Supplementary Material for the ACP manuscript "Potential Regional Air Quality Impacts of Cannabis Cultivation Facilities in Denver, Colorado"

Chi-Tsan Wang¹, Christine Wiedinmyer², Kirsti Ashworth³, Peter C Harley⁴, John Ortega⁵, Quazi Z. Rasool¹, William Vizuete^{1*}

¹Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, NC, USA

²Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA

Table S1. The estimated plant count (*PC*) per cannabis cultivation facility (CCF) in Denver County and outside of Denver.

	PC per CCF			
	Denver County		outside Denver County	
Scenario name	Recreational (233)	Medical (375)	Recreational (500)	Medical (364)
1_EC - 5_DPW	905	905	521	521
6_PC	1,810	1,810	1,042	1,042
7_PC	1,800	3,600	1,800	3,600
8_MAX	1,800	3,600	1,800	3,600

³Lancaster Environment Centre, Lancaster University, UK

⁴Denver, Colorado

⁵University of California Irvine, CA, USA

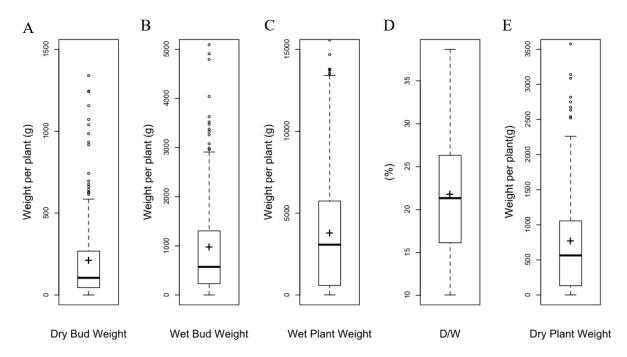
^{*}Corresponding author: e-mail: vizuete@unc.edu; Telephone: +1 919-966-0693; Fax: +1 919-966-7911

Table S2. License tiers issued by Colorado Department of Revenue (DOR) and the maximum allowed plant count (PC) for recreational and medical cannabis cultivation facility (CCF).

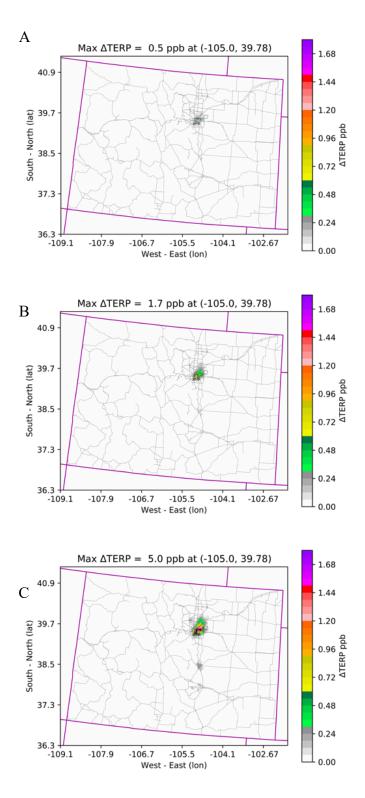
Tier	Recreational CCF	Medical CCF
1	1,800	3,600
2	3,600	6,000
3	6,000	10,200
4	10,200	
5	13,800	

Table S3. All data summed from July 18th, 6 AM LST to, 2 PM LST for grid cells and layers shown in Fig. S6. The base case (BC) scenario column shows the absolute predicted values and the subsequent columns the predicted changes due to emissions from the 3_EC scenario. Percentages in parenthesis are the changes in 3_EC relative to BC. Shown are the **(A)** total amount of VOC and TERP consumed due to oxidation (ppb), the **(B)** total amount of hydroxyl radical (OH) and total peroxyl radicals (TRO₂) that were generated and their sources (ppb), and the **(C)** total amount of Nitrogen Dioxide (NO₂) and NO_x termination products (NO_z) produced and their sources (ppb).

