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Abstract 11 

We illustrate the nonlinear relationships among anthropogenic NOx emissions, NO2 12 

tropospheric vertical column densities (TVCDs), and NO2 surface concentrations using model 13 

simulations for July 2011 over the contiguous United States (CONUS). The variations of NO2 14 

surface concentrations and TVCDs are generally consistent and reflect well anthropogenic NOx 15 

emission variations for high-anthropogenic-NOx emission regions. For low-anthropogenic-NOx 16 

emission regions, however, nonlinearity in the emission-TVCD relationship due to emissions 17 

from lightning and soils, chemistry, and physical processes makes it difficult to use satellite 18 

observations to infer anthropogenic NOx emission changes. The analysis is extended to 2003 – 19 

2017. Similar variations of NO2 surface measurements and coincident satellite NO2 TVCDs over 20 

urban regions are in sharp contrast to the large variation differences between surface and satellite 21 

observations over rural regions. We find a continuous decrease of anthropogenic NOx emissions 22 

after 2011 by examining surface and satellite measurements in CONUS urban regions, but the 23 

decreasing rate is lower by 9% - 46% than the pre-2011 period. 24 

  25 
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1. Introduction 26 

Anthropogenic emissions of nitrogen oxides (NOx = NO2 + NO) adversely affect the 27 

environment, not only because of their  direct detrimental impacts on human health (Greenberg et 28 

al., 2016; Greenberg et al., 2017; Heinrich et al., 2013; Weinmayr et al., 2009), but also their 29 

fundamental roles in the formation of ozone, acid rain, and fine particles which are unfavorable to 30 

human health, ecosystem stabilities, and climate change (Crouse et al., 2015; Kampa and 31 

Castanas, 2008; Myhre et al., 2013; Pandey et al., 2005; Singh and Agrawal, 2007).  About 48.8 32 

Tg N yr-1 of NOx are emitted globally from both anthropogenic (77%) and natural (23%) sources, 33 

such as fossil fuel combustion, biomass and biofuel burning, soil bacteria, and lightning (Seinfeld 34 

and Pandis, 2016). 3.85 Tg N and 0.24 Tg N of anthropogenic and soil NOx, respectively, were 35 

emitted from the U.S. in 2014 on the basis of the 2014 National Emission Inventory (NEI2014); 36 

vehicle sources and fuel combustions accounted for 93% of the total anthropogenic NOx 37 

emissions (EPA, 2017). 38 

The U.S. anthropogenic NOx emissions during the 2010s declined dramatically compared to 39 

the mid-2000s (EPA, 2018; Xing et al., 2013) due to stricter air quality regulations and emission 40 

control technology improvements, such as the phase-in of Tier II vehicles during 2004 – 2009 and 41 

the switch of power plants from coal to natural gas (De Gouw et al., 2014; McDonald et al., 42 

2018). The overall reduction (about 30% - 50%) of anthropogenic NOx emissions from the mid-43 

2000s to the 2010s was corroborated by observed decreasing of vehicle NOx emission factors, 44 

NO2 surface concentrations, nitrate wet deposition flux (Figure S1), and NO2 tropospheric 45 

vertical column densities (TVCDs) (Bishop and Stedman, 2015; Georgoulias et al., 2019; Li et 46 

al., 2018; McDonald et al., 2018; Miyazaki et al., 2017; Russell et al., 2012; Tong et al., 2015). 47 

However, the detailed NOx emission changes after the Great Recession (from December 2007 to 48 

June 2009) are highly uncertain. On the one hand, the U.S. Environmental Protection Agency 49 
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(EPA) estimated that the Great Recession had a slight impact on the anthropogenic NOx emission 50 

trend, and the anthropogenic NOx emissions decreased steadily from 2002 to 2017 (Figure S2), 51 

although the emission decrease rate slowed down by about 20% after 2010 (-5.8% yr-1 for 2002 – 52 

2010, and -4.7% yr-1 for 2010 – 2017, Table 1) (EPA, 2018). Fuel-based emission estimates in 53 

Los Angeles also showed a steady decrease of anthropogenic NOx emissions after 2000 and a 54 

small impact of the Great Recession on anthropogenic NOx emission decrease trend (Hassler et 55 

al., 2016). The continuous decrease of anthropogenic NOx emissions was consistent with the 56 

ongoing reduction of vehicle emissions (McDonald et al., 2018). On the other hand, Miyazaki et 57 

al. (2017) and Jiang et al. (2018) found that the U.S. NOx emissions derived from satellite NO2 58 

TVCDs, including OMI (the Ozone Monitoring Instrument), SCIAMACHY (SCanning Imaging 59 

Absorption SpectroMeter for Atmospheric CHartography), and GOME-2A (Global Ozone 60 

Monitoring Experiment – 2 onboard METOP-A), were almost flat from 2010 - 2015 and 61 

suggested that the decrease of NOx emissions was only significant before 2010, which was 62 

completely different from the bottom-up and fuel-based emission estimates. 63 

A complicating factor in inferring anthropogenic NOx emission trends from the observations 64 

of NO2 surface concentrations and satellite NO2 TVCDs is the nonlinearity in NOx chemistry (Gu 65 

et al., 2013; Gu et al., 2016; Lamsal et al., 2011). Although the decrease rates of both NO2 surface 66 

concentrations and coincident OMI NO2 TVCDs slowed down after the Great Recession over the 67 

United States, Tong et al. (2015), Lamsal et al. (2015) and Jiang et al. (2018) found that the 68 

slowdown of the decrease rates derived from NO2 surface concentrations is 12% - 79% less than 69 

those of NO2 TVCDs (Table 1). Secondly, the slowdown of the decrease rates of NO2 surface 70 

concentrations and OMI TVCDs over cities and power plants (Russell et al., 2012; Tong et al., 71 

2015) is significantly less than those over the whole contiguous United States (CONUS) (Jiang et 72 

al., 2018; Lamsal et al., 2015). Moreover, Zhang et al. (2018) found that filtering out lightning-73 
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affected measurements could significantly improve the comparison of NO2 surface concentration 74 

and OMI NO2 TVCD trends over the CONUS. 75 

In this study, we carefully investigate the relationships among anthropogenic NOx emissions, 76 

NO2 surface concentrations, and NO2 TVCDs over the CONUS and evaluate the impact of the 77 

relationships on inferring anthropogenic NOx emission changes and trends from surface and 78 

satellite observations. Section 2 describes the model and datasets used in this study, including the 79 

