Dr. Andreas Richter

Co-Editor

Atmospheric Chemistry and Physics

Oct. 20, 2019

Dear Dr. Richter,

Subject: Revision and resubmission of manuscript #acp-2019-472

Thanks again for your careful reviewing of our manuscript and your suggestions. We have carefully reviewed the comments and have revised the manuscript accordingly. Our responses are given in a point-by-point manner below. In addition, Jianfeng Li has moved to PNNL, and the affiliation was updated.

We tracked all the changes and updated the reference format following the ACP style. And we hope the revised version is now suitable for publication.

Please address all correspondence concerning this manuscript to Dr. Yuhang Wang (yuhang.wang@eas.gatech.edu).

Thanks again for your time.

Sincerely,

Jianfeng Li

School of Earth and Atmospheric Sciences Georgia Institute of Technology 311 Ferst Drive Atlanta, GA, 30332-0340

Response to Co-editor

Thank you for a careful and thorough reading of the manuscript and for your thoughtful comments and suggestions. Our answers follow the Co-editor's comments (in *Italics*).

Comments / Suggestions:

• In my opinion, a weakness of this work is the lack of separation between chemical and other factors resulting in non-linearities. In the manuscript, chemical non-linearities are often mentioned but they probably play only a minor role compared to the main factor, the relative contribution of anthropogenic to total NOx emissions in a given grid cell. If that's possible, it would therefore be good to add some information on which fraction of the observed non-linearity is really due to chemical non-linearities.

Reply:

Thank you for your suggestions. As we mentioned before, it is tough to accurately quantitively separate the contributions of each factor to β and γ values due to their complex interactions during the 3-D model. Here, we qualitatively estimated the chemical nonlinearity by using the chemical lifetime of NO_x. We updated Figure S7 in the revised supplement figure file, comparing the chemical lifetimes of NO_x for the standard REAM simulation ("group 1" in Section 3.1 in the main manuscript) and those for the model results from "group 2" with reduced anthropogenic NO_x emissions. Since the NO_x chemical lifetimes change little, we can state that chemical nonlinearity does not contribute significantly to the nonlinear relationships in low-anthropogenic-NO_x

In high-anthropogenic-NO_x emission regions, the impact of background sources and transport effects on β and γ values is much weaker than that in low-anthropogenic-NO_x emission regions; therefore, lifetime change should be taken into consideration for more careful analyses but not for this study due to the sharp contrast between rural and urban regions.

Although Figure S7 indeed gives the relative changes of NO_x chemical lifetimes, the relative changes of chemical lifetimes are not directly related to $\frac{\Delta\Omega}{\Omega}$ and $\frac{\Delta c}{c}$ in Equations (1) and (2) in the main manuscript. The following gives a simple example.

We assume that NO_x emission E_0 is emitted at time 0, and the chemical lifetime of NO_x is τ . The decay of E_0 against chemistry is described below.

$$\frac{dE}{dt} = -\frac{1}{\tau}E$$

$$E = E_0 e^{-\frac{1}{\tau}t}$$
(1)

For another chemical lifetime of NO_x, assuming $\tau_1 = 1.1 \times \tau$, we have

$$E_{1} = E_{0}e^{-\frac{1}{\tau_{1}}t}$$

$$\frac{E}{E_{1}} = e^{t\left(\frac{1}{\tau_{1}} - \frac{1}{\tau}\right)} = e^{t\left(\frac{\tau - \tau_{1}}{\tau_{1}\tau}\right)} = e^{\frac{-1}{11\tau}t}.$$
(2)

Therefore, the ratio of *E* to E_1 is not only related to τ but also related to *t*, both nonlinear. In our 3-D model, it will be much more complex, as τ is changing in different

hours, and other processes are involved. Equation (2) provides some qualitative information:

$$\tau > \tau_1, \quad \frac{E}{E_1} > 1$$

$$\tau < \tau_1, \quad \frac{E}{E_1} < 1$$
(3)

If we reduce E_0 by 15%, and the chemical lifetime is τ' .

$$E' = 0.85E_{0}e^{-\frac{1}{\tau}t}$$

$$\frac{E-E'}{E} = \frac{E_{0}e^{-\frac{1}{\tau}t} - 0.85E_{0}e^{-\frac{1}{\tau}t}}{E_{0}e^{-\frac{1}{\tau}t}} = 1 - 0.85e^{t\left(\frac{\tau'-\tau}{\tau\tau}\right)}$$

$$if \tau' < \tau$$

$$\frac{E-E'}{E} > 1 - 0.85 = 0.15$$

$$\frac{0.15}{\frac{E-E'}{E}} < 1$$
(4)

This is why β and γ values are < 1 at 13:00 – 14:00 when the chemical lifetimes of NO_x in bin #9 in Figure S7 decrease due to decreased anthropogenic NO_x emissions.

Now we assume $\tau' = 0.9\tau$,

$$\frac{E-E'}{E} = 1 - 0.85e^{t\left(\frac{\tau}{\tau\tau}\right)} = 1 - 0.85e^{-t\frac{1}{\tau}}.$$

$$0.15 < \frac{E-E'}{E} < 1$$
(5)

The left-hand term $\frac{E-E}{E}$ is negatively correlated to τ . With a larger τ , we will have a smaller left-hand term, and then larger β and γ values. So here, we qualitatively explained your last question: why that β and γ at 13:00 – 14:00 are smaller than those at 10:00 – 11:00 reflects strong chemical nonlinearity at noon than in the morning? The chemical lifetime of NO_x at noontime is shorter than in the morning. More NO_x is oxidized due to stronger chemistry, and less NO₂ is left as surface concentrations or NO₂ TVCDs — this is what we called chemical nonlinearity.

We corrected some errors and made some modifications in Lines 238 - 239 and 254 - 265 to make it more consistent with Figure S7. To take into consideration the accumulation of NO_x emissions (several hours of chemical lifetimes) against chemistry, we used the chemical lifetimes at 8:00 - 11:00 and at 11:00 - 14:00, which we think more accurately represent the responses of NO₂ TVCD and NO₂ surface concentrations to NO_x emissions due to chemical nonlinearity.

• Abstract, line 17: "non-linearity in the emission-TVCD relationship" should be "anthropogenic emission"

Reply:

Thanks. We corrected it. Please see Line 18 in the revised manuscript.

• Introduction, line 31: "unfavourable to climate change" – please rephrase

Reply:

Thanks. We changed "which are unfavorable to human health, ecosystem stabilities, and climate change" to ", all of which have negative environmental impacts". Please see Lines 31 - 33 in the revised manuscript.