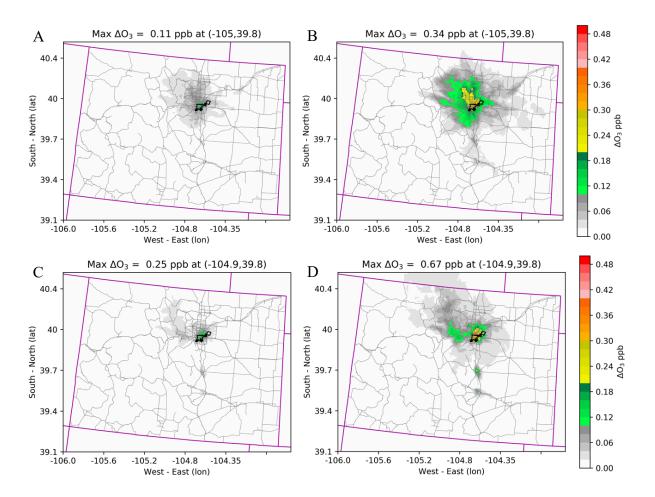
Α

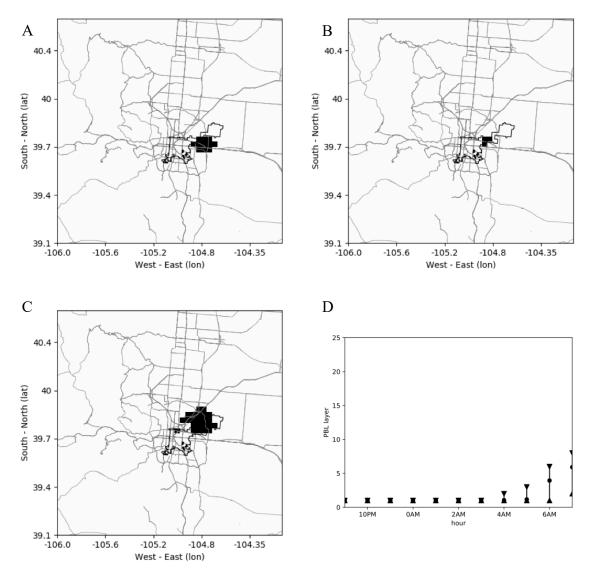

	ВС	3_EC
VOC + OH	22.3	22.6 (+1.26%)
TERP + OH	0.12	0.24 (+100%)
VOC + NO ₃	0.03	0.04 (+33.3%)
TERP + NO ₃	0.01	0.03 (+200%)
$VOC + O_3$	0.95	1.01 (+6.32%)
$TERP + O_3$	0.05	0.12 (+140%)

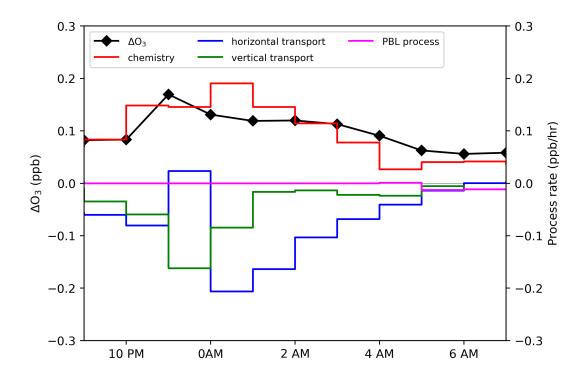
В

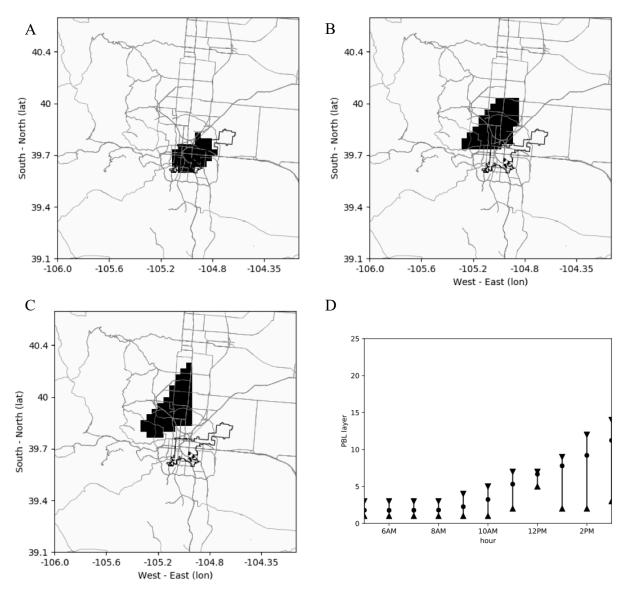

	ВС	3_EC
OH generation	18.2	18.3 (+0.60%)
from O1D + H2O	7.68	7.69 (+0.13%)
from ALD photolysis	10.5	10.6 (+0.95%)
Peroxyl radical (TRO2) generation	105	107 (+2%)
from VOC initial reactions	31.0	31.4 (+1.29%)
from TERP initial reactions	0.22	0.47 (+114%)

