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Abstract.

Emissions of methane (CH4) from tropical ecosystems, and how they respond to changes in climate, represent one of the

biggest uncertainties associated with the global CH4 budget. Historically, this has been due to the dearth of pan-tropical in situ

measurements, which is particularly acute in Africa. By virtue of their superior spatial coverage, satellite observations of

atmospheric CH4 columns can help to narrow down some of the uncertainties in the tropical CH4 emission budget. We use5

proxy column retrievals of atmospheric CH4 (XCH4) from the Japanese Greenhouse gases Observing SATellite (GOSAT) and

the nested version of the GEOS-Chem atmospheric chemistry and transport model (0.5◦×0.625◦) to infer emissions from

tropical Africa between 2010 and 2016. Proxy retrievals of XCH4 are less sensitive to scattering due to clouds and aerosol than

full physics retrievals but the method assumes that the global distribution of carbon dioxide (CO2) is known. We explore the

sensitivity of inferred a posteriori emissions to this source of systematic error by using two different XCH4 data products that10

are determined using different model CO2 fields. We infer monthly emissions from GOSAT XCH4 data using a hierarchical

Bayesian framework, allowing us to report seasonal cycles and trends in annual mean values. We find mean tropical African

emissions between 2010–2016 range from 75 (72–78) Tg yr−1 to 80 (78–83) Tg yr−1, dependent on the proxy XCH4 data

used, with larger differences in northern hemisphere Africa than southern hemisphere Africa. We find a robust positive linear

trend in tropical African CH4 emissions for our seven-year study period, with values of 1.5 (1.1–1.9) Tg yr−1 or 2.1 (1.7–15

2.5) Tg yr−1, dependent on the CO2 data product used in the proxy retrieval. A substantial portion of this increase is due to

a short-term increase in emissions of 3 Tg yr−1 between 2011 and 2015 from the Sudd in South Sudan. Using satellite land

surface temperature anomalies and altimetry data we find this increase in CH4 emission is consistent with an increase in wetland

extent due to increased inflow from the White Nile. We find a strong seasonality in emissions across northern hemisphere

Africa, with the timing of the seasonal emissions peak coincident with the seasonal peak in ground water storage. In contrast,20

we find that a posteriori CH4 emissions from the wetland area of the Congo basin are approximately constant throughout the

year, consistent with less temporal variability in wetland extent, and significantly smaller than a priori estimates.
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1 Introduction

The recent and ongoing rise in atmospheric CH4 since 2007, after a period of relative stability, has been well documented,

although the causes are still not fully understood (e.g. Rigby et al., 2008; Nisbet et al., 2014; Turner et al., 2019). Dominant

sources of CH4 to the atmosphere are both natural and anthropogenic including fossil fuels, agriculture, waste management5

and natural wetlands (Kirschke et al., 2013; Saunois et al., 2016), whilst the major sink is due to reaction with the hydroxyl

radical (OH) in the troposphere. Several hypotheses have been suggested that could explain recent changes in atmospheric CH4

but none are verifiable because of a lack of data at the global scale (Turner et al., 2019). These hypotheses include increased

fossil fuel emissions, increased microbial emissions, or some combination of the two allied with other factors (e.g. Schaefer

et al., 2016; Hausmann et al., 2016; Worden et al., 2017; McNorton et al., 2018; Thompson et al., 2018). Additionally, we10

cannot discount a role for a changing OH sink based on CH4, isotopic δ13CH4 and methyl chloroform observations (Rigby

et al., 2017; Turner et al., 2017).

One of the plausible explanations is that tropical microbial emissions have increased (Nisbet et al., 2016; Schaefer et al.,

2016; Thompson et al., 2018). This hypothesis is based largely on a significant negative trend in δ13CH4 isotope values globally

and the latitudinal distribution of CH4 growth rates. Microbial sources are more depleted in δ13CH4 than other sources so that15

a move to lighter isotope values can be interpreted as microbial sources providing a greater proportion of total CH4 emissions.

However, δ13CH4 source signatures for different microbial sources and their variation over time are not well characterized

(Turner et al., 2019). As a result the constraint provided by isotope data is limited to broad-scale inferences on changes in

sources and sinks, and cannot narrow down which type of microbial source is responsible. Additional independent information,

such as that from process-based based wetland models, can provide further evidence for changes in microbial sources. For20

example, some individual wetland model studies suggest that wetland CH4 emissions have increased (e.g. McNorton et al.,

2016; Zhang et al., 2018), although the increases are relatively small and likely to be model dependent (Poulter et al., 2017).

One of the main challenges associated with studying wetland emissions of CH4 is that they are difficult to describe math-

ematically. Process-based wetland models use parameterizations of biological processes informed by field data, together with

estimates of the spatial extent of wetland, to describe the seasonal magnitude and distribution of wetland emissions across the25

globe. The extent of wetland area is usually prescribed from climatology (Lehner and Doll, 2004; Bergamaschi et al., 2007),

determined from a hydrological model (Gedney and Cox, 2003) or parameterized using remotely sensed inundation datasets

(Prigent et al., 2007; Schroeder et al., 2015). Because the spatiotemporal variability of wetland extent is key to estimating CH4

emissions, disagreement between different measures of wetland areas equates to a wide range of emission estimates (Melton

et al., 2013).30

The African continent contains significant microbial methane sources from wetlands as well as agricultural enteric fermenta-

tion. A recent study, comprising an ensemble of wetland emissions models, estimates African wetland CH4 emissions represent

12 (7–23 )% of global wetland emissions (Bloom et al., 2017). These emissions are concentrated in the sub-Saharan tropics,
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where we focus our work. Figure 1(a) shows our study domain that includes all the main wetland regions within Africa, in-

cluding the Congo Basin located in Central Africa and the Sudd in South Sudan. For the purposes of our study we use a very

broad definition of wetlands to include any areas of land that are permanently or periodically inundated.