Regional chEmistry and trAnsport Model (REAM), the EPA Air Quality System (AQS) NO2 80 

surface observations, and NO2 TVCD products from OMI, GOME-2A, GOME-2B (GOME2 81 

onboard METOP-B), and SCIAMACHY. In Section 3, we examine the nonlinear relationships 82 

among anthropogenic NOx emissions, NO2 surface concentrations, and NO2 TVCDs using model 83 

simulations. Accounting for the effects of chemical nonlinearity, we then investigate the 84 

anthropogenic NOx emission trends and changes from 2003 – 2017 over the CONUS. Finally, 85 

section 4 gives a summary of the study. 86 

2. Model and Data Description 87 

2.1 REAM 88 

The REAM model has been applied and evaluated in many research applications including 89 

ozone simulation and forecast, emission inversion and evaluations, and mechanistic studies of 90 

chemical and physical processes (Alkuwari et al., 2013; Cheng et al., 2017; Cheng et al., 2018; 91 

Choi et al., 2008a; Choi et al., 2008b; Gu et al., 2013; Gu et al., 2014; Koo et al., 2012; Liu et al., 92 

2012; Liu et al., 2014; Wang et al., 2007; Yang et al., 2011; Zhang et al., 2017; Zhang et al., 93 

2018; Zhang and Wang, 2016; Zhao and Wang, 2009; Zhao et al., 2009a; Zhao et al., 2010). 94 

REAM used in this work, the model domain of which is shown in Figure 3, has 30 vertical layers 95 

in the troposphere, and the horizontal resolution is 36 × 36 km2. The model is driven by 96 
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meteorology fields from a Weather and Research Forecasting (WRF, version 3.6) model 97 

simulation initialized and constrained by the NCEP coupled forecast system model version 2 98 

(CFSv2) products (Saha et al., 2011). The chemistry mechanism is based on GEOS-Chem v11.01 99 

with updated reaction rates and aerosol uptake of isoprene nitrates (Fisher et al., 2016). Chemistry 100 

boundary conditions and initializations are from a GEOS-Chem (2° × 2.5°) simulation. Hourly 101 

anthropogenic emissions on weekdays are based on the 2011 National Emission Inventory 102 

(NEI2011), while weekend anthropogenic emissions are set to be two-thirds of the weekday 103 

emissions (Beirle et al., 2003; Choi et al., 2012). Biogenic VOC emissions are estimated using the 104 

Model of Emissions of Gases and Aerosols from Nature (MEGAN) v2.10 (Guenther et al., 2012). 105 

NOx emissions from soils are based on the Yienger and Levy (YL) scheme (Li et al., 2019; 106 

Yienger and Levy, 1995). The cloud-to-ground (CG) lightning flashes are calculated following 107 

Choi et al. (2005) and Zhao et al. (2009a) with the parameterization of CG flash rate as a function 108 

of convective mass fluxes and convective available potential energy (CAPE). The ratios of intra-109 

cloud (IC) lightning flashes to CG flashes are parameterized as a function of the height between 110 

the freezing layer and the cloud top (Luo et al., 2017; Price and Rind, 1992). In this study, 250 111 

moles of NO are emitted per CG or IC flash (Zhao et al., 2009a). As a result, on weekdays in July 112 

2011, REAM has mean anthropogenic NOx emissions of 7.4 × 1010 molecules cm-2 s-1, mean soil 113 

NOx emissions of 1.2 × 1010 molecules cm-2 s-1, and mean lightning NOx emissions of 3.4 × 1010 114 

molecules cm-2 s-1 over the CONUS. 115 

2.2 Satellite NO2 TVCDs 116 

In this study, we use NO2 TVCD products from four satellite sensors in the past decade, 117 

including SCIAMACHY, GOME-2A, GOME-2B, and OMI, the spectrometers onboard sun-118 

synchronous satellites to monitor atmospheric trace gases. The SCIAMACHY instrument 119 

onboard the Environmental Satellite (ENVISAT) has an equator overpass time of 10:00 Local 120 

time (LT) and a nadir pixel resolution of 60 × 30 km2. The GOME-2 instruments on Metop-A 121 
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(named as GOME-2A) and Metop-B (GOME-2B) satellites cross the equator at 9:30 LT and have 122 

a nadir resolution of 80 × 40 km2. After July 15, 2013, the nadir resolution of GOME-2A became 123 

40 × 40 km2 with a smaller scanning swath. The OMI onboard the EOS-Aura satellite has a nadir 124 

resolution of 24 × 13 km2 and overpasses the equator around 13:45 LT. More detailed 125 

information about these instruments is summarized in Table S1. These instruments measure 126 

backscattered solar radiation from the atmosphere in the ultraviolet and visible wavelength. The 127 

radiation measurements in the wavelength of 402 - 465 nm are then used to retrieve NO2 VCDs. 128 

The retrieval process consists of three steps: 1) converting radiation observations to NO2 slant 129 

column densities (SCDs) by using the Differential Optical Absorption Spectroscopy (DOAS) 130 

spectral fitting method; 2) separating tropospheric SCDs and stratospheric SCDs from the total 131 

NO2 SCDs; 3) dividing the NO2 tropospheric SCDs by the tropospheric air mass factors (AMF) to 132 

compute VCDs. 133 

The product archives we use in this study include GOME-2B (TM4NO2A v2.3), 134 

SCIAMACHY (QA4ECV v1.1), GOME-2A (QA4ECV v1.1), OMI (QA4ECV v1.1, hereafter 135 

referred to as OMI-QA4ECV), OMNO2 (SPv3, hereafter referred to as OMI-NASA), and the 136 

Berkeley High-Resolution NO2 products (v3.0B, hereafter referred to as OMI-BEHR). OMI-137 

BEHR uses the tropospheric SCDs from OMI-NASA products but updates some inputs for the 138 

tropospheric AMF calculation (Laughner et al., 2018). These product archives have been 139 

previously validated (Boersma et al., 2018; Drosoglou et al., 2017; Drosoglou et al., 2018; 140 

Krotkov et al., 2017; Laughner et al., 2018; Wang et al., 2017; Zara et al., 2018). Generally, the 141 

pixel-size uncertainties of these products are > 30% over polluted regions under clear-sky 142 

conditions. We summarize the basic information about these products in Table S2. To keep the 143 

high quality and sampling consistency of NO2 TVCD datasets, we chose pixel-size NO2 TVCD 144 

data using the criteria listed in Table S3. After the selection, we re-gridded the pixel-size data into 145 

the REAM 36 × 36 km2 grid cells and calculate the seasonal means of each grid cell with 146 



