
We thank both reviewers and the editor for their constructive comments, which has greatly helped 
us to improve the paper. Below we include a point-by point response to the referee comments, and 
describe the corresponding changes we have made to the manuscript 
 
Comments from reviewer #1 
 
General Comments 
 
A new dataset is presented and analysed to provide a global 3-D seasonally resolved dataset of 
dust properties with constrained size distribution, shape and refractive index properties. The 
dataset (DustCOMM) provides annual and seasonal mean 3-D dust size distributions, 3-D mass 
extinction efficiency at 550 nm wavelength and 2-D dust column mass loading. Since models are 
mostly unable to reproduce these properties in faith with measurements, this is a welcome and 
valuable step forwards in the dust field. The authors show that the DustCOMM results perform 
significantly better than global model simulations when evaluated against independent 
measurements. This is a notable achievement considering the challenges involved in representing 
global dust fields. The authors outline the benefits and potential future uses of the DustCOMM 
dataset to the community, which are likely to be substantial. 
 
This paper covers a considerable amount of work and therefore methodology in order to deliver 
the final results in the DustCOMM dataset. Although the authors do a credible job of explaining 
the long and complicated methodology, in places it requires further explanation and clarity, 
potentially with re-ordering of some sections. The results impeccably described and presented. 
The description of measurements used requires some corrections and clarifications. Although the 
authors provide the datasets online, one of the links is broken. The article fits the scope of ACP 
and I recommend publication subject to the corrections detailed below. 
 
We thank the reviewer for the constructive and helpful comments that helped us to further improve 
the paper. We address these comments below. 
 
General Scientific Comments 
 

1. Overall, it is not clear why there is a need for the AOD reanalyses in this study – i.e. column 
3 in Figure 1. Given the volume size distribution, and an assumed dust density, it should 
be possible to calculate column mass loading directly from size distribution without the 
requirement for AODs, and without any uncertainty involved in the mass extinction 
efficiency (MEE) values. Currently this is not explained, and therefore the AOD reanalysis 
section (fig 1 column 3 and sections 2.3) seems superfluous. More details are given below. 

 
We thank the reviewer for this comment. We note that our dust size distributions are 
normalized such that the integral over the diameter range is unity, and with no 
information about the size-resolved volume of the particles. Therefore, the normalized 



dust size distribution cannot be used directly with dust density to calculate the column 
dust loading. We have added the following sentence in section 2.3.3 (formerly section 
2.3) to clarify this point: “Since our constraints on dust size distributions are normalized 
to unity, and also to ensure that our estimates of dust loading produce the same extinction 
as those from reanalysis dataset or satellite measurements, we use this approach to 
estimate the atmospheric dust loading…” 

 
 

2. The authors do not include any dust properties in the longwave (LW) spectrum. The impact 
of the coarse particles on the radiative budget is one of the motivators of this study, and 
indeed highlighted in the discussions and conclusion as one of the benefits of the new 
dataset. The LW radiative effect makes up a large part of the total change in radiative effect 
due to a better representation of coarse particles (Kok et al., 2017). Thus the omission of 
LW dust properties here detracts slightly from the novelty of this work. There may be valid 
reasons for excluding the LW here, such as scope of material and lack of MEE observations 
in the LW spectrum. However, this should be discussed, since the total radiative impact of 
the constrained size distribution cannot be calculated without dust LW properties. 
Additionally, there may be some limitations in radiative studies which could be done with 
the DustCOMM data due to MEE being required spectrally (at least on some spectral 
resolution), rather than just at 550 nm as provided. 
 
The reviewer raises an excellent point here, as indeed a large portion of the uncertainty in 
dust radiative effects is due to uncertainty in LW interactions. That being said, we provide 
dust optical properties at the mid-visible wavelength (550 nm), rather than in the longwave 
spectrum, for several reasons. First, as the reviewer pointed out, measurements of dust 
mass extinction efficiency (MEE) in longwave are scarce and therefore it will be difficult 
to validate our constraints on dust MEE. Second, the estimation of dust mass loading in 
Eqn. 9 requires MEE value at 550 nm which is the same wavelength as the observational 
constraints on dust optical depth (e.g. Ridley et al., 2016). Third, the measurements of dust 
refractive index needed to constrain the single-particle extinction efficiency at the 
longwave spectrum are also scarce, potentially leading to large uncertainties in 
constraining the dust MEE. Despite these reasons, our future studies will focus on 
incorporating the available measurements of dust refraction index – such as those from Di 
Biagio et al. (2017, 2019) – to constrain the spectral dependence of dust optical properties 
for both longwave and shortwave spectra as part of DustCOMM dataset. 

 
To clarify these reasons for not including dust properties in the LW spectrum in this 
paper, we have included a paragraph in section 2.3.2. “We use this constrained globally-
averaged Q"#$% to constrain ϵ'( (Eqn. 8) for every location. We thus neglect any regional 

variation in Q"#$% because measurements of dust shapes and index of refraction are 
currently insufficient to constrain ϵ'( on a regional basis. In addition, since measurements 
of dust refractive index needed to constrain ϵ'( at other wavelengths are also scarce, we 



limit our estimate here only to the 550 nm wavelength. We use 550 nm as the wavelength 
of choice because measurements to validate our estimate of ϵ'( and the observational 
constraints to estimate the dust atmospheric loading are mostly available at mid-visible 
wavelength.” 

 
3. Section 2.1 (Constraining the 3-D atmospheric size distribution) is a crucial part of the 

paper, but difficult to follow. This section needs further explanation and clarity – see 
specific comments below. 
 
Thank you for pointing this out. Based on the specific comments by the reviewer, we have 
reordered both sections 2 and 3 to make it easier for the reader to understand. For example, 
in addition to other specific changes below, we now have the description of the model 
simulation and reanalysis datasets before the methodology that constrains the dust size 
distribution, mass extinction efficiency and the atmospheric loading.  

Specific Comments  

1. Links to datasets – the first asset link to the DustCOMM dataset v1 
(https://doi.org/10.5281/zenodo.2620475) is broken.  

Thank you for pointing this out. The link has been fixed. 

2. Abstract – l 17-21 – the use of model simulations should be mentioned here as this is a 
crucial part of the work.  

Thank you, that’s a good point. We have re-written this part to reflect the use of global 
model simulations in constraining the dust size distribution. The new sentence now reads 
as: 

“This dataset leverages an ensemble of global model simulations with observational and 
experimental constraints on dust size distribution and shape to obtain more accurate 
constraints on three-dimensional (3-D) atmospheric dust properties than is possible from 
global model simulations alone.” 

3. It is not entirely clear what the benefits of model-constrained data presented here are over 
the data used in Kok et al. (2017). It would be useful to the reader to make this crystal 
clear, probably at the end of the introduction.  

We have included a sentence at the end of the introduction to clarify the difference 
between the Kok et al. (2017) results and the results in the study. We added the following 
to the last paragraph: “DustCOMM builds on the results from Kok et al. (2017), however, 
unlike the globally-averaged results obtained in Kok et al. (2017), our product constrains 



the climatology of 3-D global atmospheric dust properties on seasonal and annual 
timescales”. 

4. All the way through the article, but particularly in the method, the authors should be 
absolutely clear which size distribution they are referring to - the Kok 2017 globally 
constrained size distribution, or the model-simulated size distribution(s) – when they state 
‘globally averaged size distribution,’ or similar generalizations.  

Thank you for the comments. We have clarified this confusion where necessary. 

5. Section 5.4 – would you expect DustCOMM to show improved inter-annual variability in 
dust loading compared to conventional models, if more than one year of data were 
constructed? Or would DustCOMM’s ability in this context be limited by the underlying 
global models’ limitations? This is another significant challenge for models, e.g. Evan et 
al. (2014).  

Thank you for the question. While we have not looked at this topic yet, we expect that the 
inter-annual variability in DustCOMM dust size distributions largely depends on the 
ensemble of model simulations used. However, the interannual variability of the dust 
mass loading will include not only the variability from the ensemble of model 
simulations but also from the observations used to constrain the dust aerosol optical depth 
and dust extinction. Although this study only present seasonal variability, DustCOMM 
inter-annual variability is expected to show some improvements when compared to 
individual model simulation.  

6. Section 2.1 – p4 l21-35 – These lines cover methodology and results from Kok et al. 
(2017). While necessary and useful to repeat here, I suggest making it very clear that up 
to l 35 this is a repeat of method and size distribution from Kok et al. (2017).  

To improve clarity for this section, we have added an extra sentence before Eqn. 1, and 
re-write the paragraph following the same equation. 

“While details can be found in Kok et al. (2017), a summary of their globally-averaged 
size distribution is given here as:” 

“As reported in Kok et al. (2017), the constrained globally-averaged size distribution of 

emitted dust particles, )*+
",-./(1)
*1

3
4
, is based on an analysis of different measurements of 

the emitted dust size distribution, while the size-resolved globally-averaged dust lifetime, 

6T8(D):4, is based on an ensemble of global model simulations” 



7. Section 2, p5, l1-17 – this section forms a crucial part of the method – the main 
correction/constraining of the model size distributions – yet it is difficult to follow. The 
authors should explain this section much more clearly and in detail, perhaps with 
additional figures in the supplement and/or outlining a specific example, to clearly 
illustrate how the PSDs are forced away from the model simulations. Some specific 
comments are given in the points below, but I suggest they review and rephrase these 
lines.  

We have re-written the paragraph before Eqn. 2 to better clarify the procedure. After 
Equation 2, we have also made additional clarifications to the sentences, including clearly 
explaining the dimensions x, y, and z. For this part, we added “…;x is the dimension for 
longitude, y is for latitude and z is for height.” 

8. It is not very clear at which point annual averages vs spatially varying size distributions 
are used from the simulations. E.g. p5 l5 – “annually-averaged, globally-averaged” size 
distributions are forced here – how/at which point are the spatially varying size 
distributions corrected? Better signposting of global averages vs spatial variations 
throughout the paper would be extremely useful in understanding the methodology.  

We made this distinction by specifying in each formula the independent variable of each 

parameter. For example, f?@,ABx, y, z, D@,AC in Eqn. 2 is a spatially-varying parameter 

defined for x-longitude, y-latitude and z-height, while the )fD@̅,A(D@,A)3
4
is the globally-

averaged counterpart denoting that the parameter is averaged over all space (x-y-z). To 
make this clearer, we have explicitly defined the independent variable following its first 
use in Eqn. 2., adding “x is the dimension for longitude, y is for latitude and z is for 
height” 

9. P5 l9-10 “to the global dust loading” – which global dust loading – simulated or from 
Kok 2017?  

The sentence has been re-written for clarity. It now reads “This correction factor (α) is 
defined by the ratio of the Kok et al. (2017) constraint on the fractional contribution of 
the particle bin to the simulated fractional contribution of the particle bin per unit global 
dust loading.” 

10. P5 l1-17 – the description of equation 2 is not clear enough. E.g. what is the numerator in 
the equation for alpha?  

The numerator is the fractional contribution of the Kok et al. 2017 globally-averaged size 
distribution defined between diameter D@,AG and D@,AG. In addition to the description of α 
before Eqn. 2, we have added the following statement to improve the clarity after the 



equation.: “the numerator, ∫ )*+
"(1)
*1

3
4

1I,.J
1I,.K

dD, is the constraint obtained from Kok et al. 

(2017)” 

11. P5 l16-17 – “where the discrete sum over each location and height equals unity, that 
is:...” – Why is the sum unity? Is this because the size distributions are normalized?  

Yes, that’s indeed correct. This is a key point, so we have also rewritten this for clarity. 

12. Fig S1 – Please include the Kok 2017 globally averaged constrained size distribution on 
each panel. This would enable the reader to see what the size distribution is being 
constrained by.  

That’s a good idea. Since DustCOMM is forced to the Kok et al 2017 size distribution, 
both DustCOMM  and Kok et al 2017 are the same and thus overlap in the Figure S1. 
Although not always visible, we have nonetheless included the Kok et al 2017 size 
distribution in Fig. S1 for completeness (see below). 

 

13. Figure S1 – please also include (either in this plot, or as a separate one), how the size 
distributions changed due to the re-binning/extension/curtailing, as described in Section 
2.1.1.  



We have included the figure below in the supplementary document 

 

14. Section 2.1.1 – Is this diameter range correction performed after the size distribution 
correction (section 2.1)? Figure S1 suggests that first the diameter range correction is 
performed, and then the size distribution correction. But the ordering of the text (2.1 – 
size distribution correction, 2.1.1 – diameter range correction) suggests the opposite. 
Please clarify and order the text appropriately to follow the steps in the method.  

This is indeed confusing. The order described in section 2.3.1 (formerly 2.1) does follow 
the steps taken in the methodology. That is, the dust mass fractions were corrected and 
then the size ranges were set to the common diameter limits. To make this clearer, we 
have added a statement that the dust mass fractions were re-normalized after the 
correction, such that the discrete sum still equals unity over each location. This statement 
at the end of section 2.1.1 reads: “After the dust mass fractions are corrected, they are re-
normalized such that the discrete sum between DMAN and DMO$ equals unity over each 
location and height.” 

 
For the ‘uncorrected’ model dust mass fractions, we highlight in section 2.1 (formerly 
3.1) that, for consistency, they are also set to the same diameter limits between 0.2 and 
20µm following the same procedure described in section 2.3.1.1 (formerly 2.1.1). 



15. P6 l1-3 – Ryder et al. (2019) show that over the Sahara D>20μm contribute to at least 
18% of SW extinction and 26% of LW extinction – these values are not negligible and 
represent aged Saharan dust.  

P6 l4, “dust particles with D>Dmax generally stay only for a short period in the 
atmosphere before they are deposited” – this is not the case in van der Does et al. (2018), 
as stated elsewhere in this manuscript.  

That’s a good point – those two recent papers indicate that the community has greatly 
underestimated the effect of dust with D > 20 um. In this study, we need to limit the 
maximum diameter to 20 µm because results from Kok et al. 2017 used to constrain our 
dust size distribution is limited to this diameter. But to better acknowledge that particles 
greater than 20 µm might be important even farther from source regions (e.g. Ryder et al. 
(2019)), we have re-written this part of the paragraph: 

“Further, we set the upper diameter limit to DMO$ = 20	µm, because most global models 
generally do not incorporate dust particles beyond 20 µm and also because the 
observational constraints on the size distribution from Kok et al. (2017) is limited to this 
maximum diameter. Although advances in airborne observations in recent years have led 
to measurements of larger dust particles with D	 > 	DMO$ in the atmosphere which has 
shown that the contribution of  D	 > 	20	µm to shortwave and longwave extinction are 
non-negligible (e.g. Ryder et al., 2013b, 2019; Weinzierl et al., 2009, 2017), there is still 
a scarcity of these measurements, such that an observational constraint on dust particles 
with D	 > 	DMO$  would be very uncertain (e.g. Mahowald et al., 2014).” 

16. P5 l1-6 – the authors should revisit the impact of particles d>dmax in the discussion (e.g. 
Section 5.4). For example, if better global constraints/observations on this size range 
became available, could such observations be incorporated into DustCOMM? \ 

Yes, that’s a good point. We have added the sentence below in section 4.4 (formerly 5.4) 
to clarify this point. 

“Given that dust particles with D ≥ 20 µm can contribute substantially to dust extinction 
both in the shortwave and longwave spectrum (Ryder et al., 2019), future versions of 
DustCOMM could be extended to a diameter range beyond 20 µm as more measurements 
of dust size distribution with D ≥ 20 µm become available.” 

17. P6 l30-32 – the authors essentially extend 4 models’ size distributions towards a larger 
size range based on the other 2, which cover a wider diameter range. Does this implicitly 
assume that all the models behave the same way in terms of the coarse end of the size 
distribution? This seems unlikely. This should be discussed more, particularly since many 
of the results are most sensitive to the size changes above d=10 microns  



No, our constraint does not implicitly assume that the models behave the same way. 
Since dry depositions in these models are controlled largely by gravitational settling, the 
rates of deposition of the dust particles are often different. Our constraints thus account 
for these differences by taking into account the differences in the spatial variability of the 
bin that overlaps between the two models. That is, in correcting for model simulation k  
in Equation 4a (for example), we account for the difference between the bins 

6D@,WIX, D@,WIG: and 6DY,Z[X, DY,Z[G: in model r, which partially overlap with each other 

(Eqn. 4b). Although the correction factor βY(x, y, z) is expected to take into account the 
differences between model k and model r, we however still assume that the distribution 
largely follow the same form controlled by the rate of dust deposition in each model. We 
have added the sentence below to clarify this point.  

“It should be noted that the correction of Eqn. 4 takes into account the potential 
difference in the dust deposition between models k and r, by considering the differences 

in the spatial variability of dust loading between similar bins of 6D@,WIX, D@,WIG: and 

6DY,Z[X, DY,Z[G:.” 

18. Equation 5 – please state how/if this equation is different to that from Kok et al. (2011), 
and if so why.  

Despite the similarity in Equation 5/6 and that from Kok 2011, an important difference is 
that Kok 2011 describes the size distributions at emission while Eqn. 5/6 describes the 
size distribution in the atmosphere. Because of that, our formulation in Eqn. 5/6 builds on 
the brittle fragmentation theory of Kok 2011, but adds analytical expressions of dust 
deposition and dust changes during transport. In addition, the generalizations of 
parameters in our equation also allow us to better fit different shapes of dust mass 
fractions over different locations, and thus able to place a better constraints on dust size 
distribution. 

To clarify this point, we have added the following section at the end of section 2.3.1.2 
(formerly 2.1.2): “Finally, we note here that although our generalized theoretical function 
of Eqn. 6 builds on the brittle fragmentation theory of Kok 2011, it adds analytical 
expressions of dust deposition and dust changes during transport that allow us to better fit 
different shapes of dust size distribution over different locations.” 

19. Equation 5 & p8 l6 – why choose D_s for the geometric median diameter by volume? S 
subscript typically implies with respect to surface area. D_v would be more appropriate.  

Thank you for this comment. We have changed the subscript from s to v 

20. P8 l20-27 – This seems a great generalization. It’s not clear how b is applied to specific 
locations as implied.  



The application of all the parameters in Equation 6, including the parameter b, was done 
by fitting the expression using Equation 7 for each location. As a result, values for b 
could be different from one location to the other, based on the shape of the corrected dust 
mass fraction from Eqn. 2. The distributions of these parameter, including parameter b, 
are included in supplementary Fig. S-2. To make this clearer, we have reworded the 
paragraph before Eqn. 7, and also added additional sentence to the paragraph after Eqn. 7. 

“To determine the parameters in Eqn. 6 for each height, horizontal location, season, and 
model simulation, we fit the generalized size distribution of Eqn. 6 to the corresponding 
corrected dust size distribution from Eqn. 2 above. To do this, we minimize the chi-
squared (χ@^) value for each height, location, and for each model k, such that:” 

“The probabilty distribution of these parameters for all heights, horizontal locations, and 
model simulations of the annually-averaged dust size distribution is shown in the 
supplementary Fig. S-2” 

21. Section 2.1.2 – What is the reason for choosing this method of fit (eqn 6) as opposed to 
fitting a series of lognormal modes, as is typically done for size distribution 
measurements? Presumably given the simulated size distributions have been corrected 
based on the same function, the fitting of the corrected size distribution is more naturally 
aligned with eqn 6? 

That’s a good point. We use Eq. (6) because it includes some mechanistic understanding 
of what determines the functional form of dust size distributions. Furthermore, although 
lognormal modes are appropriate for several other aerosol species, dust size distributions 
generally do not follow lognormal distributions very well, in part because the emitted 
dust size distribution is distinctly lognormal, as detailed in Mahowald et al. (2014). We 
have added a sentence to clarify this point in the first paragraph of section 2.3.1.2: 
“Although fitting lognormal modes are appropriate for several other aerosol species, 
Mahowald et al., (2014) highlighted that dust size distributions are usually not lognormal 
and are thus better characterized by a generalized function based on mechanistic 
understanding of dust emission and deposition processes. “  

22. P10, section 2.3, l26-30 – units for all quantities would be helpful. What do the authors 
mean by “mass-weighted” in “mass-weighted vertically-integrated 2-D mass extinction 
efficiency” and what are the units of epsilon_tau and epsilon_m?  

The units of each variable have now been included. And this phrase is indeed confusing 
as we meant “vertically-integrated 2-D mass extinction efficiency”, thus the “mass-
weighted” has been removed.  

23. P10, section 2.3, l26-30 – I believe this calculation is the same as first used by Kaufman 
et al. (2005), which should be cited.  



Good point. Kaufman et al. (2005) has now been cited. 

24. P10 l31-32 – please list the reanalysis products (MERRA-2 etc) here to avoid confusion. 
Also see later comment about section ordering of 3.2. “Dataset” should be ‘datasets.’  

Thank you. This comment has been addressed in the paper. 

25. P10 l32-p11 l2 – “This individual reanalysis dataset....” - I suggest removing this (and 
adding to section 3.2 if necessary). It is confusing here given that the AOD reanalyses 
have not yet been described.  

P11 l10 “the four data sets...” – this is also confusing given that the AOD datasets have 
not been properly introduced at this stage in the paper. See later comment about 
relocating section 3.2. Ordering and section 3 – I suggest the authors move sections 3.1 
and 3.2 to before section 2. This would be easier to follow and understand. Section 3.3 
should remain after section 2 since it follows on logically.  

This is a great idea to improve the paper’s clarity, thank you. As suggested by the 
reviewer, we have combined section 2 and 3 and reorder the subsections, such that the 
description of model simulations (section 2.1) and the reanalysis products (section 2.2) 
comes before the description of the DustCOMM products (section 2.3).. 

26. P16 l35 – 2011-2015 is presumably limited by available years? Is there any impact of this 
difference in years used?  

Yes indeed, the dust AOD for JRAero is only available between 2011 and 2015. 
Although we did not analyze the impact of the difference in DAOD climatology between 
JRAero and the others, we expect that the relative difference will be smaller over the dust 
dominated region. 

27. P17 l32 – and is also a 2-D diameter project of a 3-D shape, which may introduce bias 
(e.g. Chou et al., 2008). 

Thank you. We have reworded the relevant sentence of the 3rd paragraph of the section to 
better reflect this. 

“during the microscopy analysis, particle diameters are usually determined as the 
volume-equivalent geometric diameters based on 2-dimensional images (Chou et al., 
2008). Because of the asphericity of dust aerosols, this could introduce some biases (e.g., 
Okada et al., 2001; Huang et al., in prep.).” 

28. P17 l 36 “separate channels for different particle sizes” - this is not really relevant and 
could introduce confusion.  



Thank you. This part of the sentence has been removed. 

32. P17 l25-40 – there is a 4th category, which covers imaging probes, as used in the AER-D 
field campaign (section 4.18 of supplement) – which are beneficial since they do not 
suffer from uncertainties in converting scattered light to size as OPCs do.  

That’s a good point. We have included two sentences to highlight this point. First 
sentence is added in the first paragraph stating: “Another category is the imaging probe 
whereby the particle image is detected by linear photodiode array providing a two-
dimensional projection of the particle (Baumgardner et al., 2017; Ryder et al., 2018).”  

The other is added to second paragraph of section 2.4.1 stating: “Unlike the optical 
particle counters that require assumption regarding dust refractive index and shape to 
convert scattered light intensity to particle size, the imaging probes are not subject to 
these uncertainties (Baumgardner et al., 2017; Ryder et al., 2018)” 

33. P18 l22-25 – OPCs have other sources of uncertainty – such as refractive index applied in 
the inversion of scattered light to size and the non-monotonic relationship between 
scattered light and particle size. These should also be mentioned.  

We have included a sentence to clarify these points. 

“In addition, optical particle counters also make assumptions about the refractive index to 
derive the dust size distribution, and are affected by the non-monotonic increase in the 
intensity of scattered light with particle size (Ryder et al., 2018; Weinzierl et al., 2011).” 

34. P18 l11-25 and section 3.3.2 – in-cabin measurements are also subject to uncertainties 
and size-bias in sampling due to aircraft inlets. As such, the MEE values from studies in 
table 2 are likely biased high in some cases.  

Thank you for this comment. We have added a sentence in this paragraph to highlight this 
point. “For in-cabin measurements, studies have shown that the loss rate of coarse dust 
particles can be substantial due to the aircraft’s instrument inlet, therefore leading to 
lower sampling rate and size bias (e.g. von der Weiden et al., 2009).” 

35. P18 l14 – although the size distribution measured does not allow aerosol type to be 
distinguished, various chemical composition measurements made in parallel are now 
mostly a matter of routine during airborne campaigns. Individual studies often use these 
to infer size distributions or ranges dominated by different aerosol types.  

We thank the reviewer for this comments. While measurements of chemical composition 
helps to isolate dust from non-dust particles, there are still potential for mis-identification. 
We further address the discrepancy between measurements and our results in section  4.1 



36. Section 3 – there is a huge variety of measurement data available, and I do not suggest 
the authors attempt to significantly widen their coverage. The authors should describe 
how and why the studies in Table 2 were selected. There also appears to be a 
geographical gap of sampling Arabian dust (Fig S1). Additionally, I suggest the studies 
of dust sampled during the AMMA airborne missions (Formenti et al., 2011) as being a 
very useful addition, since they provide summertime sampling in the Niger region, which 
is currently not covered by the studies in Table 2.  

We thank the reviewer for this comment. For the most part, the studies we selected for 
dust size distribution are those that reported actual measurements of coarse dust particles 
and not log-normal fit or parameterized distributions. The dust size distribution reported 
in Fig. 10 of Formenti et al. (2011) is a log-normal fit to measured data, such that we 
cannot use this data. We have included additional sentences in the second paragraph of 
section 2.4.1 that clarify how and why some of the studies in Table 2 are selected. 
 
“For the dust size distributions, our criteria for selection of studies are as follows: (1) the 
measured size range of the data should extend into the coarse dust (D > 5 um) size range; 
(2) the study should report the original in-situ measurements, instead of (lognormal) fits 
to the actual measurements; and (3) each study’s measurements should be taken with 
commonly-used instrumentation in order to ensure some consistency with measurements 
taken by other studies. “ 

37. Table 2 – please indicate which studies relate to which numbers on the map on Figure S3.  

We now clarify this in the caption of Fig. S-3. 