• Introduction, line 35: now soil emissions are mentioned specifically making the statement more correct but highlighting that these numbers without an estimate for lightning NOx are incomplete. Please add an estimate for lightning.

Reply:

We added the estimated lightning NO_x emissions over the US in 2014 from the GEOS-Chem model results. Please see Lines 36 - 39 in the revised manuscript.

• Line 64: paragraph starts with chemical non-linearities, suggesting that the following discussion is about chemistry while I would argue that most of the following observations are explained by the relative contribution of anthropogenic emissions, not chemical non-linearities.

Reply:

Thank you for your suggestion. We changed "the nonlinearity in NO_x chemistry" to "their nonlinear dependences on anthropogenic NO_x emissions". Please see Lines 67 – 68 in the revised manuscript.

• Line 84: again, chemical non-linearity is mentioned explicitly but I find this misleading.

Reply:

Thanks. We added background sources and physical processes in the sentence. Please see Line 87 in the revised manuscript.

• *Line 204: "in part" – are there any other possible reasons for the non-linearity?*

Reply:

Biomass burning is another NO_x source, but its emissions are low and can be neglected over the CONUS compared to lightning and soil NO_x (EPA, 2018; Silvern et al., 2019). Also, biomass burning is mainly in rural regions, and its effects are limited over urban regions in the long term, although severe wildfires may affect urban regions in some specific conditions. Since we used "background sources" in Lines 207 – 208 and biomass burning emissions are also NO_x background sources, we deleted "in part" in Line 207 in the revised manuscript. Also, we added NO₂ hydrolysis on aerosols but deleted NO₂ wet deposition in Lines 207 – 208. REAM doesn't consider the direct wet deposition of NO₂. Therefore, we also updated the sentences in Lines 238 – 239 in the revised manuscript and Lines 68 and 174 in the revised supplement figure file.

• *Line 251: I can't really see the difference in variability between the two overpass times...*

Reply:

In Lines 254 - 257 in the revised manuscript, we mean the standard deviations of β and γ values in the same bins. We changed the sentence to make it clearer. We listed their

standard deviations in the following table, clearly showing larger standard deviations at 10:00 - 11:00 LT than 13:00 - 14:00 LT except for β values for bin #1 and bin #8. It is noteworthy that only 1 grid cell belongs to bin #9.

	ļ	3	γ			
	10:00 - 11:00	13:00 - 14:00	10:00 - 11:00	13:00 - 14:00		
bin #11	17.06	18.23	15.08	14.32		
bin #2	7.53	3.49	5.48	1.90		
bin #3	4.83	1.84	3.64	1.09		
bin #4	3.55	1.05	1.77	0.48		
bin #5	0.72	0.54	0.46	0.28		
bin #6	0.62	0.31	0.37	0.19		
bin #7	0.35	0.28	0.27	0.18		
bin #8	0.13	0.15	0.11	0.08		
bin #9	0.00	0.00	0.00	0.00		

Table 1. Uncertainties of β and γ values during different periods for each anthropogenic-NO_x-emission bin in Figure 2 in the main manuscript

¹ bin #1 denotes $E \in (0, 2^1)$, bin #2 denotes $E \in [2^1, 2^2)$, etc.

As mentioned above, it is hard to quantitively separate their contributions to β and γ values due to the interactions among transport, chemistry, aerosol uptake of NO₂, and NO₂ dry deposition. However, we can make our estimates indirectly. We have shown that the chemical lifetimes of NO_x change little, the uncertainties of the lifetime relative changes are small, and chemical nonlinearity is not a big issue in low-anthropogenic-NO_x emission regions (Figure S7). NO₂ hydrolysis on aerosols and dry deposition are proportional to NO₂ concentrations which are determined by transport and chemistry. The lifetimes of NO_x against NO₂ hydrolysis and dry deposition are almost the same for

"group 1" and "group 2" simulation results. That is to say, transport is the most critical factor in non-emission factors (excluding background sources) in low-anthropogenic-NO_x emission regions. As the uncertainties of β_{Emis} at 10:00 – 11:00 LT are close to those at 13:00 – 14:00 LT (their relative differences are < 15%), and the uncertainties of γ_{Emis} are the same for 10:00 – 11:00 and 13:00 – 14:00 LT, the differences of the standard deviations of β (γ) values at 10:00 – 11:00 from those at 13:00 – 14:00 are mainly from non-emission factors — that is transport dominated in low-anthropogenic-NO_x emission regions.

• *Line 256: ... and even if it were present, why is that indicative of chemical nonlinearity?*

Reply:

Please see the answer to the first question. Also, in Figure S7, (g) and (h) shows that the relative changes of NO_x chemical lifetime at noontime are even larger than those in the morning, again causing β and γ values at noontime smaller than in the morning.

References

Air Pollutant Emissions Trends Data: https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data, 2018.

Silvern, R. F., Jacob, D. J., Mickley, L. J., Sulprizio, M. P., Travis, K. R., Marais, E. A., Cohen, R. C., Laughner, J. L., Choi, S., Joiner, J., and Lamsal, L. N.: Using satellite observations of tropospheric NO₂ columns to infer long-term trends in US NO_x emissions: the importance of accounting for the free tropospheric NO₂ background, Atmos. Chem. Phys., 19, 8863-8878, https://doi.org/10.5194/acp-19-8863-2019, 2019.

Inferring the anthropogenic NO_x emission trend over the United States during 2003 - 2017 from satellite observations: Was there a flattening of the emission trend after the Great Recession?

- Jianfeng Li¹.a, Yuhang Wang^{1*}
 ¹ School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
 ^a Now at Pacific Northwest National Laboratory, Richland, WA, USA
 * Correspondence to Yuhang Wang (yuhang.wang@eas.gatech.edu)
- 10

12 Abstract

13 We illustrate the nonlinear relationships among anthropogenic NO_x emissions, NO₂ 14 tropospheric vertical column densities (TVCDs), and NO₂ surface concentrations using model 15 simulations for July 2011 over the contiguous United States (CONUS). The variations of NO₂ 16 surface concentrations and TVCDs are generally consistent and reflect well anthropogenic NO_x 17 emission variations for high-anthropogenic-NOx emission regions. For low-anthropogenic-NOx 18 emission regions, however, nonlinearity in the anthropogenic emission-TVCD relationship due to 19 emissions from lightning and soils, chemistry, and physical processes makes it difficult to use 20 satellite observations to infer anthropogenic NO_x emission changes. The analysis is extended to 21 2003 - 2017. Similar variations of NO₂ surface measurements and coincident satellite NO₂ 22 TVCDs over urban regions are in sharp contrast to the large variation differences between surface 23 and satellite observations over rural regions. We find a continuous decrease of anthropogenic 24 NO_x emissions after 2011 by examining surface and satellite measurements in CONUS urban 25 regions, but the decreasing rate is lower by 9% - 46% than the pre-2011 period.