8 

corresponding daily values on weekdays (winter: January, February, and December; spring: 147 

March, April, and May; summer: June, July, and Autumn; autumn: September, October, and 148 

November). We excluded weekend data in this study to minimize the impacts of weekend NOx 149 

emission reduction, leading to different NO2 TVCDs between weekdays and weekends (Figure 150 

S3). 151 

Satellite TVCD measurements can show large variations and apparent discontinuities due in 152 

part to the effects of cloud, lightning NOx, the shift of satellite pixel coverage, and retrieval 153 

uncertainties (Figure S3; e.g., (Boersma et al., 2018; Zhang et al., 2018)). However, continuous 154 

and consistent measurements are required for reliable trend analyses. In addition to the criteria of 155 

data selection in Table S3, we compute the seasonal relative 90th percentile confidence interval, 156 

defined as RCI = (X(95th percentile) - X(5th percentile)) / mean(X), where X is the daily NO2 157 

TVCD for a given season. To compute the seasonal trend, we require that RCI is < 50% for the 158 

selected season every year in the analysis period (Table S3). About 45% of data are removed as a 159 

result. 160 

2.3 Surface NO2 measurements 161 

Hourly surface NO2 measurements from 2003 - 2017 are from the EPA AQS monitoring 162 

network (archived on https://www.epa.gov/outdoor-air-quality-data). Most AQS monitoring sites 163 

use the Federal Reference Method (FRM) — gas-phase chemiluminescence to measure NO2. Few 164 

sites use the Federal Equivalent Method (FEM) – photolytic-chemiluminescence or the Cavity 165 

Attenuated Phase Shift Spectroscopy (CAPS) method. FRM and FEM are indirect methods, in 166 

which NO2 is first converted to NO and then NO is measured through chemiluminescence 167 

measurement of NO2* produced by NO + O3. The difference is that FRM uses heated 168 

reducers/catalysts for the conversion of NO2 to NO and FEM uses photolysis of  NO2 to NO. The 169 

conversion to NO in the FRM instruments is not specific to NO2, and non-NOx active nitrogen 170 

https://www.epa.gov/outdoor-air-quality-data
https://www.epa.gov/outdoor-air-quality-data
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compounds (NOz) can also be reduced by the catalysts, which would cause high biases of NO2 171 

measurements, while the FEM method is sensitive to the photolysis conversion efficiency of NO2 172 

to NO (Beaver et al., 2012; Beaver et al., 2013; Lamsal et al., 2015). The CAPS method directly 173 

determines NO2 concentrations based on a NO2-induced phase shift measured by a photodetector. 174 

The CAPS instrument operates at a wavelength of about 450 nm and may overestimate NO2 175 

concentrations due to absorption of other molecules at the same wavelength (Beaver et al., 2012; 176 

Beaver et al., 2013; Kebabian et al., 2005). 177 

Due to the different characteristics of the above three methods and demonstrated biases 178 

between the FRM and the FEM by Lamsal et al. (2015), we firstly investigate the measurement 179 

discrepancies among the above three methods. There are three sites having FRM and FEM 180 

measurements simultaneously during some periods from 2013 - 2014, two sites having both FRM 181 

and CAPS data during some periods from 2015 – 2016, and one site using all three measurement 182 

methods during some periods in 2015. Figure S4 shows the hourly averaged ratios of FEM and 183 

CAPS to FRM data, respectively, for 4 seasons during 2013 – 2016. The CAPS/FRM ratios are in 184 

the range of 0.94 – 1.06 and the FEM/FRM ratios of 0.86 – 1.11. Furthermore, Zhang et al. 185 

(2018) discussed that the relative trends are not affected by scaling the observation data. As in the 186 

work by Zhang et al. (2018), we analyze the relative trends in the surface NO2 data. We, 187 

therefore, did not scale the FRM data. At sites with FEM or CAPS measurements, we use these 188 

measurements in place of FRM data. If both FEM and CAPS data are available, we use the 189 

averages of the two datasets. 190 

 Since NO2 surface concentrations have significant diurnal variations (Figure S5), we choose 191 

the data at 9:00-10:00 LT for comparison with GOME-2A/2B data, 10:00-11:00 LT for 192 

comparison with SCIAMACHY data, and 13:00-14:00 LT for OMI data. The seasonal RCI < 193 

50% requirement is also used here to be consistent with the analysis of satellite TVCD data, and 194 

thus about 1.5% of the data are removed. We also require that the measurement site must have 195 
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valid measurements in the aforementioned 3 hours for at least one season from 2003 – 2017. The 196 

locations of the 179 selected sites using the site selection criteria are shown in Figure 1. The 197 

region definitions follow the U.S. Census Bureau (https://www2.census.gov/geo/pdfs/maps-198 

data/maps/reference/us_regdiv.pdf). 199 

3. Results and Discussions 200 

3.1 Nonlinear relationships among anthropogenic NOx emissions, NO2 surface 201 

concentrations, and NO2 TVCDs 202 

NO2 surface concentrations and NO2 TVCD are not linearly correlated with NOx emissions 203 

due in part to chemical nonlinearity, wet and dry depositions, transport effects, background 204 

sources (Gu et al., 2013; Lamsal et al., 2011). Therefore, it is necessary to first investigate the 205 

nonlinearities among NOx emissions, NO2 surface concentrations, and TVCDs over the CONUS 206 

before we compare the trends between NO2 surface concentrations and TVCDs. The nonlinearity 207 

between NOx emission and NO2 TVCD is analyzed by examining the local sensitivity of NO2 208 

TVCD to NOx emissions (Gu et al., 2013; Lamsal et al., 2011; Tong et al., 2015), which is 209 

defined as β in Equation (1). We further define γ as the sensitivity of NO2 surface concentration 210 

to NOx emission: 211 

E

E


 
=


         (1) 212 

E c

E c


 
=          (2) 213 

where E denotes NOx emission and △E denotes the change of NOx emission; Ω denotes NO2 214 

TVCD, c denotes surface NO2 concentration, and △Ω and △c denote the corresponding changes. 215 
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We computed β and γ values for July 2011 over the CONUS using REAM. To compute 216 

local β and γ values, we added another independent group of chemistry species (“group 2”) in 217 