Due to the seasonal migration of the Intertropical Convergence Zone (ITCZ), rains fall in the sub-Saharan lands of northern

hemisphere Africa during boreal summer, and in the southern hemisphere Africa during austral summer. Wetland extents vary5

with this delineation of wet and dry seasons, with maximum wetland extents generally occurring at the end of each rainy season

(Taylor et al., 2018). The contribution from different wetlands to continental-scale CH4 emissions is uncertain. Consequently,

there is considerable disagreement between wetland emission models about the distribution and magnitude of CH4 emissions,

particularly regarding the timing of the seasonal peak of emissions between 0–15 ◦N, with models predicting peak emission

to occur in February, April–October or September–November (Bloom et al., 2017). The uncertainty in African CH4 emissions10

is compounded by uncertainties associated with emissions from fires which have strong signatures at certain times of the year

and agricultural CH4 emissions, particularly enteric fermentation from livestock. Enteric fermentation estimates are based on

uncertain activity data and Tier 1 emissions factors from the Intergovernmental Panel on Climate Change (IPCC), with studies

suggesting these emission factors are either too low (Kouazounde et al., 2014; Toit et al., 2014; Wolf et al., 2017) or too high

(Goopy et al., 2018), and should be country dependent.15

The tropics, particularly Africa, are generally poorly sampled by in situ atmospheric measurement networks. As such, this

is where satellite data have the greatest potential to develop current understanding of CH4 emissions, despite the requirements

for cloud-free scenes. Bloom et al. (2010, 2012) used dry air column averaged methane mole fraction (XCH4) data from the

SCIAMACHY satellite (Frankenberg et al., 2011) and Gravity Recovery and Climate Experiment (GRACE, (Tapley et al.,

2004)) liquid water equivalent height (LWE) height anomaly retrievals to show that the seasonal cycle of wetland CH4 emis-20

sions can largely be explained by seasonal changes in water volume in the tropics, and temperature in the high latitudes. More

recently, Parker et al. (2018) compared peak-to-peak seasonal cycles of XCH4 from models and the Greenhouse gases Observ-

ing SATellite (GOSAT) over tropical wetlands including those in Africa. They find significant discrepancies between model

estimates, driven by a range of wetland emission estimates, but do not determine the magnitude of the CH4 emissions that are

consistent with the GOSAT data.25

In this work, we infer CH4 emissions over tropical Africa from 2010 to 2016 (Figure 1) from GOSAT XCH4 data using the

GEOS-Chem 3-D chemistry transport model, driven by a priori emission estimates, and a Bayesian inversion method. The data

and methods we use are described in section 2. Previous studies of atmospheric CH4 using satellite data tend to be global in

scope with a posteriori emission estimates inferred over large continental regions (e.g. Fraser et al., 2013; Pandey et al., 2016;

Feng et al., 2017), although some studies use satellite data in regional inversions to infer emissions on smaller regional scales30

(Turner et al., 2015; Ganesan et al., 2017; Miller et al., 2019). Recent work using GOSAT XCH4 data has suggested that both

atmospheric CH4 mole fractions and CH4 emissions from the African continent have increased since 2009 (Maasakkers et al.,

2019; Miller et al., 2019). Here, we take advantage of a nested capability of GEOS-Chem, allowing us to study atmospheric

CH4 with a spatial resolution of 0.5◦×0.625◦, driven by coarser resolution lateral boundary conditions provided by the same

model. We report our results in section 3, including regional seasonal and annual mean variations. We focus our attention on35
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significant increased emissions from the Sudd wetlands and use correlative data to propose the underlying mechanism. We

conclude the paper in section 4.

2 Data and Methods

2.1 GOSAT XCH4 data

GOSAT was launched in 2009 into a sun-synchronous orbit with a local equator crossing time of 13:00, resulting in global5

coverage every three days (Kuze et al., 2009). We use data from the Thermal And Near infrared Sensor for carbon Observations

- Fourier Transform Spectrometer (TANSO-FTS) that measures short wave infrared (SWIR) radiances between 0.76–2.0 µm

at a resolution of 0.3 cm−1 from which dry air column averaged CH4 values are retrieved (Parker et al., 2011). We use the

University of Leicester’s (UoL) v7 GOSAT-OCPR proxy XCH4 product (Parker et al., 2015). These data have been previously

validated against ground-based data from the Total Carbon Column Observing Network (TCCON, Wunch et al., 2011), with a10

global mean bias of +4.8 ppb and a single sounding precision of 13.4 ppb (Parker et al., 2015). The TCCON data available in

the tropics agree reasonably well with these GOSAT data, with a positive bias of 3.1 ppb at Ascension Island and 3.4 ppb at

Paramaribo, Suriname (Parker et al., 2018). However, there are currently no TCCON stations in tropical Africa.

The proxy XCH4 data is given by:

XCH4 proxy =
XCH4

XCO2
×XCO2 model, (1)15

where XCH4 and XCO2 are the retrieved column values of the CH4 and CO2 respectively (Parker et al., 2015). These values

are retrieved in neighbouring spectral windows at 1.65 µm and 1.61 µm for CH4 and CO2 respectively, meaning that common

factors that impact the retrievals, e.g. aerosol and cloud scattering, can be removed by taking the ratio. The “proxy” column

CH4 is then determined by multiplying by an independent estimate of the XCO2, typically from an atmospheric model. By

using the ratio to determine XCH4, as opposed to XCO2, we assume that atmospheric CO2 varies much less than CH4, and20

that it is sufficiently well known (e.g. from a model). The main advantage of this data product is that it is more robust than the

full physics approach in the presence of clouds and aerosols. This is particularly important over the tropics where clouds are

prevalent during the wet season and biomass burning aerosols are widespread during the dry season. However, this approach

propagates model CO2 errors to the proxy XCH4 data product and subsequently to a posteriori emission estimates.

Here, we assess the sensitivity of our a posteriori CH4 emission estimates to different model fields of CO2. Our control25

XCH4 data, PR1, is based on the standard UoL XCH4 dataset, which uses the median XCO2 field from three models (Parker

et al., 2015). The second XCH4 data product, PR2, uses XCO2 model generated using a consistent version of the GEOS-Chem

atmospheric chemistry transport model (described below) run at a spatial resolution of 4◦× 5◦ with emissions inferred using

an ensemble Kalman filter (Feng et al., 2016) from the GOSAT ACOS XCO2 data (O’Dell et al., 2012). Previous work has

shown that CO2 flux estimates from GOSAT for northern tropical Africa are larger than those inferred from in situ CO2 mole30

fraction data (Houweling et al., 2015). Consequently, PR2 XCH4 proxy data are significantly different to PR1 XCH4 data.
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Figure 2 shows maps of the annual mean difference between the PR1 and PR2 XCH4 data from 2010 to 2016. In general,

the PR2 XCH4 data are larger than the PR1 XCH4, with a mean difference of 1.6 ppb over the seven-year period. The largest

differences (' 10 ppb) are found over West Africa in 2010, over the Democratic Republic of Congo and Southern Africa in

2015 and over almost all of tropical Africa in 2016. In 2016, the mean of the PR2 XCH4 data was 3.1 ppb larger than PR1.

With the exception of 2016, the smallest annual mean differences are generally observed over East Africa and north of 15◦N.5

The spatial heterogeneity of the differences shown in Figure 2 illustrates the importance of assessing the sensitivity of the

inversions to different XCH4 proxy datasets, and we present inversion estimates based on both sets of data in our results.

We use GOSAT-OCPR proxy XCH4 data over our study domain described by 20◦W–55◦E, 26◦S–26◦N. Retrievals are

filtered for cloud-free scenes by retaining data where the surface pressure difference between the O2-A band apparent surface

pressure retrieval and the corresponding ECMWF surface pressure is within 30 hPa and where the signal-to-noise ratio is above10

50 (Parker et al., 2015). We use both nadir and glint observations in this work, although we assess the impact of using only

nadir observations to infer a posteriori CH4 emissions in Section 3.1.