27 **1. Introduction**

28 Anthropogenic emissions of nitrogen oxides ($NO_x = NO_2 + NO$) adversely affect the 29 environment, not only because of their direct detrimental impacts on human health (Greenberg et 30 al., 2016; Greenberg et al., 2017; Heinrich et al., 2013; Weinmayr et al., 2009), but also their 31 fundamental roles in the formation of ozone, acid rain, and fine particles, all of which have 32 negative environmental impacts which are unfavorable to human health, ecosystem stabilities, and climate change (Crouse et al., 2015; Kampa and Castanas, 2008; Myhre et al., 2013; Pandey 33 34 et al., 2005; Singh and Agrawal, 2007). About 48.8 Tg N yr⁻¹ of NO_x are emitted globally from 35 both anthropogenic (77%) and natural (23%) sources, such as fossil fuel combustion, biomass and 36 biofuel burning, soil bacteria, and lightning (Seinfeld and Pandis, 2016). 3.85 Tg N-and, 0.24 Tg 37 N, and 0.66 Tg N of anthropogenic-and, soil, and lightning NO_x, respectively, were emitted from the U.S. in 2014 on the basis of the 2014 National Emission Inventory (NEI2014) and the GEOS-38 39 Chem model simulations (Silvern et al., 2019); vehicle sources and fuel combustions accounted 40 for 93% of the total anthropogenic NO_x emissions (EPA, 2017).

41 The U.S. anthropogenic NO_x emissions during the 2010s declined dramatically compared to 42 the mid-2000s (EPA, 2018; Xing et al., 2013) due to stricter air quality regulations and emission 43 control technology improvements, such as the phase-in of Tier II vehicles during 2004 – 2009 and 44 the switch of power plants from coal to natural gas (De Gouw et al., 2014; McDonald et al., 45 2018). The overall reduction (about 30% - 50%) of anthropogenic NO_x emissions from the mid-46 2000s to the 2010s was corroborated by observed decreasing of vehicle NO_x emission factors, 47 NO₂ surface concentrations, nitrate wet deposition flux (Figure S1), and NO₂ tropospheric 48 vertical column densities (TVCDs) (Bishop and Stedman, 2015; Georgoulias et al., 2019; Li et 49 al., 2018; McDonald et al., 2018; Miyazaki et al., 2017; Russell et al., 2012; Tong et al., 2015). However, the detailed NO_x emission changes after the Great Recession (from December 2007 to 50

51	June 2009) are highly uncertain. On the one hand, the U.S. Environmental Protection Agency
52	(EPA) estimated that the Great Recession had a slight impact on the anthropogenic NO _x emission
53	trend, and the anthropogenic NO_x emissions decreased steadily from 2002 to 2017 (Figure S2),
54	although the emission decrease rate slowed down by about 20% after 2010 (-5.8% yr ⁻¹ for $2002 -$
55	2010, and -4.7% yr ⁻¹ for 2010 – 2017, Table 1) (EPA, 2018). Fuel-based emission estimates in
56	Los Angeles also showed a steady decrease of anthropogenic NO_x emissions after 2000 and a
57	small impact of the Great Recession on anthropogenic NO_x emission decrease trend (Hassler et
58	al., 2016). The continuous decrease of anthropogenic NO_x emissions was consistent with the
59	ongoing reduction of vehicle emissions (McDonald et al., 2018). On the other hand, Miyazaki et
60	al. (2017) and Jiang et al. (2018) found that the U.S. NO_x emissions derived from satellite NO_2
61	TVCDs, including OMI (the Ozone Monitoring Instrument), SCIAMACHY (SCanning Imaging
62	Absorption SpectroMeter for Atmospheric CHartography), and GOME-2A (Global Ozone
63	Monitoring Experiment – 2 onboard METOP-A), were almost flat from 2010 - 2015 and
64	suggested that the decrease of NO _x emissions was only significant before 2010, which was
65	completely different from the bottom-up and fuel-based emission estimates.
66	A complicating factor in inferring anthropogenic NO_x emission trends from the observations
67	of NO ₂ surface concentrations and satellite NO ₂ TVCDs is the <u>ir</u> nonlinearity <u>dependences on</u>
68	anthropogenic NO _x emissions in NO _x chemistry (Gu et al., 2013; Gu et al., 2016; Lamsal et al.,
69	2011). Although the decrease rates of both NO_2 surface concentrations and coincident OMI NO_2
70	TVCDs slowed down after the Great Recession over the United States, Tong et al. (2015), Lamsal
71	et al. (2015) and Jiang et al. (2018) found that the slowdown of the decrease rates derived from
72	NO_2 surface concentrations is 12% - 79% less than those of NO_2 TVCDs (Table 1). Secondly, the
73	slowdown of the decrease rates of NO_2 surface concentrations and OMI TVCDs over cities and
74	power plants (Russell et al., 2012; Tong et al., 2015) is significantly less than those over the
75	whole contiguous United States (CONUS) (Jiang et al., 2018; Lamsal et al., 2015). Moreover,

Zhang et al. (2018) found that filtering out lightning-affected measurements could significantly
improve the comparison of NO₂ surface concentration and OMI NO₂ TVCD trends over the
CONUS.

79	In this study, we carefully investigate the relationships among anthropogenic NO_x emissions,
80	NO2 surface concentrations, and NO2 TVCDs over the CONUS and evaluate the impact of the
81	relationships on inferring anthropogenic NO _x emission changes and trends from surface and
82	satellite observations. Section 2 describes the model and datasets used in this study, including the
83	Regional chEmistry and trAnsport Model (REAM), the EPA Air Quality System (AQS) NO_2
84	surface observations, and NO ₂ TVCD products from OMI, GOME-2A, GOME-2B (GOME2
85	onboard METOP-B), and SCIAMACHY. In Section 3, we examine the nonlinear relationships
86	among anthropogenic NO_x emissions, NO_2 surface concentrations, and NO_2 TVCDs using model
87	simulations. Accounting for the effects of background sources, physical processes, and chemical
88	nonlinearity, we then investigate the anthropogenic NO_x emission trends and changes from 2003
89	– 2017 over the CONUS. Finally, section 4 gives a summary of the study.