REAM in order to compute the standard and sensitivity simulations concurrently. The original 218 

chemical species in the model (“group 1”) were used in the standard simulation. For group 2 219 

chemical species, anthropogenic NOx emissions were reduced by 15%. In the model simulation, 220 

we first computed the advection of group 1 tracers. The horizontal tracer fluxes were therefore 221 

available. All influxes into a grid cell for group 2 tracer simulation were from group 1 tracer 222 

simulation; only outfluxes were computed using group 2 tracers. The outflux was one way in that 223 

nitrogen species were transported out but the transport did not affect adjacent grid cells because 224 

the influxes were from group 1 tracer simulation. Using this procedure, the effects of 225 

anthropogenic NOx emission reduction were localized. The β and γ values were computed by the 226 

ratio of TVCD and surface concentration changes to 15% change of anthropogenic NOx 227 

emissions, respectively. 228 

Figure 2 shows the distributions of our β and γ ratios as a function of anthropogenic NOx 229 

emissions for July 2011 over the CONUS. Results essentially the same as Figure 2 were obtained 230 

when a perturbation of 10% was used for anthropogenic NOx emissions. Figure S6 shows the 231 

distributions of NO2 TVCD fraction in the boundary layer at 13:00 – 14:00 LT and 10:00 – 11:00 232 

LT, and the fraction of soil NOx emissions in all surface sources (soil + anthropogenic) on 233 

weekdays for July 2011, respectively. In Figure S7, we analyzed the contributions of background 234 

sources and non-emission factors (transport, chemistry, and wet and dry depositions) to the 235 

nonlinear relationships (β and γ) among anthropogenic NOx emissions, NO2 surface 236 

concentrations, and NO2 TVCDs. While the model simulation is for one summer month, several 237 

key points on the surface and column concentration sensitivities to anthropogenic NOx emissions 238 

have implications for comparing the trends of AQS and satellite TVCD data. (1) Both β and γ 239 

values are negatively correlated with anthropogenic NOx emissions due to chemical nonlinearity, 240 
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transport,  and background NOx contributions (Figures 2, S6, and S7) (Gu et al., 2016; Lamsal et 241 

al., 2011). It is consistent with the distribution of β as a function of NOx emissions in China (Gu 242 

et al., 2013), although the β ratios for the US are generally larger than for China due primarily to 243 

different emission distributions of NOx and VOCs and regional circulation patterns (Zhao et al., 244 

2009b). (2) The uncertainties of β and γ values increase significantly as anthropogenic NOx 245 

emissions decrease, which means regions with low anthropogenic NOx emissions are more 246 

sensitive to environmental conditions, such as NOx transport from nearby regions which may 247 

even produce negative β and γ values (Figures 2 and S7). (3) The value of γ is generally less than 248 

β, especially for low-anthropogenic-NOx emission regions, which reflects the significant 249 

contribution of free tropospheric NO2 to NO2 TVCD but not to NO2 surface concentrations 250 

(Figures 2, S6, and S7). (4) The variations of β and γ values in anthropogenic NOx emission bins 251 

tend to be larger at 10:00 – 11:00 than at 13:00 – 14:00 LT, reflecting a stronger transport effect 252 

due to weaker chemical losses at 10:00 – 11:00 (Figure 2). (5) Both β and γ values are 253 

significantly less than 1 at 13:00 – 14:00 LT (β = 0.74 and γ = 0.84) when anthropogenic NOx 254 

emissions are > 4 × 1012 molecules cm-2 s-1, but they are close to 1 at 10:00 – 11:00 LT (β = 0.96 255 

and γ = 1.02), which reflect stronger chemistry nonlinearity at 13:00 – 14:00 than in the morning 256 

(Figure 2). (6) Both background sources and non-emission factors contribute much more to β and 257 

γ values in low-anthropogenic-NOx emission regions than in high-anthropogenic-NOx emission 258 

regions (Figure S7). (7) Generally, non-emission factors contribute more to β and γ values than 259 

background sources in low-anthropogenic-NOx emission regions (Figures S7c and S7d) except 260 

for the first bin where background sources contribute more to β and γ values than non-emission 261 

factors at 10:00 – 11:00, which is partly caused by some grid cells with extremely low 262 

anthropogenic NOx emissions, increasing the mean contributions of background sources in the 263 

first bin. 264 
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The largely varying β and γ values for anthropogenic NOx emissions < 1011 molecules cm-2 265 

s-1 imply that the trends derived from satellite TVCD data do not directly represent anthropogenic 266 

NOx emissions and that the variations of TVCD data may not be comparable to the corresponding 267 

surface NO2 concentrations. We define a region “urban” if anthropogenic NOx emissions from 268 

NEI2011 are > 1011 molecules cm-2 s-1. All the other regions are defined as “rural”. Figure 3 269 

shows the distributions of anthropogenic NOx emissions and urban and rural regions defined in 270 

this study. Such defined urban regions account for 69.8% of the total anthropogenic NOx 271 

emissions over the CONUS, the trend of which is, therefore, representative of anthropogenic 272 

emission changes. A caveat is that some “urban” regions would become “rural” if anthropogenic 273 

NOx emissions decreased after 2011 as the EPA anthropogenic NOx emission trend suggested 274 

(Figure S2). In a sensitivity study, we define an urban region using a stricter criterion of 275 

anthropogenic NOx emissions > 2 × 1011 molecules cm-2 s-1 and the analysis results are similar to 276 

those shown in the next section. 277 

3.2 Trend comparisons between NO2 AQS surface concentrations and coincident 278 

satellite NO2 tropospheric VCD over urban and rural regions 279 

By using anthropogenic NOx emissions of 1011 molecules cm-2 s-1 as the threshold value, 157 280 

AQS sites are urban, and the rest 22 sites are rural. Their properties are summarized in Table 2. 281 

Figure 4 shows the relative annual variations of AQS NO2 surface measurements at 13:00 – 14:00 282 

and coincident OMI-QA4ECV NO2 TVCD data from 2005 – 2017 in each season for urban and 283 

rural regions. The contrast between the two regions is apparent in all seasons. For comparison 284 

purposes, we scale the time series of TVCD and AQS surface NO2 to their corresponding 2005 285 

values, and the resulting data are therefore unitless. Over urban regions, NO2 surface 286 

concentrations are highly correlated with NO2 TVCDs (TVCD = 1.03 × AQS + 0.11, R2 = 0.98), 287 

reflecting the comparable and stable β and γ values (Figure 2). However, over rural regions, the 288 

scaled TVCD data significantly deviate from AQS NO2 data (TVCD = 1.15 × AQS + 0.09, R2 = 289 
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0.87). It is noteworthy that the discrepancies between urban and rural data are smaller in winter 290 

than in spring, summer, and autumn due to a more dominant role of transport than chemistry and 291 

lower natural NOx emissions in winter. 292 

We also examine the correlations of AQS NO2 surface concentrations with coincident OMI-293 