38. Section 3.3.2 and Supplement section 4 – The descriptions of data taken from each 
measurement campaign are too vague, and occasionally in error. Often it is not enough 
just to reference a paper as within the measurement papers observations are 
collected/averaged in different ways (time periods, meteorological regimes, altitudes, 
etc.) and it is not clear which are being used here. The authors should state specifically 
which data are taken from each paper, and what the values of MEE or MSE are, 
preferably listing them in a table in the supplement. Specific comments about data 
described in the supplement are given in the Supplement section. 

Thank you for the comment. We have made several additions to the supplementary 
section 4 to address this point. In addition, we also state in Table 2 where the data are 
taken from, by referencing the specific figure or table where applicable. 

39. P18 l34-35 – Ryder et al. (2013b) SSA values fall well outside this SSA range. This is a 
fairly narrow SSA range selected. The authors should note that measured SSA is sensitive 
to the size range sampled in the observations, which is likely to exclude the coarse mode 
and often d>~2- 3 microns in many cases due to the effects of inlets. Only 3 studies are 



cited, while there are a huge variety of studies in existence which have measured dust 
SSA.  

We thank the reviewer for pointing this out. We have increased the uncertainty range to 
0.03 and have also included citations to other studies. 

40. P19 l9-11 – “These errors include errors due to the instrument measuring the extinction 
coefficient” – change to ‘instrumental uncertainties.’ “meteorological influence” – such 
as? “the assumption of internal or external mixing” – how is this important?  

For clarity, we have removed this sentence, and added “including instrument 
uncertainties” to the preceding sentence. 

41. P20 l13-17 – Field campaigns additionally often sample a variety of cases which are 
representative of the within-season variability, and also often include uncertainties/ranges 
to cover the variability encountered.  

That is right. Thank you for pointing this out.  

We have added a sentence to highlight this point: “Furthermore, most of these 
measurements are campaign averages often over a variety of cases that could be 
representative of the season-averaged size distribution.” 

42. P21 l2-3 “(1) the ACE-2 campaign (June/July, 1997) off the west coast of Western 
Sahara and Morocco (Otto et al., 2007)” – would be better referred to as in the vicinity of 
the Canary islands. Same for caption of Figure 3.  

Thank you for pointing this out. We’ve corrected this accordingly.  

43. P21 l6 “(2) the Fennec project (June 2011) between the Canary Islands and 
Mauritania/Mali (Ryder et al., 2013)” – If the authors refer to measurements between the 
Canary Islands and Morocco/Western Sahara (not Mauritania/Mali which are inland) the 
citation should be Ryder et al. (2013a – GRL) and the geographic references corrected. 
The same applies to the caption of Figure 3.  

Thank you for this comment. We realize the confusion and we have clarified it in the 
paper. Data from the two Ryder 2013 papers are used in our study. Here, we do in fact 
mean the Ryder et al. (2013 – GRL) which is represented in the paper as Ryder et al. 
(2013a). We have adjusted the text, the geographical reference and images accordingly. 
The representative location is now placed at 27.65N, 14.25W. 

44. Figure 3 – what is the reason for the selection of altitude choice? It seems biased very 
high – presence of dust at z>6km is unlikely and concentrations will be very low at 



5.5km – therefore the value of such high altitude comparisons is questionable. What is 
the reason for the selection of these 3 studies for Figure 3? The geographic spacing is 
very close, with all sampling JJA SAL dust. “ACE-2” in line 7 of the caption should read 
“AER-D.”  

Thanks for the correction. ACE-2 has been changed to AER-D. 

We identify these 3 studies to show that DustCOMM performs better than model 
simulations for a range of heights. We recognize that dust concentrations are lower for 
z>6km, but we follow Fig. 1 of Ryder et al. (2013 – GRL) which shows that there are still 
some coarse dust particles at ~6km. To address this comment, we have added additional 
comments in Table 2, and a justification for the height selection in the supplementary 
document. 

45. P22 l1 – 14% and 15% - in terms of which variable?  

This is in terms of the dust mass fraction – i.e. the fraction of dust per unit mass of dust 
loading. We have clarified this in the paper. The sentence now reads “On average, 
simulations in our model ensemble overestimate the dust mass fraction of the fine mode 
by ~14%, and underestimate that of the coarse mode by ~15%.” 

46. P23 l25 – and also Qinghai Province China?  

Yes, good point. We have added this to the text: “… and Qinghai Province, China (Li et 
al., 2000)” 

47. P24 l17 – “weighted by the dust vertical distribution” – why is this necessary?  

We agree with the reviewer that “column-integrated dust MEE” explains our point in that 
sentence, and “weighted by the dust vertical distribution” is indeed not necessary. As a 
result, we have removed it. 

48. P24 l31-32 – as stated earlier, it is not clear why the MEE and AODs need to be used to 
calculate the column mass loading, given that this is typical model output, and the size 
distributions are already available. It should be a direct step to calculate column mass 
loading from size distributions, given a dust density.  

See our response to similar comments above (General Scientific Comments #1) 

49. Section 5.1 – are there any impacts of uncertainties in wet deposition on the size 
distribution biases?  



Uncertainties in dust deposition broadly affect our estimates of dust size distribution, as 
we discuss in the fourth paragraph of the new section 4.1 (formerly 5.1).  

50. P27 l30 – Fig 7a does not show MEE.  

Thank you. This is noted and has been corrected.  

51. P27 l31 – there is no figure S7 in the supplement.  

Thank you. This is noted and has been corrected. We meant to say supplementary Fig. S-
6 

52. Section 5.4 – the implications of dust LW properties should be reflected on here, 
considering the points about the LW radiative impacts of dust being crucial to the total 
impact on the radiation balance described above.  

We thank the reviewer for this comment. We have now added a sentence in section 4.4 
(formerly 5.4) that emphasizes the use of our dust size distribution for longwave radiative 
impacts. “With improved constraints on the dust size distribution and therefore the dust 
optical properties, DustCOMM could be used to determine the dust (shortwave and 
longwave) heating rates in the atmosphere more accurately than possible with current 
global model simulations. As a result, our constraints on dust size distribution could be 
used to better quantify radiative effects of dust, especially in the longwave spectrum 
which have remained very uncertain (Di Biagio et al., 2017; Dufresne et al., 2002; Kok et 
al., 2017; Song et al., 2018)” 

53. P30 l20 – should ‘indirect effects’ be ‘semi-direct effects’?  

Good point. We have included both indirect and semi-direct effects. 

54. P30 l28 – some reference to the SW spectrum and 550 nm should be included, since 
refractive index and MEE are only considered at this wavelength.  

We have clarified that the DustCOMM mass extinction efficiency is at 550 nm. Since our 
constraints is taken from Kok et al. 2017, we have  also included that reference in the 
sentence. 

55. Section 5 – There is a general focus on in-situ observations for validation of DustCOMM. 
However, remote sensing observations are developing rapidly and it would be useful for 
the authors to consider whether lidar retrievals, for example, would be usable within the 
DustCOMM framework.  



Remote sensing observations are certainly useful as we continue to develop DustCOMM. 
As we stated in section 4.4, we hope to incorporate more observational constraints within 
DustCOMM framework. For example, to constrain the vertical distribution of the 
atmospheric dust loading, lidar-based retrieval of dust extinction, such as from 
CALIPSO, will be very useful, and it is part of future work.  

We have added a sentence in section 4.4 to further highlight this point. “For instance, a 
next step could be to include constraints on the dust vertical concentration profile over 
every location, in order to more accurately estimate dust deposition, and dust 
concentration at the surface and in 3D. For this, lidar-based retrieval of vertical dust 
extinction profiles from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 
Observations (CALIPSO) can be combined with the corresponding constraints on dust 
mass extinction efficiency from this study to obtain constraints on the dust vertical 
concentration profile.” 

56. P31 – l25-26 – the bias across the full size range should also be stated.  

We have included an additional sentence to address this point. 

“Because DustCOMM underestimates the measurements for D ≤ 0.5µm, it shows a more 
negative bias (~50% more) over the full size range (between D = 0.2 − 20µm), although 
the error is markedly lower (~15 %), when compared to the ensemble of model 
simulations. Overall for D ≥ 0.5µm, DustCOMM shows a bias against measured size 
distributions that is significantly less (about 46% less) than for an ensemble of global 
model simulations.” 

57. Are there any important dust altitude or seasonal changes in DustCOMM vs the models?  

As Fig. 7 suggests, DustCOMM vertical profiles follow the form of the ensemble of 
global model simulations, but the fraction of dust mass in each bin is different from that 
of the model ensemble since the constraints adjust every location and height by the same 
factor. In addition, similar adjustment to the annually-average dust mass fraction between 
DustCOMM and model ensemble is also apparent at the seasonally-averaged timescale. 

We have added a sentence in section 3.1.2.2 to clarify this: “Finally, similar changes in 
the spatial variability of the annually-averaged dust mass fraction are apparent in the 
seasonally-averaged values.” 

58. Discussion/Conclusion - It would be interesting if the authors could comment on bias of 
models vs measurements in previous studies (e.g. Hunneus et al., 2011; Evan et al., 
2014), and similarities/improvements seen in those studies vs DustCOMM and the model 
simulations in this study.  



Since models used in those studies (e.g. AeroCom in Hunneus et al., 2011) are similar to 
those used in our study here, they suffer from similar biases and shortcomings. That is the 
biases in dust properties are associated with biases in dust size distribution, it therefore 
suggest that better constraints on size distribution as done with DustCOMM should 
provide a better estimates of these dust properties. Here in section 4.4, we have added the 
sentences below to highlight this point. 
 
“Furthermore, since recent studies associate much of the biases in dust properties, such as 
the dust aerosol optical depth, deposition fluxes and surface dust concentration, to model 
biases in dust size distribution (Evan et al., 2014; Huneeus et al., 2011), DustCOMM 
estimates can therefore serve as a better alternative. For example, DustCOMM’s 
improved constraints on atmospheric dust loading and dust size distribution could 
contribute to better estimates of size-resolved dust concentration near the surface (e.g. 
Whicker et al., 2018). Over the ocean, such constraints on size-resolved dust 
concentration could potentially be used for constraints on dust deposition fluxes that are 
more accurate than possible from global model simulations.“ 

 

59. AOD reanalyses – do the authors combine these into one single reanalysis dataset 
themselves? This is not really clear.  

Yes, they are combined into one single data and the details of this is given in the (new) 
section 2.2. 

Technical Comments 
 

1. P3 l12 – “The resulting product constrains the climatology of 3-D global atmospheric dust 
properties on seasonal and annual timescales” – change to “The resulting product 
constrains the climatology of 3-D global atmospheric dust properties and is provided on 
seasonal and annual timescales” – to avoid confusion that the authors are constraining the 
temporal variability of dust properties. 

 
Thanks for this comment. We have changed the sentence accordingly. 

 
2. P3 l34-35 – “After correcting...” – unclear – do you mean you combine all models into one 

multi-model representation? 
 
Yes. We have added the word “multi-model” to make it clear 

 
3. P6 l28 – “globally-averaged size distribution” – Kok 2017 or the simulated one? P7 l13 - 

“globally-averaged size distribution” – Kok 2017 or the simulated one?  
 



We meant the Kok et al 2017 or the constrained globally-averaged dust size distribution 
here.  We have changed them to “”constrained globally-averaged dust size distribution”. 
We have also clarified other places where globally-averaged size distribution are 
mentioned. 

 
4. P9 l18 – typo – should be -10 to -4? 

 
Thank you. It is in fact between -10 and 4, but because we realize this can be confusing, 
we have changed this (and others) to be −10	to	4. 

 
5. Eqn 8 – please provide units for epsilon_tau 
 

We have provided unit for this parameter, and others alike. 
 

6. P10 l27 – “atmospheric “column” dust loading”? 
 

Yes. We have included “column”. 
 

7. P14 l25 – change to “...of the in-situ emission measurements..” 
 
Thank you for the comment. The sentence now read “The dust MEE is influenced by the 
uncertainty in the constrained globally-averaged extinction efficiency, which in-turn is 
partially due to uncertainties in the in-situ emission measurements of index of refraction 
and dust particle shapes” 

 
Supplement Comments 

 
1. The supplement contains two Figure S1s. The second should be S3 (?). 

 
This is corrected. Thank you. 
 

2. Section 3.1 – l7-8 – mention that it is the AOD which is assimilated. 
 
Yes. We have done that. The sentence now reads. 

 
“For the first time, meteorological and aerosol observations (which include bias-corrected 
aerosol optical depth from MODIS, AVHRR, MISR – over desserts, and ground-based 
AERONET instruments) are jointly assimilated into MERRA-2…” 
 

3. Section 3.3 - “1.1ox1.1o” typo 
This has been corrected. Now written as 1.1ox1.1o 
 



4. Section 4 – To make this easier to navigate, relate each observational subheading to the 
numbers on fig S3 (map). Also include the campaign name in the heading for each section. 
Take care to state for each subheading whether the campaign was ground-based or 
airborne. Also explain the choice of altitude selection defined in table to where relevant. 
Please also be aware, and state where necessary, that although a large size range may have 
been measured, inlet-size effects may have prevented coarser particles from being 
measured for some campaigns. 
 
Thank you for the comment. We have included in each observational heading the campaign 
name as well as whether only PSD or MEE is taken or both. For cases where PSD are 
taken, we have also included sentences explaining the choice of our representative altitude. 

 
5. Section 4 – a subsection on Kandler et al. (2009), as listed in table 2, is missing. 

 
Thank you for pointing this out. We have included a brief description of Kandler et al 
(2009). 
 

6. Section 4.1 – please make the locations listed consistent with those listed in table 2. 
 

Thank you for the comments. We have corrected where discrepancies occur. 
 

7. Section 4.7 – note that these size distributions were not corrected for refractive index. The 
FSSP was *not* used as it did not operate correctly. Instead the size distribution larger than 
d=3 microns was taken from a sunphotometer retrieval. 
 
Thank you for pointing this out. We have removed the mention of FSSP, and include a 
sentence mentioning that the they did not correct for refractive index. 
 
“The size distributions were not corrected for refractive index because they assumed that 
the refractive index of latex is approximately similar to that of dust.” 
 

8. Section 4.10 – Please note that these studies operated instruments behind significant 
pipework and suffered loss of the majority of coarse particles (e.g. Ryder et al., 2018, Table 
1). 
 
Thank you for pointing this out. We have included a sentence in the section stating that: 
“Because of the aerosol inlet configuration on the aircraft, the measurement of coarse dust 
were particularly problematic.” 
 

9. Section 4.11 – Why is MEE only taken from DODO1 (winter time?). It appears that the 
MEE for DODO1 is taken from table 4 of Osborne et al. (2008), for the ‘AM+CM’ case (a 
value of 0.41). No coarse mode was measured during DODO1 (see McConnell et al., 2008). 



The AM+CM DODO1 case in Osborne et al. (2008) was calculated using the coarse mode 
size distribution from DABEX since none was available from DODO1. This should be 
stated, or preferably the value from DODO2 used, where coarse mode was measured. Why 
is only z<1km used for the DODO2 size distributions? 
 
Thank you for this helpful comment. We have clarified this point in the section. 
 

10. Section 4.12 – is the campaign average size distribution used? 
 
These data are taken from their Fig. 8 which represent the composite size distribution for 
L02 on flight #060519a  and L07 on flight #060604a. We have included an additional 
sentence in this section to clarify this point. 
 

11. Section 4.13 – and also same aircraft as SAMUM1? SAMUM1 also used a high spectral 
resolution lidar. 
 
They used the Falcon aircraft, which was also used in SAMUM-1. We have added this 
information to the section. 
 

12. Section 4.14 – ‘used the same instrumentation...’ – as which paper/campaign? Presumably 
the same as Kandler et al. (2009) which is missing? It is not clear which instruments the 
size distribution comes from – but probably because the 2009 section is missing. 
 
Thank you for pointing this out. Yes, the instrumentations are similar to that from 
SAMUM-1 (Kandler et al., 2009). This detail has been clarified in the section. 

 
13. Section 4.15 – Data from Ryder et al. (2013a – GRL, Canary Islands) is also used in the 

paper (Figure 3) and should be described here. Please take care to specify whether Ryder 
et al. (2013a or 2013b) is being cited – both are given in the references as 2013. 
Comparisons of both can be found in Ryder et al. (2019). “For this study, mean distribution 
from PCASP and CDP were selected because they were the most credible based on the 
authors’ analysis.” – change to ...”based on the authors’ analysis over the size range we use 
here.” MEE is not given in Ryder et al. (2013b - ACP), presumably this is taken from Ryder 
et al. (2013a) (please state). Mean values in Ryder et al. (2013a) are 0.15 for fresh dust or 
0.23 for aged dust – these appear much lower than the value plotted in Figure 8 (around 
0.3). 
 
Thank you for these very helpful comments. We have re-written this section to include the 
descriptions of both Ryder et al. (2013a – GRL) and Ryder et al. (2013b – ACP). Indeed, 
data from both studies were used in this paper. For Ryder et al. (2013a), we obtained the  
dust size distributions as a function of heights, which were generously given to us by the 
first author. For Ryder et al. (2013b), we obtained the campaign averaged dust size 



distribution already published. Appropriate geographical references have also been noted 
both in the supplementary document as well as in the main text and figures. For the MEE, 
we used the averaged values of 0.31+/-0.08 between the reported values for aged dust 
(0.23) and the SAL categories (0.39). 
 

14. Section 4.16 “above the SAL” – I would expect a dust measurement to be taken ‘in’ the 
SAL – is this a typo?  

 
Thank you for pointing this out. It is indeed within the SAL layer. We have made the 
correction accordingly. 
 

15. Section 4.18 – “The AER-D campaign uses similar instrument as the Fennec 2011 
campaign. They use wing-mounted optical particle counters and shadow probes to measure 
dust sizes between 0.1 and 100 μm diameter.” – but additionally this AER-D used cloud 
imaging probes (CIP15 and 2DS) for size distributions at d>10 microns (which were used 
in Fennec but were not mentioned in Section 4.15 as the authors did not use the shadow 
probe data (d>18.5 microns) in this study).  
 
Thank you for the comments. We have included in this section that the imaging probes are 
also used. 

 
  



Reply to reviewer #2 
 
This study presents a new dataset, the Dust Constraints from joint Observational- Modelling-
experiMental analysis (DustCOMM), which combines in-situ measurements, reanalysis products, 
and an ensemble of six global model simulations. Particularly, globally-averaged dust size 
distribution and extinction efficiency from observational and experimental data are used to 
constrain the DustCOMM products. The annual and seasonal mean products of 3-dimensional (3D) 
dust size distribution, 3D dust mass extinction efficiency, and 2D dust loading are provided for the 
time period from 2004 to 2008. It is found the dataset shows a better agreement with measurements 
than the six-model ensemble in terms of dust size distribution and mass extinction efficiency. This 
dataset may be used to constrain dust simulation in global models and to study dust impacts on the 
earth system. The paper is generally well written. The methodology to develop the datasets is 
thoroughly introduced and related uncertainties are also discussed in detail. I have a few comments 
would like the authors to address. 
 
We thank the reviewer for the constructive and helpful comments that helped us to further improve 
the paper.  
 
Major comments: 

1. Here globally-averaged dust size distribution is used to obtain 3D dust size distribution. Is 
it possible to demonstrate that the regional differences in dust size distribution are small? 
Or have you considered using different dust size distribution for different regions, e.g., by 
applying regional averaged values to areas where individual measurements are available 
and the globally-averaged value to areas where measurements are not available? This might 
provide better spatial constraints on the dataset. Similarly, globally-averaged dust 
extinction efficiency at 550 nm is used. How large are the spatial differences? Is it possible 
to give a rough estimation based on available data? 

 
We thank the reviewer for this insightful comment. Assuming globally consistent size 
distributions and extinction efficiency is indeed one of the main assumptions in this paper. 

 
We used globally-averaged dust size distribution and dust extinction efficiency because the 
measurements to constrain these parameters on a regional basis across the different dust-
source regions are currently insufficient. Since North African dust dominates most of the 
global dust emission and many of the measurements used to constrain the globally-
averaged values are associated with the North African dust, constraining the regional dust 
properties with insufficient measurements will likely result in larger uncertainties than 
estimated in this study. Moreover, since our constraints are applied globally, regional 
differences in dust size distribution, for example, are assumed to follow the ensemble of 
the six model simulations.  

 



To better clarify this point in the manuscript, we have added additional sentences to the 
first paragraph of section 4.3: “We used modelling constraints in DustCOMM where 
observational constraints were either not available or insufficient. For example, modelling 
constraints are used for the regional differences in dust size distribution and extinction 
efficiency because the measurements to constrain these parameters on a regional basis 
across the different dust-source regions are currently insufficient. To further reduce the 
uncertainty associated with using modelling constraints, we used an ensemble of six model 
simulations.” 

 
2. As discussed in the paper, dust aerosol optical depth from the reanalyses largely depends 

on the models’ treatment of the dust cycle, and this adds uncertainties to the DustCOMM. 
I wonder if you considered using satellite products of dust optical depth, such as level 3 
dust optical depth from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). 

 
That’s a good suggestion. Although our analysis includes both random and systematic 
errors in dust AOD by incorporating the satellite-based study of Ridley et al. 2016 with the 
ensemble of reanalysis datasets, we agree that the estimate of the dust AOD likely incurs 
additional uncertainties associated with model treatments of dust cycle. However, dust 
extinction retrieval from CALIOP also suffer from several uncertainties, such as weak 
signal-to-noise ratio during daytime versus nighttime retrievals (e.g. Kacenelenbogen et 
al., 2011; Winker et al., 2013)  and erroneous assumption of aerosol extinction-to-
backscatter ratio used in the extinction retrieval (e.g. Omar et al., 2009; Mamouri et al., 
2013; Nisantzi et al., 2015). In addition, it is unclear how the limited spatial coverage of 
CALIOP AOD retrieval affects the climatological estimates. Nonetheless, our plan is that 
future versions of DustCOMM will incorporate extinction profiles from CALIOP in 
estimating the vertical distribution of dust concentration. 

We have added a sentence in section 4.4 to further highlight this point. “For instance, a 
next step could be to include constraints on the dust vertical concentration profile over 
every location, in order to more accurately estimate dust deposition, and dust 
concentration at the surface and in 3D. For this, lidar-based retrieval of vertical dust 
extinction profiles from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 
Observations (CALIPSO) can be combined with the corresponding constraints on dust 
mass extinction efficiency from this study to obtain constraints on dust vertical 
concentration profile.” 

 
3. Sections 4-5 show that the new dataset has a better agreement with in-situ measurements 

than the multi-model mean. I think it is better to add some discussion to emphasize why 
this dataset is a good complement to the currently available observational data, especially 
individual measurements. For instance, the global coverage and vertical distribution of the 



dust size distribution and mass extinction efficiency of the dataset make it easier to be 
adapted to global models to constrain simulations or to study global dust impacts. 
 
 
We discuss these possible uses of DustCOMM in section 4.4 (formerly section 5.4). 
There we discuss how DustCOMM can be used to constrain dust impacts in models, and 
how it can also serve as alternative to global model simulations. 
 

 
Minor comments: 
 

1. Lines 21-23, page 2, this can be a bit misleading since both small are large dust particles 
absorb and scatter shortwave and longwave radiation. 
 
Yes, the result of the combined absorption and scattering (i.e. extinction) is cooling for fine 
dust and warming for coarse dust. For clarity, we now specify that “fine dust 
predominantly cools the climate system by extinguishing shortwave (SW) radiation …” 
 

2. Line 6, page 3, “To address this problem”, not sure the dataset would be able to address 
the “numerous important biases”. You may want to point out a few detailed problems. 
 
Thank you for the comment. Our dataset does address the problem showing significant 
improvement over model simulation, although it does not completely eliminate the biases. 
We have re-written this part as: “To address the problem of size and shape biases in 
models” 
 

3. You may want to add the horizontal and vertical resolutions of the DustCOMM product at 
someplace in Section 2. 
 
Thank you. We have added a sentence in section 2.3 stating “We estimate all 
DustCOMM products at 2.5o X 2.0o horizontal grid with 35 levels that is up to 100 hPa.” 
 

4. Line 17, page 11, what time period does the “climatology” refer to? 
The climatology is between 2004 and 2008. We have added this to the sentence 
 

5. Section 3.1, are all the model results interpolated to the same horizontal and vertical grids? 
And what’s the resolution? 
 
Yes. We stated in the last paragraph of section 2.1 (formerly 3.1) that “…we interpolated 
seasonal and annual climatologies of these dust properties to a common resolution of 
approximately 2.5o by 2.0o spatial resolution, with 35 levels from the surface to 100 hPa" 

 



6. Line 35, page 16, why the JRAero in a different time period is used? It’s not available from 
2004 to 2008? 
Yes. JRAero is only available between 2011-2015. 
 

7. Line 16, page 21, do you refer to Fig. 4 instead of Fig. S4? 
Thanks for the comment. We have deleted the statement in parenthesis because it is no 
longer available in the supplementary document. 
 

8. Line 16-18, page 21, can you please add some discussion about why the DustCOMM has 
a larger bias than model ensemble for D ≤ 0.5 μm? 
 
Thank you for the comment. We discussed this in section 4.1 (formerly 5.1). First, we 
highlighted that “DustCOMM’s underestimation of dust with i ≤ 0.5µj may be caused 
by the contamination of the measured size distributions by other aerosol species for i ≤
0.5µj.” Second, we discussed that “the constraint on the globally-averaged dust size 
distribution could also underestimate the contribution from dust with i ≤ 0.5µj.” 

 
9. Line 19-24, page 23, “...regardless of the season and location”, except Sde Boker, Israel. 

 
Although the statement is true overall, we have removed this part of the sentence. 
 

10. Table 1, please remove “deg” in column four, since you already added a degree symbol 
there. 
Thank you. We have done just that. 
 

11. Figs. 2-3, can you please add latitude, longitude, and location of the measurements on the 
top of each plot? Or you may number the measurements listed in Table 2 and then simply 
list the corresponding numbers in the figure. 
 
Thank you for the comment. We have instead added the names of the campaign listed in 
Table 2 on each plot. 

 
 

12. Fig. 5, is it possible to add a globally averaged PSD and its PDF to the plot? 
Since DustCOMM globally-averaged values are forced to the globally-averaged values 
from Kok et al. 2017, the globally-averaged PSD the reviewer requested is also represented 
by the black lines. 

13. Fig. 6, why is dust mass fraction for D= 0.2-2.5 μm high over the ITCZ? Is this consistent 
with observations?  



Because dust concentration is usually low over the ITCZ region, they are dominated by 
the fine particles. 

