# ≤ 0.5µ), and biases in observational and modelling constraints for # ≤ 0.5µ) (section 4.1). 

Because DustCOMM underestimates the measurements for # ≤ 0.5µ), it shows a more negative bias (~50% more) 

over the full size range (between # = 0.2 − 20µ)), although the error is markedly lower (~15 %), when compared 

to the ensemble of model simulations. Overall for # ≥ 0.5µ), DustCOMM shows a bias against measured size 

distributions that is significantly less (about 46% less) than for an ensemble of global model simulations. 20 

 

DustCOMM similarly shows better agreement against measurements of the dust mass extinction efficiency (MEE) 

than an ensemble of model estimates. Because DustCOMM predicts a coarser dust size distribution, as supported by 

the comparison against in situ size distribution measurements, it yields a global-mean dust MEE that is about 28% 

lower than that from the model ensemble, driven by large reductions in MEE over dust-dominated regions, where 25 

coarse particles dominate. For specific locations and seasons, DustCOMM estimates consistently show smaller errors 

relative to dust MEE measurements than an ensemble of model results, including in regions with strong spatial 

gradients in dust loading. On average, there is a negligible difference (~1%) between DustCOMM and measurements 

of MEE, while the model ensemble overestimates MEE by about 23% relative to measurements.  

 30 

DustCOMM estimates of spatially-varying dust properties and abundance can be used to constrain various dust 

impacts on the Earth system in a manner that is more robust than possible with current global models. This is because 

DustCOMM reproduces dust properties more accurately than global model simulations, and also because DustCOMM 

explicitly propagates uncertainties in experimental, observational, and modelling constraints used in obtaining the 

DustCOMM products, and these uncertainties can be propagated in calculations of dust impacts on global climate, 35 

biogeochemistry, and human health.  
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List of some acronyms.  
GISS  Goddard Institute for Space Studies (GISS) ModelE atmospheric general circulation model 

WRF-Chem Weather Research and Forecasting model coupled with Chemistry 

CESM  Community Earth System Model 

GEOS-Chem Goddard Earth Observing System coupled with Chemistry 5 
IMPACT  Integrated Massively Parallel Atmospheric Chemical Transport 

INDOEX  Indian Ocean Experiment Intensive Field Phase 

SHADE  Saharan Dust Experiment 

ACE-Asia Asian Pacific Regional Aerosol Characterization Experiment 

TRACE-P Transport and Chemical Evolution over the Pacific 10 
ACE-2  Aerosol Characterisation Experiment 

DABEX  Dust and Biomass-burning Experiment 

AMMA  African Monsoon Multidisciplinary Analysis 

DODO  Dust Outflow and Deposition to the Ocean project 

SAMUM  Saharan Mineral Dust Experiment 15 
DARPO  Desert Aerosols over Portugal 

BACEX  Barbados Aerosol Cloud Experiment 

SALTRACE Saharan Aerosol Long-Range Transport And Aerosol–Cloud-Interaction Experiment 

AER-D  AERosol Properties – Dust 

MERRA-2 Modern-Era Retrospective analysis for Research and Applications, Version 2 20 
NAAPS  Navy Aerosol Analysis and Prediction System 

JRAero  Japanese Reanalysis for Aerosol 

CAMSiRA  Copernicus Atmosphere Monitoring Service interim Reanalysis 

 

Data availability 25 

Annually-averaged and seasonally-averaged DustCOMM dust size distribution, dust mass extinction efficiency and 

dust loading are publicly available at http://doi.org/10.5281/zenodo.2620475. The model dust mass concentration, 

Kok et al. 2017 datasets, as well as other input dataset used to generate the DustCOMM dataset presented here can be 

found at  http://doi.org/10.5281/zenodo.2620547 (Adebiyi et al., 2019b).  

 30 

Code availability 

The codes used to generate DustCOMM size distribution, dust mass extinction efficiency and the atmospheric loading 

are available at http://doi.org/10.5281/zenodo.2620556. 
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Table 1: Details of model simulations used in this study. Shown are the particle bin ranges, time periods of simulations, the 

spatial resolutions, the meteorology used, and the relevant model reference. We interpolate all model simulations to 2.5o by 

1.9o to facilitate comparison and consistency with other datasets. See section 2 for details.