2.2 GEOS-Chem Atmospheric Chemistry Transport Model

We use a nested version of the GEOS-Chem atmospheric chemistry transport model (v11-01, Bey et al., 2001; Wecht et al.,

2014; Turner et al., 2015) to relate surface emissions of CH4 to atmospheric mole fractions. The model is driven by MERRA-215

reanalysis meteorological fields (Bosilovich et al., 2016), provided by the Global Modeling and Assimilation Office (GMAO)

at NASA Goddard Space Flight Center. The native spatial resolution of these data is 0.5◦(latitude)×0.625◦ (longitude), and

includes 47 vertical terrain-following sigma-levels that describe the atmosphere from the surface to 0.01 hPa of which about

30 are typically below the dynamic tropopause. The 3-D meteorological data are updated hourly, and 2-D fields and surface

fields are updated every 3 h. The atmospheric transport and chemistry time steps are five and ten minutes, respectively.20

The nested region is focused on tropical Africa (Figure 1) described by 20◦W–55◦E, 26◦S–26◦N. Input emission fields

to the nested GEOS-Chem run included wetlands (WetCHARTS, Bloom et al., 2017), biomass burning (GFED, v4, van der

Werf et al., 2017), anthropogenic sources including agriculture, waste and energy (EDGAR, v4.3.2, Janssens-Maenhout et al.,

2017), and termites (Fung et al., 1991). Both WetCHARTs and GFED a priori emissions vary monthly between 2010–2016.

EDGAR emissions from 2012 were used for all years for anthropogenic emissions. CH4 loss due to oxidation by the hydroxyl25

radical (OH) in the troposphere is computed using a climatology of monthly OH concentration fields from a full-chemistry

GEOS-Chem simulation, resulting in a lifetime with respect to tropospheric OH of 9.9 years (Wecht et al., 2014). Additional

minor sinks of stratospheric oxidation (Murray et al., 2012) and a soil sink term (Fung et al., 1991) result in a global mean CH4

atmospheric lifetime of 8.8 years.

At the boundaries of the nested domain we use time-dependent lateral boundary conditions archived by a coarser global30

model run at 4◦× 5◦ that was fitted to in situ data from the National Oceanic and Atmospheric Administration (NOAA)

network of sites. More comprehensive descriptions of this global optimization of CH4 fluxes using in-situ data can be found in

Feng et al. (2017), which we briefly summarise here. Global monthly methane emissions were optimized from spatial regions

that were sub-divisions of the TransCom-3 regions using an ensemble Kalman filter approach from in situ CH4 data. The

5
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global GEOS-Chem model at 4◦× 5◦ was used to relate fluxes to the observations. The resulting a posteriori fluxes were

used to generate the global CH4 fields for use in the lateral boundary conditions of the nested model, with the forward model

initialised in January 2009 to minimize the influence of initial conditions. We stress that these global model boundary condition

fields were used as a prior in our nested model inversions, and updated in our inversion via a posteriori scaling factors based

on the GOSAT data.5

2.3 Hierarchical Bayesian Inversion Method

To infer a posteriori CH4 fluxes from the GOSAT XCH4 data between January 2010 to December 2016 we calculate the

sensitivity of these data to emissions, boundary conditions, and the initial conditions. We calculate the monthly sensitivity of

the data to emissions from a total of 38 regions across tropical Africa (Figure 1(b)). These regions are informed by national

boundaries and major river basins or wetlands such as the Congo and Sudd. We include an additional six basis functions to10

describe monthly boundary condition scaling to the global CH4 model field at the north, north-east, south-east, south, south-

west and north-west boundaries. We also include a basis function to describe the initial 3-D CH4 mole fraction distribution

within the nested domain at the start of the inversion period. In total, we calculated 3697 basis functions over our seven-year

study period.

To calculate the sensitivity of the XCH4 data to emissions from each of our basis function regions (Figure 1(b)), we ran the15

forward model for one month, with emissions in each basis function based on the a priori distribution. After one month the

emissions were turned off and we tracked 3-D CH4 mole fraction field for a further three months as the signal decayed in the

study domain due to atmospheric transport processes. After three months the residual signal due to perturbed emissions was

negligible, so that we assumed zero sensitivity after this point. We sampled the model at the time and location of each GOSAT

observed scene, and convolved the resulting model CH4 profile with scene-dependent GOSAT averaging kernels to create the20

sensitivity matrix, H. We compared the GOSAT XCH4 values, y, with the corresponding model values denoted by H·x, where

x denotes the state vector that includes emissions and boundary condition scaling factors:

y = H ·x+ e, (2)

where e accounts for random errors in both model and measurements.

To estimate a posteriori CH4 fluxes from tropical Africa, we used a hierarchical Bayesian inversion using a Markov chain-25

Monte Carlo (MCMC) approach (Ganesan et al., 2014; Lunt et al., 2016). Bayesian inversions require that all quantities are

described as probability density functions (PDFs). The hierarchical MCMC approach allows hyper-parameters that describe

these PDFs, such as model-measurement uncertainties, to be estimated as part of the inversion, reducing the impact of underly-

ing assumptions. The approach also allows the a priori uncertainties to themselves be uncertain and explored in the inversion.

A key benefit of this hierarchical MCMC approach is that uncertainties in the a posteriori distribution are more representative30

of uncertainties in the inversion system, and any form of error variances can be used, provided they can be described by a PDF.

At each step in the Markov chain a new state (e.g., new emissions parameter value) is proposed, based on the current value of
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the state. Whether that proposal is accepted or not depends on the following criterion:

U ≤
(
ρ(x′)
ρ(x)

× ρ(y′|x′)
ρ(y|x)

)
, (3)

where U is a uniformally-distributed random number between zero and one, and ρ represents a PDF. The term ρ(x) represents

the a priori PDF of the current state and ρ(x′) the new proposed state. ρ(y|x) and ρ(y′|x′) represent the likelihood functions

of the current and proposed states respectively. Consequently, the probability of a new proposal being accepted depends on the5

balance of the ratio between proposed and current a priori PDFs (how far the new state is from the a priori) and the likelihood

ratio (how well it fits to the data).

This procedure is repeated many thousands of times to build up a a posteriori PDF. In our inversions, we ran the MCMC

for 25,000 iterations, the first 5,000 of which were discarded as a “burn-in” period. The resulting chain was thinned every 10th

iteration to reduce storage, so that all a posteriori distributions contained 2,000 samples. Automatic tuning of proposal step10

sizes was performed during the burn-in period to ensure efficient ratios of acceptance between 20–50% (Tarantola, 2005). At

every second iteration updates were proposed to all parameters in turn, and at iterations in between updates were proposed to

the hyper-parameter values. A more comprehensive description of the hierarchical MCMC approach can be found in Ganesan

et al. (2014) and Lunt et al. (2016).