NASA, OMI-BEHR, SCIAMACHY, GOME-2A, and GOME-2B TVCD measurements. The 294 

results of OMI-NASA and OMI-BEHR are similar to those of OMI-QA4ECV (Figure 4). 295 

SCIAMACHY and GOME-2B TVCD observations at 9:00-11:00 LT also show large contrast 296 

between urban (SCIAMACHY: TVCD = 0.92 × AQS - 0.005, R2 = 0.94; GOME-2B: TVCD = 297 

0.54 × AQS + 0.56, R2 = 0.96) and rural regions (SCIAMACHY: TVCD = 0.77 × AQS +0.83, R2 298 

= 0.63; GOME-2B: TVCD = 0.46 × AQS + 0.73, R2 = 0.59). The correlation of coincident 299 

GOME-2A NO2 TVCD data with AQS surface concentrations is poor for rural (TVCD = 0.65 × 300 

AQS + 0.56, R2 = 0.44) and urban (TVCD = 0.31 × AQS + 0.56, R2 = 0.21) regions (Figure S8), 301 

which likely reflects the degradation of the GOME-2A instrument causing significant increase of 302 

NO2 SCD uncertainties (Boersma et al., 2018). Therefore, we excluded GOME-2A in the analysis 303 

hereafter. 304 

We further investigate OMI-QA4ECV NO2 TVCD relative annual variations from 2005 - 305 

2017 over the regions with different anthropogenic NOx emissions in Figure 5. We find clear 306 

flattening of NO2 TVCD variations as anthropogenic NOx emissions decrease, which is consistent 307 

with the above analysis. Similar to Figure 4, the spread of TVCD variation is much less in winter 308 

than the other seasons. The differences between Figures 5 and 4 are due to a much larger dataset 309 

used in the former than the latter. Only coincident AQS and OMI-QA4ECV data are used in 310 

Figure 4, but all OMI-KMNI data are used in Figure 5. 311 
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3.3 Trend analysis of AQS NO2 surface concentrations, satellite TVCDs, and 312 

updated EPA NOx emissions 313 

We first updated the CEMS measurement data used in the EPA NOx emission trend datasets 314 

with the newest datasets obtained from https://ampd.epa.gov/ampd/. As shown in Figure S2, the 315 

updated CEMS data lead to a reduction of anthropogenic NOx emissions during the Great 316 

Recession (2008 – 2009) and a recovery period in 2010 – 2011. The sharp drop during the Great 317 

Recession and the flattening trend right after the Great Recession are captured by OMI NO2 and 318 

SCIAMACHY TVCD products (Figures 4, 6, and S9) and AQS NO2 surface measurements 319 

(Figures 4, 6, and S5) and are also noted by Russell et al. (2012) and Tong et al. (2015) (Table 1). 320 

In Figure 6, we show the comparisons among the relative variations of the updated EPA 321 

anthropogenic NOx emissions, AQS NO2 surface measurements at 10:00-11:00 and 13:00-14:00, 322 

and coincident satellite NO2 TVCDs for urban regions in 4 seasons from 2003 to 2017. Also 323 

shown are the comparisons among the updated EPA anthropogenic NOx emissions and satellite 324 

NO2 TVCDs. There are many more data points for the latter comparison because the data 325 

selection is no longer limited to those coincident with the AQS surface data, and therefore, the 326 

uncertainty spread is much lower. The comparisons, in general, show consistent results that the 327 

updated EPA anthropogenic NOx emissions, AQS surface measurements, and satellite TVCD 328 

data are in agreement. The agreement of decreasing trends among the datasets is just as good for 329 

the post-2011 period as the pre-2011 period. This result differs from Miyazaki et al. (2017) and 330 

Jiang et al. (2018), who suggested no significant decreasing trend for OMI TVCD data and 331 

inversed NOx emissions after 2010. The disagreement can be explained by the results of Figure 5. 332 

Including the low anthropogenic NOx emission regions leads to underestimates of NOx decreases. 333 

Since the area of low anthropogenic NOx emission regions is larger than high anthropogenic NOx 334 

emission regions (Table 2), the arithmetic averaging will lead to a large weighting of rural 335 

observations, which do not reflect anthropogenic NOx emission changes. Miyazaki et al. (2017) 336 

https://ampd.epa.gov/ampd/
https://ampd.epa.gov/ampd/
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and Jiang et al. (2018) included all regions in their analyses, but we exclude rural regions. Figure 337 

S9 shows the seasonal variations if the TVCDs over rural regions are included; the result shows a 338 

much lower decreasing rate of TVCDs over the CONUS. The much slower satellite TVCD trends 339 

for regions with low NOx emissions was previously discussed by Zhang et al. (2018). In addition, 340 

Miyazaki et al. (2017) and Jiang et al. (2018) conducted NOx emission inversions by using the 341 

Model for Interdisciplinary Research on Climate (MIROC)-Chem with a coarse resolution of 2.8° 342 

× 2.8°, which was insufficient to separate urban and rural regions and might distort predicted NO2 343 

TVCDs and inversed NOx emissions due to nonlinear effects (Valin et al., 2011; Yu et al., 2016), 344 

which is another possible reason for their find of flattening NOx emission trends after 2010. 345 

We summarize the decreasing rates of NO2 after the Great Recession in Table 3. To 346 

minimize the effect of the sharp decrease and the subsequent recovery, we chose to analyze the 347 

post-2011 period. Table 3 summarizes the results for each season, while Table 1 gives the 348 

averaged annual decreasing trends. Generally, Tables 1 and 3 confirm the continuous decreases of 349 

AQS surface observations, satellite NO2 TVCD, and updated EPA anthropogenic NOx emissions 350 

after 2011 as in Figure 6, but the decreasing rates are lower than the pre-2011 period. Over the 351 

AQS urban sites, the slowdown magnitudes are 9% for AQS surface observations and 20% - 40% 352 

for satellite NO2 TVCD measurements, which may reflect in part smaller γ than β values (Table 353 

2). Our estimated slowdown magnitudes are significantly lower than Lamsal et al. (2015) and 354 