 \mathbf{C}


	BC	3 EC
	ВС	3_EC
NO to NO ₂	3,121	3,118 (-0.10%)
$NO + O_3$	3,020	3,016 (-0.13%)
NO + TRO ₂	63.4	64.0 (+0.93%)
NO _z generation	22.0	22.2 (+1.00%)
NTR generation	1.33	1.40 (+5.26%)
PAN generation	5.21	5.25 (+0.77%)
PANX generation	1.74	1.79 (+2.87%)
HNO ₃ generation	13.7	13.8 (+0.51%)


Figure S1. From cannabis cultivation facilities a box and whisker plot of the reported (N = 18,257) **(A)** dry bud weight, **(B)** wet bud weight, and **(C)** wet plant weight from the Liquor and Cannabis Board (LCB) database maintained by the state of Washington for August-October 2017. Also shown is the **(D)** estimated ratio of dry bud to wet bud weight (D/W) per plant and the **(E)** dry plant weight calculated by multiplying D/W ratio and the wet plant weight. The black cross in each box indicates the average.


Figure S2. The maximum hourly change in predicted TERP concentrations (ppbv) across the 4 km × 4 km domain over the entire 90 days simulation for the **(A)** 1_EC, **(B)** 5_DPW, and **(C)** 3_EC scenarios.


Figure S3. The predicted changes in hourly ozone concentrations for the 4 km \times 4 km domain during the daytime (6 AM – 6 PM LST) for all 90 days of the simulation for the **(A)** 5_DPW, **(B)** 3_EC scenarios. The nighttime (6 PM – 6 AM LST) results are for the **(C)** 5_DPW, **(D)** 3_EC scenarios. Black regions within each map indicate changes in ozone concentration greater than 0.28 ppb. The grey lines indicate major highways and black lines outline Denver County.

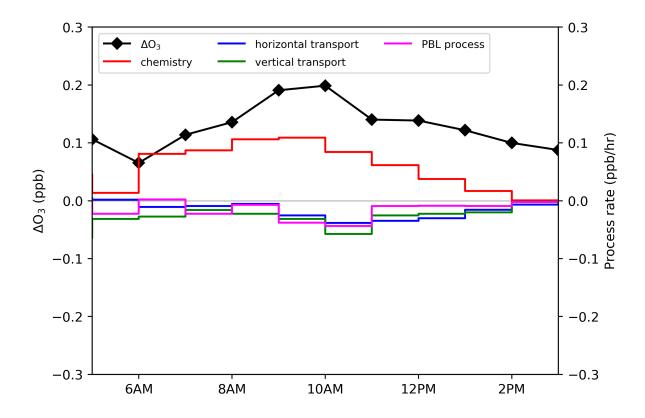

Figure S4. The snapshots of the horizontal grid cells that were chosen for process analysis is shown **(A)** July 27th, 9 PM LST, and July 28th at **(B)** 0 AM LST (i.e. midnight), **(C)** 3 AM LST. Also shown are the **(D)** vertical grid layers that were aggregated during the entire analysis period; the black circle is the average PBL height in the chosen horizontal grid cells.

Figure S5. The changes using scenario 3_EC minus BC in chemical and physical processes that impact ozone. The hourly changes in ozone concentrations (ppb) are shown in black diamonds with changes in rates (ppb/hr) due to chemistry (red), horizontal transport (blue), vertical transport (green), and planet boundary layer (PBL) change process (magenta).

Figure S6. The snapshots of the horizontal grid cells that were chosen for process analysis is shown July 18th at **(A)** 9 AM LST, **(B)** 12 PM LST (i.e. noon), **(C)** 2 PM LST. Also shown are the **(D)** vertical grid layers that were aggregated during the entire analysis period; the black circle is the average PBL height in the chosen horizontal grid cells.

Figure S7. The changes using scenario 3_EC minus BC in chemical and physical processes that impact ozone. The hourly changes in ozone concentrations (ppb) are shown in black diamonds with changes in rates (ppb/hr) due to chemistry (red), horizontal transport (blue), vertical transport (green), and planet boundary layer (PBL) change process (magenta).