90 2. Model and Data Description

91 **2.1 REAM**

The REAM model has been applied and evaluated in many research applications including
ozone simulation and forecast, emission inversion and evaluations, and mechanistic studies of
chemical and physical processes (Alkuwari et al., 2013; Cheng et al., 2017; Cheng et al., 2018;
Choi et al., 2008a; Choi et al., 2008b; Gu et al., 2013; Gu et al., 2014; Koo et al., 2012; Liu et al.,
2012; Liu et al., 2014; Wang et al., 2007; Yang et al., 2011; Zhang et al., 2017; Zhang et al.,
2018; Zhang and Wang, 2016; Zhao and Wang, 2009; Zhao et al., 2009a; Zhao et al., 2010).
REAM used in this work, the model domain of which is shown in Figure 3, has 30 vertical layers

99	in the troposphere, and the horizontal resolution is 36×36 km ² . The model is driven by
100	meteorology fields from a Weather and Research Forecasting (WRF, version 3.6) model
101	simulation initialized and constrained by the NCEP coupled forecast system model version 2
102	(CFSv2) products (Saha et al., 2011). The chemistry mechanism is based on GEOS-Chem v11.01
103	with updated reaction rates and aerosol uptake of isoprene nitrates (Fisher et al., 2016). Chemistry
104	boundary conditions and initializations are from a GEOS-Chem ($2^{\circ} \times 2.5^{\circ}$) simulation. Hourly
105	anthropogenic emissions on weekdays are based on the 2011 National Emission Inventory
106	(NEI2011), while weekend anthropogenic emissions are set to be two-thirds of the weekday
107	emissions (Beirle et al., 2003; Choi et al., 2012). Biogenic VOC emissions are estimated using the
108	Model of Emissions of Gases and Aerosols from Nature (MEGAN) v2.10 (Guenther et al., 2012).
109	NO _x emissions from soils are based on the Yienger and Levy (YL) scheme (Li et al., 2019;
110	Yienger and Levy, 1995). The cloud-to-ground (CG) lightning flashes are calculated following
111	Choi et al. (2005) and Zhao et al. (2009a) with the parameterization of CG flash rate as a function
112	of convective mass fluxes and convective available potential energy (CAPE). The ratios of intra-
113	cloud (IC) lightning flashes to CG flashes are parameterized as a function of the height between
114	the freezing layer and the cloud top (Luo et al., 2017; Price and Rind, 1992). In this study, 250
115	moles of NO are emitted per CG or IC flash (Zhao et al., 2009a). As a result, on weekdays in July
116	2011, REAM has mean anthropogenic NO _x emissions of 7.4×10^{10} molecules cm ⁻² s ⁻¹ , mean soil
117	NO _x emissions of 1.2×10^{10} molecules cm ⁻² s ⁻¹ , and mean lightning NO _x emissions of 3.4×10^{10}
118	molecules $\text{cm}^{-2} \text{ s}^{-1}$ over the CONUS.

119 2.2 Satellite NO₂ TVCDs

120 In this study, we use NO_2 TVCD products from four satellite sensors in the past decade,

121 including SCIAMACHY, GOME-2A, GOME-2B, and OMI, the spectrometers onboard sun-

- 122 synchronous satellites to monitor atmospheric trace gases. The SCIAMACHY instrument
- 123 onboard the Environmental Satellite (ENVISAT) has an equator overpass time of 10:00 Local

124	time (LT) and a nadir pixel resolution of 60×30 km ² . The GOME-2 instruments on Metop-A
125	(named as GOME-2A) and Metop-B (GOME-2B) satellites cross the equator at 9:30 LT and have
126	a nadir resolution of 80×40 km ² . After July 15, 2013, the nadir resolution of GOME-2A became
127	$40 \times 40 \text{ km}^2$ with a smaller scanning swath. The OMI onboard the EOS-Aura satellite has a nadir
128	resolution of 24×13 km ² and overpasses the equator around 13:45 LT. More detailed
129	information about these instruments is summarized in Table S1. These instruments measure
130	backscattered solar radiation from the atmosphere in the ultraviolet and visible wavelength. The
131	radiation measurements in the wavelength of $402 - 465$ nm are then used to retrieve NO ₂ VCDs.
132	The retrieval process consists of three steps: 1) converting radiation observations to NO ₂ slant
133	column densities (SCDs) by using the Differential Optical Absorption Spectroscopy (DOAS)
134	spectral fitting method; 2) separating tropospheric SCDs and stratospheric SCDs from the total
135	NO ₂ SCDs; 3) dividing the NO ₂ tropospheric SCDs by the tropospheric air mass factors (AMF) to
136	compute VCDs.

137 The product archives we use in this study include GOME-2B (TM4NO2A v2.3),

138 SCIAMACHY (QA4ECV v1.1), GOME-2A (QA4ECV v1.1), OMI (QA4ECV v1.1, hereafter

139 referred to as OMI-QA4ECV), OMNO2 (SPv3, hereafter referred to as OMI-NASA), and the

140 Berkeley High-Resolution NO₂ products (v3.0B, hereafter referred to as OMI-BEHR). OMI-

141 BEHR uses the tropospheric SCDs from OMI-NASA products but updates some inputs for the

tropospheric AMF calculation (Laughner et al., 2018). These product archives have been

previously validated (Boersma et al., 2018; Drosoglou et al., 2017; Drosoglou et al., 2018;

144 Krotkov et al., 2017; Laughner et al., 2018; Wang et al., 2017; Zara et al., 2018). Generally, the

pixel-size uncertainties of these products are > 30% over polluted regions under clear-sky

- 146 conditions. We summarize the basic information about these products in Table S2. To keep the
- high quality and sampling consistency of NO₂ TVCD datasets, we chose pixel-size NO₂ TVCD
- data using the criteria listed in Table S3. After the selection, we re-gridded the pixel-size data into

149the REAM $36 \times 36 \text{ km}^2$ grid cells and calculate the seasonal means of each grid cell with150corresponding daily values on weekdays (winter: January, February, and December; spring:151March, April, and May; summer: June, July, and Autumn; autumn: September, October, and152November). We excluded weekend data in this study to minimize the impacts of weekend NOx153emission reduction, leading to different NO2 TVCDs between weekdays and weekends (Figure154S3).