Jiang et al. (2018) (Table 1), which might be caused by their different data processing methods, 355 

such as including AQS sites with incomplete measurement records (Silvern et al., 2019). 356 

Over the CONUS urban regions, updated EPA anthropogenic NOx emissions show a 357 

slowdown of 22% compared to 29% - 46% for three OMI NO2 TVCD products. The difference is 358 

partially due to the β ratio of 2.5 ± 1.0 at 13:00 – 14:00 over the CONUS urban regions (Table 2). 359 

Satellite NO2 TVCD measurement uncertainties also contribute to the difference. From 2013 – 360 

2017, GOME-2B NO2 TVCDs decrease more than OMI products, especially in spring, autumn 361 
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and winter (Tables 1 and 3). Finally, trend analyses in different regions (Figure 7 and Table S4) 362 

indicate that generally, the Midwest has the least slowdown of the decreasing rate for urban OMI 363 

NO2 TVCD (-14% on average) after 2011 compared to the Northeast (-30%), South (-34%), and 364 

West (-28%). 365 

The results presented in this study are qualitatively in agreement with the work by Silvern et 366 

al. (2019). The two studies were independent. Therefore, the foci of the studies are different 367 

despite reaching similar conclusions. While we focused on understanding the detailed data 368 

analysis of Jiang et al. (2018) and limited the use of model simulation results so that our results 369 

can be compared to the previous study directly, Silvern et al. (2019) relied more on multi-year 370 

model simulations. As a result, Silvern et al. (2019) can clearly identify the contributions of the 371 

NO2 columns by natural emissions and make use of additional observations such as nitrate 372 

deposition fluxes. They also identified model biases in simulating the trends of NO2 TVCDs by 373 

missing natural emissions in the free troposphere. Our study, on the other hand, explored the data 374 

analysis procedure through which the trend of anthropogenic emissions can be derived from 375 

satellite observations and its limitations. 376 

4. Conclusions 377 

Using model simulations for July 2017, we demonstrate the nonlinear relationship of NO2 378 

surface concentration and TVCD with anthropogenic NOx emissions. Over low anthropogenic 379 

NOx emission regions, the ratios of anthropogenic NOx emission changes to the changes of 380 

surface concentrations (γ) and TVCDs (β) have very large variations and 𝛽 >  γ ≫  1. 381 

Therefore, for the same emission changes, surface concentration and TVCD changes are much 382 

smaller and variable than urban regions, making it difficult to use the observations to directly 383 

infer anthropogenic NOx emission trends. We find that defining urban regions where 384 

anthropogenic NOx emissions are > 1011 molecules cm-2 s-1 and using surface and TVCD 385 
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observations over these regions can infer the trends that can be compared with the EPA emission 386 

trend estimates. 387 

We evaluate the anthropogenic NOx emission variations from 2003 – 2017 over the CONUS 388 

by using satellite NO2 TVCD products from GOME-2B, SCIAMACHY, OMI-QA4ECV, OMI-389 

NASA, and OMI-BEHR, over the urban regions of CONUS. We find broad agreements among 390 

the decreases of AQS NO2 surface observations, satellite NO2 TVCD products, and the EPA 391 

anthropogenic NOx emissions with the CEMS dataset updated. After 2011, they all show a 392 

slowdown of the decreasing rates. Over the AQS urban sites, NO2 surface concentrations have a 393 

slowdown of 9% and OMI products show a slowdown of 20% - 40%. Over the CONUS urban 394 

regions, OMI TVCD products indicate a slowdown of 29% - 46%, and the updated EPA 395 

anthropogenic NOx emissions have a slowdown of 22%. The different slowdown magnitudes 396 

between OMI TVCD products and the other two datasets may be caused by the nonlinear 397 

response of TVCD to anthropogenic emissions and the uncertainties of satellite measurements 398 

(e.g., GOME-2B TVCD data show a larger decreasing trend than OMI products from 2013 – 399 

2017). 400 

We did not find observation evidence supporting the notion that anthropogenic NOx 401 

emissions have not been decreasing after the Great Recession. In future studies, we recommend 402 

that the nonlinear relationships of NOx emissions with NO2 TVCD and surface concentration be 403 

carefully evaluated when applying satellite and surface measurements to infer the changes of 404 

anthropogenic NOx emissions. 405 

Data availability 406 

The EPA AQS hourly surface NO2 measurements are downloaded from 407 
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Table 1. Summary of trends of satellite NO2 TVCD products, NO2 surface measurements, and EPA anthropogenic NOx emissions during from different studies 649 

Studies Datasets 
Period 11 Period 2 Period 3 Slowdown 

ratio3 Time Trend (yr-1)2 Time Trend (yr-1) Time Trend (yr-1) 

This study for CONUS 

“urban” sites4 

GOME-2B5 (36 × 36 km2)     2013 - 2017 -8.2 ± 3.0%  

SCIAMACHY (36 × 36 km2) 2003 – 2011 -6.3 ± 1.1%      

OMI-NASA (36 × 36 km2) 2005 – 2011 -8.6 ± 1.2%   2011 – 2016 -6.1 ± 3.6% -29%2 

OMI-BEHR (36 × 36 km2) 2005 – 2011 -8.2 ± 1.3%   2011 – 2016 -4.4 ± 1.6% -46% 

OMI-QA4ECV (36 × 36 km2) 2005 – 2011 -7.7 ± 1.4%   2011 - 2017 -4.2 ± 0.5% -46% 

Updated EPA NOx emissions6 2003 – 2011 -6.5 ± 0.8%   2011 - 2017 -5.1 ± 0.3% -22% 

This study for AQS 

“urban” sites 

GOME-2B (36 × 36 km2)     2013 - 2017 -10.2 ± 2.9%  

SCIAMACHY (36 × 36 km2) 2003 - 2011 -7.6 ± 1.1%      

OMI-NASA (36 × 36 km2) 2005 - 2011 -9.0 ± 0.8%   2011 – 2016 -7.2 ± 3.8% -20% 

OMI-BEHR (36 × 36 km2) 2005 - 2011 -8.9 ± 0.3%   2011 – 2016 -6.2 ± 2.6% -30% 

OMI-QA4ECV (36 × 36 km2) 2005 - 2011 -9.0 ± 0.8%   2011 - 2017 -5.4 ± 0.9% -40% 

NO2 surface VMR7 2003 - 2011 -6.5 ± 1.2%   2011 - 2017 -5.9 ± 0.8% -9% 

(Russell et al., 2012)8 
BEHR v2.1 NO2 TVCD (0.05°×0.05°) 