14. Fig. 7, it would be more interesting to show individual model results (as in Fig. 5) instead 
of multi-model results. 

Thank you for the comment. We have included the individual model results in Figure 7. 

15. Fig. 8, why do some blue dots have a light blue outline?  

Those are cases with different measurement type as explained in section 2.4 (formerly 
3.3). To avoid confusion, we have removed this from the figure. 
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Abstract. Mineral dust is the most abundant aerosol specie by mass in the atmosphere, and it impacts global climate, 
biogeochemistry, and human health. Understanding these varied impacts on the Earth system requires accurate 

knowledge of dust abundance, size, and optical properties, and how they vary in space and time. However, current 
global models show substantial biases against measurements of these dust properties. For instance, recent studies 15 
suggest that atmospheric dust is substantially coarser and more aspherical than accounted for in models, leading to 
persistent biases in modelled impacts of dust on the Earth system. Here, we facilitate more accurate constraints on 
dust impacts by developing a new dataset: Dust Constraints from joint Observational-Modelling-experiMental 

analysis (DustCOMM). This dataset combines an ensemble of global model simulations with observational and 
experimental constraints on dust size distribution and shape to obtain more accurate constraints on three-dimensional 20 
(3-D) atmospheric dust properties than is possible from global model simulations alone. Specifically, we present 
annual and seasonal climatologies of the 3-D dust size distribution, 3-D dust mass extinction efficiency at 550 nm, 
and two-dimensional atmospheric dust loading. Comparisons with independent measurements taken over several 

locations, heights, and seasons show that DustCOMM estimates consistently outperform conventional global model 
simulations. In particular, DustCOMM achieves a substantial reduction in the bias relative to measured dust size 25 
distributions in the 0.5-20 µm diameter range. Furthermore, DustCOMM reproduces measurements of dust mass 
extinction efficiency to almost within the experimental uncertainties, whereas global models generally overestimate 

the mass extinction efficiency. DustCOMM thus provides more accurate constraints on 3-D dust properties, and as 
such, can be used to improve global models or serve as an alternative to global model simulations in constraining dust 
impacts on the Earth system. 30 

1. Introduction 

Even though mineral dust accounts for a substantial fraction of the total mass of aerosol particles in the atmosphere 

and produces important impacts on the Earth system, global models are unable to accurately reproduce dust 
abundance, size, and optical properties (Kinne et al., 2006; Huneeus et al., 2011). Model difficulties in reproducing 
these atmospheric dust properties are largely associated with their inability to accurately simulate important dust 35 
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processes, such as dust emission, transport, and deposition (e.g. Ginoux et al., 2001; Shao, 2001; Zender et al., 2003; 
Huneeus et al., 2011; Kok et al., 2017). Dust aerosols are emitted from source regions such as the Sahara, the Middle-
East, and Asian deserts, and are deposited after they are transported for thousands of kilometres (Duce et al., 1980; 

Prospero et al., 1981; Weinzierl et al., 2017). Their abundance and long-range transport allow them to play a significant 
role in the processes that impact global climate (Boucher et al., 2013), biogeochemistry (e.g. Mahowald et al., 2008, 5 
2009; Ito et al., 2019), and human health (e.g. Giannadaki et al., 2014). Specifically, dust affects global climate directly 
by influencing the amount of radiation that can reach or leave the atmosphere and the surface (Haywood et al., 2003; 
Kok et al., 2017), or indirectly by changing the amount, reflectivity and lifetime of clouds (e.g. Lohmann & Diehl, 

2006; Doherty & Evan, 2014; Amiri-Farahani et al., 2017). In addition, dust also impacts global biogeochemistry 
through deposition of iron and phosphorous-rich micro-nutrients (Mahowald et al., 2008; 2009; Ito et al., 2019), both 10 
of which are linked to the ability of ocean and land ecosystems to absorb atmospheric carbon dioxide (e.g. Watson et 
al., 2000; Blain et al., 2007). Finally, dust particles are easily inhaled by humans, with smaller dust particles 

penetrating deep into the lungs and leading to cardiopulmonary disease, lung cancer, and eventually death (e.g. 
Giannadaki et al., 2014). Therefore, obtaining accurate constraints on the many impacts of dust on the Earth system 
requires accurate knowledge of the sizes, abundance, and optical properties of atmospheric dust particles (Mahowald 15 
et al., 2014). 
 

Uncertainties in dust aerosol properties directly translate into uncertainties in estimating their impact on the Earth 
system, such as dust radiative impacts (e.g. Huneeus et al., 2011; Zhao et al., 2013; Albani et al., 2014). Several studies 
have associated a large part of these uncertainties to the uncertainty in simulating the dust size distributions (e.g. 20 
Huneeus et al., 2011; Kok, 2011; Evan et al., 2014). Specifically, global models simulate too much fine-mode dust 

(~	# ≤ 	2.5	µ) ) and too little coarse-mode dust (~	# ≥ 	5	µ) ), both at emission and during transport in the 

atmosphere (e.g. Kok 2011; Kok et al., 2017). This bias is particularly problematic because fine dust predominantly 
cools the climate system by extinguishing shortwave (SW) radiation, whereas coarse dust warms it by also 
extinguishing longwave (LW) radiation  (e.g. Tegen & Lacis, 1996; Dufresne et al., 2002). Whereas previous 25 
modelling studies affected by the size bias found that the combined (SW+LW) effect of dust is to cool the climate 

system (e.g. Tegen & Lacis, 1996; Tegen et al., 1996; Colarco et al., 2014), it is unclear whether the dust LW warming 
effect may overcome the dust SW cooling effect when the underestimation of coarse-mode particles is corrected (Kok 
et al., 2017). Since the dust radiative effect is sensitive to the representation of size distribution in global models, 
constraining the dust size distribution, and how it varies spatially, is thus important. 30 
 

In addition to the sensitivity of dust size distribution, dust radiative effects are also sensitive to the shape of dust 
particles (e.g. Kalashnikova & Sokolik, 2004). Global models generally assume that dust particles are spherical 
(Ginoux et al., 2001; Miller et al., 2006; Huneeus et al., 2011), even though observations suggest that they are highly 
non-spherical (Okada et al., 2001; Potenza et al., 2016). This idealization in the representation of dust shape in global 35 

models is used to simplify model physics (e.g. Miller et al., 2006) and the calculation of their optical properties, but 
recent studies show that neglecting the asphericity of dust in models causes an underestimation of about 30% of dust 
aerosol optical depth (AOD) or extinction produced per unit mass of dust (Potenza et al., 2016; Kok et al., 2017). This 
is largely caused by the greater surface-to-volume ratio of non-spherical particles, compared to that of equal-volume 
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spherical particles (e.g. Kalashnikova & Sokolik, 2002, 2004). The assumption of spherical dust in climate models is 
also problematic because the resulting underestimation of dust AOD largely masks the positive bias associated with 
the fine dust particles in models, which results in an overestimation of dust AOD and extinction at remote regions 

when the dust emissions are scaled to match the observation of AOD near the source regions (e.g. Kok et al., 2017). 
Hence, to properly constrain dust impacts on radiation, observational constraints must be applied to both the dust size 5 
distribution and dust shape.  
 
Global model simulations of the global dust cycle are thus subject to numerous important biases, which have obscured 

a detailed understanding of the impacts of dust on the Earth system. To address the problem of size and shape biases 
in model simulation of dust properties, we propose a methodology to more accurately obtain 3-D dust properties than 10 
is possible from global model simulations alone. Specifically, we propose a new product called the Dust Constraints 
from joint Observational-Modelling-experiMental analysis (DustCOMM), which combines an ensemble of global 

model simulations with observational and experimental constraints on dust size distribution and shape. DustCOMM 
builds on the results from Kok et al. (2017), however, unlike the globally-averaged results obtained in Kok et al. 
(2017), our product constrains the climatology of 3-D global atmospheric dust properties and it is provided on seasonal 15 
and annual timescales. Below, section 2 describes the details of the methodology, as well as the data used. In section 
3, we present the constrained spatial distribution of the dust size distribution, mass extinction efficiency and the 

atmospheric dust loading, which we evaluate using independent in-situ measurements of dust size distributions and 
mass extinction efficiencies. Section 4 discusses some discrepancies between DustCOMM and measurements, the 
impact of dust asphericity on the DustCOMM product, and the possible use of DustCOMM to improve estimates of 20 
dust impacts in the global model simulations. Section 5 summarizes the paper. Finally, we note that all the DustCOMM 
dust aerosol properties (dark shaded boxes in Fig. 1) presented in this study are publicly available (Adebiyi et al., 

2019a). 

2. Data and Methodology 

We describe here all the steps we took to obtain the DustCOMM products. First, we use three sets of input datasets to 25 
create the DustCOMM products (Fig. 1): (1) the constrained globally-averaged data from Kok et al., (2017); (2) six 
model simulations of size-resolved dust mass concentrations, from which we estimate the modelled dust size 

distribution; and (3) reanalysis datasets of the dust aerosol optical depth. We focus here only on describing the model 
simulations (section 2.1) and the reanalysis products (section 2.2), as details of the in-situ measurements used to 
constrain the globally-averaged datasets are described in Kok et al., (2017). Second, we describe the framework used 30 
to obtain DustCOMM dust size distribution, mass extinction efficiency, and atmospheric dust loading (section 2.3). 

Finally, we describe the independent measurements we use to evaluate DustCOMM dust size distribution and the dust 
mass extinction efficiency in section 2.4. 
 
2.1 Model Simulations 35 
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We use model outputs of dust aerosol properties from six leading atmospheric global models, namely: the Goddard 
Institute for Space Studies (GISS) ModelE atmospheric general circulation model (Miller et al., 2006); the Weather 
Research and Forecasting model coupled with Chemistry updated by the University of Science and Technology of 

China (USTC) suitable for quasi-global simulation (WRF-Chem; Zhao et al., 2010, 2013; Hu et al., 2016); the 
Community Earth System Model (CESM; Hurrell et al., 2013); the Goddard Earth Observing System coupled with 5 
Chemistry (GEOS-Chem; See Kok et al., 2017); the ARPEGE-Climat model from the Centre National de Recherches 
Météorologiques Earth system model (Michou et al., 2015); and the Integrated Massively Parallel Atmospheric 
Chemical Transport (IMPACT; Ito & Kok, 2017 and references therein) model. We use the different simulations from 

global climate and chemical transport models between 2004-2008 (except for WRF-Chem and IMPACT which are 
2007-2016 and 2004 respectively) to capture the general model uncertainties that are associated with the dust emission, 10 
transport, and deposition processes. The GISS, CESM and GEOS-Chem model simulations are described in Kok et 
al. (2017) and the references therein (see section 5 of their supplementary document). Here, we supplement these 

simulations with three additional simulations from the WRF-Chem, ARPEGE-Climat and IMPACT models. The 
WRF-Chem model simulation represents an updated USTC version of the one used in Kok et al. (2017). Further details 
of these three additional model simulations are thus given in the supplementary document. 15 
 
We obtain the spatially-varying dust size distribution from each of the six model simulations, which we use to define 

the spatial variability of the DustCOMM dust size distribution (see Section 2.3.1). Specifically, the spatial variability 
of DustCOMM dust size distribution follows the ensemble of the six model simulations. We summarize the particle 
bin ranges, time periods, spatial resolutions, as well as the meteorology used for each model simulation of the dust 20 
size distribution in Table 1. All the models use discrete bins that represent the dust particles up to about 10 µm, except 
for the GISS, ARPEGE-Climat, and IMPACT models, which extend beyond the 10µm diameter limit. Four of the 

models – WRF-Chem, CESM, ARPEGE-Climat, and IMPACT – have a lower diameter limit smaller than 0.2µm. For 
consistency, we set the lower diameter limits for all the model simulations to the common diameter of 0.2µm, and 
correct the upper diameter limit to 20µm, following the procedures we describe later in section 2.3.1.1. In addition, 25 
since the time periods are different for the available model dataset (Table 1), we focus on annual and seasonal 

climatologies, which we obtain here from the monthly means of the model outputs.  
 
In order to test our hypothesis that integrating experimental and observational constraints on dust size and shape 
distributions can constrain 3-D dust properties more accurately than possible from model simulations alone, we obtain 30 
a model ensemble of 3-D dust size distribution and mass extinction efficiency and 2-D dust column loading. To do 

so, we interpolated seasonal and annual climatologies of these dust properties to a common resolution of 
approximately 2.5o by 2.0o spatial resolution, with 35 levels from the surface to 100 hPa. In addition, we correct each 
modelled dust size distribution to a common particle bin spacing between 0.2-20µm by assuming a power-law 
distribution between nearby model particle bins. After putting all the model simulations on the same footing in this 35 
manner, we thus represent the ensemble of the model dust size distribution with the mean, standard deviation and 

range (minimum-maximum value), as a function of particle sizes, horizontal locations, heights, and seasons. Where 
necessary, the 95% confidence interval of the model ensemble is estimated as 1.96 times the standard error (e.g. 
Altman & Bland, 2005). We also perform a similar aggregation and interpolation procedure on the modelled dust 
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aerosol optical depth and column-integrated atmospheric dust loading, which are used to calculate the column-
integrated dust mass extinction efficiency (MEE) for each model and thus for the model ensemble.  
 

2.2 Reanalysis Dust Aerosol Optical Depth 
 5 
We obtain the dust aerosol optical depth from four reanalysis products to constrain the atmospheric dust loading for 
DustCOMM (see section 2.3.3). These four reanalysis products are: the Modern-Era Retrospective analysis for 
Research and Applications, Version 2 (MERRA-2; Gelaro et al., 2017); the Navy Aerosol Analysis and Prediction 

System (NAAPS; Lynch et al., 2016); the Japanese Reanalysis for Aerosol (JRAero; Yumimoto et al., 2017); and the 
Copernicus Atmosphere Monitoring Service (CAMS) interim Reanalysis (CAMSiRA; Flemming et al., 2017). While 10 
the description of each reanalysis product can be found in the supplementary documents, we give a general overview 
in this section. 

 
A key advantage of these reanalysis products is that they assimilate data from several observing systems, and thus 
provide a complete spatial and temporal coverage of atmospheric composition that captures its variabilities and trends 15 
(Buchard et al., 2017). Most of these four reanalysis products assimilate similar satellite and ground-based 
observations of AOD, which includes data from at least one or all of the following observing systems: the Terra and 

Aqua satellites of MODerate resolution Imaging SpectroRadiometer (MODIS), the Advanced Very High Resolution 
Radiometer (AVHRR), the Multi-angle Imaging SpectroRadiometer (MISR), as well as ground-based observation of 
AOD from several Aerosol Robotic Network (AERONET) stations (Lynch et al., 2016; Flemming et al., 2017; Gelaro 20 
et al., 2017; Yumimoto et al., 2017). In addition, some reanalysis products also assimilate other aerosol constituents 
and reactive gases, like carbon monoxide and ozone observations from the Measurements Of Pollution In The 

Troposphere (MOPITT) instrument on the Terra Satellite, Solar Backscatter Ultraviolet (SBUV/2) instruments (from 
various National Oceanic and Atmospheric Administration (NOAA) platforms), and Microwave Limb Sounder (MLS) 
ozone profiles (e.g. Flemming et al., 2017). These observations are mostly bias-corrected before they are assimilated 25 
through radiatively-coupled aerosol models, and used to constrain the different species that constitute the aerosol 

particles in the atmosphere.  
 
Although the total AOD is constrained, errors in each reanalysis model’s treatment of emission, transport, and 
deposition of mineral dust introduce uncertainties. Dust emission and deposition in the assimilation procedure are 30 
either modelled or sometimes constrained by observations. For example, the dust emission for NAAPS is constrained 

by using a regional source tuning that is, in turn, constrained by space-based and ground-based AOD observations 
(Lynch et al., 2016). Other reanalysis products use dust emissions that are parameterized and model-dependent (e.g. 
Yumimoto et al., 2017). In general, wet deposition is partially constrained by the assimilated global satellite-based 
precipitation information, such as from the NOAA Climate Prediction Center MORPHing technique data (CMORPH). 35 
Dry deposition is still mostly model dependent, but may also be adjusted based on assimilated AOD. For all the 

reanalysis products, aerosol transport in the atmosphere is constrained by the assimilation of several meteorological 
observations of winds and temperature. Hence, in order to constrain the dust AOD, the assimilation procedure takes 
advantage of the best features in both the observations and model simulations. 



 6 

 
Similar to our treatment of the model simulations described in section 2.1 above, we use annual and seasonal 
climatologies of dust AOD obtained from monthly averages of the reanalysis products. We use the reanalysis dust 

AOD from 2004-2008 for each reanalysis product except for JRAero, for which we use 2011-2015. In order to 
combine the different reanalysis dust AOD products, we interpolate each product to approximately 2.5o by 2.0o spatial 5 
resolution and estimate the ensemble mean and standard error over each location (see section 2.3.3). 

2.3 Constraining DustCOMM Products 

Our aim is to create a new product – DustCOMM – that constrains the spatial variability of three major properties of 

atmospheric dust which determine many of its impacts on the Earth system, namely (1) the atmospheric dust size 
distribution, (2) the dust mass extinction efficiency, and (3) the column-integrated atmospheric dust loading. We do 10 
so by combining observational, experimental and theoretical constraints on dust properties and abundance with global 
model simulations of the size-resolved spatially-varying dust concentration (Fig. 1). After we present a general 
overview of the methodology here, we describe the details of the methodology and the calculation of the associated 

uncertainty estimates in the following sub-sections. 
 15 
We obtain the first constrained product in our dust climatology, the dust size distribution, by bias correcting the six 
global model simulations (see section 2.3.1; left panel of Fig. 1). Specifically, we bias correct these model simulations 

using the constraint on the globally-averaged dust size distribution from Kok et al. (2017), which was obtained from 
measurements of the emitted dust size distribution and model simulations of the globally-averaged dust lifetime. 
Model simulations of the size-resolved dust lifetimes were used because this cannot be readily constrained with 20 
observations or measurements. Similarly, we use the constraints on the globally-averaged size distribution from Kok 
et al. (2017) to correct modelled size distributions because dust size distribution measurements are insufficient to 

constrain the dust size distribution for every location. After correcting the model simulations of the dust size 
distribution, we combine them into a single multi-model constraint on the 3-D dust size distribution. To do this, we 
estimate the sub-bin distributions by fitting the dust size distribution after the bias correction with a generalized 25 
analytical function based on brittle fragmentation theory (Kok, 2011). We then use the resulting distributions from the 
multiple models to obtain a constraint on the atmospheric dust size distribution, for each horizontal location and height 

level. 
 
We use these constrained size distributions to obtain our second product, namely the size-integrated 3-D dust mass 30 
extinction efficiency (section 2.3.2; middle panel in Fig. 1). Specifically, we combine the constrained 3-D dust size 

distribution with the constraint on the size-resolved globally-averaged single-particle dust extinction efficiency at 550 
nm obtained from Kok et al. (2017). This size-resolved single-particle dust extinction efficiency leverages 
measurements of dust index of refraction and also accounts for the non-spherical shape of dust particles. As we did 
for the size distribution, we use the globally-averaged dust extinction efficiency here because measurements of dust 35 
shapes and index of refraction are currently insufficient to constrain this for every location. As with the size 

distribution, we also constrain the mass extinction efficiency over each horizontal location and height level. 



 7 

 
We obtain our third product – the column-integrated atmospheric dust loading – by combining the constraint on dust 
mass extinction efficiency with dust aerosol optical depth from multiple reanalysis products (section 2.3.3; right panel 

in Fig. 1). Using four state-of-the-art reanalysis products (see section 2.2), we calculate the ensemble average of dust 
aerosol optical depth, accounting for systematic and random errors. We propagate the errors in the dust mass extinction 5 
efficiency and dust aerosol optical depth to obtain the mean and the uncertainty of the column-integrated atmospheric 
dust loading over each horizontal location. 
 

We estimate all DustCOMM products at a horizontal resolution of 2.5o X 1.9o with 35 levels that is up to 100 hPa. 
 10 
2.3.1 Constraining the 3-D atmospheric dust size distribution. 
 

We constrain the spatially-varying atmospheric dust size distributions by combining constraints on the globally-
averaged dust size distribution with an ensemble of simulations of the 3-D spatial variability of the dust size 

distribution (Fig. 1). We obtain the globally-averaged atmospheric size distribution, +,-
.(0)

,0
2
3

, from Kok et al. (2017; 15 

see their Fig. 2a), which was obtained by combining constraints on the size distribution of emitted dust particles with 
simulations of the size-resolved dust lifetime. While details can be found in Kok et al. (2017), a summary of their 
globally-averaged size distribution is given here as:  

4
567(#)
5#

8
3

= 	 4
567:;<=(#)

5#
8
3

∙ 4
?@(#)

?@A
8
3

	 (1) 

where the long-square parentheses [ ]3 indicate quantities that are globally averaged, quantities with  .  accents are 20 

partially constrained by observations, and quantities with E  accents are obtained from model simulations. As reported 

in Kok et al. (2017; hereafter referred to as K17), the constrained globally-averaged size distribution of emitted dust 

particles, +,-
.FGHI(0)

,0
2
3
, is based on an analysis of different measurements of the emitted dust size distribution, while 

the size-resolved globally-averaged dust lifetime, [?@(#)]3, is based on an ensemble of global model simulations; K?@AL
3

 

is the mass-weighted mean of [?@(#)]3. The constrained K17 globally-averaged size distribution is normalized such 25 

that ∫ +,-
.(0)

,0
2
3
5# = 10GNO

P . Where #;QR represents the maximum geometric diameter above which the contribution 

to extinction is negligible (#;QR = 20µ), see section 2.3.1.1). 

 

We use this constrained K17 globally-averaged atmospheric dust size distribution (Eqn. 1) to bias-correct our 
spatially-varying model simulations of the annually-averaged dust size distribution. This is necessary because models 30 
generally under-estimate coarse dust particles, largely because they assume too much fine dust in the emitted dust size 
distribution (Kok, 2011). We thus force the annually-averaged, globally-averaged dust size distribution of each 
simulation in our ensemble to match the K17 constraint on the globally-averaged size distribution (see supplement 

Fig. S-1). Specifically, we first calculate the factor needed to correct each particle bin of a model’s simulated 3-D size 

distribution. This correction factor (T) is estimated as the ratio of the K17 constraint on the fractional contribution of 35 
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the particle bin to the simulated fractional contribution of the particle bin per unit global dust loading. For location 
and height, we thus multiply the simulated dust size distribution with the correction factor, such that: 

UVW,XYZ, [, \, #W,X] = ÛW,XYZ, [, \, #W,X] ∙ TW,X (2)

_ℎaba			TW,X =
∫ c56

7(#)
5# d

3

0e,fg
0e,fh

5#

	+ÛW̅,X(#W,X)2
3

 

The annually-averaged 3-D distribution of the dust size distribution for each particle bin j simulated by model k is 

ÛW,XYZ, [, \, #W,X] , and the corresponding simulated globally-averaged dust mass fraction is +ÛW̅,X(#W,X)2
3

; Z  is the 5 

dimension for longitude, [  is for latitude and \  is for height. Further, the numerator, ∫ +,-
.(0)

,0
2
3

0e,fg
0e,fh

5# , is the 

constraint obtained from Kok et al. (2017), while #W,Xl and #W,Xm respectively denote the lower and upper geometric 

diameter limits of particle bin j	of model k, and j = 1, 2, … ,oW with oW as the total number of dust particle bins for a 

given model simulation k. From Eqn. 2, we derive the resulting corrected spatially-varying dust size distribution, 

UVW,XYZ, [, \, #W,X] that is normalized such that the discrete sum over each location and height equals unity, that is: 10 

∑ UVW,XYZ, [, \, #W,X]
qe
Xrse

= 1.  

 
Each model simulation in the ensemble has a particle size range and spacing that differs from other models (see Table 

1 and section 2.1 for details). In order to combine the corrected size distributions from the different models into a 
single estimate, and to quantify the uncertainty across the different models, each corrected size distribution must be 15 
in a consistent size range and spacing with other models. We therefore process the corrected size distributions over a 
given location as follows: (1) we correct and scale each model’s lower and upper diameter limits to the common 

diameter range of 0.2 – 20 µm (see section 2.3.1.1); and (2) we estimate the sub-bin distribution for each model’s 
bias-corrected size distribution by fitting a generalized analytical function, extending the Kok et al, (2017) theoretical 
expression of dust size distribution to the 3-D dataset (see section 2.3.1.2). 20 
 
2.3.1.1 Correcting model simulations to a common diameter range 

 
For all simulations in the model ensemble, we set the lower and upper diameter limits to common limits defined by 

#;<t = 0.2	µ) and #;QR = 20	µ), respectively. The lower diameter limit (#;<t) is based on the lowest common 25 

diameter included in all the model simulations used in our analysis (Table 1). In addition, possible contaminations by 

other aerosol species are significantly more likely below 0.2	µ) in measurements of dust aerosol particles (e.g. 

Dubovik et al., 2000). For these reasons, we set the lower diameter limit to #;<t = 0.2µ), consistent with previous 

studies (e.g. Mahowald et al., 2014, Kok et al., 2017). Further, we set the upper diameter limit to #;QR = 20	µ), 

because most global models generally do not incorporate dust particles beyond 20 µm and also because the 30 

observational constraints on the size distribution from Kok et al. (2017) is limited to this maximum diameter. Although 

advances in airborne observations in recent years have led to measurements of larger dust particles with #	 > 	#vwx 

in the atmosphere which has shown that the contribution of  #	 > 	20	µ) to shortwave and longwave extinctions are 
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non-negligible (e.g. Ryder et al., 2013b, 2019; Weinzierl et al., 2009, 2017), there is still a scarcity of these 

measurements, such that an observational constraint on dust particles with #	 > 	#vwx   would be very uncertain (e.g. 

Mahowald et al., 2014). 