We describe a priori distributions for each emissions basis function as a lognormal PDF, with an arithmetic standard devia-15

tion of 100%, reflecting the large uncertainty in the a priori estimates. A priori uncertainties on the boundary condition scaling

factors were 0.5%, equivalent to a 10 ppb uncertainty on the mean value of each monthly field. Model-measurement errors

were defined as a combination of the measurement uncertainties (which were fixed in the inversion) and a model uncertainty

component to be solved for in the inversion. The measurement uncertainty term represents the statistical uncertainties in the re-

trieved XCH4 data, and averaged 9 ppb across all data points between 2010–2016. The model uncertainty term was defined by20

a uniform distribution with lower and upper bounds of 5 ppb and 25 ppb respectively, with separate values estimated for model

uncertainties in 8◦× 10◦ bins, and every month. Due to the density of data, and to make the inversions more computationally

tractable we assumed measurement errors were spatially and temporally uncorrelated.

3 Results

We find the 2010–2016 mean a posteriori CH4 emission estimate from tropical Africa is 76 (74–78) Tg yr−1 from the PR125

XCH4 inversion, and 80 (78–82) Tg yr−1 from PR2 XCH4. The numbers reported in brackets represent the 95% uncertainty

range between the 2.5th and 97.5th percentiles of the a posteriori distribution. The difference between the estimates inferred

from the PR1 and PR2 XCH4, without any overlap considering the uncertainty range, clearly show how different assumptions in

XCO2 (equation 1) can impact the corresponding CH4 emission estimates. The difference between PR1 and PR2 also indicates

that the inability to account for these systematic uncertainties in the inversions leads to an underestimate of a posteriori30

uncertainty when using a single data product.
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The difference between PR1 and PR2 inversions was largely due to differences in northern hemisphere tropical Africa (NH

Africa) emissions. Mean PR2 emission estimates from each of the East, West and Central Africa regions, which are all largely

or entirely contained in NH Africa, were each 2 Tg yr−1 larger than PR1 inversions. The mean NH Africa emissions from

PR1 was 44 (42–45) Tg yr−1, compared to 48 (47–50) Tg yr−1 from PR2. This is directly related to the differences between

PR1 and PR2 XCH4 data (Figure 2). The differences between our PR1 and PR2 emissions were greatest in 2010 due largely5

to West Africa emissions differences, consistent with the differences due to assumptions about CO2 model shown in Figure 2.

In contrast, mean a posteriori emissions from Southern Hemisphere Africa (SH Africa) between 2010 and 2016 were very

similar with both PR1 and PR2 estimates of 32 (30–34) Tg yr−1, reflecting a greater consistency of the underlying CO2 model

fields and hence proxy XCH4 in SH Africa.

Our continental-scale results are consistent with previous estimates of African emissions from global CH4 inversions.10

Saunois et al. (2016) report total African emissions in 2012, determined from a mean of 25 inversions, of 85 Tg yr−1. Our

a posteriori estimates for 2012 were 73 (71–75) Tg yr−1 for PR1 and 77 (75–79) Tg yr−1 for PR2, although our study domain

(Figure 1) does not include the extreme northern and southern regions of Africa. If we extrapolate our results to the African

continent, based on the ratio of our a priori tropical African emissions to total continental Africa emissions of 90%, we esti-

mate total African emissions of 81 (79–84) Tg yr−1 from PR1 and 85 (83–88) Tg yr−1 from PR2, consistent with the results15

of Saunois et al. (2016).

Figure 3 shows the 2010–2016 mean spatial distribution of our a posteriori CH4 emissions estimates from PR1, the corre-

sponding mean a priori emission distribution, and the difference between the two. Although emissions are shown at grid scale

resolution of 0.5◦× 0.625◦, emissions were resolved using the coarser basis functions shown in Fig. 1(b), and the a posteriori

fluxes are representative of these coarse scalings to the a priori grid scale distributions. We find consistent differences between20

the a posteriori distribution and a priori from certain areas in both PR1 (Figure 3) and PR2 inversions (not shown). For ex-

ample, a posteriori emissions from East Africa (31 (30–33) Tg yr−1 for PR1 and 33 (31–34) Tg yr−1 for PR2) were almost

twice as large as a priori emissions (17 Tg yr−1) over the same region. East African a posteriori mean emissions account

for 40% of the mean tropical African emissions in both PR1 and PR2 inversions. Our southern Africa a posteriori estimates

(12 (11–14) Tg yr−1 for PR1 and PR2 inversions) were also larger than a priori emissions (7 Tg yr−1).25

In contrast we find significantly smaller 2010-2016 mean emissions over the Congo basin in Central Africa. A posteriori

emission estimates for PR1 (3.3 (2.7–4.0) Tg yr−1) and PR2 (3.4 (2.7–4.1) Tg yr−1) were very similar to each other and much

smaller than the a priori emission estimate (8.5 Tg yr−1). Wetland emissions accounted for more than 90% of a priori Congo

Basin emissions, implying that the WetCHARTS ensemble mean used in the prior is an over-estimate of the wetland component

of emissions in the Congo Basin. The WetCHARTS database provides a full multi-model ensemble of 324 models which have30

a large range of 2–21 Tg yr−1 for annual mean emissions from the Congo Basin and our a posteriori mean emissions for the

region are more consistent with the models at the lower end of this range. This general finding of smaller a posteriori emissions

that WetCHARTS in the Congo is consistent with the spatial differences shown in Maasakkers et al. (2019). Our a posteriori

estimate is more consistent with Tathy et al. (1992), who estimated methane emissions of 1.6–3.2 Tg yr−1 from the flooded

forest zone of the Congo basin, based on static chamber measurements of methane flux.35
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3.1 Tropical African CH4 Emission Trends

Figure 4(a) shows our a posteriori annual emission estimates from the tropical African region between 26◦S–26◦N. The results

from the PR1 inversion indicate tropical African emissions increased from 72 (70–73) Tg in 2010 to 84 (82–86) Tg in 2016,

with a mean positive trend in monthly emissions of +2.1 (1.7–2.5) Tg yr−1. The PR2 estimates show a smaller difference

between 2010 and 2016, at 78 (76–80) Tg yr−1 and 84 (82–86) Tg yr−1 respectively, although there was a substantial dip in5

2011 emissions. Consequently, the mean trend in monthly emissions for PR2 was smaller than PR1 but still positive, +1.5 (1.1–

1.9) Tg yr−1. This suggests that the overall pattern of increasing CH4 emissions from tropical Africa is robust to assumptions

about CO2 made in the XCH4 data.