2005 - 2007 
-6 ± 5% (-6.2%)9 

2007 - 2009 
-8 ± 5% (-8.4%) 

2009 - 2011 
-3 ± 4% (-3.0%) -52% 

Updated EPA NOx emissions -6.0% -10.0% -2.4% -60% 

(Tong et al., 2015)10 

NASA v2.1 NO2 TVCD (pixels < 50 × 24 km2) 

2005 - 2007 

-7.3% (-7.6%) 

2008 - 2009 

-9.2% (-11.4%) 

2010 - 2012 

-2.8% (-4.4%) -42% 

BEHR v2.1 NO2 TVCD (pixels < 50 × 24 km2) -8.9% (-9.3%) -9.1% (-11.8%) -3.6% (-6.0%) -35% 

NO2 surface VMR -6.0% (-6.2%) -10.8% (-13.2%) -3.4% (-5.4%) -13% 

Updated EPA NOx emissions -6.0% -10.0% -3.4% -43% 

(Lamsal et al., 2015)11 

NASA v2.1 NO2 TVCD (0.1°×0.1°) 

2005 - 2008 

-4.8 ± 1.9% (-5.1%) 

 

 

2010 - 2013 

-1.2 ± 1.2% (-1.2%) -76% 

NO2 surface VMR -3.7 ± 1.5% (-3.8%)  -2.1 ± 1.4% (-2.1%) -45% 

Updated EPA NOx emissions -6.4%  -4.0% -38% 

(Jiang et al., 2018)11 

NASA v3 NO2 TVCD (0.5°×0.667°) 

2005 - 2009 

-10.2 ± 1.8% (-9.8%) 

 

 

2011-2015 

-3.2 ± 1.6% (-3.2%) -67% 

QA4ECV v2 NO2 TVCD (0.5°×0.667°) -9.6 ± 1.7% (-9.3%)  -2.6 ± 1.8% (-2.6%) -72% 

BEHR v2.1 NO2 TVCD (0.5°×0.667°) -8.5 ± 1.8% (-8.2%)  -2.1 ± 1.6% (-2.1%) -74% 

NO2 surface VMR -6.6 ± 1.4% (-6.4%)  -2.6 ± 1.5% (-2.6%) -59% 

Updated EPA NOx emissions -7.8%  -5.0% -36% 
1 Since different studies used different time division methods, we list the period of each study in the table. 650 
2 Trends are based on an exponential model (𝐸(𝑦)  =  𝐸0  ×  𝑟𝑦−𝑦0: “y” denotes year and “y0” denotes the initial year; “E(y)” denotes the value at year “y” and “E0” denotes the value at the initial year; r-1 is the relative trend). 651 
3 Slowdown ratios = Trend in “period 3” / Trend in “period 1” – 1. 652 
4 Trends in our study are calculated based on the national seasonal trends shown in Table 3. 653 
5 The information on satellite products used in this study is summarized in Table S2. 654 
6 We updated EPA anthropogenic NOx emissions with the newest Continuous Emission Monitoring Systems (CEMS) datasets. Figure S2 shows the comparison between our updated and original EPA anthropogenic NOx emissions (EPA, 2018). 655 
7 Denote the averaged trends of 13:00 and 10:00 LT based on the values in Table 3. 656 
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8 The study used NO2 TVCD from urban and power plant grid cells across the U.S. 657 
9 Since previous studies used linear models to calculate trends and the results are sensitive to their calculation methods and the selection of initial years, we recalculate the trends based on the above exponential model, which makes all the results 658 
consistent. Our results are those bold numbers inside the parentheses, while the numbers in normal fonts are from the original publications. 659 
10 The study uses NO2 TVCD and surface concentrations from Los Angeles, Dallas, Houston, Atlanta, Philadelphia, Washington, D.C., New York, and Boston. 660 
11 The two studies used the EPA Air Quality System (AQS) NO2 surface measurements and coincident satellite NO2 TVCD data over the U.S.661 
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Table 2. Properties of urban and rural regions in July 2011 662 

type 
Surface area 

fraction1 

Anthropogenic NOx emissions  

(× 1010 molecules cm-2 s-1) 
β at 13:00 – 14:00 LT γ at 13:00 – 14:00 LT β at 10:00 – 11:00 LT γ at 10:00 – 11:00 LT 

Urban/CONUS2 17.3% 29.9 2.5 ± 1.0 1.5 ± 0.4 2.6 ± 1.9 1.6 ± 1.2 

Rural/CONUS 82.7% 2.7 16.9 ± 16.4 8.5 ± 11.7 12.2 ± 14.0 6.4 ± 11.6 

Urban/AQS 87.7% 71.0 1.6 ± 0.8 1.2 ± 0.4 1.7 ± 1.1 1.3 ± 0.6 

Rural/AQS 12.3% 5.7 8.7 ± 9.9 5.2 ± 8.8 5.4 ± 15.1 3.8 ± 11.7 

1 “Fraction” denotes the percentages of “urban” or “rural” data points for the whole CONUS or all AQS sites.  663 
2 “Urban-CONUS” denote CONUS “urban” grid cells; “Urban-AQS” denote AQS “urban” site grid cells. 664 
 665 
 666 
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Table 3. Summary of national trends of updated EPA anthropogenic NOx emissions, AQS NO2 surface concentrations at 13:00 – 14:00 and 10:00 – 11:00 LT, and satellite NO2 TVCD products for 4 seasons 667 
during different periods1 668 

 
Spring Summer Autumn Winter 

AQS site CONUS AQS site CONUS AQS site CONUS AQS site CONUS 

AQS NO2 VMR 

at 13:00 -14:00 

2003 – 2011 -7.3 ± 1.4%  -7.4 ± 0.9%  -6.7 ± 1.8%  -5.2 ± 0.8%  

2011 – 2017 -5.3 ± 1.6%  -6.4 ± 1.2%  -7.3 ± 2.5%  -6.0 ± 2.8%  

AQS NO2 VMR 

at 10:00 – 11:00 

2003 – 2011 -7.1 ± 1.6%  -7.6 ± 1.5%  -6.2 ± 2.2%  -4.4 ± 1.6%  

2011 – 2017 -4.4 ± 1.4%  -6.1 ± 1.8%  -6.3 ± 2.5%  -5.2 ± 2.4%  

SCIAMACHY 
2003 – 2011 -8.8 ± 3.4% -6.9 ± 1.1% -8.2 ± 1.6% -5.2 ± 1.2% -6.8 ± 2.4% -5.6 ± 2.1% -6.4 ± 7.4% -7.5 ± 5.5% 

2011 – 2017         

GOME2B 
2003 – 2011         

2013 – 2017 -10.2 ± 7.8% -8.3 ± 16.9% -6.4 ± 14.0% -5.3 ± 4.0% -10.5 ± 41.6% -6.9 ± 13.2% -13.6 ± 15.1% -12.3 ± 78.9% 