 

To correct each model simulation to the common diameter range of [#;<t, #;QR], we first create a new particle bin 5 

for the lower and/or upper diameter limit, and then we use the K17 constraints on the globally-averaged size 
distribution (Eqn. 1) to estimate the equivalent fraction of dust mass in that bin. This dust mass fraction is estimated 

in a way that is consistent with the size distribution obtained earlier from Eqn. 2. Specifically, for simulations with a 

lower diameter limit (#W,sel) less than #;<t, we estimate the equivalent dust mass fraction for the bin between #;<t 

and #W,sem (where #W,sem is the upper diameter limit of bin 1; such that #W,sem > #;<t	) by scaling the mass in the 10 

nearest bin with a factor that depends on the globally-averaged size distribution. For instance, the first particle bin of 

the CESM model (Table 1) has a range of K#W,sel, #W,semL = 0.1 − 1.0	µm,	such that we create a new particle bin 

defined by K#;<t, #W,semL = 0.2 − 1.0	µm, and estimate the equivalent dust mass fraction in that new bin. For all 

model simulations, we can denote this procedure mathematically as: 

UVWYZ, [, \, K#;<t, #W,semL] 	= 	UVWYZ, [, \, K#W,sel, #W,semL] ∙ {0GH|
(3) 15 

_ℎaba					{0GH| =
∫ c56

7(#)
5# d

3
5#0e,~eg

0GH|

∫ c56
7(#)
5# d

3
5#0e,~eg

0e,~eh

 

The modelled dust size distribution is relatively invariant for fine particles because of the consistent emitted dust size 

distribution (Kok, 2011a & b), and because removal processes for fine dust (wet deposition) do not strongly depend 

on particle size (e.g. Zender et al., 2003). Therefore, we simply estimate {0GH| in Eqn. 3 as the ratio between the 

fractional values of the K17 globally-averaged size distribution in the desired new bin [#;<t, #W,sem] and in the 20 

model’s original bin [#W,sel, #W,sem]. 

 

We also create a new bin with the upper diameter equal to #;QR	for model simulations with an upper diameter limit 

(#W,qem) that differs from #;QR. We do so by scaling the nearest bin by a factor ({0GNO) that also depends, in part, on 

the constrained K17 globally-averaged size distribution. Because the main removal process for large dust particles 25 

(# > 10µ)) is dry deposition, which depends strongly on particle size, the relative contribution to the size distribution 

of different particle bins of large particles has substantial spatial variability. To account for this, we use simulations 

of bins with # > #W,qem from other model simulations in order to estimate what model k would have predicted for a 

hypothetical K#W,qem, #;QRL particle bin. That is: 

UVWYZ, [, \, K#W,qem, #;QRL] 	= 	UVWYZ, [, \, K#W,qel, #W,qemL] ∙ {0GNO
(Z, [, \) (4Ä) 30 

_ℎaba					{0GNO(Z, [, \) =
∫ c56

7(#)
5# d

3
5#0GNO

0e,Åeg

∫ c56
7(#)
5# d

3
5#0e,Åeg

0e,Åeh

∙ ÇÉ(Z, [, \) 
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The factor ÇÉ thus quantifies the ratio of the mass fractions between the model’s largest particle bin (K#W,qel, #W,qemL) 

and the newly created particle bin to extend the simulation to #;QR = 	20	µ) (K#W,qem, #;QRL), as estimated from the 

GISS and ARPEGE-Climat simulations, which have particle bins extending to #;QR (Table 1). We denote these latter 

model simulations with a subscript b for the purpose of clarity, and to separate them from the model simulation that 

is being adjusted to the [#;<t, #;QR] size range, which is denoted by a subscript k in Eqn. 4a above. We thus estimate 5 

ÇÉ as: 

ÇÉ(Z, [, \) = 	
UVÉYZ, [, \, K#É,qÑl, #É,qÑmL	]

∫ c56
7(#)
5# d

3
5#0Ñ,ÅÑg

0Ñ,ÅÑh

UVÉYZ, [, \, K#É,ÖÑl, #É,ÖÑmL	]

∫ c56
7(#)
5# d

3
5#0Ñ,ÜÑg

0Ñ,ÜÑh

á 	 (4à) 

Where K#É,qÑl, #É,qÑmL is the bin in model b	with dust mass that overlaps in size with the new bin K#W,qem, #;QRL	we 

want to estimate for model k; and K#É,ÖÑl, #É,ÖÑmL is the bin that similarly overlaps with K#W,qel, #W,qemL. To account 

for the bin-range mismatch between the model simulation that resolved dust up to #;QR (with subscript b) and the 10 

model simulation being adjusted to the dust size range up to #;QR (with subscript k), we normalize each bin mass 

fraction by its contribution to the constrained K17 globally-averaged size distribution. For cases where model b is the 

same as model k (i.e. for GISS and ARPEGE-Climat), ÇÉ  reduces to one everywhere. It should be noted that the 

correction of Eqn. 4 takes into account the potential difference in the dust deposition between models k and r, by 

considering the differences in the spatial variability of dust loading between similar bins of K#W,qel, #W,qemL and 15 

K#É,ÖÑl, #É,ÖÑmL. After the dust mass fractions are corrected, they are re-normalized such that the discrete sum between 

#;<t and #;QR equals unity over each location and height. 

 
This procedure described above (Eqns. 3-4) can be used to correct either the original modelled dust size distribution 
(section 2.1), or the bias-corrected modelled dust size distribution of Eqn. 2.  20 

 
2.3.1.2 Estimating the sub-bin distribution of the dust size distribution 
 

After setting the corrected dust size distribution from each model to a common diameter range, [#;<t, #;QR], we next 

estimate the sub-bin distribution in order to combine estimates from different models into one dust size distribution 25 

product. To do this, we fit a generalized theoretical function of the dust size distribution to the estimated bias-corrected 
dust size distribution from each model over each location and height level (Eqn. 2). Although fitting lognormal modes 
are appropriate for several other aerosol species, Mahowald et al., (2014) highlighted that dust size distributions are 
usually not lognormal and are thus better characterized by a generalized function based on mechanistic understanding 
of dust emission and deposition processes. Therefore, we describe in this section the generalized function and the 30 

fitting procedure used to constrain the dust size distributions.  
 
We define the generalized function for the atmospheric size distribution by considering the theoretical expressions 
that characterize the processes affecting the dust size distribution. The degree of the impact of any of these processes 

on the dust size distribution will depend on the location. For example, the impact of emission processes on the shape 35 
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of the dust size distribution is expected to be large close to major dust source regions but less farther from source 
regions. Furthermore, farther from dust source regions, deposition processes are expected to have more impact on the 
size distribution. We therefore assume that the atmospheric size distribution over any location is proportional to the 

dust size distribution at emission,	,-âäfã(0)

,0
, the size-resolved dust lifetime in the atmosphere, ?(#), and any other 

changes to the dust particle size distribution during transport, A(D) (e.g. Weinzierl et al., 2009; Schladitz et al., 2011; 5 

Kok et al., 2017). That is: 
56wév(#)

5#
∝	
56êvXé(#)

5#
∙ ?(#) ∙ ë(#) (5Ä)	 

For the dust size distribution at emission, Kok (2011) suggested that ,-âäfã(0)

,0
 can be represented by a simple 

theoretical expression based on brittle fragmentation theory, which shows good agreement with measurements (e.g. 

Mahowald et al., 2014; Rosenberg et al., 2014). To better represent the variability in dust emission affecting the 10 
emitted size distribution in the different simulations, here we generalize this expression such that: 

56êvXé(#)
5#

=
1
íì
∙ î1 + erfô

ln ú##ì
ù

√2 ln(üì)
†° ∙ a

clú0¢ù
£
d
	 (5à) 

Where #ì and üì are respectively the geometric median diameter by volume and the geometric standard deviation of 

a typical desert soil, § denotes the propagation distance of main cracks in dust aggregates during fragmentation, T is 

a tunable parameter primarily affecting the large dust particles, and íì is a normalization constant.  15 

 
The second term in our generalized dust size distribution describes the size-resolved dust lifetime, which global model 
results compiled in Kok et al. (2017) suggest can analytically be approximated as an exponential function of particle 

diameter, such that:  

?(#) ≅ ?P ∙ a
lú0¶ù	 (5ß) 20 

Where ?P  is a constant associated with the lifetime for vanishingly small dust particles, which is determined by 

depositional processes, and ® is a constant that scales the exponential decay of the dust lifetime with particle size. This 

exponential decay of dust lifetime with size is caused by the increase of the gravitational settling speed with particle 
size (e.g. van der Does et al., 2016, 2018).  
 25 
Finally, we account for other changes to the dust size distribution during transport, by assuming that such changes are 

likely described by power-law distribution (e.g. Seinfeld & Pandis, 2016). Maring et al. (2003) highlighted that 
between emission and deposition, changes in dust size distribution can not be accounted for by simple preferential 
removal of dust particles by gravitational settling. Since such changes in the dust size distribution are difficult to 

account for, we represent them with a parameter that can affect the entire size range. In addition, ?(#) and ,-âäfã(0)

,0
 30 

represent expressions that describe the globally-averaged size distributions, and applying them to a specific location 
requires additional parameter that captures the loss rate as a function of location. To represent all other changes to the 

dust size distribution between emission and deposition, we thus define: 

ë(#) ∝ 	#© (55) 
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Combining Eqns. 5b—5d, we obtain:  

56wév(#)
5#

=
1
íì
î1 + erf ô

ln ú##™
ù

√2 ln(ü™)
†° a

clú0¢ù
£
d
∙ ?Pa

lú0¶ù ∙ #©	 (5a) 

We combine the two exponential terms in Eqn. 5e in order to reduce the number of fitting parameters. It is worth 

noting that both parameters ® and § are sensitive to the larger particles, as they remain highly uncertain and poorly 

constrained by observation (e.g. Mahowald et al., 2014). The parameter	§ depends on the soil moisture, mineralogy 5 

and other processes (e.g. Mahowald et al., 2014; Rosenberg et al., 2014; Kok et al., 2017), while the parameter ® 

depends on the dust wet and dry deposition rates, as the dust particles are transported away from the source (e.g. Han 

& Zender, 2010; van der Does et al., 2016). To combine them, we define Λ to account for the uncertainty in the 

atmospheric large-size dust particles over every location. The generalized theoretical function for atmospheric size 
distribution therefore becomes: 10 

56wév(#)
5#

=
1
íì∗
∙ î1 + erfô

ln ú##™
ù

√2 ln(ü™)
†° ∙ a

clú0≠ù
£
d
∙ #© (6) 

where íì∗ is a new normalization constant that is obtained from requiring that the integral over Eqn. (6) from #vXØ to 

#vwx yields unity. 

 
To determine the parameters in Eqn. 6 for each height, horizontal location, season, and model simulation, we fit the 15 

generalized size distribution of Eqn. 6 to the corresponding corrected dust size distribution from Eqn. 2 above. To do 

this, we minimize the chi-squared (∞W±) value for each height, location, and for each model k, such that: 

∞W± =≤≥log∂∑
56wév
5#

5#
0e,fg

0e,fh

∏ − logYUVW,X]π

±qe

X

	 (7) 

In each case, we estimate the constrained dust size distribution,	,-
.NIG
,0

(x, y, z), based on the parameters we determine 

from Eqn. 7. In order to restrict the fitted function to physically realistic dust size distributions, we set the following 20 

bounds for the five parameters of Eqn. 6: #™ = 0.25	to	6.0	µ); 	ü™		 = 1.6	to	4.0; Λ = 1	to	30	µ);	T = 1	to	6; and 

à = −10	to	4, consistent with previous studies (e.g. Kok, 2011; Kok et al., 2017; Rosenberg et al., 2014;). The 

probabilty distribution of these parameters for all heights, horizontal locations, and model simulations of the annually-
averaged dust size distribution is shown in the supplementary Fig. S-2. Finally, we note here that although our 
generalized theoretical function of Eqn. 6 builds on the brittle fragmentation theory of Kok 2011, it adds analytical 25 

expressions of dust deposition and dust changes during transport that allow us to better fit different shapes of dust size 
distribution over different locations. 
 
2.3.2 Constraining the 3-D dust mass extinction efficiency 
 30 
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After obtaining the constrained atmospheric dust size distributions (section 2.3.1 above), we combine it with 
constraints on size-resolved single-particle extinction efficiency at 550 nm, to obtain constraints on the 3-D dust mass 

extinction efficiency (¿¬̂ − )±√ls). That is (see also Kok et al., 2017): 

¿¬̂(Z, [, \) = ∑
567Q=;(Z, [, \, #)

5#

0GNO

0äfƒ

3
2≈,#

∆7:R=(#)5# (8) 

where ,-
.NIG(x,»,…,0)

,0
 is the constrained atmospheric dust size distribution at a given location and height with sub-bin 5 

distribution (Eqn. 6); ≈, = 2.5 ± 0.2 g cm-3 is the globally-averaged density of dust aerosols ( Fratini et al., 2007; 

Reid et al., 2008; Kaaden et al., 2009; Sow et al., 2009; Kok et al., 2017) and its error range is expected to account for 

the spatial and temporal variability of dust density (e.g. Tegen & Fung, 1994; Li et al., 2008); and ∆7:R=(#) is the 

globally-averaged size-resolved single-particle extinction efficiency at 550nm wavelength, with the extinction cross-

section normalized by À#±/4 – the projected area of a sphere with diameter D.  10 

 

We obtain ∆7:R= from Kok et al. (2017), which constrained the dust extinction efficiency by combining measurements 

of the dust index of refraction and probability distribution of dust particle shape with the single-scattering database of 
Meng et al., (2010). Specifically, Kok et al. (2017) estimated the globally-averaged values of the real and imaginary 

dust index of refraction as Õ = 1.53	 ± 	0.03 and  log(−k) = −2.5	 ± 	0.3 (Sokolik et al., 1993; Patterson et al., 1977; 15 

Dubovik et al., 2002; K. Kandler et al., 2009; Kim et al., 2011; Denjean et al., 2016), and both are assumed to be 

normally distributed. Dust particle shapes were represented by the dust aspect ratio – the ratio of the major and minor 
axes of an ellipsoid best fit to the irregularly-shaped 2-D image of a dust particle – and the height-to-width ratio. 
Kandler et al., (2007) showed that the deviation of measured dust aspect ratios from a sphere can be approximated by 
a log-normal distribution, with typical values ranging from 1 – a perfect sphere – to about 3, and median between 20 
~1.5—1.9. Based on aggregates of measurements (Okada et al., 2001; Reid et al., 2003; Kandler et al., 2007; Chou et 

al., 2008; Kandler et al., 2009, 2011; Scheuvens et al., 2011; Scheuvens & Kandler, 2014), Kok et al. (2017) estimated 

the median and geometric standard deviation for the distribution of the dust aspect ratio as – 1.7	 ± 	0.3 and 0.6	 ±

	0.2, respectively. Similarly, based on limited available measurements of dust height-to-width ratio (Okada et al., 

2001; Chou et al., 2008; Veghte & Freedman, 2014),  Kok et al. (2017) used a mean value of 0.333 (see details in the 25 

supplementary document of Kok et al., 2017). By combining these constraints on the optical properties and shape of 
the ensemble of dust particles in Earth’s atmosphere with the single-scattering database of Meng et al. (2010), Kok et 

al. (2017) obtained a constraint on the globally-averaged size-resolved extinction efficiency ∆7:R=(#), which explicitly 

accounts for the enhancement of extinction by the asphericity of dust. Specifically, they found that accounting for dust 
asphericity enhances the extinction produced by a unit mass loading of dust by 29 ± 5% over the extinction calculated 30 

from Mie theory for spherical dust particles, which is used in most climate models.  
 

We use this constrained K17 globally-averaged Q.:R= to constrain ϵ–— (Eqn. 8) for every location. We thus neglect any 

regional variation in Q.:R= because measurements of dust shapes and index of refraction are currently insufficient to 

constrain ϵ–— on a regional basis. In addition, since measurements of dust refractive index needed to constrain ϵ–— at 35 

other wavelengths are also scarce, we limit our estimate here only to the 550 nm wavelength. We use 550 nm as the 
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wavelength of choice because measurements to validate our estimate of ϵ–—  and the observational constraints to 

estimate the dust atmospheric loading are mostly available at mid-visible wavelength. 
 

2.3.3 Constraining the 2-D atmospheric dust loading 
 5 

We now combine the above-estimated mass extinction efficiency at 550 nm (section 2.3.2) with dust aerosol optical 

depth at the same wavelength, to constrain the atmospheric column dust loading (“7 − √	)l±) (Kaufman et al., 2005; 

Kok et al., 2017). Because our constraints on dust size distributions are normalized to unity, and also to ensure that 
our estimates of dust loading produce the same extinction as those from reanalysis dataset or satellite measurements, 

we use this approach to estimate the atmospheric dust loading, such that:  10 

“7(Z, [) =
”̂,(Z, [)
¿v̂(Z, [)

	 (9) 

where ¿v̂	(unit:	m±	gls) is the vertically-integrated 2-D mass extinction efficiency calculated from ¿¬̂, and ”̂,(Z, [) 

is obtained from an ensemble of reanalysis dust aerosol optical depth products.  
 

The ensemble dust aerosol optical depth (AOD) climatology is obtained from the average of four different reanalysis 15 
products (MERRA-2, JRAero, NAAPS, and CAMSiRA; see section 2.2 for details). This individual reanalysis dataset 
assimilate several satellite and ground-based measurements from multiple platforms, including MODIS (Terra and 
Aqua), AVHRR and MISR satellites, as well as from the ground-based AERONET stations (Lynch et al., 2016; 

Mccarty et al., 2016; Flemming et al., 2017; Yumimoto et al., 2017). As such the assimilation procedure takes 
advantage of the best features in both the observations and model simulations, thus producing column-integrated dust 20 
AOD that is largely representative of what is observed, based on validation studies (e.g. Buchard et al., 2017).  
 
Despite the advantage of assimilating observational datasets, estimating a realistic overall error in the dust AOD across 

the reanalysis datasets is difficult, yet important. Here, we estimate the total error (ü, ) by considering both the 

systematic error (ü™»™) and random error (üÉwØ,) inherent in the reanalysis-derived dust AOD. As such, we estimate 25 

the uncertainty in dust AOD as: ü,(Z, [) = 	ÿü™»™± (Z, [) +	üÉwØ,
± (Z, [). We define the üÉwØ, as the standard error 

between the four datasets, which represents that part of the total uncertainty that does not correlate across the four 

reanalysis dust AOD data sets. For instance, üÉwØ, may be associated with differences in the assimilating systems for 

the different reanalysis products. In contrast, the ü™»™ is expected to correlate between the four data sets since most of 

the reanalysis datasets use similar observational datasets. Hence, we assume that the ü™»™ will be proportional to the 30 

mean dust AOD, such that Ÿ⁄¤⁄
(x,»)

¬‹(x,»)
= í,. We estimate the proportionality constant, í,, by requiring that the relative 

error is the same as the relative error obtained from annually-averaged climatology of dust AOD from Ridley et al. 

(2016), which leveraged observational datasets similar to those used for the reanalysis dataset, but propagated many 

of the relevant uncertainties. From that, we deduce that í, = ÿŸ›
fi

¬›
fi −

ŸÑflƒ‹
fi

¬‹
fi 	, where  ”‡ and ü‡ are the mean and error 

estimates of the observationally-constrained dust AOD from Ridley et al. (2016) respectively. We estimate í, = 0.26 35 
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for annual climatology (between 2004-2008), averaged over regions that are constrained by Ridley et al. (2016) and 
account for about 95% of the global dust AOD. Similarly, we estimate 0.31, 0.22, 0.24, 0.28 for December-February, 
March-May, June-August, and September-November seasonal climatologies, respectively. 

 
2.3.4 Quantifying the uncertainties in DustCOMM products 5 
 
For each DustCOMM product above – the constrained dust size distribution, dust mass extinction efficiency and dust 
atmospheric loading - we describe here how we estimate the most likely value and quantify the uncertainty over each 

location. Specifically, we use a non-parametric procedure based on the bootstrap method (Efron & Gong, 1983; 
Chernick, 2007). We use this method because the complexity of the equations (Eqns. 1-9) prevents a parametric 10 
quantification of error, and the bootstrap approach allows us to nonetheless propagate the uncertainty in the various 
physical variables used to estimate each product. Using this method, we further assume that the set of input variables 

in relevant equations above are independent, and are represented by defined probability distributions. Thus, we 
estimate the probability distribution of the resulting products by randomly sampling (with replacement) the probability 

distribution of each of the input variables for a large number of times (Õ ≈ 1,500).  15 

 
In practice, the procedure uses the following steps to determine the dust size distribution, mass extinction efficiency 

and atmospheric loading, and their uncertainties:  
1. We randomly-select a realization of the globally-averaged size distribution from Kok et al. (2017), which in 

turn was obtained in that study by randomly-selecting a realization of the emitted dust size distribution and 20 
the dust lifetime (Eqn. 1).  

2. We use this randomly-selected constrained K17 globally-averaged size distribution to correct a randomly-
selected model simulation (Eqn. 2).  

3. After this model simulation is corrected, we then scale the resulting 3-D dust size distribution between #;<t 

and #;QR following Eqns. 3 & 4.  25 

4. We thereafter estimate the constrained dust size distribution, ,-
.NIG
,0

(Z, [, \, #) , and obtain the sub-bin 

distribution by fitting the generalized theoretical expression (Eqn. 6) and minimizing the chi-square over 
each location (Eqn. 7).  

5. We randomly select a realization of the globally-averaged size-resolved single-particle extinction efficiency, 

∆7:R=(#), from Kok et al. (2017). This realization is also similarly estimated by randomly-selecting from the 30 

distribution of the dust index of refraction and dust shape distribution parameters, as explained in section 
2.3.2.  

6. We then use the randomly-selected ∆7:R=(#)  and ,-
.NIG
,0

(Z, [, \, #)  to estimate the dust mass extinction 

efficiency over each location, ¿¬̂(Z, [, \, #), following Eqn. 8. This uses a randomly-selected dust density 

value (≈,) from its assumed normal distribution.  35 

7. Similarly, assuming a normal distribution for the dust AOD, we randomly estimate the ”̂,(Z, [) value within 

the range of its uncertainty, ü,(Z, [).  
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8. We use this ”̂,(Z, [) and the vertically-integrated value of dust mass extinction efficiency, ¿v̂(Z, [), to 

estimate the atmospheric dust loading, “7(Z, [), following Eqn. 9.  

9. We repeated step 1-8 for Õ = 1500 times, thereby producing a probability distribution for  ,-
.NIG
,0

(Z, [, \, #), 

¿¬̂(Z, [, \, #), and  “7(Z, [) for each location and height. We report the mean, median, 1-sigma uncertainty 

range (68% of the distribution), and the 95% confidence interval (95% CI) of those distributions (Adebiyi et 5 
al., 2019a). 

 
The above procedure propagates various uncertainties in the estimation of each product. These include the 
measurement uncertainties and the uncertainties in model simulations. First, the measurement uncertainties are 
associated with the K17 globally-averaged size distribution and the globally-averaged extinction efficiency (Fig. 1), 10 
and these are propagated equally to every location. In addition, we estimated the correlated systematic error in the 

dust AOD (section 2.3.3), associated with the assimilated observational dataset, and this is also propagated. Second, 
the uncertainty in model simulations is associated with the spread of the model dust size distribution which is different 
for every location. This model uncertainty is, in turn, a result of many processes, such as dust emission, deposition, 
and transport processes in the models (Ginoux et al., 2001; Huneeus et al., 2011; Zhao et al., 2013). Our procedure 15 

constrains these model uncertainties (see supplementary Fig. S-1), while retaining the spatial distribution of the model 
ensemble. 
 
To quantify the size-resolved discrepancies in the DustCOMM size distribution, we quantify the bias with respect to 
independent measurements as follows (e.g. Lee et al., 2009): 20 

‚X
©Xw™ =

1
ov

≤ „‰√sP 	Â
ÊX,v
Á

ËX,v
Á È

qä

vrs

(10) 

where m sums over the ov in-situ measurements of the dust size distribution available in the literature (see Table 2), 

ËX,v
Á  is the )Íℎ measurement of the mass fraction contained in measurement bin j, and ÊX,v

Á 	 is the corresponding 

)Íℎ DustCOMM dust mass fraction for the same diameter range as measured and collocated with the measurement 

– i.e. ÊX,v
Á = 	∫

,-.NIG
,0

5#0fg
0fh

. ‚X©Xw™ is the log-mean normalized bias and it represents the average number of orders of 25 

magnitude bias for each bin j.  

 
We also estimate the performance of DustCOMM mass extinction efficiency by quantifying the reduced chi-square 

(∞Î±) defined as the chi-squared per degree of freedom (e.g. Bevington et al., 1993):  

∞Î± =
1
ÏÎ
≤ Ì

ËvÎ −	¿¬̂,v
üvÎ

Ó

qä

vrs

(11) 30 

where ËvÎ  is the )Íℎ  measurement of the dust mass extinction efficiency with error defined as üvÎ , ¿¬̂,v  is the 

corresponding )Íℎ DustCOMM dust extinction efficiency (¿¬̂) collocated with the measurement, and	ÏÎ is the number 

of degrees of freedom given as ov − 1 . A value of ∞Î± ≈ 1  in Eqn. 11 indicates there is  agreement between 
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DustCOMM and observations that is in accordance with the measurement errors, while ∞Î± ≫ 1  indicates that 

DustCOMM estimates do not fully capture the observations (e.g. Andrae et al., 2010). 

 
To facilitate comparison between DustCOMM and model evaluations, Eqns. 10 & 11 are also used to evaluate the 
performance and calculate the discrepancies between the measurements and the model ensemble. 5 
 

2.3.5 DustCOMM at other timescales 
 
While we describe above the procedure that constrains the annually-averaged dust size distribution, dust mass 
extinction efficiency and atmospheric dust loading, a similar procedure as highlighted above can also be used to 10 
constrain the three products at any other timescale, such as at daily, monthly, or seasonal timescale. For this study, we 

only consider the seasonally-averaged and annually-averaged products. 
 
First, to constrain the dust size distribution at any specific timescales, we correct an ensemble of model size 
distributions at that timescale in a way similar to Eqn. 2 above. However, unlike Eqn. 2 that uses the constrained 15 
globally-averaged size distribution, here we use the constrained annually-averaged dust size distribution over every 

location. That is: 

UVéW,XYZ, [, \, #W,X] = ÛéW,XYZ, [, \, #W,X] ∙
∫

567Q=;
5# (Z, [, \, #)0e,fg

0e,fh
5#

ÛW,XYZ, [, \, #W,X]
(12) 

 

where ,-
.NIG
,0

  is  the DustCOMM annually-averaged dust size distribution at a given 3-D location, obtained from the 20 

procedure described in Section 2.3.1, while Û  and Ûé are the annually-averaged and specific time-averaged model 
simulations of the dust size distribution respectively. Using an ensemble of model simulations, as we do above, the 

resulting corrected time-averaged dust size distributions, UVé, are also taken through the steps highlighted in section 

2.3.4 to calculate the mean and the uncertainty of the constrained dust size distribution (,-flãä
ã

,0
) at that particular 

timescale. 25 

 

Second, to constrain the dust mass extinction at any specific timescale (¿̂é¬), we combine the constrained dust size 

distribution at that timescale, ,-flãä
ã

,0
, with the globally-averaged extinction efficiency, ∆7:R=. This similarly follows Eqn. 