155 Satellite TVCD measurements can show large variations and apparent discontinuities due in 156 part to the effects of cloud, lightning NO_x , the shift of satellite pixel coverage, and retrieval 157 uncertainties (Figure S3; e.g., (Boersma et al., 2018; Zhang et al., 2018)). However, continuous and consistent measurements are required for reliable trend analyses. In addition to the criteria of 158 159 data selection in Table S3, we compute the seasonal relative 90th percentile confidence interval, defined as $RCI = (X(95^{th} \text{ percentile}) - X(5^{th} \text{ percentile})) / mean(X)$, where X is the daily NO₂ 160 161 TVCD for a given season. To compute the seasonal trend, we require that RCI is < 50% for the 162 selected season every year in the analysis period (Table S3). About 45% of data are removed as a 163 result.

164 **2.3 Surface NO₂ measurements**

165 Hourly surface NO₂ measurements from 2003 - 2017 are from the EPA AQS monitoring 166 network (archived on https://www.epa.gov/outdoor-air-quality-data). Most AQS monitoring sites 167 use the Federal Reference Method (FRM) — gas-phase chemiluminescence to measure NO₂. Few 168 sites use the Federal Equivalent Method (FEM) – photolytic-chemiluminescence or the Cavity 169 Attenuated Phase Shift Spectroscopy (CAPS) method. FRM and FEM are indirect methods, in 170 which NO_2 is first converted to NO and then NO is measured through chemiluminescence 171 measurement of NO_2^* produced by $NO + O_3$. The difference is that FRM uses heated 172 reducers/catalysts for the conversion of NO_2 to NO and FEM uses photolysis of NO_2 to NO. The

173 conversion to NO in the FRM instruments is not specific to NO₂, and non-NO_x active nitrogen 174 compounds (NO_z) can also be reduced by the catalysts, which would cause high biases of NO_2 measurements, while the FEM method is sensitive to the photolysis conversion efficiency of NO_2 175 176 to NO (Beaver et al., 2012; Beaver et al., 2013; Lamsal et al., 2015). The CAPS method directly 177 determines NO₂ concentrations based on a NO₂-induced phase shift measured by a photodetector. 178 The CAPS instrument operates at a wavelength of about 450 nm and may overestimate NO₂ 179 concentrations due to absorption of other molecules at the same wavelength (Beaver et al., 2012; 180 Beaver et al., 2013; Kebabian et al., 2005).

181 Due to the different characteristics of the above three methods and demonstrated biases 182 between the FRM and the FEM by Lamsal et al. (2015), we firstly investigate the measurement 183 discrepancies among the above three methods. There are three sites having FRM and FEM 184 measurements simultaneously during some periods from 2013 - 2014, two sites having both FRM 185 and CAPS data during some periods from 2015 - 2016, and one site using all three measurement 186 methods during some periods in 2015. Figure S4 shows the hourly averaged ratios of FEM and 187 CAPS to FRM data, respectively, for 4 seasons during 2013 – 2016. The CAPS/FRM ratios are in 188 the range of 0.94 - 1.06 and the FEM/FRM ratios of 0.86 - 1.11. Furthermore, Zhang et al. 189 (2018) discussed that the relative trends are not affected by scaling the observation data. As in the 190 work by Zhang et al. (2018), we analyze the relative trends in the surface NO_2 data. We, 191 therefore, did not scale the FRM data. At sites with FEM or CAPS measurements, we use these 192 measurements in place of FRM data. If both FEM and CAPS data are available, we use the 193 averages of the two datasets. 194 Since NO_2 surface concentrations have significant diurnal variations (Figure S5), we choose

the data at 9:00-10:00 LT for comparison with GOME-2A/2B data, 10:00-11:00 LT for

196 comparison with SCIAMACHY data, and 13:00-14:00 LT for OMI data. The seasonal RCI <

197 50% requirement is also used here to be consistent with the analysis of satellite TVCD data, and

thus about 1.5% of the data are removed. We also require that the measurement site must have

valid measurements in the aforementioned 3 hours for at least one season from 2003 - 2017. The

200 locations of the 179 selected sites using the site selection criteria are shown in Figure 1. The

201 region definitions follow the U.S. Census Bureau (https://www2.census.gov/geo/pdfs/maps-

202 data/maps/reference/us_regdiv.pdf).

203 **3. Results and Discussions**

3.1 Nonlinear relationships among anthropogenic NO_x emissions, NO₂ surface concentrations, and NO₂ TVCDs

206 NO2 surface concentrations and NO2 TVCD are not linearly correlated with NOx emissions due in part to chemical nonlinearity, <u>NO₂ hydrolysis on aerosols (NO₂ $\xrightarrow{aerosol, H_2O} 0.5HNO_3 +$ </u> 207 0.5HNO₂), wet and dry depositions, transport effects, and background sources (Gu et al., 2013; 208 Lamsal et al., 2011). Therefore, it is necessary to first investigate the nonlinearities among NO_x 209 210 emissions, NO₂ surface concentrations, and TVCDs over the CONUS before we compare the 211 trends between NO₂ surface concentrations and TVCDs. The nonlinearity between NO_x emission 212 and NO₂ TVCD is analyzed by examining the local sensitivity of NO₂ TVCD to NO_x emissions 213 (Gu et al., 2013; Lamsal et al., 2011; Tong et al., 2015), which is defined as β in Equation (1). We further define γ as the sensitivity of NO₂ surface concentration to NO_x emission: 214

215
$$\frac{\Delta E}{E} = \beta \frac{\Delta \Omega}{\Omega}$$
(1)

216
$$\frac{\Delta E}{E} = \gamma \frac{\Delta c}{c}$$
(2)

217 where *E* denotes NO_x emission and ΔE denotes the change of NO_x emission; Ω denotes NO₂ 218 TVCD, *c* denotes surface NO₂ concentration, and $\Delta \Omega$ and Δc denote the corresponding changes. 219 We computed β and γ values for July 2011 over the CONUS using REAM. To compute 220 local β and γ values, we added another independent group of chemistry species ("group 2") in 221 REAM in order to compute the standard and sensitivity simulations concurrently. The original 222 chemical species in the model ("group 1") were used in the standard simulation. For group 2 223 chemical species, anthropogenic NO_x emissions were reduced by 15%. In the model simulation, 224 we first computed the advection of group 1 tracers. The horizontal tracer fluxes were therefore 225 available. All influxes into a grid cell for group 2 tracer simulation were from group 1 tracer 226 simulation; only outfluxes were computed using group 2 tracers. The outflux was one way in that 227 nitrogen species were transported out but the transport did not affect adjacent grid cells because 228 the influxes were from group 1 tracer simulation. Using this procedure, the effects of 229 anthropogenic NO_x emission reduction were localized. The β and γ values were computed by the 230 ratio of TVCD and surface concentration changes to 15% change of anthropogenic NO_x 231 emissions, respectively.