Figure 4(b) shows the increase in tropical African emissions is driven mostly by emissions from East Africa in both inver-

sions. Monthly a posteriori emissions from East Africa increased at a rate of +1.6 (1.3–1.9) Tg yr−1 in PR1 and +1.3 (1.0–10

1.6) Tg yr−1 in PR2, where the mean trend represents 80–90% of the total tropical Africa increase from the respective in-

versions. We found no consistent regional trends from the other African reigon between the PR1 and PR2 inversions over

the inversion period, although there was substantial inter-annual variability, particularly over West Africa, and both inversions

show an increase of 4 (2–7) Tg yr−1 in Southern African emissions between 2014 and 2016.

We investigated the added benefit of including glint measurements by running a sensitivity calculation using only high-gain15

nadir measurements, which account for 75% of all observations. We designate these inversions PR1nadir and PR2nadir. Mean

emissions for the PR1nadir inversion were 75 (72–78) Tg yr−1 compared to 76 (74–78) Tg yr−1 from PR1, and the PR2nadir

mean emissions were 80 (78–83) Tg yr−1 compared to 80 (78–82) Tg yr−1 from PR2. Therefore, when averaged over multiple

years the differences were negligible. However, we find that omitting the glint data impacted the magnitude of the derived

emission trends, with mean values 0.5–0.7 Tg yr−1 smaller than those inferred with both types of data at 1.4 (0.9–1.9) Tg yr−120

and 1.0 (0.5–1.5) Tg yr−1 for PR1nadir and PR2nadir respectively. This difference is due to greater constraint on the boundary

condition terms in the inversions when using the glint observations (which are more sensitive to the boundaries of the domain).

Whilst the trends in tropical African emissions from the nadir-only inversions between 2010–2016 are smaller, they remain

positive and overlap within the uncertainty bounds with the PR1 and PR2 results. In common with the findings from PR1 and

PR2 we find that 80–90% of the mean emissions trend can be explained by the mean trend in emissions from East Africa in25

the PR1nadir and PR2nadir inversions respectively.

To understand why East African CH4 emissions play such an important role in the tropical African budget, we now examine

the a posteriori emissions from more localized regions. Over East Africa, we find positive emission trends over a number of

basis functions. However, given inter-annual variability and the a posteriori uncertainties in monthly emissions, the only basis

function region that had a linear trend of monthly emissions with a p value less than 0.05 in both PR1 and PR2 inversions was30

in South Sudan, where the Sudd wetlands are located. For South Sudan, we find a linear trend of +0.4 Tg yr−1 (p=0.01) in

both PR1 and PR2 inversions from this region. In the following section we present evidence that supports that this increase in

emissions is associated with an increase in wetland emissions due to changes in the East African Lakes (Figure 1).
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3.2 Annual Increases in South Sudanese CH4 Emissions

Figure 5(a) shows annual CH4 emission estimates from South Sudan between 2010–2016. Our a posteriori emissions in the

PR1 inversion from the South Sudan region almost doubled from 3.1 (2.4–3.7) Tg yr−1 in 2010–2011 to 6.0 (5.2–6.9) Tg yr−1

in 2015–2016. Similarly, for the PR2 inversion emissions increased from 3.4 (2.7–4.2) Tg yr−1 in 2010–2011 to 6.3 (5.4–

7.2) Tg yr−1 in 2015–2016. Both inversions indicate a 3 Tg yr−1 increase of mean emissions during the inversion period, with5

a period of rapid growth between 2011 and 2014. Such a substantial increase in emissions in a short space of time implies a

significant change to one or more CH4 sources in this region.

The three main sources of CH4 emissions in South Sudan in our a priori inventory are biomass burning, enteric fermentation

from agriculture, and wetlands. GFED biomass burning estimates of CH4 for 2010 are 30% smaller than subsequent years,

largely due to a similar decrease in burned area in 2010 (not shown). Although the GFED CH4 estimates therefore increase10

between 2010 and 2016, this cannot explain the large rise in emissions. A priori biomass burning emissions from GFED are

estimated to be only 0.25 Tg yr−1 or 15% of annual a priori South Sudan emissions in 2016, and biomass burning emissions

have a distinct seasonal cycle, peaking between November and February, while we observe a CH4 emission increase in all

seasons. Figure 5(b) shows that our annual South Sudanese CH4 PR1 emission estimates are driven by changes in all seasons,

but particularly in the wetter months between June–November. A similar pattern was found in the results from the PR2 inversion15

(not shown). Increased biomass burning may explain some contribution of the increasing emissions during December–February

but it cannot explain increases at other times of the year.

Agricultural emissions from enteric fermentation represents another significant source in the a priori inventory for South

Sudan, accounting for 25% of emissions. South Sudan does host a large livestock population but increased agricultural emis-

sions are also unlikely to explain the inferred increased in CH4 emissions. Based on IPCC emissions factors for African cattle20

of 31 kg head−1 yr−1 (Eggleston et al., 2006), a 3 Tg yr−1 increase in emissions would require almost 100 million addi-

tional cattle to explain the increase, a population rise equivalent to the entire cattle stocks of the USA. Previous studies have

highlighted that the emission factors adopted by the IPCC are highly uncertain and likely too low with values ranging from

31 kg head−1 yr−1 to 62 kg head−1 yr−1 for non-dairy cattle (Toit et al., 2014; Wolf et al., 2017; Kouazounde et al., 2014).

Even assuming this upper limit for non-dairy cattle would still require an additional 50 million cattle to explain the rise in25

South Sudanese emissions. However, livestock estimates from the Food and Agricultural Organization of the United Nations

(FAO, available at http://www.fao.org/faostat/) do not indicate a dramatic rise in livestock population, and we do not have any

evidence to support the uniform adoption of a higher emission factor for enteric fermentation.

Wetlands are the major source of CH4 in South Sudan, accounting for the remaining 60% of a priori emissions, of which

the Sudd wetland, on the course of the White Nile, is the largest, with an area of 9,000–40,000 km2 depending on the season30

(Rebelo et al., 2012). This wetland area represents a source of 0.8 Tg yr−1 in our a priori inventory, although our a posteriori

mean suggests that these emissions are considerably larger (Figure 3), with our mean a posteriori estimates being 2.9 and 3.2

times larger than the prior in PR1 and PR2 respectively. To investigate how the Sudd might have changed during the inversion

period we use land surface temperature (LST) data from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS)
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as a proxy for wetland extent. The use of satellite LST data to infer information on soil moisture is well-established (e.g. Folwell

et al., 2016; Gallego-Elvira et al., 2016) and can provide a proxy for wetland extent, since areas with elevated soil moisture

should exhibit cooler temperatures than dry soil, reducing the LST. The LST anomaly from the climatological monthly mean