Model 
Particle size bins 

(diameter – µm) 

Time 

Period 

Spatial 

resolution 

Meteorology 

used for 

simulation 

Relevant 

reference 

GISS 

0.2-0.36, 0.36-0.6, 0.6-

1.2, 1.2-2.0, 2.0-4.0, 4.0-

8.0, 8.0-16.0, 16.0-32.0 

2004-

2008 

5o by 4o with 20 

levels up to 0.1 

hPa 

Internal 

model 

meteorology 

Miller et al. 

(2006) 

WRF-

Chem 

0.039-0.312, 0.312-

0.625, 0.625-1.25, 1.25-

2.5, 2.5-5.0, 5.0-10.0 

2007-

2016 

1o by 1o with 35 

levels up to 50 

hPa. 

NCEP/FNL 

reanalysis 

Zhao et al. 

(2013) 

CESM 
0.1-1.0, 1.0-2.5, 2.5-5.0, 

5.0-10.0 

2004-

2008 

2.5o by 1.89o 

with 56 levels up 

to 1.8 hPa. 

ERA-Interim 

reanalysis 

Hurrell et al. 

(2013) 

GEOS-

Chem 

0.2-0.36, 0.36-0.6, 0.6-

1.2, 1.2-2.0, 2.0-3.6, 3.6-

6.0, 6.0-12.0 

2004-

2008 

2.5o by 2o with 

47 levels up to 

0.1 hPa. 

MERRA 

reanalysis 

See Kok et al., 

(2017) 

ARPEGE-

Climat 

0.1-0.2, 0.2-0.5, 0.5-1.0, 

1.0-2.5, 2.5-10.0, 10.0-

100.0 

2004-

2008 

1.4o by 1.4o with 

91 levels up to 

10 hPa. 

Internal 

model 

meteorology 

Michou et al., 

2015 

IMPACT 
0.1-1.26, 1.26-2.5, 2.5-

5.0, 5.0-20.0 
2004 

2.0°×2.5° with 

59 levels up to 

0.02 hPa. 

Meteorology 

from GEOS-

5 model 

Ito & Kok, 2017 
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 1 

Measurement Reference Project Name Time Period Representative Location Comments 

D’Almeida (1987) 
N/A (Ground 

station) 

Feb-Mar 1979; Jan-

Feb1982 
Niamey (Niger): 14.21N,2.5E 

PSD only; Z = 0-100m 

Data taken from their Fig. 3. 

Li et al., 1996 
N/A (Ground 

Station) 
April-May 1994 Barbados: 13.19N, 59.54W 

MEE only; l = 530 nm 

See their equation 3. 

Li et al., 2000 
N/A (Ground 

Station) 

Oct-Nov, 1997 and 

Jan,1998 

Qinghai Province (China): 33.16N, 

96.25E 

MSE only; l = 550 nm 

Data taken from their table 2. 

Maring et al., 2000 
N/A (Ground 

Station) 
July 1995 

Tenerife (Canary Island): 28.29N, 

16.63W 

MSE only; l = 532 nm 

Data taken from their table 4. 

Andreae et al., 2002 ARACHNE Dec, 1995 -Oct, 1997 Sde Boker (Israel): 30N,34.79E 
MSE only; l = 550 nm 

Data taken from their table 4. 

Quinn et al., 2002 INDOEX Feb- Mar, 1999 

Arabia Sea: 15N, 69E 

Arabia Sea – Indian Ocean: 8N, 72E 

Indian Ocean: 8S, 74E 

MEE only; l = 550 nm 

Data taken from their table 10. 

Haywood et al., 2003 SHADE September 2000 Cape Verde: 18N, 21W 
MEE only; l = 550 nm 

Data taken from their table 2. 

Clarke et al. 2004 
ACE-

Asia/TRACE-P 
Feb.-Apr., 2001 Sea of Japan: 38.85N, 130E 

PSD and MSE; l = 550 nm, Z = 0-

6000m 

PSD data taken from their Fig. 5. 

MSE data taken from the paper. 