232 Figure 2 shows the distributions of our β and γ ratios as a function of anthropogenic NO_x 233 emissions for July 2011 over the CONUS. Results essentially the same as Figure 2 were obtained 234 when a perturbation of 10% was used for anthropogenic NO_x emissions. Figure S6 shows the 235 distributions of NO₂ TVCD fraction in the boundary layer at 13:00 - 14:00 LT and 10:00 - 11:00236 LT, and the fraction of soil NO_x emissions in all surface sources (soil + anthropogenic) on 237 weekdays for July 2011, respectively. In Figure S7, we analyzed the contributions of background 238 sources, chemical nonlinearity, and othernon-emission factors (transport, NO₂ hydrolysis on 239 aerosolschemistry, and wet and dry depositions) to the nonlinear relationships (β and γ) among 240 anthropogenic NO_x emissions, NO₂ surface concentrations, and NO₂ TVCDs. While the model 241 simulation is for one summer month, several key points on the surface and column concentration 242 sensitivities to anthropogenic NO_x emissions have implications for comparing the trends of AQS 243 and satellite TVCD data. (1) Both β and γ values are negatively correlated with anthropogenic

244	NO_x emissions due to chemical nonlinearity, transport, and background NO_x contributions
245	(Figures 2, S6, and S7) (Gu et al., 2016; Lamsal et al., 2011). It is consistent with the distribution
246	of β as a function of NO _x emissions in China (Gu et al., 2013), although the β ratios for the US
247	are generally larger than for China due primarily to different emission distributions of NO_x and
248	VOCs and regional circulation patterns (Zhao et al., 2009b). (2) The uncertainties of β and γ
249	values increase significantly as anthropogenic NO _x emissions decrease, which means regions with
250	low anthropogenic NO_x emissions are more sensitive to environmental conditions, such as NO_x
251	transport from nearby regions which may even produce negative β and γ values (Figures 2 and
252	S7). (3) The value of γ is generally less than β , especially for low-anthropogenic-NO _x emission
253	regions, which reflects the significant contribution of free tropospheric NO_2 to NO_2 TVCD but
254	not to NO ₂ surface concentrations (Figures 2, S6, and S7). (4) Generally, tThe variations standard
255	<u>deviations</u> of β and γ values in anthropogenic NO _* emission bins tend to be larger at 10:00 –
256	11:00 than at 13:00 – 14:00 LT, reflecting a stronger transport effect due to weaker chemical
257	losses at 10:00 <u>11:00</u> in the morning (Figures 2 and S7). (5) Both β and γ values are
258	significantly less than 1 at 13:00 – 14:00 LT ($\beta = 0.754$ and $\gamma = 0.84$) when anthropogenic NO _x
259	emissions are > 4 × 10 ¹² molecules cm ⁻² s ⁻¹ , but they are close to 1 at 10:00 – 11:00 LT ($\beta = 0.9\overline{26}$
260	and $\gamma = 1.032$), which reflect stronger chemistry nonlinearity at $13:00 - 14:00$ noontime than in
261	the morning (Figures 2 and S7). (6) Both background sources and non-emission factors contribute
262	much more to β and γ values in low-anthropogenic-NO_x emission regions than in high-
263	anthropogenic-NO _x emission regions (Figure S7). (7) Chemical nonlinearity contributes much
264	less to β and γ values than background sources and transport effects in low-anthropogenic-NO _x
265	emission regions (Figure S7). (87) Generally, non-emission factors (mainly transport) contribute
266	more to β and γ values than background sources in low-anthropogenic-NOx emission regions
267	(Figures S7c and S7d) except for the first bin where background sources contribute more to β and
268	γ values than non-emission factors at 10:00 – 11:00, which is partly caused by some grid cells

with extremely low anthropogenic NO_x emissions, increasing the mean contributions of
background sources in the first bin.

271 The largely varying β and γ values for anthropogenic NO_x emissions < 10¹¹ molecules cm⁻² 272 s^{-1} imply that the trends derived from satellite TVCD data do not directly represent anthropogenic 273 NO_x emissions and that the variations of TVCD data may not be comparable to the corresponding 274 surface NO₂ concentrations. We define a region "urban" if anthropogenic NO_x emissions from NEI2011 are $> 10^{11}$ molecules cm⁻² s⁻¹. All the other regions are defined as "rural". Figure 3 275 276 shows the distributions of anthropogenic NO_x emissions and urban and rural regions defined in 277 this study. Such defined urban regions account for 69.8% of the total anthropogenic NO_x 278 emissions over the CONUS, the trend of which is, therefore, representative of anthropogenic 279 emission changes. A caveat is that some "urban" regions would become "rural" if anthropogenic 280 NO_x emissions decreased after 2011 as the EPA anthropogenic NO_x emission trend suggested (Figure S2). In a sensitivity study, we define an urban region using a stricter criterion of 281 anthropogenic NO_x emissions > 2×10^{11} molecules cm⁻² s⁻¹ and the analysis results are similar to 282 283 those shown in the next section.

3.2 Trend comparisons between NO₂ AQS surface concentrations and coincident satellite NO₂ tropospheric VCD over urban and rural regions

By using anthropogenic NO_x emissions of 10^{11} molecules cm⁻² s⁻¹ as the threshold value, 157 AQS sites are urban, and the rest 22 sites are rural. Their properties are summarized in Table 2. Figure 4 shows the relative annual variations of AQS NO₂ surface measurements at 13:00 – 14:00 and coincident OMI-QA4ECV NO₂ TVCD data from 2005 – 2017 in each season for urban and rural regions. The contrast between the two regions is apparent in all seasons. For comparison purposes, we scale the time series of TVCD and AQS surface NO₂ to their corresponding 2005 values, and the resulting data are therefore unitless. Over urban regions, NO₂ surface

concentrations are highly correlated with NO₂ TVCDs (TVCD = $1.03 \times AQS + 0.11$, R² = 0.98), reflecting the comparable and stable β and γ values (Figure 2). However, over rural regions, the scaled TVCD data significantly deviate from AQS NO₂ data (TVCD = $1.15 \times AQS + 0.09$, R² = 0.87). It is noteworthy that the discrepancies between urban and rural data are smaller in winter than in spring, summer, and autumn due to a more dominant role of transport than chemistry and lower natural NO_x emissions in winter.

300 NASA, OMI-BEHR, SCIAMACHY, GOME-2A, and GOME-2B TVCD measurements. The

301 results of OMI-NASA and OMI-BEHR are similar to those of OMI-QA4ECV (Figure 4).