LST can thus provide a reasonable proxy for anomalies from the mean seasonal cycle of wetland extent. MODIS pixels that are

wetter than the climatological mean exhibit negative LST anomalies, and the temporal variation of these anomalies indicates5

the temporal variation in wetland extent. Data were used from both Terra and Aqua MODIS satellites, which have daytime

equatorial crossing times of 1030 LT and 1330 LT respectively. To calculate wetland LST anomalies, we used monthly mean

daytime-only LST data at 0.05 degree resolution (MOD11C3 and MYD11C3). We identified pixels prone to flooding where

the minimum recorded January LST fell below 304 (306) K for Terra (Aqua). To create a monthly anomaly time series, we

averaged LST over all of these wetland pixels having first subtracted their monthly climatological values (2003-2018).10

Figure 5(c) shows there was a significant decrease in MODIS LST anomalies over areas identified as seasonally flooded

in the Sudd between 2010 and 2015, suggesting a growth in mean wetland extent. The decrease in LST anomaly is most

pronounced during December—February and March-–May each year, with the seasonal anomalies decreasing by almost 8 K

between 2010 and 2015. We find an insignificant trend in LST anomaly during September–November, when wetland extent

is greatest. Interpretation of the seasonality of these trends requires some care. During June–November, soils throughout the15

region are wet, and this strongly suppresses LST, even in the absence of flooding. Moreover, cloud cover is increased during

those months, which reduces the reliability of the LST data. The strong signals seen between December and May, when the

methodology is expected to be most sensitive to interannual variability in flooding, provides clear evidence of an increase in

wetland extent between 2010 and 2015 that helps to explain our increase in a posteriori CH4 emissions. The LST data shown

before 2010 back to 2007 indicates this was a transient event characterized by a particularly high December–May LST in 201020

(indicating a smaller wetland extent) followed by a trend to a minimum LST in 2015, and not indicative of a longer-term trend.

Our finding is consistent with previous works which have determined an increase in the spatial extent of the Sudd using

MODIS LST diurnal temperature difference (Sosnowski et al., 2016), and MODIS land surface reflectance data (Vittorio and

Georgakakos, 2018). Both studies indicate that the flooded extent of the Sudd was particularly small in 2009–2010 in both

wet and dry seasons, with seasonally flooded vegetation that was constrained to be very close to the White Nile river itself.25

Vittorio and Georgakakos (2018) reports much greater flooded extents in 2012–2013 and shows an increase in dry season

(yearly minimum) wetland extents of around 2000 km2 between 2010 and 2014, related to changes in water flux into the Sudd.

Controls on the wetland extent of the Sudd are dominated by the inflow of water, as evapotranspiration rates exceed direct

rainfall for the vast majority of the year (Sutcliffe and Brown, 2018). The inflow to the Sudd is a combination of outflow from

the East African lakes (Victoria, Kyoga and Albert (Figure 1), and seasonal variation provided by the runoff from streams30

in between Lake Albert and the Sudd called the torrents (Sutcliffe and Parks, 1999). The outflow from the East African

lakes provides the medium-long term component of the Sudd inflow, while the torrents provide the seasonal peak flooding

component. Our finding that a posteriori emissions from South Sudan increased at all times of year, together with the trend

towards more negative LST anomalies during the dry season are more consistent with an increased upstream inflow from the

East African lakes.35
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The influence of Lake Victoria water levels in particular on the extent of the Sudd has been well documented. Sutcliffe and

Parks (1999) estimated that an increase in Lake Victoria water levels in the 1960s led to a trebling of permanent wetland extent

in the Sudd, with a smaller effect on the increased extent of seasonal flooding. Recent outflow data from the East African lakes

are not publicly available, but they can be approximated using the lake water levels. Since the 1950s the outflow of Lake Victoria

has been controlled by at least one dam, which is regulated by an agreement with countries further downstream on the Nile5

basin called the Agreed Curve (Sene, 2000). This Agreed Curve is meant to mimic the natural relationship between outflow

and lake level, although there is evidence that outflow rates from Lake Victoria far exceeded the Agreed Curve before lake

levels reached a minimum in 2006 (e.g. Sutcliffe and Petersen, 2007; Owor et al., 2011; Vanderkelen et al., 2018). However,

dam releases after this lake level minimum in 2006 have been shown to be more in line with the Agreed Curve (Owor et al.,

2011).10

Figure 5 (d) shows satellite altimetry data from Lake Victoria and Lake Albert from the Hydroweb database (Crétaux et al.,

2011) between 2007 and 2016. The data show that Lake Victoria annual mean levels rose 0.6 m between 2010 and 2014 and

Lake Albert levels rose by 0.8 m in this same period. The increased levels of both lakes imply an increased outflow from the

East African lakes which is confirmed by Hydroweb altimetry data of the White Nile at 6.55 ◦N, 31.40 ◦E shown in Figure

5 (d). Annual mean water levels at this location at the southern end of the Sudd increased by 0.7 m between 2010 and 2014.15

Although this latter dataset is affected by variation of inflow to the Sudd due to the torrents, the data show increases of water

level in the dry season as well as the wet, indicating the increased water levels at this location at the southern end of the Sudd

are likely due to increased flow from further upstream as opposed to seasonal precipitation in the torrents.

In the absence of Lake Victoria outflow data it is possible the rise in lake water levels could be due to human management

(through reduced dam releases). However, evaporation not outflow is the major loss process of water from the lake and the20

positive trends in altimetry data from further downstream at Lake Albert and in South Sudan indicate this explanation is

unlikely, since they would not be consistent with a decrease in outflow. Furthermore, the recent increases in Lake Victoria

water levels have been attributed to increased precipitation over the Lake Victoria basin (Awange et al., 2019). Whilst there

may be no clear positive trend in monthly precipitation data from the Tropical Rainfall Measuring Mission (TRMM, Huffman

et al., 2018), Figure 6 shows that increases in Lake Victoria seasonal water height anomalies and associated total terrestrial25

water storage generally follow large positive seasonal anomalies in precipitation over the lake catchment (delineated by the

grey shading). The three years with largest annual precipitation totals over the Lake Victoria catchment between 2001–2016

were 2006, 2007 and 2011, which are all years that correspond to a subsequent increase in both lake levels and GRACE LWE

anomalies. The data suggest that the positive precipitation anomalies over the Lake Victoria basin contributed to the rising lake

levels and an increase in outflow is therefore likely. Together, the data from these multiple sources indicate increased inflow of30

the White Nile to the Sudd during the study period, which caused an increase in the extent of wetland flooding and a subsequent

substantial increase in CH4 emissions from South Sudan. In common with the LST anomaly data, the altimetry data before

2010 show that the period of rising water levels was largely confined to between 2010–2015, and indicate the transient nature

of the increase in inflow and wetland extent, and the subsequent impact on CH4 emissions from South Sudan.
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3.3 Seasonal Variations of African CH4 Emissions

Figure 7 shows the mean monthly climatological (2010–2016) CH4 emissions from eight selected regions in both NH and SH

Africa from the PR1 inversions. With the exception of the Congo basin, the emissions from all other regions shown in Fig.