OMI-QA4ECV 
2005 – 2011 -9.3 ± 5.6% -8.3 ± 4.6% -8.3 ± 2.4% -5.9 ± 5.2% -10.0 ± 4.2% -7.4 ± 2.4% -8.3 ± 2.1% -9.3 ± 5.2% 

2011 – 2017 -5.3 ± 6.0% -4.3 ± 6.5% -4.2 ± 3.0% -4.9 ± 9.2% -6.0 ± 1.8% -3.8 ± 1.8% -6.1 ± 25.6% -3.8 ± 3.5% 

OMI-NASA 
2005 – 2011 -9.4 ± 5.0% -9.6 ± 5.3% -9.4 ± 2.8% -7.1 ± 2.9% -9.4 ± 3.2% -8.1 ± 2.8% -7.8 ± 3.6% -9.5 ± 16.6% 

2011 – 2016 -4.4 ± 18.9% -3.8 ± 7.5% -5.7 ± 6.7% -4.5 ± 5.3% -6.0 ± 3.1% -4.6 ± 3.9% -12.8 ± 7.8% -11.4 ± 6.6% 

OMI-BEHR 
2005 – 2011 -9.1 ± 5.3% -8.9 ± 5.8% -8.7 ± 2.4% -6.4 ± 3.2% -9.2 ± 3.2% -8.0 ± 3.1% -8.5 ± 10.6% -9.4 ± 23.0% 

2011 – 2016 -3.8 ± 4.4% -3.0 ± 4.0% -5.4 ± 7.0% -3.9 ± 6.6% -5.6 ± 13.2% -4.1 ± 14.0% -9.9 ± 5.2% -6.7 ± 5.9% 

EPA 
2003 – 2011 -6.5 ± 0.8% 

2011 – 2017 -5.1 ± 0.3% 
1 We calculate trends by using the exponential model described in Table 1. 669 
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 670 
Figure 1. Region definitions and locations of NO2 surface observation sites used in this study. 671 

  672 



31 

 673 
Figure 2. Distributions of β (panel a) and γ (panel b) ratios as a function of anthropogenic NOx 674 
emissions on weekdays for July 2011 over the CONUS. “13:00 – 14:00 LT” is for OMI, and 675 
“10:00 – 11:00” LT is for SCIAMACHY and GOME-2A/2B. The data are binned into nine 676 
groups based on anthropogenic NOx emissions: E ∈ (0, 21), [21, 22), [22, 23), [23, 24), [24, 25), [25, 677 
26), [26, 27), [27, 28), [28, 29) × 1010 molecules cm-2 s-1. Here, (0, 21) denotes 0 < emissions < 21, 678 
and [21, 22) denotes 21 ≤ emissions < 22, similar to other intervals. The green dashed line denotes 679 
a value of 1. Error bars denote standard deviations. 680 
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 682 
Figure 3. Spatial distributions of (a) anthropogenic NOx emissions (unit: 1010 molecules cm-2 s-1) 683 
and (b) “urban” regions satisfying our selection criteria. In (b), light green and blue denote the 684 
resulting urban and rural regions, respectively. 685 
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 687 
Figure 4. Relative annual variations of AQS NO2 surface concentrations and coincident OMI-688 
QA4ECV NO2 TVCD in each season from 2005 – 2017 for urban (left panel) and rural (right 689 
panel) regions. The observation data are scaled by the corresponding 2005 values. Black and red 690 
lines denote AQS surface observations and OMI-QA4ECV NO2 TVCDs, respectively. Shading in 691 
a lighter color is added to show the standard deviation of the results; when uncertainty is small 692 
due in part to a large number of data points, shading area may not show up. 693 
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 695 
Figure 5. Relative annual variations of OMI-QA4ECV NO2 TVCD for different anthropogenic 696 
NOx-emission groups based on NEI2011 in each season from 2005 – 2017. “E >= 64” denotes 697 
grid cells with anthropogenic NOx emissions over 64 × 1010 molecules cm-2 s-1. “E >= 32” 698 
denotes grid cells with anthropogenic NOx emissions equal to or larger than 32 × 1010 molecules 699 
cm-2 s-1 but less than 64 × 1010 molecules cm-2 s-1. “E >= 16” and “E >= 8” have similar meanings 700 
as “E >= 32”. “E < 8” denotes grid cells with anthropogenic NOx emissions less than 8 × 1010 701 
molecules cm-2 s-1. Shading in a lighter color is added to show the standard deviation of the 702 
results; when uncertainty is small due in part to a large number of data points, shading area may 703 
not show up. 704 
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 706 
Figure 6. Relative variations of AQS NO2 surface measurements at 13:00-14:00 and 10:00-11:00 707 
LT, updated EPA anthropogenic NOx emissions, and satellite NO2 TVCD data over the AQS 708 
urban sites (left column) and the CONUS urban regions (right column) for 4 seasons. AQS NO2 709 
surface measurements are not included in the right column. All datasets are scaled by their 710 
corresponding values in 2011 except for GOME-2B. For GOME-2B, we firstly normalized the 711 
values in each season to the corresponding 2013 values and plotted the relative changes from the 712 
2013 EPA point of each season to make the GOME-2B relative variations comparable to the 713 
other datasets. Shading in a lighter color is added to show the standard deviation of the results; 714 
when uncertainty is small due in part to a large number of data points, shading area may not show 715 
up. 716 
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 718 
Figure 7. Pre- and post-2011 OMI NO2 TVCD trends for 4 seasons in the urban regions of 719 
Northeast, Midwest, South, and West. Black bars denote OMI-QA4ECV NO2 TVCD trends from 720 
2005 – 2011; gray bars denote the corresponding trends during 2011 – 2017. Blue bars denote 721 
OMI-NASA trends from 2005 – 2011; cyan bars denote NASA-OMI trends from 2011 – 2016. 722 
Red bars denote BEHR-OMI trends from 2005 – 2011; pink bars denote OMI-BEHR trends from 723 
2011 – 2016. 724 
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