302 SCIAMACHY and GOME-2B TVCD observations at 9:00-11:00 LT also show large contrast

between urban (SCIAMACHY: TVCD = $0.92 \times AQS - 0.005$, R² = 0.94; GOME-2B: TVCD =

304 $0.54 \times AQS + 0.56$, $R^2 = 0.96$) and rural regions (SCIAMACHY: TVCD = $0.77 \times AQS + 0.83$, R^2

= 0.63; GOME-2B: TVCD = $0.46 \times AQS + 0.73$, $R^2 = 0.59$). The correlation of coincident

306 GOME-2A NO₂ TVCD data with AQS surface concentrations is poor for rural (TVCD = $0.65 \times$

307 AQS + 0.56, $R^2 = 0.44$) and urban (TVCD = $0.31 \times AQS + 0.56$, $R^2 = 0.21$) regions (Figure S8),

308 which likely reflects the degradation of the GOME-2A instrument causing significant increase of

309 NO₂ SCD uncertainties (Boersma et al., 2018). Therefore, we excluded GOME-2A in the analysis

310 hereafter.

311 We further investigate OMI-QA4ECV NO₂ TVCD relative annual variations from 2005 -

312 2017 over the regions with different anthropogenic NO_x emissions in Figure 5. We find clear

flattening of NO₂ TVCD variations as anthropogenic NO_x emissions decrease, which is consistent

314 with the above analysis. Similar to Figure 4, the spread of TVCD variation is much less in winter

than the other seasons. The differences between Figures 5 and 4 are due to a much larger dataset

- 316 used in the former than the latter. Only coincident AQS and OMI-QA4ECV data are used in
- Figure 4, but all OMI-KMNI data are used in Figure 5.

3.3 Trend analysis of AQS NO2 surface concentrations, satellite TVCDs, and

319 updated EPA NOx emissions

320	We first updated the CEMS measurement data used in the EPA NO_x emission trend datasets
321	with the newest datasets obtained from <u>https://ampd.epa.gov/ampd/</u> . As shown in Figure S2, the
322	updated CEMS data lead to a reduction of anthropogenic NO _x emissions during the Great
323	Recession $(2008 - 2009)$ and a recovery period in $2010 - 2011$. The sharp drop during the Great
324	Recession and the flattening trend right after the Great Recession are captured by OMI NO_2 and
325	SCIAMACHY TVCD products (Figures 4, 6, and S9) and AQS NO ₂ surface measurements
326	(Figures 4, 6, and S5) and are also noted by Russell et al. (2012) and Tong et al. (2015) (Table 1).
327	In Figure 6, we show the comparisons among the relative variations of the updated EPA
328	anthropogenic NO _x emissions, AQS NO ₂ surface measurements at 10:00-11:00 and 13:00-14:00,
329	and coincident satellite NO ₂ TVCDs for urban regions in 4 seasons from 2003 to 2017. Also
330	shown are the comparisons among the updated EPA anthropogenic NO _x emissions and satellite
331	NO ₂ TVCDs. There are many more data points for the latter comparison because the data
332	selection is no longer limited to those coincident with the AQS surface data, and therefore, the
333	uncertainty spread is much lower. The comparisons, in general, show consistent results that the
334	updated EPA anthropogenic NOx emissions, AQS surface measurements, and satellite TVCD
335	data are in agreement. The agreement of decreasing trends among the datasets is just as good for
336	the post-2011 period as the pre-2011 period. This result differs from Miyazaki et al. (2017) and
337	Jiang et al. (2018), who suggested no significant decreasing trend for OMI TVCD data and
338	inversed NO_x emissions after 2010. The disagreement can be explained by the results of Figure 5.
339	Including the low anthropogenic NO_x emission regions leads to underestimates of NO_x decreases.
340	Since the area of low anthropogenic NO_x emission regions is larger than high anthropogenic NO_x
341	emission regions (Table 2), the arithmetic averaging will lead to a large weighting of rural
342	observations, which do not reflect anthropogenic NO _x emission changes. Miyazaki et al. (2017)

343 and Jiang et al. (2018) included all regions in their analyses, but we exclude rural regions. Figure 344 S9 shows the seasonal variations if the TVCDs over rural regions are included; the result shows a 345 much lower decreasing rate of TVCDs over the CONUS. The much slower satellite TVCD trends 346 for regions with low NO_x emissions was previously discussed by Zhang et al. (2018). In addition, 347 Miyazaki et al. (2017) and Jiang et al. (2018) conducted NO_x emission inversions by using the 348 Model for Interdisciplinary Research on Climate (MIROC)-Chem with a coarse resolution of 2.8° 349 $\times 2.8^{\circ}$, which was insufficient to separate urban and rural regions and might distort predicted NO₂ 350 TVCDs and inversed NO_x emissions due to nonlinear effects (Valin et al., 2011; Yu et al., 2016), 351 which is another possible reason for their find of flattening NO_x emission trends after 2010.

352 We summarize the decreasing rates of NO₂ after the Great Recession in Table 3. To 353 minimize the effect of the sharp decrease and the subsequent recovery, we chose to analyze the 354 post-2011 period. Table 3 summarizes the results for each season, while Table 1 gives the 355 averaged annual decreasing trends. Generally, Tables 1 and 3 confirm the continuous decreases of 356 AQS surface observations, satellite NO_2 TVCD, and updated EPA anthropogenic NO_x emissions 357 after 2011 as in Figure 6, but the decreasing rates are lower than the pre-2011 period. Over the 358 AQS urban sites, the slowdown magnitudes are 9% for AQS surface observations and 20% - 40% 359 for satellite NO₂ TVCD measurements, which may reflect in part smaller γ than β values (Table 360 2). Our estimated slowdown magnitudes are significantly lower than Lamsal et al. (2015) and 361 Jiang et al. (2018) (Table 1), which might be caused by their different data processing methods, 362 such as including AQS sites with incomplete measurement records (Silvern et al., 2019).

slowdown of 22% compared to 29% - 46% for three OMI NO_2 TVCD products. The difference is

partially due to the β ratio of 2.5 ± 1.0 at 13:00 – 14:00 over the CONUS urban regions (Table 2).

- 366 Satellite NO₂ TVCD measurement uncertainties also contribute to the difference. From 2013 –
- 367 2017, GOME-2B NO₂ TVCDs decrease more than OMI products, especially in spring, autumn

and winter (Tables 1 and 3). Finally, trend analyses in different regions (Figure 7 and Table S4)
indicate that generally, the Midwest has the least slowdown of the decreasing rate for urban OMI
NO₂ TVCD (-14% on average) after 2011 compared to the Northeast (-30%), South (-34%), and
West (-28%).