Otto et al., 2007 ACE-2 Jun-Jul, 1997 Canary Islands: 27.65N, 14.25W 

PSD only; Z=2700m, 4000m, 

5500m, 7000m 

Data taken from their Fig. 3 

Osborne et al., 2008 DABEX Jan-Feb, 2006 Niamey (Niger): 15.5N, 5.0E 
MEE only; l = 550 nm 

Data taken from their table 4. 

Chou et al., 2008 AMMA/DABEX Jan-Feb, 2006 Niamey (Niger): 15.5N, 5.0E PSD only; Z = 0 – 1,500m 
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Data take from their Fig. 6 

McConnell et al., 2008 DODO-1 Feb., 2006 Dakar (Senegal): 14.76N, 17.38W 

MEE only; l = 550 nm 

Data taken from table 4 of Osborne 

et al., 2008 

McConnell et al., 2008 DODO-2 August 2006 Dakar (Senegal): 19.89N, 12.5W 
PSD only; Z = 0 - 1000m 

Data taken from their Fig. 7 

Weinzierl et al., 2009 SAMUM-1 May-Jun, 2006 Morocco: 31.26N 7.5W 
PSD only; Z = 3700-4900m 

Data taken from their Fig. 8 

Wagner et al., 2009 DARPO May 2006 Évora (Portugal): 38.57N 7.91 W 
PSD only; Z = 2300-5000m 

Data taken from their Fig. 9 

Kandler et al., 2009 SAMUM-1 May 2006 Morocco: 31.26N 7.5W 
PSD only; Z = 0-700 m 

Data taken from their Fig. 8 

Kandler et al., 2011 SAMUM-2 Jan-Feb, 2008 Praia (Cape Verde): 14.21N, 22.5W 
PSD only; Z = 0-110m 

Data taken from their Fig. 6 

Jung  et al., 2013 BACEX Mar–Apr, 2010 Barbados: 12.32N, 60W 
PSD only; Z = 1250-2700m 

Data taken from their Fig. 14 

Ryder et al., 2013a Fennec 2011 June 2011 Canary Islands: 27.65N, 14.25W 

PSD and MEE; l = 550 nm; Z = 0 – 

6000m; 

PSD data obtained from the author 

MEE data taken from their 

section 3.4 

Ryder et al., 2013b Fennec 2011 June, 2011 Mauritania-Mali.: 24N, 6W 

PSD only; l = 550 nm; Z = 0 – 

3000m; 

Data taken from their Fig. 5b 

Weinzierl et al., 2017 SALTRACE June, 2013 
Cape Verde: 14.21N, 22.5W 

Barbados: 13.19N, 59.54W 

PSD only; Z=0-2600m 

Data taken from their Fig. 9 
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Ryder et al., 2018 AER-D August, 2015 Cape Verde: 18N, 21W 

PSD and MEE; l = 550 nm; Z = 0-

6000m 

PSD data obtained from the author 

MEE data taken from their table 6. 
Table 2: Overview of in-situ measurements used to evaluate DustCOMM and model ensemble estimates of the dust size distribution and dust mass extinction efficiency (see 1 
section 2.4 for details). The label PSD in the last column indicates that we take dust size distribution values from the study. MSE and MEE similarly indicates that we take 2 
dust mass scattering or extinction efficiency values.3 
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 1 

  2 
Figure 1: Schematic of the key steps to obtain the DustCOMM products (dark shaded boxes): constraints on the 3-D dust size 3 
distribution, 3-D mass extinction efficiency and the 2-D atmospheric loading. The variables are a function of the following: x-y-z 4 
(three-dimensional field), x-y (two-dimensional field), S (seasonally-resolved), D (size-resolved), ! (includes uncertainties). The 5 
variables in the light grey boxes are obtained from Kok et al (2017). See section 2 for details. 6 