8 above. We note here that the uncertainty range of ∆7:R=  also accommodates the location-dependent and time-

dependent variability in the dust index of refraction and dust particle shape, consistent with previous studies (e.g. 30 

Dubovik et al., 2002). Hence, using ∆7:R= propagates the uncertainty in the measurements that determine the dust mass 

extinction efficiency estimate at that timescale. Finally, we constrain the dust loading at any specific timescale (“7é) 

using the constrained ¿̂é¬ and dust AOD at that same timescale, similarly following Eqn. 9.  

 
2.4 Description of measurements used for evaluation 35 
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We use several types of published measurements to evaluate the dust size distribution and dust mass extinction 
efficiency from both DustCOMM and the model ensemble. We select 21 studies that measured dust properties – 14 

of these reported dust size distributions, and 11 of these reported dust mass extinction or scattering efficiencies (Table 
2). These measurements were taken both near and far from dust-dominated regions (Table 2 and supplementary Fig. 5 
S-3). While some measurements were taken close to (or over) some of the northern hemisphere deserts – such as the 
Sahara, Middle East, and Asian deserts - no measurements were taken close to the southern hemisphere deserts. 12 of 
the 21 studies obtained measurements near the Sahara Desert, while one measurement each was taken near the Middle 

East (Sde Boker, Israel), and Asian (Qinghai Province, China) deserts. Other measurements represent dust properties 
at different distances of transport away from the dust sources.  10 
 
Except for four measurements, most of the data are taken during airborne field campaigns that often occur over a wide 

geographical area, several altitude levels, and several days (Table 2). As such, studies often report measurements that 
represent the averages of the dust properties taken during the campaign. Details of the flight path, showing the 
locations where dust particles are encountered, are not always reported. To use these measurements, we therefore 15 
define a representative location and altitude for each measurement based on the area where the majority of dust was 
encountered. In addition, since the measurements often represent average of several days and sometimes multiple 

months, we also compare them against seasonal averages of the DustCOMM and model ensemble estimates.  
 
Below, we give a broad overview of the measurements of the dust size distribution and mass extinction efficiency, 20 
and further information on each study, including the instruments used, can be found in the supplementary document. 
 

2.4.1 Dust size distribution measurements 
 
Dust size distribution measurements are taken using a variety of instruments with different sizing methodologies (e.g. 25 
Reid et al., 2003). These instruments generally fall within the categories of sample collectors (e.g. D’Almeida, 1987; 

McConnell et al., 2008), cascade impactors (e.g. Chou et al., 2008; Kandler et al., 2009) and aerodynamic particle 
sizers (e.g. Otto et al., 2007), and optical particle counters or spectrometers (e.g. Chou et al., 2008; Clarke et al., 2004; 
Otto et al., 2007). The first category of instruments, sample collectors, are usually installed behind filters or thermal 
denuders to remove non-dust particles. The aerosol samples are then analysed using electron or light microscopy 30 
techniques, where they are counted and sized either manually or using an automated software. This type of 

measurement yields dust size distribution with respect to geometric diameters. For the second category of instruments, 
cascade impactors and particle sizers, aerosol particles are usually accelerated through a jet outlet, and sometimes 
collected on a substrate. Using these instruments, the aerosols are sized based on the mass-to-drag characteristics of 
the particles. Dust particle sizes measured using these types of instruments are associated with the aerodynamic 35 
diameter. Finally, the optical particle counters generally determine particle sizes in optical diameters based on the 

amount of light they scatter. Another category is the imaging probe whereby the particle image is detected by linear 

photodiode array providing a two-dimensional	projection	of	the	particle (Baumgardner et al., 2017; Ryder et al., 

2018). For many of the studies we use here, these instruments are sometimes combined to verify the accuracy of the 
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measurements (e.g. Ryder et al., 2013a). For all dust size distribution measurements, the studies that used aerodynamic 
or optical sizing instruments eventually report the measured size distribution in geometric diameters.  
 

An important consideration is the elevation at which the dust size distributions are measured. With the exception of 
two studies (D’Almeida, 1987; Kandler et al., 2011) that took measurements at ground stations, most measurements 5 
were performed solely aboard aircrafts with in-cabin or wing-mounted instruments. Ground stations were equipped 
with stationary instruments to collect aerosol samples or stationary optical particle counters to measure size 
distributions directly. For aircraft measurements, size distributions are often measured during flight segments at 

constant altitude – also called horizontal legs. For the dust size distributions, our criteria for selection of studies are as 
follows: (1) the measured size range of the data should extend into the coarse dust (D > 5 um) size range; (2) the study 10 
should report the original in-situ measurements, instead of (lognormal) fits to the actual measurements; and (3) each 
study’s measurements should be taken with commonly-used instrumentation in order to ensure some consistency with 

measurements taken by other studies. 
 
Regardless of the instrument used, most dust size distribution measurements are subject to uncertainties associated 15 
with measurement type or presence of other aerosol species, such as biomass burning aerosols. The contamination by 
other aerosol species is common for fine-mode dust particles, especially dust particles less than ~0.5µm (e.g. Dubovik 

et al., 2000; Clarke et al., 2004), since to the instruments these aerosols are indistinguishable from dust particles of 
the same size. This causes a high bias in the fine-mode of measured dust size distributions (e.g. Clarke et al., 2004). 
Another important measurement error arises from assumptions made about the non-sphericity of dust particles. For 20 
example, during the microscopy analysis, particle diameters are usually determined as the volume-equivalent 
geometric diameters based on 2-dimensional images (Chou et al., 2008). Because of the asphericity of dust aerosols, 

this could introduce biases (e.g. Huang et al, in prep.; Okada et al., 2001). Since dust particles have a small height-to-
width ratio (Okada et al., 2001), the resulting size distribution may overestimate dust particle diameters. In the case 
of cascade impactors and particle sizers, unusual dust particle shapes and the possibility of particle bouncing off the 25 
substrate may lead to significant bias, especially for coarse-mode particles. For in-cabin measurements, studies have 

shown that the loss rate of coarse dust particles can be substantial due to the aircraft’s instrument inlet, therefore 
leading to lower sampling rate and size bias (e.g. von der Weiden et al., 2009). For dust measurements that used optical 
particle counters, irregularly-shaped dust particles are often assumed to be spherical in order to convert them to 
volume-equivalent geometric diameters, but light scattering between spherical and non-spherical particles are 30 
different. In addition, optical particle counters also make assumptions about the refractive index to derive the dust size 

distribution, and are affected by the non-monotonic increase in the intensity of scattered light with particle size (e.g. 
Weinzierl et al., 2011; Ryder et al., 2018). Unlike the optical particle counters that require assumption regarding dust 
refractive index and shape to convert scattered light intensity to particle size, the imaging probes are not subject to 
these uncertainties (Baumgardner et al., 2017; Ryder et al., 2018). Nevertheless, these assumptions often lead to biases, 35 
that many studies try to account for to various degrees (e.g. Ryder et al., 2013a, 2013b, 2018).  

 
2.4.2 Mass extinction efficiency measurements 
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In the literature, the term dust mass extinction efficiency (MEE) is sometimes used interchangeably with the mass 
scattering efficiency (MSE; e.g. Hand & Malm, 2007). This is because, for typical solar wavelength at 550 nm, dust 
particles scatter more radiation than they absorb for D ≤ 10 µm. Despite the strong scattering by these particles, larger 

particles (D ≥ 10 µm) often exhibit substantial absorption relative to scattering in the visible wavelength (e.g. Ryder 
et al., 2018). In order to put all the measurements in the same equal footing, we convert the reported dust MSE in 5 

some of these studies to dust MEE, by using measured scattering albedo value of 0.95 ± 0.03 (e.g. Haywood, 2003; 

Clarke et al., 2004; Ryder et al., 2018).  

 
Mass extinction efficiencies (MEE) that are reported in the literature are generally derived using two methods: 
regression and theoretical methods (e.g. Hand & Malm, 2007). The regression method calculates the dust MEE as the 10 
slope between the dust extinction coefficient (m-1) and the dust mass concentration (g m-3). In this case, the dust 
samples are typically collected using filters, while aerosol extinction is measured using nephelometers. The difficulty, 

however, is that measured total aerosol extinction from the nephelometer may be influenced by several aerosol species 
other than dust particles. Some studies ignore the impact of other aerosol species, and derive the dust MEE using the 
total aerosol extinction and the collected dust mass concentration (e.g. Li et al., 1996). Others take advantage of the 15 
linear relationship between the aerosol extinction and mass concentrations in order to separate the column MEE into 
constituents that correspond to each aerosol species, using a multivariate linear regression method (e.g. Andreae et al., 

2002; Maring et al., 2003). Such calculations therefore require that all the aerosol species contributing to the extinction 
are included. With this in mind, the regression-derived MEE is therefore subject to several systematic and random 
errors, including instrument uncertainties (Hand and Malm, 2007). 20 
 

The theoretical method calculates the dust MEE using the measured size distributions of dust mass or number 
concentration (Seinfeld & Pandis, 2016). This may take the form of calculating the dust MEE directly using the dust 
size distribution and the estimate of single-particle extinction efficiency, or indirectly by first calculating the size-
resolved dust extinction coefficient, using dust size distribution, and then combining the result with dust mass 25 
concentration. In either case, the dust density, shape and index of refraction are needed. While assumptions of dust 

density and index of refraction are typically based on previously reported measurements, dust shapes are generally 
assumed to be spherical, which is contrary to observations (e.g., Okada et al., 2001; Kandler et al., 2007). This is a 
major disadvantage that may result in an underestimation of the derived dust extinction efficiency (e.g. Kok et al., 
2017). Another source of error is associated with the instrument used to measure the aerosol size distribution, which 30 
may assume certain mixing properties of the observed aerosols. For mobility measurements (differential mobility 

analyzer, DMA), optical measurements (optical particle counter, OPC) or aerodynamic measurements (aerodynamic 
particle sizer, APS), aerosols are often assumed to be internally mixed (e.g. Quinn et al., 2002; Clarke et al., 2004).  
In contrast, for an impactor, aerosols are often assumed to be externally mixed (e.g. Chiapello et al., 1999; Osborne et 
al., 2008).  35 

 
Despite the differences between both methods used to derive dust MEE from observed quantities, previous studies 
have highlighted that they both produce similar values within measurement uncertainties (e.g. Maring et al., 2000; 
Quinn et al., 2004). In addition, for measurements where only the mean dust MEE/MSEs are reported, but not the 
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uncertainty estimates, we estimate here in this study what the measured uncertainty estimate could be by assuming 
that its relative uncertainty (that is the ratio of the presumed uncertainty to the reported mean) is proportional to the 
mean relative uncertainty that is calculated from other measurements. While this estimated uncertainty may likely not 

be representative of the specific field campaign to which the measurement was taken, they are likely representative of 
the seasonal values over the region.  5 
  
3 Results 
 

In this section, we present the DustCOMM products obtained using the methodology and data described above. We 
first present the dust particle size distribution (PSD; section 3.1) and then the dust mass extinction efficiency (MEE; 10 
section 3.2). In each case, we evaluate the DustCOMM and the model ensemble products against available in-situ 
measurements. We show that DustCOMM products generally reproduce observations better than model ensemble 

estimates. We then compare the spatial variability of the DustCOMM products against the model ensemble. In section 
3.3, we compare the atmospheric dust loading obtained from both DustCOMM and the model ensemble, and we 
examine the spatial distribution of the uncertainty in all DustCOMM products in section 3.4. 15 
 
3.1 Dust Size Distribution  
3.1.1 Evaluation of DustCOMM against measurements 
 
We evaluate DustCOMM and the model ensemble PSD against available in-situ measurements taken during field 20 
campaigns (Figs. 2 & 3). We compare these location-based measurements against season-averaged DustCOMM and 
model ensemble estimates. The reason for using the seasonal averages is justified in section 2.4 above. An additional 

justification for the comparison between the individual measurements and the season-averaged DustCOMM and 
model ensemble estimates is that the variability of the normalized dust PSD within each season is relatively small,  

especially for dust with # ≤ 10	µ) (e.g. McConnell et al., 2008; Mahowald et al., 2014). Furthermore, most of these 25 

measurements are campaign averages often over a variety of cases that could be representative of the season-averaged 

size distribution.  
 
Model simulations of dust PSD generally show substantial errors when compared against measurements. In each of 

the 12 studies used in Fig. 2, the model ensemble overestimates the observed fine-mode particles (defined here as # ≤30 

2.5µ) ) and underestimates the coarse-mode particles (defined here as # ≥ 5	µ) ). In some of the cases, the 

overestimation extends above # = 2.5µ) and the underestimation below # = 5µ). Nevertheless, these differences 

are apparent in all the comparisons, and consistent with previous studies indicating more coarse-mode dust particles 
are in the atmosphere than models account for (e.g. van der Does et al., 2016, 2018; Kok et al., 2017; Ryder et al., 

2018).  35 
 
In contrast, the DustCOMM dust PSD shows overall better agreement against measurement than the model ensemble 
(Fig. 2).  This improved agreement includes a substantial reduction of the underestimation of coarse-mode dust, as 
well as a reduction of the overestimation of some fine-mode particle sizes. Although DustCOMM better reproduces 
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the measurements for # ≥ 0.5µ), it shows poorer agreement for # ≤ 0.5	µ) (e.g. Fig. 2e, h, i, j), underestimating 

the measurements by about one to two orders of magnitude. For example, during DARPO (Fig. 2e; Wagner et al., 
2009) and BACEX (Fig. 2h; Jung  et al., 2013), the differences between DustCOMM PSD and the measurements are 

about two orders of magnitude.  The # ≤ 0.5	µ) size range is also the size range in which measurements of dust PSD 

are potentially contaminated by the presence of other aerosol species (see section 2.3.1 and section 4.1). In addition 5 

to the disagreement for # ≤ 0.5	µ), there is also some disagreement for # ≥ 10	µ) (e.g. Fig. 2d, e, h), although for 

fewer cases. Overall, the DustCOMM dust PSDs significantly better represent the measurements in the 0.5 ≤ #	 ≤

20	µ) size range than the model ensemble. 

 
DustCOMM also shows better agreement than the model ensemble against measurements of the dust PSD as a function 10 
of altitude (Fig. 3). We highlight here measurements taken from three campaigns: (1) the ACE-2 campaign (June/July, 

1997) in the vicinity of Canary Islands (Otto et al., 2007); (2) the Fennec project (June 2011) between the Canary 
Islands and Mauritania/Mali (Ryder et al., 2013a); and (3) the AER-D campaign in August 2015 near Cape Verde 
Island (Ryder et al., 2018). All three cases show that a significant fraction of coarse-mode dust particles, including 

with # ≥ 10	µ), are transported off the coast of North Africa. We compare these measurements at selected altitude 15 

of 2500 m  (2700 m for ACE-2), 4000 m, 5500 m, and 6000 m (7000 m for ACE-2). Similar to Fig. 2 above, the 
DustCOMM dust PSD agrees better with the measurements than the model ensemble for these measurements at similar 

2-D location but at different altitudes. For dust particles with # ≤ 0.5	µ), the DustCOMM size distributions also 

differ from the measurements by about an order of magnitude (similar to Fig. 2) for altitude at 2500 m. However, this 
difference increases to more than two orders of magnitude above ~4000 m altitude.  20 

 
In summary, the overall differences between the in-situ measurements and DustCOMM are significantly smaller than 

the differences between the measurements and the model ensemble, especially for # ≥ 0.5	µ). To quantify this, we 

report the log-mean bias in each bin following Eqn. 10 and using all the measurements shown in Fig. 2 & 3. 

DustCOMM shows an overall reduction in the bias relative to the model ensemble, except for dust particles with # ≤25 

0.5	µ) (Fig. 4). For # ≤ 0.5	µ), model shows an average (95% CI) positive log-mean bias of 0.26 (-0.08 — +0.6), 

while DustCOMM shows an average negative log-mean bias of -0.92 (-1.18 — -0.73). In contrast, DustCOMM shows 

a remarkable reduction in the average log-mean bias in the 0.5 ≤ #	 ≤ 10	µ) size range; for instance, the bias for the 

5 – 10 µ) bin is ~90% less than it is for the model ensemble. DustCOMM also shows a substantially reduced bias in 

the 10 ≤ #	 ≤ 20	µ)  size range, although the bias here remains substantially negative, indicating a persistent 30 

underestimation of these coarse particles. On average, DustCOMM reduces the log-mean bias for dust particles with 

# ≥ 0.5	µ) by about 46%, relative to the model ensemble. 

 
3.1.2 Global comparison between DustCOMM and the model ensemble 
 35 
Considering that the DustCOMM dust PSD agrees better with in-situ measurements than the model ensemble, we now 

compare the differences between DustCOMM and model ensemble PSDs. Specifically, we first compare the 
differences in the shape of the globally-averaged dust size distribution between DustCOMM and the model ensemble 
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(section 3.1.2.1). Second, we examine the changes in the spatial variability of the DustCOMM and model dust mass 
fraction as a function of particle size range (section 3.1.2.2). 
 

3.1.2.1 Differences in dust size distribution 
 5 
As we already concluded based on in-situ measurements, climate models globally overestimate fine-mode dust 

particles (# ≤ 2.5	µ)) and under-estimate coarse-mode dust particles (# ≥ 5	µ)), relative to globally-averaged 

DustCOMM dust PSD (compare black and coloured lines in Fig. 5a). On average, simulations in our model ensemble 
overestimate the dust mass fraction of the fine mode by ~14%, and underestimate that of the coarse mode by ~15%. 
The degree of this deviation from DustCOMM depends on the model, and can be as much as 50% in the fine mode or 10 
37% in the coarse mode. 
 

While the globally-averaged dust PSDs clearly show marked differences, it is also important to quantitatively examine 
the variability of the dust PSD for all locations. The variability of dust PSDs in the atmosphere is influenced by dust 
emission, transport, and deposition processes, and it can be assessed by considering metrics such as the volume median 15 
diameter (e.g. Maring et al., 2003; Formenti et al., 2011; Mahowald et al., 2014). Thus, the probability distributions 
of the volume median diameters (VMD) for the model simulations are generally biased towards smaller VMD values, 

with different peak diameters for each model. WRFChem and IMPACT show the lowest VMD at ~1.9 µm, and 
ARPEGE-Climat shows the highest VMD at ~5.5µm (Fig. 5a). In contrast, the DustCOMM VMD peaks around 5 
µm. The probability distribution also shows that that the DustCOMM VMD lies between approximately 2.5 µm and 20 
6.5 µm at most heights and locations (Fig. 5b). This range is consistent with the range of measured VMD (3-6 µm) 

for coarse-mode dust particles generally reported in the literature and compiled by Reid et al. (2003; see their Table 
1). It also falls within the range of values measured at near-source regions and farther downwind. For instance, the 
VMD calculated from dust particle size distributions measured at Cape Verde, off the coast of North Africa (Ryder et 
al., 2018) is about 5.5µm. Farther downstream where dust particles are likely to deposit after long-range transport, the 25 
VMD values near Puerto Rico is approximately 4µm (Maring et al, 2003). It is noteworthy however, that some studies 

(e.g. Carlson & Caverly, 1977; Weinzierl et al., 2009) have reported measured VMD values that exceed 13 µm, but 

these studies often include giant-mode dust particles with # ≥ 20µ), whereas we limited our analysis to dust with 

# ≤ 20µ) (see Section 2.3.1.1). Overall, DustCOMM shows better consistency with observations of VMD than 

model simulations. 30 

 
3.1.2.2 Changes in spatial variability of dust mass fraction 

 
Although coarse-mode particles dominate the dust mass fraction near source regions and fine-mode particles dominate 
the dust mass fraction in the far remote regions, there are considerable changes in the spatial variability of the dust 35 

mass fraction between DustCOMM and the model ensemble (left and middle panels of Fig. 6). As highlighted above 

in section 3.1.2.1, there is a general decrease of DustCOMM dust mass fraction for particles between 0.2 − 2.5µ) 

and 2.5 − 5µ), relative to the model ensemble (right panel of Fig. 6). In contrast, there is an overall increase of 

DustCOMM dust mass fraction for particles between 5 − 10µ) and 10−20µ). These changes cause DustCOMM to 
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produce generally better agreement against in-situ measurements than the model ensemble, as shown in section 3.1.1 
above. Overall, the most significant changes in DustCOMM dust mass fraction, relative to the model ensembles, are 
near dust-dominated regions, resulting in a decrease of up to 26% and an increase of up to 29% for dust particles 

between 2.5 − 5µ) and 10 − 20µ) respectively.  

 5 
These changes in the dust mass fraction gradually decrease away from the dust-dominated regions. This is evident, 
for example, over the North Atlantic basin, where dust from the Sahara Desert is transported to the Caribbean and 

South America. Models generally simulate fewer large dust particles (# ≥ 5µ)), and thus transport only a small 

fraction to the Caribbean. But observational evidence shown earlier in Figs. 2h & l indicates that dust in Barbados 
includes a significant fraction of coarse dust. Thus, the east-west gradient and the overall increase of the DustCOMM 10 
dust mass fraction over the North Atlantic helps resolve the underestimation of long-range transported coarse particles, 
such as near Barbados (Fig. 6; e.g. Weinzierl et al., 2017). 

 
The vertical distribution of the DustCOMM dust mass fraction shows differences with the model ensemble that are 
consistent with the globally-averaged differences (Fig. 7) – that is, DustCOMM dust mass fractions are lower than for 15 

the model ensemble for particles between 0.2 − 2.5µ) and 2.5 − 5µ), and higher for particles between 5 − 10µ) 

and 10 − 20µ). It is noteworthy here that vertical changes in the dust PSD in DustCOMM are based on model 

simulations, causing a similarity in the shape of the vertical profile of the dust mass fraction between DustCOMM and 
the model ensemble. Finally, similar changes in the spatial variability of the annually-averaged dust mass fraction are 
apparent in the seasonally-averaged values. 20 

 
3.2 Dust Mass Extinction Efficiency 
3.2.1 Evaluation of DustCOMM against measurements 
 
We evaluate the dust mass extinction efficiency (MEE – m2g-1) of DustCOMM and the model ensemble against 25 

measurement (Fig. 8). These measurements span from those taken near dust source regions such as the Saharan, 
Middle East and Asian deserts, to those taken farther downwind from source regions (Table 2). Higher values of dust 
MEE are expected where fine-mode dust particles dominate, because smaller dust particles scatter light more 
efficiently per unit mass at visible wavelengths. In contrast, dust MEE decreases as the coarse-mode fraction increases. 
Thus, observed dust MEE values generally range between ~0.3-0.8 m2g-1 at approximately 550 nm. 30 

 
DustCOMM shows better agreement with measurements of dust MEE than the model ensemble (Fig. 8). DustCOMM 
dust MEE estimates are within the measurement uncertainty range for most of the 11 studies used here. Notable 
exceptions are the comparison at Sde Boker, Israel (Andreae et al., 2002) and Qinghai Province, China (Li et al., 

2000), where both the DustCOMM and the model ensemble underestimate the measured MEE. Nevertheless, the 35 
DustCOMM estimates better reproduce the lower values of dust MEE near dust sources, and the higher values farther 
downstream. For example, lower dust MEE values near the Sahara Desert, between Niamey and the Canary Islands 
(generally below 0.6 m2g-1), and higher values farther downstream, such as over Barbados, are better reproduced by 
DustCOMM. DustCOMM dust MEE also compares well against measurements at the same location but for different 
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seasons. An example is the measurements over Cape Verde, off the coast of North Africa (Haywood et al., 2003; 
Ryder et al., 2018), taken in September 2000 and August 2015. For both cases, DustCOMM estimates compare better 
with the observed dust MEE, while the model ensemble over-estimates the values in both cases. 

  
DustCOMM also reproduces the observed dust MEE values with strong spatial gradient, measured during the same 5 
campaign (INDOEX) over the Arabian Sea and Indian Ocean (Quinn et al., 2002). Dust particles emitted from Middle 
East deserts can get transported over the Arabia sea, and are deposited over the Indian Ocean where strong 
precipitation occurs year-round (e.g. Kulshrestha et al., 1996). Since dust MEE increases with distance from source 

regions due to deposition of larger dust particles, the measured dust MEE values increase from 0.5 m2g-1 measured in 
the Arabian Sea to 0.75 m2g-1 in the Indian Ocean, south of the equator. DustCOMM captures much of this gradient, 10 
and is in better quantitative agreement than the model ensemble estimate (Fig. 8).  
 

DustCOMM also shows better agreement than the model ensemble against the observed dust MEE averaged over all 
measurements (see the last column of Fig. 8). DustCOMM shows a very small difference with the mean of the 
measurement estimates [0.007 m2g-1 (95% CI is -0.04—0.08)], whereas the model ensemble mean (95% CI) 15 
overestimates the measurements by 0.12 (-0.17 – 0.4) m2g-1 – that is about 94% reduction in the mean bias. We further 

assess DustCOMM performance by calculating the reduced chi-square (∞±; Eqn. 11); a value of ∞± > 1 highlights the 

degree that a model does not fit the observations within the uncertainty range (e.g. Andrae et al., 2010). DustCOMM 

shows a ∞± value of 1.19 , in comparison to the model ensemble with  ∞± value of 8.70 (Fig. 8), thereby showing a 

substantial improvement. 20 
 
3.2.2 Global comparison between DustCOMM and model ensemble 
 
After showing that DustCOMM better reproduces measurements of dust MEE than the model ensemble, we now 

compare the spatial variability of the DustCOMM and model ensemble dust MEE. To do so, we estimate the column-25 
integrated dust MEE for DustCOMM and model ensembles over each location (Fig. 9 a & b). Both DustCOMM and 
model estimates show smaller values of dust MEE over dust-dominated regions and higher values farther downwind 
– like over the Inter Tropical Convergence Zone (ITCZ), the eastern Pacific Ocean and the polar regions. Although 

DustCOMM and model ensemble estimates are thus spatially similar, important differences exist. Near dust-
dominated regions, DustCOMM dust MEE values are lower than model ensembles, but farther downstream, 30 
DustCOMM values are higher than model ensembles. This regional difference in dust MEE values corresponds to 
similar difference in dust mass fraction, with fractional increase in coarse-mode dust over dust-dominated regions than 
farther downstream (compare Fig. 9 & 6). In addition, there is also a gradual east-to-west changes in the dust MEE 

values as coarser dust particles are deposited away from dust sources, consistent with similar changes in dust mass 
fraction shown earlier in Fig. 6. The globally-averaged DustCOMM dust MEE values are lower than predicted by the 35 
model ensemble. The global mean of dust MEE for DustCOMM and model ensembles are 0.68 (Min-Max: 0.22— 
1.1) m2 g-1 and 0.95 (Min-Max: 0.30— 1.98) m2 g-1 respectively. 
 