7 are broadly correlated with the seasonal variation in GRACE LWE anomalies (r2 values of 0.2–0.8). Seasonal variations of

a posteriori CH4 emissions in most regions are not strongly related to changes in surface skin temperature, which is another5

parameter commonly used in models to help describe the temporal variation of wetland CH4 emissions (e.g. Gedney, 2004).

Seasonal variations in emissions from biomass burning (the timing of which is shown by burned area in Figure 7) are generally

much smaller than the inferred seasonal cycle of emissions. The exceptions are the South Sudan and Angola/Zambia regions.

There are two peaks in the seasonal cycle of emissions from South Sudan, the second of which in December coincides with

the peak in burned area and associated biomass burning emissions. Similarly in Angola/Zambia there is a noticeable but small10

emissions peak between July–September when burned area is at a maximum.

Correlations between the seasonality of tropical wetland methane emissions and GRACE LWE anomaly data water storage

from GRACE has been previously reported (e.g. Bloom et al., 2010, 2012). Some of the areas shown in Figure 7 contain

significant wetland regions: in South Sudan the Sudd; in Niger Basin the Niger Inland delta; and in Angola/Zambia the Barotse

floodplain. Estimates of seasonal wetland extent of the Sudd, suggest that it is composed of around 20% permanent and 80%15

seasonally flooded wetlands (Rebelo et al., 2012), and as such a large seasonal cycle of CH4 emissions in this region is

expected. Similarly, for the Barotse floodplain in Angola/Zambia, past work has estimated an inundated wetland extent that is

approximately ten times larger at its peak compared to the dry season minimum (Zimba et al., 2018). Our 2010–2016 mean

a posteriori seasonal cycle of CH4 emissions for the Angola/Zambia region (containing the Barotse floodplain) has a peak in

January–February that is around 3 times larger than the minimum in October in both PR1 and PR2 inversions, although this20

region includes emissions from more than this single wetland area.

Taylor et al. (2018) used the Global Inundation Extent from Multi-Satellites (GIEMS, Prigent et al., 2007, 2012) dataset to

identify those wetlands with the greatest seasonal variation in extent, highlighting the Barotse floodplains, the Niger Inland

delta and an area to the South of Lake Chad as being most significant. The timing of maximum wetland extent was shown

to be largely driven by the seasonal migration of the Intertropical Convergence Zone (ITCZ), with peak extents in NH Africa25

typically around October. Figure 7 shows the seasonal peak in our a posteriori northern hemisphere emission regions (panels

(a)–(e)) occurs consistently between September and November. If we assume that this is largely driven by the seasonal cycle of

wetlands then the timing of our a posteriori emissions peak is more consistent with the findings of Bloom et al. (2012), inferred

from SCIAMACHY XCH4 data, where northern tropical Africa emissions peak between September–November, compared to

the later work of Bloom et al. (2017) in which the seasonal cycle peaks earlier in April–October.30

We acknowledge that the large inferred seasonal cycles shown in Figure 7 may not reflect exclusively changes in wetland

emissions. Based on production estimates, rice paddy emissions will follow a similar seasonal cycle (Laborte et al., 2017),

although emissions from rice comprise only 4% of the a priori anthropogenic component of tropical African emissions, and

are largely concentrated in West Africa. In addition, the contribution of livestock enteric fermentation emissions to the sea-
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sonal CH4 emission cycle cannot be discounted. In the semi-arid ecosystems of sub-Saharan Africa, ecosystem productivity is

strongly linked to soil moisture (Madani et al., 2017). Studies of sub-Saharan cattle have shown that animal weights and dry

matter intake vary seasonally, linked to the availability of forage (Ayantunde et al., 2005; Assouma et al., 2018). As such, the

seasonal variation of enteric fermentation CH4 emissions from livestock could be a significant contributor to the seasonal cycle

of total CH4 emissions that we infer. One potential indicator of this is that we infer large seasonal cycles in regions that contain5

the largest livestock populations, such as Ethiopia and Sudan. The magnitude of the seasonal cycle in Ethiopia is comparable

to that of South Sudan, despite the former not containing seasonal wetlands of the extent of the Sudd. However, since we

are limited to resolving emissions at broad scales, and both agricultural and wetland sources have similar spatial distributions

across Africa, we are unable to quantify the relative contributions of different sources to the seasonal cycle.

Our results for the Congo Basin show no evidence of a significant water storage dependent seasonal cycle of CH4 emissions.10

The Congo basin straddles the equator and therefore experiences two wet seasons each year, in March and October (Figure 7).

The central part of the basin, referred to as the Cuvette Centrale, is permanently flooded, largely rain-fed and contains large

stores of peat (Dargie et al., 2017). These features are consistent with a muted seasonal cycle of CH4 emissions. In contrast

with the a priori emissions we use from WetCHARTs ensemble mean, which have an average peak-to-peak seasonal cycle

magnitude of around 4 Tg yr−1, our a posteriori emissions mean peak-to-peak seasonal cycle is '1 Tg yr−1. This seasonal15

cycle magnitude is smaller than the mean monthly 95% uncertainty range on the a posteriori estimates. Our results from the

Congo Basin are consistent with the results reported by Parker et al. (2018), who identified a smaller peak-to-peak seasonal

cycle in GOSAT XCH4 data compared to the XCH4 predicted by the WetCHARTs ensemble mean.

4 Concluding Remarks

We use GOSAT proxy XCH4 data and a nested version of the GEOS-Chem atmospheric chemistry transport model to infer20

emissions of CH4 over tropical Africa. At the heart of this data product is the ratio of XCH4:XCO2, which effectively minimizes

spectral artifacts due to cloud and aerosol scattering. A model estimate of XCO2 is typically used to infer a proxy retrieval

of XCH4. In this work, we use two XCO2 model estimates: 1) an ensemble mean of three independent models (including

GEOS-Chem) denoted as PR1; and 2) GEOS-Chem fields that have been fitted to GOSAT XCO2 denoted as PR2. Mean

a posteriori tropical African emission estimates for 2010–2016 are 76 (74–78) Tg yr−1 and 80 (78–82) Tg yr−1 for PR1 and25

PR2, respectively. Our results illustrate the sensitivity of a posteriori CH4 emissions on our choice of XCO2 to determine

the proxy XCH4 data product. Here, the difference is driven by a seasonal cycle of CO2 fluxes over northern tropical Africa

inferred from GOSAT that is larger than that inferred by in situ data.