 7 
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 1 
 2 
Figure 2: Comparison of normalized dust size distributions between published in-situ measurements (blue and purple dots; see 3 
Table 2) and season-averaged DustCOMM (black lines) and model ensemble (red lines) estimates. The grey shading shows the 95% 4 
confidence interval for the DustCOMM dust size distributions, whereas the pink shading shows the range of the model ensemble 5 
size distributions. The size distributions are normalized between 2.5-10 µm. The comparisons are made at the nearest model grid-6 
points to the representative location and height level of the measurements.  7 
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 2 
Figure 3: Same as Figure 2 above, but as a function of height, which increases from bottom to top. The measurements plotted on the 3 
left panels are from Otto et al., (2007) taken during the ACE-2 campaign (June/July, 1997) in the vicinity of Canary Islands; the 4 
measurements plotted on the middle panels are from Ryder et al., (2013a) taken during Fennec project (June 2011) near the Canary 5 
Islands; and the measurements plotted on the right panels are from Ryder et al., (2018) taken during the AER-D campaign in August 6 
2015 near Cape Verde Island. 7 
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 1 
Figure 4: Average log-mean bias between measurements and DustCOMM (grey) or model ensemble (pink) estimates of dust size 2 
distributions (shown in Figures 2 and 3), for different particle bins. The vertical bars represent the 95% confidence interval.  3 

 4 

  5 
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 2 
Figure 5: (A) Comparison between DustCOMM (black line) and model simulations (colored lines) of the globally-averaged dust 3 
particle size distribution (PSD). The grey shading denotes the 95% confidence interval for the DustCOMM product. (B) The 4 
probability distribution of the volume median diameter (µm) of the PSD for DustCOMM (black line) and the individual model 5 
simulations (colored lines) over all locations and height levels.  6 
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 1 

Figure 6: Differences in the spatial variability of the dust mass fraction between DustCOMM and the model ensemble. Shown are 2 
the spatial distributions of the vertically-integrated dust mass fractions for different particle bins for DustCOMM (left panel), the 3 
model ensemble (middle panel), and the difference between the two (right panel; DustCOMM -Model Ensemble). 4 

 5 
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 1 
Figure 7: Vertical distributions of dust mass fractions as a function of particle size for the individual model simulation (colored lines) 2 
and DustCOMM (black lines) estimates. The grey shading shows the 95% uncertainty confidence interval for DustCOMM.  3 
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 1 
Figure 8: Comparison of measurements (blue dots) of dust mass extinction efficiencies (MEE – m2g-1) against column-integrated 2 
DustCOMM (black bars) and model ensemble (red bars) estimates. Vertical bars on the measurements represent reported 3 
uncertainty. For the DustCOMM and model ensemble estimates, the black and red boxes show one standard error, whereas the 4 
vertical dotted lines show the 95% confidence interval; the middle horizontal bar and star shows the median and mean values, 5 
respectively. The DustCOMM and model ensemble values are season-averaged values corresponding to the observation time period 6 
(see Table 2 for details). These seasons are labelled DJF— Dec-Feb., MAM—Mar-May, JJA – Jun.-Jul., SON – Sep.-Nov; ANN 7 
represents an annually-averaged value. The model ensemble MEE is calculated from the ratio between individual model dust aerosol 8 
optical depth and the dust mass loading, while the DustCOMM MEE is calculated using the constrained dust size distributions and 9 
single-particle extinction efficiency that takes into account the asphericity of dust aerosols. "#$ is the reduced chi-squared (Eqn. 10b), 10 
and quantifies the performance of a model in representing observations (e.g. Andrae et al., 2010). 11 
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Figure 9: Spatial distributions of column-integrated dust mass extinction efficiency (MEE – m2g-1), weighted by the dust vertical 2 
distribution, for (a) DustCOMM, (b) the model ensemble, and (c) the difference between the two (DustCOMM -Model Ensemble). 3 
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Figure 10: Spatial distributions of the atmospheric dust column loading (g m-2) for the (a) DustCOMM and (b) model ensemble 4 
estimates, and (c) the difference between the two (DustCOMM -Model Ensemble). 5 
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Figure 11: Spatial distributions of DustCOMM relative uncertainties for (a-d) the dust mass fraction in the diameter ranges of %. $ −3 
$. (µ*, $. ( − (µ*, ( − +%µ*, and +% − $%µ*; (e) the dust mass extinction efficiency (MEE); and (f) dust load. The relative 4 
uncertainties are calculated as the ratio of the uncertainty characterizing 68% of the distribution of each variable, divided by the 5 
mean value. 6 
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