3.3 Global comparison of atmospheric dust load between DustCOMM and models 
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After obtaining the DustCOMM dust MEE as described in the previous section, we combine this with the reanalysis-
derived dust AOD (Eqn. 9; see also section 2.3.3) to obtain the atmospheric dust loading. We find that the DustCOMM 

dust column loading is generally larger than the model ensemble estimate (Fig. 10a & b). DustCOMM shows 
substantially larger dust column loading than the model ensemble over desert regions, such as the Middle East, and 5 
Asian deserts. The relative increase of dust load in DustCOMM over the Asian desert is more than twice the increases 
over the Middle East desert. DustCOMM also shows larger dust column loading over most parts of the North African 
desert, except some parts that includes the north-western section and the coastal regions which show smaller dust 

column loading than the model ensemble. Although reanalysis-derived mean dust AOD over North Africa is 
substantially lower than the model ensemble, it is within the uncertainty estimates, which is higher over this region 10 
(see supplementary Fig. S-4; see also Ridley et al., 2016). In addition, DustCOMM estimates over the Australian 
deserts show a lower dust column loading than the model ensemble, similarly corresponding to lower reanalysis-

derived dust AOD (Fig. 10c & supplementary Fig. S-4). Overall, globally-averaged DustCOMM dust column loading 
is about 46% higher than the model ensemble. 
 15 
3.4 Spatial distribution of DustCOMM relative uncertainty 
 

We examine here the spatial distribution of the DustCOMM relative uncertainty– that is, the uncertainty characterizing 
68% of the distribution of each variable over each location divided by the mean value of that variable at that location. 
We do this for the dust mass fraction for the particle bins shown in Fig. 6 & 7, the dust MEE, and the dust load (Fig. 20 
11). 
 

The relative uncertainties in the DustCOMM fine-mode fraction (# = 0.2 − 2.5µ)) are higher mostly near emission 

regions (Fig. 11a), while the relative uncertainties in the coarse-mode fractions are higher over remote regions, 

especially for # = 10 − 20µ) (Fig. 11d). These uncertainties are, in part, directly associated with the uncertainties 25 

in the measurement constraints. The globally-averaged constrained dust size distribution (Eqn. 1) has a higher relative 

uncertainty for the # ≤ 	1	µ) and # ≥ 	10	µ) diameter range than for the 1 ≤ # ≤ 10	µ) diameter range (see Fig. 

2 in Kok et al., 2017), and we propagate these uncertainties over every location. In addition, the spatial distribution 
for the relative uncertainties in the dust mass fraction is similar to that of the model ensembles (supplementary Fig. S-
5), which is also propagated into the DustCOMM product.  30 

 
The relative uncertainties in DustCOMM dust MEE are mostly higher over dust-dominated regions (Fig. 11e). The 
dust MEE is influenced by the uncertainty in the constrained globally-averaged extinction efficiency, which in-turn is 
partially due to uncertainties in the in-situ emission measurements of index of refraction and dust particle shapes (see 
Fig. 1b in Kok et al., 2017), all of which are propagated into the DustCOMM dust MEE. In addition, the relative 35 

uncertainties in the dust MEE are also affected by the uncertainty in the dust size distribution. Thus, the spatial 
distribution of dust MEE relative uncertainty is particularly informed by the uncertainties in the fine-mode and coarse-
mode dust particles (compare Fig. 11a & d with 11e). For the most part, uncertainties in the fine-mode dust fraction 
appears to dominate the uncertainties in dust MEE, more than the uncertainties in the coarse-mode dust fractions. 
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The relative uncertainties in the DustCOMM dust column loading are mostly higher over remote regions, where the 
mean dust load is small (Fig. 11f). Though the dust column loading is influenced by the uncertainties in dust MEE, 

the spatial distribution of the relative uncertainties in dust load is largely informed by the uncertainties in the reanalysis 
dust AOD (see supplementary Fig. S-4).  5 
 
4 Discussion 
 

We presented the DustCOMM products in the previous section, where we showed that both the dust particle size 
distribution (PSD) and the dust mass extinction efficiency (MEE) are reproduced more accurately than by an ensemble 10 
of model simulations. Despite the overall agreement with observations, there are some disagreements highlighting 
potential limitations of our methodology. In this section, we discuss these disagreements between DustCOMM and 

measurements and provide possible insights into these discrepancies (section 4.1). We also discuss the impact of dust 
sizes and asphericity on DustCOMM dust mass extinction efficiency (section 4.2), and we highlight the limitations in 
using modelling constraints as part of DustCOMM estimates (section 4.3). We end by highlighting how our 15 
constrained DustCOMM products can be used by the research community to potentially improve estimates of dust 
impacts on the Earth system (section 4.4).  

 
4.1 Cause of discrepancy between DustCOMM and size distribution measurements  

 20 

The evaluation of the DustCOMM PSD shows an underestimation of dust with # ≤ 0.5µ) and # ≥ 10µ) (Figs. 2, 

3 & 4). This is in contrast to the ensemble of model simulations overestimating the dust mass fractions for # ≤ 0.5µ), 

and underestimating the dust mass fraction substantially more than DustCOMM for # ≥ 10µ).  Although the 

comparison between date-specific individual measurements and season-averaged DustCOMM dust PSD is expected 
to induce errors, this difference cannot explain the apparently systematic difference between measurements and the 25 

DustCOMM dust PSD for both # ≤ 0.5µ)  and # ≥ 10µ)  (Fig. 4). We provide here possible reasons for this 

disagreement between DustCOMM and observations. 
 

First, DustCOMM’s underestimation of dust with # ≤ 0.5µ) may be caused by contamination of the measured size 

distributions by other aerosol species for # ≤ 0.5µ). Studies have shown that a substantial fraction of aerosols with 30 

# ≤ 0.5µ) are not mineral dust, even in dust-dominated regions (Chou et al., 2008; Kandler et al., 2009; Weinzierl 

et al., 2009). For example, during the Saharan Mineral Dust Experiment (SAMUM) over southern Morocco, Kandler 

et al. (2009) showed that more than 50% of the measured particles with # ≤ 0.5µ) are ammonium sulphates or 

mixture of sulphate and dust. Even when strict measurement techniques are used to separate other non-mixing aerosol 

components, the aerosol mixing state for # ≤ 0.5µ) often leads to outer coating of available dust particles, thus 35 

leading to a higher particle volume that overestimates the true dust size (Weinzierl et al., 2009). In addition, campaign 
logistics often require that some measurements of dust properties are taken close to major cities, where contaminations 
by other aerosol species, such as biomass-burning aerosols or urban pollutions are possible (e.g. McConnell et al., 
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2008; Wagner et al., 2009). For example, Clarke et al. (2004) highlighted that the presence of biomass-burning 
aerosols (e.g. soot) led to a variability of about 2 orders of magnitude for measured size distributions with diameter 

less than # ≤ 0.6µ)  during the ACE-Asia campaign. This variability is consistent with the average difference 

between our estimates and the observations for # ≤ 0.5µ). After separating out the contamination of the soot-mode 

from the dust size distribution, their resulting dust PSD generally agrees with our estimate within the uncertainty range 5 
(Fig. 2f). Thus, the large variability of the measured size distribution is indicative of the potential problems with the 

representation of dust particles with # ≤ 0.5µ).  

 
Second, the constraint on the globally-averaged dust size distribution could also underestimate the contribution from 

dust with # ≤ 0.5µ). A key input to this constraint is the emitted dust size distribution, but there is a dearth of 10 

measurements of the mass fraction of emitted dust with # ≤ 0.5µ) , leading to uncertainty in constraining the 

globally-averaged emitted dust size distribution with # ≤ 0.5µ) (Kok et al, 2017). Moreover, the measurements of 

emitted dust size distribution with # ≤ 0.5µ) that do exist (e.g. Fratini et al., 2007; Sow et al., 2009; see Fig. 1c in 

Kok et al., 2017) indeed show a larger dust mass fraction than represented in the constraint on the globally-averaged 
emitted dust size distribution. Therefore, more measurements of the size distribution of emitted dust particles 15 

extending to very fine sizes are needed.  
 

Third, the underestimation of dust with # ≥ 10	µ) by both DustCOMM and the model ensemble might be caused by 

biases in both global model simulations and the constraints on the global dust size distribution used by DustCOMM. 

Similar to # ≤ 0.5µ), the experimental constraint on the emitted dust size distribution with # ≥ 10	µ) also has a 20 

large uncertainty because of limited available measurements (Kok 2011). In addition, since spatial and temporal 

variability of large dust particles (# ≥ 10µ) ) strongly depend on the model simulation of dust emission and 

deposition processes, uncertainties in these processes will influence the constraints on DustCOMM dust size 

distribution. For example, if the giant mineral dust particles are transported far away from the source regions as 
suggested by observations (e.g., van der Does et al., 2018), the lack of this mechanism would result in a negative bias 25 
of the simulated dust atmospheric lifetime (e.g. Huneeus et al., 2011). And since modelling constraints of globally-
averaged dust lifetime are used to constrain the globally-averaged size distribution (Eqn. 1), such systematic negative 

bias may have contributed to the underestimation of dust particles with # ≥ 10µ). Although our methodology partly 

constrains dust deposition globally, it does not constrain regional variability in dust deposition, and we expect that 
such uncertainties may increase as a function of distance away from dust-dominated regions. We note here that 30 
regional observational constraints on dust lifetime are currently not available, and stronger modelling constraints that 
may account for the underestimation of coarse dust particles in the atmosphere are a subject for future work. 
 

4.2 Impacts of dust sizes and asphericity on DustCOMM dust mass extinction efficiency 
The dust MEE is partially determined by the dust size distribution (Eqn. 8). Despite the good agreement between 35 
DustCOMM and the measurements of dust MEE (Fig. 8), the size discrepancies in the dust size distribution for 

particles with # ≤ 0.5	µ) and # ≥ 10	µ)  (Figs. 2, 3 & 4) affect the estimation of dust MEE. Dust with # ≤ 0.5	µ) 

has a large single-particle MEE, whereas dust with # ≥ 10	µ) has a small single particle MEE (see supplementary 
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Fig. S-6). Consequently, errors due to the possible overestimation of both size fractions at least partially cancel each 
other.   
 

In addition to the impact of dust sizes, dust asphericity also has a substantial impact on the dust MEE. The DustCOMM 
constraint on dust MEE leverages measurements of dust shape to represent dust particles as an ensemble of tri-axial 5 
ellipsoids (Meng et al., 2010; Kok et al., 2017). In contrast, most models use Mie theory, which approximates dust as 
spherical particles. Thus, the difference between single-particle dust MEE used in DustCOMM and calculated using 
Mie theory shows the impact of dust asphericity is substantial for both small and lager dust particles, increasing 

extinction for particles with # ≥ 1µ) (supplementary Fig. S-6). This implies that typical global model simulations, 

which contain too much fine-mode dust particles and approximate dust as spherical, the overestimation of the dust 10 
extinction due to the fine size bias could (partially) cancel out the underestimation of the dust extinction due to the 
treatment as dust spherical shapes, leading to nonetheless reasonable agreement with measured dust MEE. However, 

for DustCOMM, both the size bias and dust asphericity are accounted for, thereby producing better agreement with 
measurements (Fig. 8). In addition, accounting for dust asphericity could allow dust particles to stay longer in the 
atmosphere because asphericity reduces dust settling speed (Ginoux, 2003), which may in turn lead to a more accurate 15 
estimation of dust deposition mass fluxes onto land and ocean ecosystems (e.g. van der Does et al., 2016; 2018). 
 

4.3 Limitations in using modelling constraints 
 
We used modelling constraints in DustCOMM where observational constraints were either not available or 20 
insufficient. For example, modelling constraints are used for the regional differences in dust size distribution and 

extinction efficiency because the measurements to constrain these parameters on a regional basis across the different 
dust-source regions are currently insufficient. To further reduce the uncertainty associated with using modelling 
constraints, we used an ensemble of six model simulations. In addition to the uncertainties associated with model 
simulations of dust emission and deposition processes that may influence the constraints on dust size distributions as 25 
highlighted in section 4.1, there are other limitations in the modelling constraints that can influence DustCOMM 

estimates.  
 
First, one such limitation is the uncertainty in the dust mass spatial distribution of the model ensemble, which directly 
determines the spatial distribution of dust mass for DustCOMM estimates. Variability in dust emission rates influence 30 
the distribution of simulated size-resolved atmospheric dust loading, and consequently the 3-D dust mass fractions. In 

addition, ensemble model simulations of dust emission and transport are driven by different meteorological datasets 
(Table 1), which represent the actual historical meteorology with various degrees of accuracy (e.g. Evan, 2018). Dust 
transport is also influenced by model resolution and sub-grid parameterizations of wind and turbulence, which differ 
between models (e.g., Zender et al., 2003; Cakmur et al., 2004). Although averaging over multiple models and over 35 

long time periods reduces random errors, systematic errors that affect different models similarly would affect the 
model ensemble (e.g. Ridley et al., 2012), and would impact the spatial distribution of dust mass (e.g. Johnson et al. 
2012; Ridley et al., 2016). In addition, uncertainties in the vertical distribution of size-resolved dust mass fractions 
directly affect DustCOMM dust size distributions. Since we use the globally-averaged size-resolved extinction 
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efficiency to constrain the dust MEE over every location (Eqn. 8), the spatial distribution of dust MEE is thus partially 
determined by the dust size distribution, effectively propagating any uncertainty in model simulations of the spatial 
distribution.  

 
Second, some errors may have been introduced while scaling and fitting the different model dust size distributions to 5 
a common diameter range (section 2.3.1). For the scaling procedure (section 2.3.1.1), the variance of the dust mass 
fraction in all the bins, including the newly-created ones, are of similar orders of magnitude, thus errors introduced 
through this process are small relative to the magnitude of errors in the dust mass fraction. In addition, the resulting 

dust size distributions are dependent on the specific function and set of parameters used in the fitting procedure 
(section 2.3.1.2), which may also introduce some errors.  10 
 
Third, our constraints on the dust atmospheric loading use ensemble estimates of reanalysis-derived dust AOD, which 

depends in part on the assimilated aerosol observations, in part on the numerical simulation of dust sources and sinks, 
and in part on the numerical simulation of other aerosol species. Although some of the reanalysis products try to 
constrain these dust processes using space-based observations (e.g. Lynch et al., 2016; see supplementary 15 
information), the impact of the uncertainties associated with each process on the DustCOMM estimates of the 
atmospheric dust loading is beyond the scope of the study. 

 
Finally, this study primarily uses climatologies of modelled dust size distribution between 2004-2008, except for 
WRF-Chem and IMPACT (see Table 1), and it also scales dust mass loading using the 2004-2008 reanalysis products 20 
(see section 2.3.3 & 2.2). Thus, any application of our methodology to a different time periods is expected to have 
some errors. While these errors are expected to be small for the dust size distribution and dust mass extinction 

efficiency, they may have a substantial impact on the dust mass loading, depending on the inter-annual variability in 
the reanalysis-derived products and also on the assimilated observations 
 25 
4.4 Possible use of DustCOMM to improve estimates of dust impacts on the Earth system. 
 
Given that DustCOMM estimates of dust aerosol properties are in better agreement with measurements than the 
model ensemble, DustCOMM could be used to obtain improved constraints on dust impacts on the Earth system than 
is possible from current global models. Specifically, DustCOMM dust properties could be used as an alternative to 30 
global model simulations in constraining dust impacts, such as the dust direct radiative impact or dust impacts on 

biogeochemistry and human health. For instance, dust radiative heating rates in the atmosphere strongly depend on 
the ability of dust particles to absorb shortwave and longwave radiation (e.g. Perlwitz and Miller, 2010). In turn, such 
absorption depends on the dust size distribution, which strongly influences the optical parameters like the dust 
absorption optical thickness (e.g. Tegen and Lacis, 1996). With improved constraints on the dust size distribution 35 
and therefore the dust optical properties, DustCOMM could be used to determine the dust (shortwave and longwave) 

heating rates in the atmosphere more accurately than possible with current global model simulations. As a result, our 
constraints on dust size distribution could be used to better quantify radiative effects of dust, especially in the 
longwave spectrum which have remained very uncertain (Dufresne et al., 2002; Di Biagio et al., 2017a; Kok et al., 
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2017; Song et al., 2018). Furthermore, since recent studies associate much of the biases in dust properties, such as 
the dust aerosol optical depth, deposition fluxes and surface dust concentration, to model biases in dust size 
distribution (Evan et al., 2014; Huneeus et al., 2011), DustCOMM estimates can therefore serve as a better alternative. 

For example, DustCOMM’s improved constraints on atmospheric dust loading and dust size distribution could 
contribute to better estimates of size-resolved dust concentration near the surface (e.g. Whicker et al., 2018). Over 5 
the ocean, such constraints on size-resolved dust concentration could potentially be used for constraints on dust 
deposition fluxes that are more accurate than possible from global model simulations.  
 

In addition to being used as an alternative to global model simulations, DustCOMM could also be used to improve 
the simulation of dust aerosol properties in global models. Incorporating DustCOMM products in the simulation 10 
process can potentially be achieved when the aerosol module is coupled with the global model in either the so-called 
online or offline modes (e.g. Tegen, 2003; Pérez et al., 2011; Han et al., 2012). In the online mode, the simulated 

dust size distributions could be adjusted (“nudged”) to match the DustCOMM constraints on dust size distribution, 
similar to what is often done with meteorological fields (e.g. Kooperman et al., 2012). Alternatively, the 3-D dust 
size distribution could also be corrected offline after the simulated size distribution is obtained but before dust impacts 15 
such as on radiation are estimated (e.g. Weaver et al., 2002). Specifically, the modelled dust size distribution can be 
corrected by minimizing the differences between the DustCOMM and the modelled size distributions for a specific 

timescale (see section 2.3.5). Whether simulated dust properties are corrected in the online or offline modes, using 
DustCOMM to bias correct global model simulations could produce better estimation of dust impacts, such as dust 
impacts on radiation, clouds and precipitation, biogeochemistry, and human health. 20 
 

An example of dust impacts that can be substantially improved by DustCOMM product are dust radiative effects. 

These radiative effects are sensitive to dust particle sizes and shapes, which are both constrained substantially more 

accurately in DustCOMM than in models (Fig. 2-6). Smaller dust particles (# ≤ 2.5µ)) scatter more shortwave 

radiation and cool the climate while larger dust particles (# ≥ 5µ)) absorb more longwave radiation and warm the 25 

climate. Thus, correcting both biases of too much fine dust and not enough coarse dust in models (Figs. 4 & 5), as we 

do here in DustCOMM, decreases the shortwave cooling and increases the longwave warming (e.g. Otto et al., 2011; 
Kok et al., 2017). Using the 3-D DustCOMM size distribution to correct modelled dust properties could yield more 
accurate estimates of dust radiative effects. 
 30 

In addition, simulated dust impacts on clouds and precipitation can also be improved using DustCOMM dust aerosol 
properties. For the interactions of dust particles with clouds, it is important to know the number of particles that are 
activated above a given particle size as cloud condensation nuclei or ice nuclei (e.g. Andreae & Rosenfeld, 2008; 
DeMott et al., 2015). Therefore, in regions with significant dust loading, accurate estimates of dust size distribution 
can be key to accurate simulations of precipitation initiation and aerosol-cloud interactions, including dust aerosol 35 

indirect and semi-direct effects (e.g. Sassen, 2003; Doherty and Evan, 2014). Since DustCOMM represent the dust 
size distribution more accurately than model simulations, it could be used to improve the simulated dust impacts on 
clouds, precipitation and aerosol-cloud interactions. 
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Another key advantage of DustCOMM over global model simulations is that it propagates many observational, 
experimental, and modelling uncertainties of dust properties, which can be propagated into the calculation of dust 
impacts on the Earth system. For instance, experimental uncertainties associated with the emitted dust size 

distributions are propagated into the DustCOMM 3D dust size distribution, and experimental uncertainties in the dust 
index of refraction and dust particle shapes are propagated into the DustCOMM mass extinction efficiency at 550 nm 5 
wavelength (e.g,. Kok et al. 2017). In addition, our methodology propagates the uncertainty due to the spread in model 
predictions of the dust spatial distribution, although substantial biases in the model ensemble might exist (see section 
4.3 for example). 

  
Finally, it is worth noting that DustCOMM can be readily updated as more accurate constraints on dust properties and 10 
abundance become available. Current constraints in DustCOMM can also be expanded to include more information 
about dust properties. For instance, a next step could be to include constraints on the dust vertical concentration profile 

over every location, in order to more accurately estimate dust deposition, and dust concentration at the surface and in 
3D. For this, lidar-based retrieval of vertical dust extinction profiles from Cloud-Aerosol Lidar and Infrared Pathfinder 
Satellite Observations (CALIPSO) can be combined with the corresponding constraints on dust mass extinction 15 
efficiency from this study to obtain constraints on the dust vertical concentration profile. Another addition could be 
constraining the relative contribution of each dust source region to the 3D dust load, which can be combined with 

constraints on optical properties of dust emitted from each region (Di Biagio et al., 2017, 2019; Green et al., 2018) to 
obtain more accurate quantifications of dust radiative impacts. Given that dust particles with D ≥ 20 µm can contribute 
substantially to dust extinction both in the shortwave and longwave spectrum (Ryder et al., 2019), future versions of 20 
DustCOMM could be extended to a diameter range beyond 20 µm as more measurements of dust size distribution 
with D ≥ 20 µm become available. 

 
5 Summary and Conclusions 
 25 
In this study, we presented a new dataset of atmospheric dust aerosol properties called the ‘Dust Constraints from 

Joint Observational-Modelling-experiMental Analysis’ – DustCOMM. DustCOMM combines observational and 
experimental constraints on dust properties and abundance with an ensemble of global model simulations of dust 
spatial distribution to obtain more accurate 3-D annual and seasonal climatologies of dust properties and abundance 
than possible with global model simulations alone. Here, we presented three DustCOMM products: the three-30 
dimensional (3-D) dust size distribution, 3-D dust mass extinction efficiency, and two-dimensional dust loading. First, 

we obtained constraints on the 3-D dust size distribution by combining constraints on the globally-averaged dust size 
distribution with an ensemble of model simulations of the spatial variability of the dust size distribution. Second, we 
combined the resulting 3-D dust size distribution with constraints on the size-resolved globally-averaged dust 
extinction efficiency, which accounts for the substantial asphericity of dust aerosols, to constrain the 3-D dust mass 35 
extinction efficiency. Finally, we used the resulting column-integrated dust mass extinction efficiency with an 

ensemble of reanalysis-derived dust aerosol optical depth to constrain the atmospheric dust column loading. 
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By comparing DustCOMM estimates of dust size distribution and dust mass extinction efficiency against independent 
in-situ measurements, we showed that DustCOMM reproduces observations substantially better than an ensemble of 

model simulations (Figs. 2-4, & 8). Models generally overestimate the contribution of fine-mode dust (# ≤ 2.5µ)) 

and underestimate the contribution of coarse-mode dust (# ≥ 5µ)), consistent with previous studies (e.g. Mahowald 

et al., 2014; Kok et al., 2017). In contrast, the DustCOMM size distribution is in substantially better agreement with 5 

measurements for different locations, heights and seasons over the 0.5 ≤ D ≤ 20 µ) size range. However, there 

remain some discrepancies between DustCOMM and measurements, notably an underestimation of dust with # ≤

0.5µ). Potential reasons for these discrepancies include contamination of measured dust size distribution by other 

aerosol species for	# ≤ 0.5µ), and biases in observational and modelling constraints for # ≤ 0.5µ) (section 4.1). 

Because DustCOMM underestimates the measurements for # ≤ 0.5µ), it shows a more negative bias (~50% more) 10 

over the full size range (between # = 0.2 − 20µ)), although the error is markedly lower (~15 %), when compared 

to the ensemble of model simulations. Overall for # ≥ 0.5µ), DustCOMM shows a bias against measured size 

distributions that is significantly less (about 46% less) than for an ensemble of global model simulations. 
 

DustCOMM similarly shows better agreement against measurements of the dust mass extinction efficiency (MEE) 15 
than an ensemble of model estimates. Because DustCOMM predicts a coarser dust size distribution, as supported by 
the comparison against in situ size distribution measurements, it yields a global-mean dust MEE that is about 28% 
lower than that from the model ensemble, driven by large reductions in MEE over dust-dominated regions, where 
coarse particles dominate. For specific locations and seasons, DustCOMM estimates consistently show smaller errors 

relative to dust MEE measurements than an ensemble of model results, including in regions with strong spatial 20 
gradients in dust loading. On average, there is a negligible difference (~1%) between DustCOMM and measurements 
of MEE, while the model ensemble overestimates MEE by about 23% relative to measurements.  
 