Our a posteriori CH4 emissions represent 15% of the global emissions estimate of 546 Tg yr−1 in Maasakkers et al. (2019)

derived from GOSAT data between 2010 and 2015. Whilst they represent a significant fraction of the global budget, changes30

over tropical Africa are unlikely to be exclusively responsible for observed global-scale variations. We find a mean emissions

trend of 2.1 (1.7–2.5) Tg yr−1 from PR1 and 1.5 (1.1–1.9) Tg yr−1 from PR2 between 2010 and 2016, representing around

a third of the global growth trend in emissions during this period from global inversions. McNorton et al. (2018) reported a

14

https://doi.org/10.5194/acp-2019-477
Preprint. Discussion started: 26 June 2019
c© Author(s) 2019. CC BY 4.0 License.



global growth rate between 2007–2015 of 5.7±0.8 Tg yr−1. Thompson et al. (2018) found an increase in global microbial

sources of 24–48 Tg yr−1 between 2006–2014 mostly originating from tropical latitudes, equivalent to a global growth rate of

3–6 Tg yr−1. For comparison to other regions, our a posteriori trend for tropical Africa is larger than those recently reported

for China of 1.1 (0.7–1.5) Tg yr−1 and India (0.7 (0.2–1.2) Tg yr−1) between 2010 and 2015 (Miller et al., 2019).

We attribute a large part of the increase in African emissions between 2010 and 2016 to the increasing wetland extent of5

the Sudd, driven largely by increased water levels in the upstream East African lakes. Emissions from the Sudd wetlands are

found to have increased during the study period by 3 Tg yr−1. However, satellite altimetry data shows a stabilisation of the East

African lake levels after 2014, and LST anomaly data, used as a proxy for wetland extent, suggest the trend of increasing Sudd

wetland extent only lasted between 2010–2015, and that the wetland extent was anomalously small in 2010. Our a posteriori

emission estimates also suggest a stabilisation of emissions in 2015–2016, indicating that the increase in emissions from the10

Sudd was a transient event. No other easily identifiable wetland areas were estimated to have a significant growth in emissions

between 2010 and 2016. Continental-scale atmospheric isotopic 13CH4 data show a shift towards lighter values, which have

been used to suggest an increase in tropical microbial emissions since 2007 (Nisbet et al., 2016; Schaefer et al., 2016). Our

findings over South Sudan are not inconsistent with this hypothesis. Although our inversions do not distinguish between

different emission source of CH4, the location and trends in satellite LST and altimetry data suggest this increase was due15

to wetland emissions from the Sudd. FAO estimates of livestock population and IPCC Tier 1 emission factors also suggest a

modest increase in agricultural emissions from the wider East Africa region of 0.2 Tg yr−1, which would also be qualitatively

consistent with the trends in isotope signals.

Our a posteriori emission estimates show that CH4 emissions across tropical Africa are highly seasonal, with the peak in

monthly emissions of each hemisphere strongly correlated with the peak in ground water storage. Whilst the link between20

water storage and wetland CH4 emissions is well established, the lack of a seasonal cycle of emissions in the Congo Basin

highlights that this linkage is not uniform across all tropical wetlands. Furthermore, the presence of a large seasonal cycle in

regions such as Ethiopia where livestock are likely to be the dominant source may indicate seasonality in other CH4 sources.

However, emissions were resolved using coarse basis functions largely at national scales and at monthly timescales which do

not allow us to separate out the contribution of different sources. Future studies using higher resolution data from satellites25

such as TROPOMI may help to better understand the temporal and spatial characteristics of the seasonal cycle of methane

emissions from both wetlands and other sources. Indeed, initial data from TROPOMI appears promising in isolating large

wetland systems such as the Sudd (Hu et al., 2018), which should enhance the future monitoring of this large CH4 source

region.

Satellite observations now play an integral role in observing and monitoring land, ocean, and atmospheric components of30

the global carbon cycle (Palmer, 2018). As these data become available at progressively higher spatial resolution, we can begin

to address scientific questions that focus on understanding how different ecosystems changes with climate. However, the value

of these data disproportionately increases with the availability and integration of in situ atmospheric and ecological data that

provide complementary detailed information on finer spatial and temporal scales.
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Figure 1. (a) Map of our tropical African model domain. Wetland regions from Gumbricht et al. (2017) are marked in yellow and major rivers

and lakes are marked in blue. The Congo Basin, the Sudd, and the East African Lakes are outlined by black boxes. The division into regions

of the African Union are shown by the different colour country borders, indicating Central Africa (green), East Africa (orange), Southern

Africa (grey) and West Africa (purple). (b) The spatial emission basis functions used in our inversions.
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Figure 2. Annual mean differences between PR1 and PR2 proxy XCH4 data at 1◦x1◦ resolution. PR1 represents the data from Parker et al.

(2015). PR2 uses our own CO2 model component, generated from an inversion of GOSAT XCO2 data to form the proxy XCH4 data.
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Figure 3. The 2010–2016 mean (a) a priori and (b) a posteriori spatial distribution of CH4 emissions in the tropical African domain from

the PR1 inversion. (c) Mean PR1 a posteriori minus a priori differences, 2010–2016. Stippling indicates areas where the a priori mean was

outside the a posteriori 95% uncertainty range for both PR1 and PR2 inversions.
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Figure 5. (a) Annual mean a posteriori emissions from the area encompassing the Sudd in South Sudan from PR1 (blue) and PR2 (orange)

inversions. Shading represents the 95% uncertainty range. (b) The annual mean of Sudd emissions in each season from the PR1 inversions.

Uncertainty bars represent the 95% uncertainty range. (c) The annual mean LST anomaly in each season from the Sudd, used as a proxy for

wetland extent between 2007–2016. Negative anomalies indicate increased soil moisture. The grey shading indicates the inversion period

when the decrease in LST anomalies occurs. (d) Satellite altimetry data from Lake Victoria (blue), Lake Albert (orange) and the White Nile

at 6.55 ◦N, 31.40 ◦E (red) between 2007–2016, showing the transient increase in upstream water levels during the inversion period (grey

shading).
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Figure 6. Monthly anomalies of precipitation over the Lake Victoria basin from the Tropical Rainfall Measuring Mission (TRMM, green),

GRACE LWE over the basin (purple) and Lake Victoria water height (cyan). Anomalies represent the departures from the mean of each month

between 2002–2016, to remove seasonal cycle influence. Grey shading indicates 3-month periods centred on months where the precipitation

anomaly was greater than the 95th percentile. These periods coincide with rises in both LWE and lake height anomalies, highlighting the role

of heavy rainfall on lake level increases.
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Figure 7. Mean seasonal cycle of a posteriori CH4 (solid blue) emissions from eight regions across tropical Africa. Shading represents the

95% uncertainty range. Also shown are the a priori emissions (dashed blue), burned area (orange dashes), GRACE liquid water equivalent

height anomaly (LWE, red), and surface skin temperature (Tskin) estimates from MERRA-2 (purple dots). Plots (a)–(e) represent regions in

northern hemisphere Africa with CH4 emissions peak in the latter part of the year and (g)–(h) are in southern hemisphere Africa where the

CH4 emission peak is at the start of the year. (f) Congo straddles the equator.
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