DustCOMM estimates of spatially-varying dust properties and abundance can be used to constrain various dust 

impacts on the Earth system in a manner that is more robust than possible with current global models. This is because 25 
DustCOMM reproduces dust properties more accurately than global model simulations, and also because DustCOMM 
explicitly propagates uncertainties in experimental, observational, and modelling constraints used in obtaining the 
DustCOMM products, and these uncertainties can be propagated in calculations of dust impacts on global climate, 

biogeochemistry, and human health.  
 30 
List of some acronyms.  
GISS  Goddard Institute for Space Studies (GISS) ModelE atmospheric general circulation model 
WRF-Chem Weather Research and Forecasting model coupled with Chemistry 

CESM  Community Earth System Model 
GEOS-Chem Goddard Earth Observing System coupled with Chemistry 35 
IMPACT  Integrated Massively Parallel Atmospheric Chemical Transport 

INDOEX  Indian Ocean Experiment Intensive Field Phase 
SHADE  Saharan Dust Experiment 
ACE-Asia Asian Pacific Regional Aerosol Characterization Experiment 
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TRACE-P Transport and Chemical Evolution over the Pacific 
ACE-2  Aerosol Characterisation Experiment 

DABEX  Dust and Biomass-burning Experiment 
AMMA  African Monsoon Multidisciplinary Analysis 
DODO  Dust Outflow and Deposition to the Ocean project 5 
SAMUM  Saharan Mineral Dust Experiment 

DARPO  Desert Aerosols over Portugal 
BACEX  Barbados Aerosol Cloud Experiment 
SALTRACE Saharan Aerosol Long-Range Transport And Aerosol–Cloud-Interaction Experiment 

AER-D  AERosol Properties – Dust 10 
MERRA-2 Modern-Era Retrospective analysis for Research and Applications, Version 2 
NAAPS  Navy Aerosol Analysis and Prediction System 

JRAero  Japanese Reanalysis for Aerosol 
CAMSiRA  Copernicus Atmosphere Monitoring Service interim Reanalysis 

 15 
Data availability 
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Table 1: Details of model simulations used in this study. Shown are the particle bin ranges, time periods of simulations, the 
spatial resolutions, the meteorology used, and the relevant model reference. We interpolate all model simulations to 2.5o by 
1.9o to facilitate comparison and consistency with other datasets. See section 2 for details.

Model 
Particle size bins 

(diameter – µm) 
Time 
Period 

Spatial 

resolution 

Meteorology 
used for 

simulation 

Relevant 

reference 

GISS 

0.2-0.36, 0.36-0.6, 0.6-

1.2, 1.2-2.0, 2.0-4.0, 4.0-

8.0, 8.0-16.0, 16.0-32.0 

2004-
2008 

5o by 4o with 20 

levels up to 0.1 

hPa 

Internal 
model 

meteorology 

Miller et al. 

(2006) 

WRF-

Chem 

0.039-0.312, 0.312-

0.625, 0.625-1.25, 1.25-

2.5, 2.5-5.0, 5.0-10.0 

2007-

2016 

1o by 1o with 35 

levels up to 50 

hPa. 

NCEP/FNL 

reanalysis 

Zhao et al. 

(2013) 

CESM 
0.1-1.0, 1.0-2.5, 2.5-5.0, 

5.0-10.0 
2004-
2008 

2.5o by 1.89o 

with 56 levels up 

to 1.8 hPa. 

ERA-Interim 
reanalysis 

Hurrell et al. 

(2013) 

GEOS-

Chem 

0.2-0.36, 0.36-0.6, 0.6-

1.2, 1.2-2.0, 2.0-3.6, 3.6-

6.0, 6.0-12.0 

2004-
2008 

2.5o by 2o with 

47 levels up to 

0.1 hPa. 

MERRA 
reanalysis 

See Kok et al., 

(2017) 

ARPEGE-
Climat 

0.1-0.2, 0.2-0.5, 0.5-1.0, 

1.0-2.5, 2.5-10.0, 10.0-

100.0 

2004-
2008 

1.4o by 1.4o with 

91 levels up to 

10 hPa. 

Internal 
model 

meteorology 

Michou et al., 
2015 

IMPACT 
0.1-1.26, 1.26-2.5, 2.5-

5.0, 5.0-20.0 
2004 

2.0°×2.5° with 

59 levels up to 

0.02 hPa. 

Meteorology 

from GEOS-
5 model 

Ito & Kok, 2017 
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 1 

Measurement Reference Project Name Time Period Representative Location Comments 

D’Almeida (1987) 
N/A (Ground 

station) 
Feb-Mar 1979; Jan-

Feb1982 
Niamey (Niger): 14.21N,2.5E 

PSD only; Z = 0-100m 
Data taken from their Fig. 3. 

Li et al., 1996 
N/A (Ground 

Station) 
April-May 1994 Barbados: 13.19N, 59.54W 

MEE only; l = 530 nm 

See their equation 3. 

Li et al., 2000 
N/A (Ground 

Station) 
Oct-Nov, 1997 and 

Jan,1998 
Qinghai Province (China): 33.16N, 

96.25E 
MSE only; l = 550 nm 

Data taken from their table 2. 

Maring et al., 2000 
N/A (Ground 

Station) 
July 1995 

Tenerife (Canary Island): 28.29N, 
16.63W 

MSE only; l = 532 nm 

Data taken from their table 4. 

Andreae et al., 2002 ARACHNE Dec, 1995 -Oct, 1997 Sde Boker (Israel): 30N,34.79E 
MSE only; l = 550 nm 

Data taken from their table 4. 

Quinn et al., 2002 INDOEX Feb- Mar, 1999 
Arabia Sea: 15N, 69E 

Arabia Sea – Indian Ocean: 8N, 72E 
Indian Ocean: 8S, 74E 

MEE only; l = 550 nm 

Data taken from their table 10. 

Haywood et al., 2003 SHADE September 2000 Cape Verde: 18N, 21W 
MEE only; l = 550 nm 

Data taken from their table 2. 

Clarke et al. 2004 
ACE-

Asia/TRACE-P 
Feb.-Apr., 2001 Sea of Japan: 38.85N, 130E 

PSD and MSE; l = 550 nm, Z = 0-

6000m 
PSD data taken from their Fig. 5. 
MSE data taken from the paper. 

Otto et al., 2007 ACE-2 Jun-Jul, 1997 Canary Islands: 27.65N, 14.25W 
PSD only; Z=2700m, 4000m, 

5500m, 7000m 
Data taken from their Fig. 3 

Osborne et al., 2008 DABEX Jan-Feb, 2006 Niamey (Niger): 15.5N, 5.0E 
MEE only; l = 550 nm 

Data taken from their table 4. 

Chou et al., 2008 AMMA/DABEX Jan-Feb, 2006 Niamey (Niger): 15.5N, 5.0E 
PSD only; Z = 0 – 1,500m 
Data take from their Fig. 6 
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McConnell et al., 2008 DODO-1 Feb., 2006 Dakar (Senegal): 14.76N, 17.38W 
MEE only; l = 550 nm 

Data taken from table 4 of Osborne 
et al., 2008 

McConnell et al., 2008 DODO-2 August 2006 Dakar (Senegal): 19.89N, 12.5W 
PSD only; Z = 0 - 1000m 

Data taken from their Fig. 7 

Weinzierl et al., 2009 SAMUM-1 May-Jun, 2006 Morocco: 31.26N 7.5W 
PSD only; Z = 3700-4900m 
Data taken from their Fig. 8 

Wagner et al., 2009 DARPO May 2006 Évora (Portugal): 38.57N 7.91 W 
PSD only; Z = 2300-5000m 
Data taken from their Fig. 9 

Kandler et al., 2009 SAMUM-1 May 2006 Morocco: 31.26N 7.5W 
PSD only; Z = 0-700 m 

Data taken from their Fig. 8 

Kandler et al., 2011 SAMUM-2 Jan-Feb, 2008 Praia (Cape Verde): 14.21N, 22.5W 
PSD only; Z = 0-110m 

Data taken from their Fig. 6 

Jung  et al., 2013 BACEX Mar–Apr, 2010 Barbados: 12.32N, 60W 
PSD only; Z = 1250-2700m 
Data taken from their Fig. 14 

Ryder et al., 2013a Fennec 2011 June 2011 Canary Islands: 27.65N, 14.25W 

PSD and MEE; l = 550 nm; Z = 0 – 

6000m; 
PSD data obtained from the author 

MEE data taken from their 
section 3.4 

Ryder et al., 2013b Fennec 2011 June, 2011 Mauritania-Mali.: 24N, 6W 
PSD only; l = 550 nm; Z = 0 – 

3000m; 
Data taken from their Fig. 5b 

Weinzierl et al., 2017 SALTRACE June, 2013 
Cape Verde: 14.21N, 22.5W 
Barbados: 13.19N, 59.54W 

PSD only; Z=0-2600m 
Data taken from their Fig. 9 

Ryder et al., 2018 AER-D August, 2015 Cape Verde: 18N, 21W 

PSD and MEE; l = 550 nm; Z = 0-

6000m 
PSD data obtained from the author 
MEE data taken from their table 6. 
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Table 2: Overview of in-situ measurements used to evaluate DustCOMM and model ensemble estimates of the dust size distribution and dust mass extinction efficiency (see 1 
section 2.4 for details). The label PSD in the last column indicates that we take dust size distribution values from the study. MSE and MEE similarly indicates that we take 2 
dust mass scattering or extinction efficiency values.3 
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 1 

  2 
Figure 1: Schematic of the key steps to obtain the DustCOMM products (dark shaded boxes): constraints on the 3-D dust size 3 
distribution, 3-D mass extinction efficiency and the 2-D atmospheric loading. The variables are a function of the following: x-y-z 4 
(three-dimensional field), x-y (two-dimensional field), S (seasonally-resolved), D (size-resolved), ! (includes uncertainties). The 5 
variables in the light grey boxes are obtained from Kok et al (2017). See section 2 for details. 6 

 7 
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 2 
Figure 2: Comparison of normalized dust size distributions between published in-situ measurements (blue and purple dots; see 3 
Table 2) and season-averaged DustCOMM (black lines) and model ensemble (red lines) estimates. The grey shading shows the 95% 4 
confidence interval for the DustCOMM dust size distributions, whereas the pink shading shows the range of the model ensemble 5 
size distributions. The size distributions are normalized between 2.5-10 µm. The comparisons are made at the nearest model grid-6 
points to the representative location and height level of the measurements.  7 
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 2 
Figure 3: Same as Figure 2 above, but as a function of height, which increases from bottom to top. The measurements plotted on the 3 
left panels are from Otto et al., (2007) taken during the ACE-2 campaign (June/July, 1997) in the vicinity of Canary Islands; the 4 
measurements plotted on the middle panels are from Ryder et al., (2013a) taken during Fennec project (June 2011) near the Canary 5 
Islands; and the measurements plotted on the right panels are from Ryder et al., (2018) taken during the AER-D campaign in August 6 
2015 near Cape Verde Island. 7 
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 1 
Figure 4: Average log-mean bias between measurements and DustCOMM (grey) or model ensemble (pink) estimates of dust size 2 
distributions (shown in Figures 2 and 3), for different particle bins. The vertical bars represent the 95% confidence interval.  3 

 4 
  5 
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 2 
Figure 5: (A) Comparison between DustCOMM (black line) and model simulations (colored lines) of the globally-averaged dust 3 
particle size distribution (PSD). The grey shading denotes the 95% confidence interval for the DustCOMM product. (B) The 4 
probability distribution of the volume median diameter (µm) of the PSD for DustCOMM (black line) and the individual model 5 
simulations (colored lines) over all locations and height levels.  6 
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Figure 6: Differences in the spatial variability of the dust mass fraction between DustCOMM and the model ensemble. Shown are 2 
the spatial distributions of the vertically-integrated dust mass fractions for different particle bins for DustCOMM (left panel), the 3 
model ensemble (middle panel), and the difference between the two (right panel; DustCOMM -Model Ensemble). 4 

 5 
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 1 
Figure 7: Vertical distributions of dust mass fractions as a function of particle size for the individual model simulation (colored lines) 2 
and DustCOMM (black lines) estimates. The grey shading shows the 95% uncertainty confidence interval for DustCOMM.  3 
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 1 
Figure 8: Comparison of measurements (blue dots) of dust mass extinction efficiencies (MEE – m2g-1) against column-integrated 2 
DustCOMM (black bars) and model ensemble (red bars) estimates. Vertical bars on the measurements represent reported 3 
uncertainty. For the DustCOMM and model ensemble estimates, the black and red boxes show one standard error, whereas the 4 
vertical dotted lines show the 95% confidence interval; the middle horizontal bar and star shows the median and mean values, 5 
respectively. The DustCOMM and model ensemble values are season-averaged values corresponding to the observation time period 6 
(see Table 2 for details). These seasons are labelled DJF— Dec-Feb., MAM—Mar-May, JJA – Jun.-Jul., SON – Sep.-Nov; ANN 7 
represents an annually-averaged value. The model ensemble MEE is calculated from the ratio between individual model dust aerosol 8 
optical depth and the dust mass loading, while the DustCOMM MEE is calculated using the constrained dust size distributions and 9 
single-particle extinction efficiency that takes into account the asphericity of dust aerosols. "#$ is the reduced chi-squared (Eqn. 10b), 10 
and quantifies the performance of a model in representing observations (e.g. Andrae et al., 2010). 11 
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 1 
Figure 9: Spatial distributions of column-integrated dust mass extinction efficiency (MEE – m2g-1), weighted by the dust vertical 2 
distribution, for (a) DustCOMM, (b) the model ensemble, and (c) the difference between the two (DustCOMM -Model Ensemble). 3 
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 2 

 3 
Figure 10: Spatial distributions of the atmospheric dust column loading (g m-2) for the (a) DustCOMM and (b) model ensemble 4 
estimates, and (c) the difference between the two (DustCOMM -Model Ensemble). 5 
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 2 
Figure 11: Spatial distributions of DustCOMM relative uncertainties for (a-d) the dust mass fraction in the diameter ranges of %. $ −3 
$. (µ*, $. ( − (µ*, ( − +%µ*, and +% − $%µ*; (e) the dust mass extinction efficiency (MEE); and (f) dust load. The relative 4 
uncertainties are calculated as the ratio of the uncertainty characterizing 68% of the distribution of each variable, divided by the 5 
mean value. 6 

 7 
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1. Supplementary Figures 
 

 
Figure S-1: The globally-averaged size distributions for each model normalized between 0.2 and 
20 µm. It shows the model uncorrected dust size distribution (red lines), corrected dust size 
distribution (blue lines), Kok et al. 2017,  and the final constrained DustCOMM dust size 
distribution with the sub-bins (black lines). Note that since the constrained DustCOMM dust size 
distribution forced to that of Kok et al., 2017, the lines overlap. 

 



 
Figure S- 2: Probability distribution of the parameters for the generalized analytical function 
describing the atmospheric dust size distribution. See section 2.1.2 for details. The shaded regions 
denote the 95% confidence intervals of each distribution. 

 



 
Figure S- 3: Map showing the locations of measurements for evaluation used in this study (Table 
2). The measurements in Table 2 that corresponds to the numbers are as follows:  
#1 – D’Almeida & Schutz, (1983), Osborne et al., 2008, Chou et al., 2008;  
#2 – Li et al., 1996, Jung  et al., 2013, Weinzierl et al., 2017;  
#3 – Li et al., 2000;  
#4 – Maring et al., 2000, Otto et al., 2007; Ryder et al., 2013a 
#5 – Andreae et al., 2002;  
#6 – Quinn et al., 2002;  
#7 – Quinn et al., 2002;  
#8 – Quinn et al., 2002;  
#9 – Haywood et al., 2003, Kandler et al., 2011, Weinzierl et al., 2017, Ryder et al., 2018;  
#10 – Clarke et al. 2004;  
#11 – McConnell et al., 2008;  
#12 – Weinzierl et al., 2009, Kandler et al., 2009;  
#13 – Wagner et al., 2009;  
#14 – Ryder et al., 2013b 
 
 
 
 
 
 
 

 

 



 
Figure S- 4: Annually-averaged ensemble mean and relative uncertainty of reanalysis dust aerosol 
optical depth (left panel). See section 3.2 for details Right panel shows the difference between the 
reanalysis dataset and the model ensemble dust aerosol optical depth. 

 

 
Figure S- 5: Spatial distributions of model ensemble relative uncertainties for (a-d) the dust mass 
fraction in the diameter range between 0.2 − 2.5µ', 2.5 − 5µ', 5 − 10µ', and 10 − 20µ'; 
(e) the dust mass extinction efficiency (MEE), and (f) dust load. 



 
Figure S- 6: (a) Globally-averaged Single-particle DustCOMM dust mass extinction efficiency 
(MEE; Black line) and one calculated from Mie theory (blue line); (b) the effect of dust asphericity 
shown as the percentage differences between the dust MEE from DustCOMM and the one from 
Mie theory. All the black lines present the median of the distribution for each diameter, while the 
grey shade is the 95% confidence interval. The DustCOMM dust MEE leverages observational 
constraints on dust shape and dust size distribution (see section 2 in text). In contrast, the blue 
dashed line denotes the dust MEE calculated from Mie theory, which uses the assumption that dust 
particles are spherical. 



 
Figure S-7: The original and modified globally-averaged dust size disttribution for each model 
simulation. 

 

  



 
 
2. Global model simulations 

 

We describe here the model simulations used in this study. The GISS, CESM and GEOS-Chem 

models are described in detail in Kok et al. (2017) and the references therein (see section 5 of their 

supplementary document), while the simulations with the WRF-Chem, ARPEGE-Climat and 

IMPACT models are described below. 

 

2.1.1 WRF-Chem 

 

We use the version of WRF-Chem model (Grell et al., 2005) that is improved by the University 

of Science and Technology of China (Zhao et al., 2013). This version uses the quasi-global channel 

configuration with the periodic boundary conditions in the zonal direction and 360 × 145 grid cells 

(180° W-180° E, 67.5° S-77.5° N) to perform the simulations at 1° horizontal resolution, 35 

vertical layers up to 50 hPa, and for the period of 2007-2016. The meteorological initial and lateral 

meridional boundary conditions are derived from the National Center for Environmental 

Prediction final analysis (NCEP/FNL) data. In addition, the model simulated winds and 

atmospheric temperature are nudged towards the NCEP/FNL reanalysis data with a nudging 

timescale of 6 hr (Stauffer & Seaman, 1990). Furthermore, the simulation uses MOSAIC (Model 

for Simulation Aerosol Interactions and Chemistry) aerosol module (Zaveri et al., 2008) coupled 

with the CBM-Z (carbon bond mechanism) photochemical mechanism (Zaveri and Peters, 1999). 

This aerosol model uses the bin approach with eight discrete size bins to represent aerosol size 

distributions (Fast et al., 2006). All major aerosol compositions are simulated in the model, 

including the including sulfate, nitrate, ammonium, black carbon, organic matter, sea-salt, and 

mineral dust. The MOSAIC aerosol scheme also includes physical and chemical processes of 

nucleation, condensation, coagulation, aqueous phase chemistry, and water uptake by aerosols. 

More details, including the model physics scheme used, can be found in Zhao et al. (2013). 

 

Vertical dust emission fluxes are calculated as described in Zhao et al. (2010) based on the 

GOCART dust emission scheme (Ginoux et al., 2001). The emitted dust particles are distributed 

into the MOSAIC aerosol size bins following a theoretical expression that is based on the physics 

of scale-invariant fragmentation of brittle materials derived by Kok (2011). For MOSAIC 8-bin, 



dust particles are emitted into eight size bins with mass fractions of 10-6 %, 10-4 %, 0.02%, 0.2%, 

1.5%, 6%, 26%, and 45%, respectively. The dry deposition of aerosol mass and number is 

simulated following the approach of Binkowski & Shankar (1995), which includes both turbulent 

diffusion and gravitational settling. Wet removal of aerosols by grid-resolved stratiform clouds 

and precipitation includes in-cloud removal (rainout) and below-cloud removal (washout) by 

impaction and interception, following Easter et al. (2004) & Chapman et al. (2009). Cloud-ice-

borne aerosols are not explicitly treated in the model, but the removal of aerosols by the droplet 

freezing process is considered. Convective transport and wet removal of aerosols by cumulus 

clouds follow Zhao et al. (2010, 2013). 

 

The AOD is computed as a function of wavelength for each model grid box. Aerosols are assumed 

internally mixed in each bin (i.e., a complex refractive index is calculated by volume averaging 

for each bin for each chemical constituent of aerosols). The Optical Properties of Aerosols and 

Clouds (OPAC) data set (Hess et al., 1998) is used for the shortwave and longwave refractive 

indices of aerosols, except that a constant value of 1.53+0.003i is used for the SW refractive index 

of dust following Zhao et al. (2010, 2011). A detailed description of the computation of aerosol 

optical properties in WRF-Chem can be found in Fast et al. (2006) & Barnard et al. (2010). 

 

2.1.2 IMPACT 

 

The global chemical transport model used in this study is a coupled gas-phase (Ito et al., 2007) 

and aerosol chemistry version (Liu et al., 2005) of the Integrated Massively Parallel Atmospheric 

Chemical Transport (IMPACT) model (Rotman et al., 2004). A detailed description can be found 

in Ito & Kok (2017) and references therein. The IMPACT model is driven by assimilated 

meteorological fields from the Goddard Earth Observation System (GEOS) of the NASA Global 

Modeling and Assimilation Office (GMAO) with a horizontal resolution of 2.0° × 2.5° and 59 

vertical layers up to 0.01 hPa. The model simulates the emissions, chemistry, transport, and 

deposition of major aerosol species (Liu et al., 2005) and their precursor gases (Ito et al., 2007). 

IMPACT takes into account emissions of primary aerosols and precursor gases of secondary 

aerosols such as sulfate, nitrate, ammonium and oxalate. Mineral dust aerosols are distributed 

among 4 bins in the model. A total dust source is dynamically calculated by a physically-based 

dust emission scheme (Kok et al., 2014a, 2014b) in conjunction with satellite products of 



vegetation cover and soil moisture in the model (Ito & Kok, 2017). The chemical composition of 

mineral dust aerosols may change dynamically from that in the originally emitted aerosols due to 

reactions with gaseous species.  

 

Dry deposition of aerosol particles uses a resistance-in-series parameterization (Zhang et al., 

2001). Gravitational settling is also taken into account (Rotman et al., 2004; Seinfeld & Pandis, 

2016). Aerosols and soluble gases can be incorporated into cloud drops and ice crystals within 

cloud (rainout), collected by falling rain and snow (washout), and be entrained into wet convective 

updrafts (Liu et al., 2001; Rotman et al., 2004; Ito et al., 2007; Ito & Kok, 2017). The aging of 

dust and combustion aerosols from hydrophobic to hydrophilic enhances their dry and wet 

deposition. Hygroscopic growth of mineral dust and combustion aerosols in gravitational settling 

uses the Gerber (1991) scheme, including the particle growth due to sulfate, ammonium, and 

nitrate associated with the particles (Liu et al., 2005; Xu & Penner, 2012). Scavenging efficiencies 

for mineral dust and combustion aerosols in wet deposition are calculated based on the amount of 

sulfate, ammonium and nitrate coated on the particles (Liu et al., 2005; Xu & Penner, 2012).  

 

The AOD at 550 nm is calculated online using a look-up table as a function of wavelength and 

size parameter, following Xu & Penner (2012). Five types of aerosols (i.e., carbonaceous aerosols 

from anthropogenic combustion, carbonaceous aerosols from open biomass burning, dust, sulfate, 

and sea salt) were assumed to be externally mixed in each size bin, while sulfate, ammonium, and 

nitrate coated on each aerosol was internally mixed within each aerosol type and size bin. The 

refractive index for internally mixed aerosols is calculated based on the volume weighted mixture 

for each aerosol type and size bin. 

 

2.1.3 ARPEGE-Climat 

 

This study uses the global climate model from CNRM, namely ARPEGE-Climat, in its version 6 

used in the CMIP6 exercise, with a horizontal resolution of ~1.4° and 91 vertical levels (Michou 

et al., 2015). ARPEGE-Climat includes an interactive tropospheric aerosol scheme, named 

TACTIC (Tropospheric Aerosols for ClimaTe In CNRM), able to represent the main 

anthropogenic and natural aerosol types in the troposphere. Originally developed in the 

GEMS/MACC project (Morcrette et al., 2009), this scheme has been adapted to the 



ARPEGE/ALADIN-climate code (Michou et al., 2015; Nabat et al., 2015). Aerosols are included 

through sectional bins, separating desert dust (6 size bins whose limits are 0.1, 0.2, 0.5, 1.0, 2.5, 

10.0 and 100 µm), sea-salt (3 bins whose limits are 0.03, 0.5, 5.0 and 20.0 µm), sulfate (1 bin, as 

well as 1 additional variable for sulfate precursors considered as SO2), organic matter (2 bins: 

hydrophobic and hydrophilic particles) and black carbon (2 bins:  hydrophobic and hydrophilic 

particles) particles. All these 15 species are prognostic variables in the model, submitted to 

transport (semi-lagrangian advection, and convective transport), dry deposition, in-cloud and 

below-cloud scavenging. The interaction with shortwave and longwave radiation, is also taken into 

account through optical properties (extinction coefficient, single scattering albedo and asymmetry 

parameter) calculated using the Mie theory. Sulfate, organic matter and sea salt concentrations are 

used to determine the cloud droplet number concentration following Menon et al. (2002), thus 

representing the cloud-albedo effect (1st indirect aerosol effect).  

 

Focusing more on dust aerosols, emissions are fully interactive, based on the parameterization of 

Marticorena & Bergametti (1995) which provides the saltation flux depending on surface wind 

and soil characteristics. The latter consist in the roughness length and the sand/clay/silt fractions, 

which are based on the ECOCLIMAP database (Masson et al., 2003). The distribution of the 

resulting emitted dust vertical flux follows then the study of Kok (2011), assuming an analogy 

with the fragmentation of brittle materials. The six dust size bins have the following effective 

diameters:  0.09, 0.18, 0.4, 0.9, 3.7 and 13.2 µm. Dry deposition (for the 6 dust bins) and 

sedimentation (only applied to the two coarsest size bins) are calculated from fixed vertical speeds 

(respectively Wisely and Hicks, 2000, and Thompson, 2005). Wet deposition includes below-

cloud and in-cloud scavenging. The latter relies on the parameterization of Giorgi & Chameides 

(1986), assuming a fraction of dust aerosols included in droplets equal to 0.1 for the two finest 

bins and 0.2 for the 4 other bins.  

 

In the present study, a five-year simulation (2004-2008) has been carried out using the ARPEGE-

Climat model and its interactive aerosol scheme.  

 

3. Description of the reanalysis datasets 

 

3.1. MERRA-2 Aerosol Reanalysis 



 

The MERRA-2 is the second version of the MERRA atmospheric reanalysis product from the 

NASA Global Modeling and Assimilation Office (Gelaro et al., 2017), with updates on the 

reanalysis system to include addition of more observational platforms and correction of known 

limitations from previous MERRA version (Mccarty et al., 2016), as well as improvement to the 

Goddard Earth Observing System -5 (GEOS-5) atmospheric general circulation model, used as the 

base model for the global assimilation system (Mccarty et al., 2016). For the first time, 

meteorological and aerosol observations (which include bias-corrected aerosol optical depth from 

MODIS, AVHRR, MISR – over desserts, and ground-based AERONET instruments) are jointly 

assimilated into MERRA-2, with the aerosol fields simulated with radiatively-coupled version of 

Goddard Chemistry, Aerosol, Radiation and Transport model (GOCART) (Colarco et al., 2010). 

GOCART treats aerosol particles as externally mixed, with dust particles provided in five non-

interacting bins (Randles et al., 2017). The dust emission in GOCART is based on Ginoux et al. 

(2001), which depend on wind speed, following the parameterization of Marticorena & Bergametti 

(1995). Aerosol loss processes include dry deposition, large-scale wet removal, and convective 

scavenging. While the dry deposition is mostly model dependent, the precipitation-induced aerosol 

deposition however, depends largely on the assimilated global precipitation information in 

MERRA-2 (Reichle et al., 2014, 2017). MERRA-2 aerosol properties are available from 1980 

onward, but the number of observations assimilated is more than doubled after the year 2003 (Fig. 

3 in Randles et al., 2017). MERRA-2 is available for 3-hourly temporal resolution, and 1.5o X 1.5o 

horizontal fixed spatial resolution. 

 

We use the monthly averages (calculated from daily means) of MERRA-2 DAOD to construct the 

seasonal and climatological DAOD values between 2003 and 2012. Aerosol products from 

MERRA-2 have been validated against independent observation (Buchard et al., 2017; Randles et 

al., 2017), especially for the aerosol optical depth. It is worth noting here also that only AOD is 

directly constrained by the assimilation in MERRA-2, while other non-analyzed, non-constrained 

aerosol properties, like the vertical distribution and aerosol speciation are mostly model-

dependent, thereby providing a possible source of uncertainty in the MERRA-2 DOAD reanalysis. 

 

3.2. NAAPS  

 



The Navy Aerosol Analysis and Prediction System (NAAPS) is an offline aerosol transport model 

(Lynch et al., 2016) driven by the Navy Operational Global Analysis and Prediction System 

(NOGAPS; Hogan & Rosmond, 1991; Hogan & Brody, 1993). The quality-assured and quality-

controlled MODIS  and MISR aerosol optical depth  are assimilated through the Navy 

Atmospheric Variational Data Assimilation System (NAVDAS; Zhang et al., 2008), that became 

operational in 2010. Details on the aerosol model dynamics, emission and sink processes can be 

found in Lynch et al. (2016). NAAPS contains dust, sea salt, smoke, SO2, and other anthropogenic 

and biogenic fine particles, all of which are treated as externally mixed. The dust emission in 

NAAPS is based on Ginoux et al. (2001) erodibility map, with regional source tuning constrained 

by space-based and ground-based AOT observations (Lynch et al., 2016). While dust removal 

processes include dry deposition and wet removal, the dry deposition over ocean is adjusted based 

on assimilated AOT, and the wet deposition is constrained by satellite-based precipitation 

information retrieved from NOAA Climate Prediction Center MORPHing technique data 

(CMORPH; Joyce et al., 2004). NAAPS aerosol optical depth are available at 6 h temporal 

resolution, and 1o X 1o spatial resolution. For consistency with other reanalysis data, seasonal and 

climatological averages of AOT is also calculated for 2003 to 2012, using monthly averages. 

Reanalyzed NAAPS coarse and fine-mode AOT have good agreement with ground-based AOT 

from AERONET stations (Lynch et al., 2016). Similar to MERRA-2 reanalysis, NAAPS does not 

assimilate aerosol vertical information or speciation, hence the relative dust vertical profiles are 

uniformly varied, along with other aerosol species, to match the posterior AOT. 

 

3.3. JRAero 

 

The Japanese Reanalysis for Aerosol (JRAero) version 1.0 is produced by the Meteorological 

Research Institute (MRI) of the Japan Meteorological Agency. The global reanalysis product uses 

a global aerosol transport model named MASINGAR mk-2 (Model of Aerosol Species IN the 

Global AtmospheRe; Yukimoto et al., 2012), which consist an updated dust emission scheme 

(Yumimoto et al., 2017), when compared to the previous version of  MASINGAR (Tanaka et al., 

2003). MASINGAR mk-2 is coupled to an atmospheric general circulation model, also developed 

at MRI (Yoshimura and Yukimoto, 2008; Yukimoto et al., 2012), while the aerosol assimilation 

is done every 6 hours using a two-dimensional variational method (MASINGAR/2D-Var, similar 

to NAAPS-NAVDAS). Only the level 3 bias-corrected MODIS AOD, developed by the US Naval 



Research Laboratory (NRL) and the University of North Dakota (Zhang & Reid, 2006 Hyer, et 

al., 2011; Shi et al., 2011), is assimilated into MASINGAR mk-2, and this data is largely 

unavailable over the deserts due to the stringent quality-control procedure (e.g. Yumimoto et al., 

2017). Aerosol particles in the model are treated as externally mixed, with mineral dust carried in 

ten discrete particle bins (Yumimoto et al., 2017). The updated dust emission uses the wind erosion 

model developed by Shao et al. (1996), with erodibility factors for vegetation cover, snow cover, 

land-use type, and soil type (Tanaka and Chiba, 2005). Unlike MERRA-2 and NAAPS, both 

aerosol dry deposition and wet removal processes in MASINGAR mk-2 are model-dependent. 

Dry deposition in the model depends on the dry deposition velocity, which employs the resistance 

analog model (Seinfeld and Pandis, 2006), while the wet deposition process follows the 

parameterization of Giorgi & Chameides (1986) for in-cloud scavenging, and the procedure 

detailed in Tanaka & Chiba (2005) for below-cloud scavenging. JRAero is available for the period 

between 2011 and 2015, at 6 hours temporal resolution, and approximately 1.1ox1.1o  spatial 

resolution. We use the monthly averages of JRAero DAOD between 2011—2015 to construct the 

seasonal and climatological global DAOD values. Though the averaging period of 2011—2015, 

is different from other reanalysis product used, the spatial distribution of DAOD is largely 

consistent with other reanalysis products, albeit slightly smaller magnitude. 

 

3.4. CAMSiRA 

 

The Copernicus Atmosphere Monitoring Service (CAMS) interim Reanalysis (CAMSiRA) is a 

global reanalysis of atmospheric composition (Flemming et al., 2017). It uses a modified version 

of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrating Forecasting 

System for Composition (C-IFS) (Flemming et al., 2015). The aerosol model is based on the 

LMDZ model of Laboratoire de Météorologie Dynamique aerosol model (Reddy et al., 2005) that 

uses a bulk–bin scheme simulating desert dust, sea salt, organic carbon, black carbon, and sulfate 

aerosols (Morcrette et al., 2009). The wet and dry deposition are also modelled with different 

parameterizations. The wet deposition is based on Jacob et al. (2000) which account for sub-grid 

scale clouds and precipitation. Dry deposition is based on pre-calculated  monthly mean deposition 

velocities following Wesley (1989). The C-IFS uses a four-dimensional variational (4D-VAR) 

data assimilation technique to combine satellite observations with chemistry-aerosol modelling. 

Aerosol optical depth is assimilated mainly from MODIS, with the variational bias correction 



scheme developed at ECMWF (Inness et al., 2015). The mass mixing ratios of O3 and CO are also 

assimilated from various instruments as additional control variables. CAMSiRA is available for 

the period between 2011 and 2017, at 3 hours temporal resolution, and approximately 1.1ox1.1o 

spatial resolution. We use the monthly averages of CAMSiRA DAOD to construct the seasonal 

and climatological global DAOD values. 

 

4. Summary of measurements collected from literature and used for evaluation 

 

4.1. D’Almeida (1987) – Ground Station – PSD only 

 

Aerosol particles are collected on microsorban-98 fiber filter, with size 20cm by 25 cm described 

in D’Almeida and Schutz (1983). This filter has a low flow resistance, and a high particle retention 

capacity. The filter is then dissolved in an organic liquid, such as xylene, to convert the dust 

particles into liquid suspensions. The resulting suspension is counted with scanning electron 

microscope (See the Fig. 1 in D’Almeida and Schutz (1983)). The procedure avoids charging 

effects on the sample surface, to guarantee unbiased magnification of the samples up to 30,000 

times. The analysis was further corrected for collection efficiency of the filter. We use the average 

measurements that were taken over three sites between February-March 1979, and January-

February 1982. These locations are: Matam (northeast Senegal) Timbuktu (Mali), and Agadez 

(Niger) and shown in Fig. 3 of D’Almeida (1987). Dust particles were measured for sizes larger 

than 100µm, but we use size distribution up to 20µm in this study. Since measurements are taken 

within the boundary layer, we select a representative height level between 0-100 m. 

 

4.2. Li et al., 1996 – Ground Station – MEE only 

 

Measurements are made over Barbados between 4 April to 3 May 1994 (main measurement period 

in April). Daily aerosol particles are collected using the Whatman-41 filter, and mineral dust 

components are determined by ashing the filter at 500 oC and weighing the residue. The resulting 

dust size distribution is mostly for particles of diameter ) ≤ 10	µ'. Aerosol scattering is 

measured by nephelometer at 530 nm, and the resulting mass scattering efficiency is determined 

by linear regression method over the entire period of measurements.  

 



4.3. Li et al., 2000 – Ground Station – MSE only 

Measurements were taken at a station on top of the Waliguan Mountain (3816 m atitude), in the 

Qinghai Province, China during October-November, 1997 and January 1998. Aerosol sizes up to 

diameter of D ≤ 18 µm were measured by a Micro Orifice Uniform Deposit Impactor used with 

Teflon filter. Measured CaCO3 are assumed as proxy for dust particles, and consequently for dust 

volume distribution. Mass scattering efficiency is calculated using the Mie theory with density and 

index of refraction for CaCO3 taken from Williams (1996). Values are reported at 550 nm 

wavelength (see their table 2).  

 

4.4. Maring et al., 2000 – Ground Station – MSE only 

 

Dust properties are measured during July 1995 at the Global Atmospheric Watch station, located 

at Izana, Tenerife, Canary Island. Measurements took place at the station 2360 m above sea level, 

which is above the inversion level that is typically around 1200 m in summer. The dust size 

distribution is measured using a scanning mobility particle sizer and aerodynamic particle sizer, 

with diameter mostly up to about 10 µm (see their Fig. 7; it could also sample to 15 µm with 

stronger wind speed). Aerosol extinction was measured using nephelometer. The mass scattering 

efficiency is calculated using two methods, as the average for dusty and non-dusty periods: First, 

by calculating the linear regression between aerosol mass and its scattering (0.52 m2 g-1), and 

secondly by using Mie theory (0.48 m2 g-1). The values are reported for wavelength of 532 nm. 

 

4.5. Andreae et al., 2002 – ARACHNE – MSE only 

Over a remote site in the Negev desert (Sde Boker, Israel), measurements of aerosol properties 

were conducted for a period of 2 years (Dec, 1995 –Oct, 1997) as part of Aerosol Radiation and 

Chemistry Experiment (ARACHNE) research program. For the entire period, light scattering was 

measured by nephelometer, but every week a 2-days and a 3-days samples are taken using a “Gent” 

PM10 stacked filter unit sampler to determine the concentration of the constituent species. The 

mass scattering efficiency is calculated as a multivariate linear regression of the light scattering 

coefficients on the coarse-mode, fine-mode, sulphate and dust concentrations. Dust mass scattering 

efficiency at 550 nm is thereafter obtained. For the value correction for non-Lambertian behavior 

and truncation errors of the nephelometer has been applied. 



4.6. Quinn et al., 2002 – INDOEX – MEE only 

As part of Indian Ocean Experiment (INDOEX) Intensive Field Phase (IFP), measurements of 

aerosol properties were made over the Arabia sea and the Indian Ocean on board the R/V Ronald 

H. Brown between February and March, 1999. The two-stage multi-jet cascade impactors (Berner 

et al., 1979) apportioned to differential mobility particle sizer and aerodynamic particle sizer are 

used for size distributions. From the elemental components (Al, Si, Ca, Fe, and Ti), dust is 

considered as inorganic oxidized material (IOM), and it is obtained by summing the oxides of the 

elements, in which each elemental mass concentration is multiplied by a molar correction factor 

(See their Equation 2). The mass extinction efficiency is calculated using Mie theory, and we use 

here values for particles with diameter 1.1 ≤ D ≤ 10 µm, to avoid possible contamination by other 

aerosol in the sub-micron range (See their Fig. 10). Campaign-derived index of refraction is used. 

The values are reported for wavelength of 550 nm. 

 

4.7. Haywood et al., 2003 – SHADE – MEE only 

 

Dust particle measurements were taken during the Saharan Dust Experiment (SHADE) which took 

place between 19-28 September 2000 close to Sal, Cape Verde, off the coast of North Africa. The 

size distribution is determined using Passive Cavity Aerosol Spectrometer Probe 100X. The size 

distributions were not corrected for refractive index because they assumed that the refractive index 

of latex is approximately similar to that of dust. Due to instrument malfunction during the 

campaign, calculations of optical properties were largely limited to about 10µm. Mie theory is 

used to calculate the mass extinction efficiency at wavelength of 550 nm (see their table 2). 

 

4.8. Clarke et al. 2004 – ACE-Asia/TRACE-P – PSD and MSE 

 

Aerosol measurements were taken in the Sea of Japan (between Koran and Japan) in the spring 

(24 February to 10 April) of 2001, as part of the Asian Pacific Regional Aerosol Characterization 

Experiment (ACE-Asia) and NASA Transport and Chemical Evolution over the Pacific (TRACE-

P). Similar instrumentations as the INDOEX campaign (Quinn et al., 2002) were used during ACE-

Asia campaign. ACE-Asia used a laser optical particle counters (OPC) and condensation nuclei 

(CN) counters for aerosol size distribution. The OPC was operated at150°C and then at 300°C, to 

drive off low-temperature volatiles. In addition, light scattering of coarse and fine aerosol mode 



was measured by two-wavelength TSI 563 nephelometers. Despite some differences in 

instrumentations in the ACE-Asia and TRACE-P, the authors show that measured aerosol sizing 

and optical properties agreed within instrument uncertainty at all altitudes. After the size 

distribution are normalized to emphasize the coarse dust (see their Fig. 5), we select the resulting 

reference size distribution as the representative size distribution. In addition, based on their Fig. 1, 

we choose the representative height level between surface and 6km. The mass scattering efficiency 

is calculated using the Mie theory. The wavelength is at 550 nm. 

 

4.9. Otto et al., 2007 – ACE-2 – PSD only 

 

Aerosol measurements were taken during Aerosol Characterisation Experiment (ACE-2) 

conducted about 50—200km off the coast of Northern Africa close to Canary Islands on 8th of 

July, 1997. The aerosol size distributions used data from five instruments, including Condensation 

Particle Counter (CPC), Differential Mobility Analyser (DMA), Optical Particle Counter (OPC), 

and Forward Scattering Spectrometer Probe (FSSP). Together, the instruments measured particles 

up to diameter of ~31µm (see their Table 1). We use reported size distribution, up to 20µm at four 

specific levels – 2700 m, 4000 m, 5500 m, 7000 m. 

 

 

4.10.  Chou et al., 2008 & Osborne et al. 2008 – AMMA/DABEX – PSD and MEE 

 

Based in Niamey, Niger, aerosol measurements were made between 13 January and 3 February, 

2006 over the West Africa Sahel region, as part of the Dust and Biomass-burning Experiment 

(DABEX), affiliated with the African Monsoon Multidisciplinary Analysis (AMMA). On board 

the UK BAe-146 research aircraft , aerosol size distribution are measured using the Passive Cavity 

Aerosol Spectrometer Probe 100-X (PCASP) with additional counter-flow virtual impactor (CVI) 

inlet to measure particles up to diameter of 10 µm. Because of the aerosol inlet configuration on 

the aircraft, the measurement of coarse dust were particularly problematic. Both groups of authors 

reported size distributions measured from 2 flights numbered B160 and B165 out of 14 flights. 

Dust size distribution is taken from Chou et al, 2008, while the mass extinction efficiency is taken 

from Osborne et al., 2008. Since most of the flight are below ~1500m above ground level, we 

select 0-1500m as the representative height level. The mass extinction efficiency is calculated 



using Mie theory, at 550 nm wavelength. The mass extinction efficiency is calculated with log-

normal fit to the measured dust size distribution, with assumed dust density of 2.65 g cm-3 (see 

Table 4 in Osborne et al, 2008).  

 

4.11. McConnell et al., 2008 – DODO-1/ DODO-2 – PSD and MEE 

 

Based at Dakar, Senegal, measurements of dust properties are conducted as part of the Dust 

Outflow and Deposition to the Ocean project (DODO) off the coast of North Africa. The project 

occurred on two phases: One between 7 to 16 February 2006, called DODO-1, and the other 

between 22 to 28 August, 2006, called DODO-2. During DODO, a combination of wing-mounted 

Passive Cavity Aerosol Spectrometer Probe (PCASP), Droplet Measurement Technology cloud 

droplet probe (CDP-100), and bulk filters are used to measure dust size distribution up to diameter 

of 40 µm. We use the DODO-2 size distribution in this study based on their Fig. 7. Because the 

height level is given around 1 km altitude for the size distribution (see caption of Fig. 7), we limit 

our representative height level between 0-1 km. The mass extinction efficiency is calculated with 

Mie code, using the measured size distribution. Because coarse dust particles are not collected 

during DODO-1, we use the MEE value reported in Osborne et al., 2008 (see their Table 4) that 

include coarse dust collected during DABEX. 

 

4.12. Weinzierl et al., 2009 – SAMUM-1 – PSD only 

 

Based in Casablanca, Morocco, in situ dust particle size distribution measurements were taken 

onboard the German Center for Aviation and Space Flight (DLR) Falcon as part of the Saharan 

Mineral Dust Experiment (SAMUM-1) in Southern Morocco in May and June 2006. Three dust 

events were observed during the campaign on 16 to 22 May, 24 to 28 May, and 31 May to 5 June. 

We use the size distribution measured from a wing-mounted Forward Scattering Spectrometer 

Probe (FSSP) 300, and the composite size distribution from three Condensation Particle Counters 

(CPCs) heated with a thermal denuder (TD) at 250°C and a Grimm OPC (Optical Particle 

Counter). The FSSP-300 measured particles with diameters between 0.3 and 30 µm. The three 

CPCs measured non-volatile particles in nucleation, Aitken, and accumulation mode, respectively. 

With the Grimm OPC, non-volatile size distribution was derived for particles smaller than 2.5 µm. 



Data are taken from their Fig. 8 which represents the composite size distribution for L02 on flight 

#060519a  and L07 on flight #060604a. For these flights, are respectively 4853m 

 and 3703m above sea level, and therefore approximated to 3700-4900m in our study. 

 

4.13. Wagner et al., 2009 – DARPO – PSD only 

 

Based in Casablanca, Morocco, in situ measurements were performed in May 2006 over Portugal 

as part of the Desert Aerosols over Portugal (DAPRO) project affiliated with SAMUM (see section 

4.12), using essentially the same instrumentation and derivation as Weinzierl et al. (2009) with an 

additional high spectral resolution lidar. Measurements were conducted at 2300m and 3245m 

during a flight onboard Falcon aircraft over Évora on 27 May 2006, and size distribution data 

between 0.01 and 35 µm were presented (see their Fig. 9). Size distribution at the two different 

heights were very similar. In this study, we take the representative height range between 2300-

5000m. 

 

4.14. Kandler et al., 2009 – SAMUM-1 – PSD only 

 

During the 2006 SAMUM campaign, Kandler et al. conducted size distribution measurements by 

collecting dust samples at a ground station in Tinfou, Morocco where dust events occur often 

during summer. However, anthropogenic emissions still exerted a significant impact on particles 

smaller than 500 nm, despite the remote location of the ground station. Mineral dust dominated 

particles beyond 500 nm. Employing a combination Differential Mobility Particle Sizer (DMPS), 

Aerodynamic Particle Sizer (APS) and single-stage impactor (SSI), the authors measured and 

reported a size distribution under a higher concentration condition, named dust wind condition. 

The number distribution of particles larger than 500 nm varied by more than one order of 

magnitude, largely correlated to meteorological conditions. For particles larger than 10 µm, the 

variation was about three orders of magnitude. Since the station is at an elevation of approximately 

684 m above sea level and the inlet of the sampling device ~4 m above ground level, we choose 

our representative height to be between 0-700m. 

 

4.15. Kandler et al., 2011 – SAMUM-2 – PSD only 



 

A part of the SAMUM-2 campaign which aims to study more aged dust as opposed to fresh dust 

in SAMUM-1, the effort of Kandler et al. (2011) used the similar instrumentation as SAMUM-1 

(Kandler et al., 2009) to measure dust size distribution at a ground station on Praia, Cape Verde in 

winter 2008. A notably higher concentration of clay minerals was found compared to SAMUM-

1, as expected for aged dust.  Size distributions from three dust phases were reported. As in 

SAMUM-1, it was found that wind speed had a significant impact on the distribution between 400 

nm and 10 μm, and this strength of this impact increases rapidly beyond 10 µm. The presence of 

larger particles is highly correlated with mass concentration. Similar to Kandler et al., 2009, 

because the elevation of the station is approximately 100 m above sea level, we place our 

representative height levels between  0-110m. 

 

4.16. Ryder et al., 2013a and Ryder et al., 2013b – Fennec 2011 – PSD and MEE 

 

Both Ryder et al studies measured dust properties over and near western side of the North African 

desert on board the UK’s BAe-146-301 Research Aircraft during the Fennec June 2011 campaign. 

While the Ryder et al., (2013a) study reported dust properties near the Canary Islands, the Ryder 

et al., (2013b) study reported dust properties farther inland over Mauritania and Mali. Below, we 

give brief description of the instruments used and measurements taken. For more details, please 

refer to their studies. 

 

(Ryder et al., 2013b): Although 16 dedicated flights was conducted over Mauritania and Mali 

during the campaign, only 11 of those with consistent instrumentation were used. A suite of 

instruments is used to measure dust size distribution (see table 3 in Ryder et al., 2013b), namely 

wing-mounted Passive Cavity Aerosol Spectrometer Probe 100X (PCASP), Cloud Droplet Probe 

(CDP), and Cloud Imaging Probe (CIP). The measurement covers significant coarse-mode size 

range of dust particles, and were corrected for a refractive index appropriate for dust and for 

instrumental drift during the campaign. Details of the calibration and correction performed on each 

instrument can be found in (Ryder et al., 2013b). Since most of the measurements taken are below 

2-3 km (see their Fig. 2), therefore in this study we use a representative height between 0-3 km. 

We use data taken from their Fig. 5b, which include the mean size distribution obtained using the 

PCASP, CDP and CIP. 



 

(Ryder et al., 2013a): Although dust properties are taken near the Canary Islands, in-situ 

measurements reported in this study uses similar instrumentations as in (Ryder et al., 2013b). 

Because take-off and landing profiles observations, vertical distribution of the dust size 

distribution can be made. We obtain these dataset directly from the authors, and present size 

distribution at four levels – 2500, 4000, 5500, and 6000 m. As reported in the study, we used here 

the averaged MEE value of 0.31+/-0.08 between the calculate values for aged dust (0.23) and the 

SAL categories (0.39). Mie scattering code is used to calculate the mass scattering efficiency at 

wavelength of 550 nm.  

 

4.17. Jung  et al., 2013 – BACEX - PSD only 

 

In situ measurements of aged dust size distribution was conducted onboard Center for 

Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter research aircraft under 

the Barbados Aerosol Cloud Experiment (BACEX) in on 1 and 2 April 2010. Size distribution 

measured from Passive Cavity Aerosol Spectrometer Probe (PCASP) and the forward scattering 

section of a Cloud and Aerosol Spectrometer (CASF) covered particle diameters from 0.1 to 54 

µm. Data taken while the aircraft was in clouds were excluded because PCASP is known to have 

low accuracy inside clouds. We use one measurement on 1 April within the Sahara air layer (SAL) 

at 2726m, and one on 2 April in the intermediate layer at 1289m. For comparison, the 

representative height is placed between 1250-2700m. The Mass extinction efficiency is calculated 

using Mie theory, at 550 nm wavelength.  

 

4.18. Weinzierl et al., 2017 – SALTRACE - PSD only 

 

Based in Barbados, Puerto Rico, and Cabo Verde, in situ aerosol size distribution measurements 

were conducted as part of the Saharan Aerosol Long-Range Transport and Aerosol–Cloud-

Interaction Experiment (SALTRACE) in June 2013. The same air mass was first sampled over 

Cabo Verde at the altitude of 2.6km on 17 June 2013, and again over Barbados at 2.3km on 22 

June 2013. Total number distribution below 1 µm was inverted from measurements from three 

Condensation Particle Counters (CPCs) between 0.005 and 2.5 µm, a Grimm Sky Optical Particle 

Counter (OPC) between 0.25 and 2.5 µm, and a wing-mounted Ultra-High Sensitivity Aerosol 



Spectrometer Airborne (UHSAS-A) between 0.06 and 1 µm. Total number distribution above 1 

µm was measured with Cloud and Aerosol Spectrometer with Depolarization (CAS-DPOL). 

Distribution in the full size range was parametrized with four lognormal distributions. The authors 

expected 20-µm particles to be removed after 3 days of transport, but 20% of the observed 20-µm 

particles in Cabo Verde survived in the second measurement above Barbados. 

 

4.19. Ryder et al., 2018 - AER-D - PSD and MEE 

 

In-situ measurements were taken in August, 2015 close to Cape Verde, off the coast of Northern 

Africa properties during the beginning of trans-Atlantic transport of dust particles. These 

measurements were part of the AERosol Properties – Dust (AER-D) fieldwork campaign, which 

ran alongside the Ice in Clouds Experiment – Dust (ICE-D) project, and similarly used the UK’s 

BAe-146-301 Research Aircraft. In addition to the instruments used during Fennec 2011 

campaign, the AER-D campaign used cloud imaging probes (CIP15 and 2DS) for size distributions 

at d>10 microns. They use wing-mounted optical particle counters and shadow probes to measure 

dust sizes between 0.1 and 100 µm diameter, a nephelometer and an absorption photometer to 

measure dust optical properties, and an in-cabin filter collection system to collect dust samples. 

Data for size distribution was obtained directly from the authors. However, reported value of dust 

mass extinction efficiency, calculated using Mie code at 550 nm wavelength, was obtained from 

their paper. 
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