372 The results presented in this study are qualitatively in agreement with the work by Silvern et 373 al. (2019). The two studies were independent. Therefore, the foci of the studies are different 374 despite reaching similar conclusions. While we focused on understanding the detailed data 375 analysis of Jiang et al. (2018) and limited the use of model simulation results so that our results 376 can be compared to the previous study directly, Silvern et al. (2019) relied more on multi-year 377 model simulations. As a result, Silvern et al. (2019) can clearly identify the contributions of the NO₂ columns by natural emissions and make use of additional observations such as nitrate 378 379 deposition fluxes. They also identified model biases in simulating the trends of NO_2 TVCDs by missing natural emissions in the free troposphere. Our study, on the other hand, explored the data 380 381 analysis procedure through which the trend of anthropogenic emissions can be derived from 382 satellite observations and its limitations.

383 **4. Conclusions**

384 Using model simulations for July 2017, we demonstrate the nonlinear relationship of NO₂

surface concentration and TVCD with anthropogenic NO_x emissions. Over low anthropogenic

386 NO_x emission regions, the ratios of anthropogenic NO_x emission changes to the changes of

surface concentrations (γ) and TVCDs (β) have very large variations and $\beta > \gamma \gg 1$.

388 Therefore, for the same emission changes, surface concentration and TVCD changes are much

smaller and variable than urban regions, making it difficult to use the observations to directly

- 390 infer anthropogenic NO_x emission trends. We find that defining urban regions where
- anthropogenic NO_x emissions are > 10^{11} molecules cm⁻² s⁻¹ and using surface and TVCD

392 observations over these regions can infer the trends that can be compared with the EPA emission393 trend estimates.

394	We evaluate the anthropogenic NO_x emission variations from $2003 - 2017$ over the CONUS
395	by using satellite NO2 TVCD products from GOME-2B, SCIAMACHY, OMI-QA4ECV, OMI-
396	NASA, and OMI-BEHR, over the urban regions of CONUS. We find broad agreements among
397	the decreases of AQS NO_2 surface observations, satellite NO_2 TVCD products, and the EPA
398	anthropogenic NO _x emissions with the CEMS dataset updated. After 2011, they all show a
399	slowdown of the decreasing rates. Over the AQS urban sites, NO ₂ surface concentrations have a
400	slowdown of 9% and OMI products show a slowdown of 20% - 40%. Over the CONUS urban
401	regions, OMI TVCD products indicate a slowdown of 29% - 46%, and the updated EPA
402	anthropogenic NO _x emissions have a slowdown of 22%. The different slowdown magnitudes
403	between OMI TVCD products and the other two datasets may be caused by the nonlinear
404	response of TVCD to anthropogenic emissions and the uncertainties of satellite measurements
405	(e.g., GOME-2B TVCD data show a larger decreasing trend than OMI products from 2013 –
406	2017).

407 We did not find observation evidence supporting the notion that anthropogenic NO_x 408 emissions have not been decreasing after the Great Recession. In future studies, we recommend 409 that the nonlinear relationships of NO_x emissions with NO_2 TVCD and surface concentration be 410 carefully evaluated when applying satellite and surface measurements to infer the changes of 411 anthropogenic NO_x emissions.

412 Data availability

- 413 The EPA AQS hourly surface NO₂ measurements are downloaded from
- 414 https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw. QA4ECV 1.1 NO₂ VCD products

- 415 (OMI-QA4ECV, GOME-2A, and SCIAMACHY) are from http://temis.nl/qa4ecv/no2col/data/.
- 416 GOME-2B NO₂ VCD products are from
- 417 http://www.temis.nl/airpollution/no2col/no2colgome2b.php. OMI-BEHR and OMI-NASA
- 418 archives are from http://behr.cchem.berkeley.edu/DownloadBEHRData.aspx. REAM simulation
- 419 results for this study are available upon request.

420 Author contribution

- 421 JL and YW designed the study. JL conducted model simulations and data analyses with
- 422 discussions with YW. JL and YW wrote the manuscript.

423 **Competing interests**

424 The authors declare that they have no conflict of interest.

425 Acknowledgments

- 426 This work was supported by the NASA ACMAP Program. We thank Ruixiong Zhang for
- 427 discussions with J. Li. Thank Benjamin Wells, Alison Eyth, Lee Tooly from EPA, the EPA
- 428 MOVES team, Betty Carter from COORDINATING RESEARCH COUNCIL, INC., Brain
- 429 McDonald from NOAA, and Zhe Jiang from University of Science and Technology of China for
- 430 helping us an understanding of the NEI MOVES mobile source emissions.

431 **References**

- 432 Alkuwari, F. A., Guillas, S., and Wang, Y.: Statistical downscaling of an air quality model using
- 433 Fitted Empirical Orthogonal Functions, Atmos. Environ., 81, 1-10,
- 434 https://doi.org/10.1016/j.atmosenv.2013.08.031, 2013.
- Beaver, M., Long, R., and Kronmiller, K.: Characterization and Development of Measurement
- Methods for Ambient Nitrogen Dioxide (NO₂), National Air Quality Conference Ambient Air
 Monitoring 2012, Denver, CO, US, 2012.

- 438 Beaver, M., Kronmiller, K., Duvall, R., Kaushik, S., Morphy, T., King, P., and Long, R.: Direct
- and Indirect Methods for the Measurement of Ambient Nitrogen Dioxide, AWMA Measurement
 Technologies meeting, Sacramento, CA, US, 2013.
- reenhologies meeting, sacramento, err, ob, 2013.
- Beirle, S., Platt, U., Wenig, M., and Wagner, T.: Weekly cycle of NO₂ by GOME measurements:
- 442 A signature of anthropogenic sources, Atmos. Chem. Phys., 3, 2225-2232,
- 443 https://doi.org/10.5194/acp-3-2225-2003, 2003.
- Bishop, G. A., and Stedman, D. H.: Reactive nitrogen species emission trends in three light-
- 445 /medium-duty United States fleets, Environ. Sci. Technol., 49, 11234-11240,
- 446 https://doi.org/10.1021/acs.est.5b02392, 2015.
- 447 Boersma, K. F., Eskes, H. J., Richter, A., De Smedt, I., Lorente, A., Beirle, S., van Geffen, J. H.,
- 448 Zara, M., Peters, E., and Roozendael, M. V.: Improving algorithms and uncertainty estimates for
- satellite NO₂ retrievals: results from the quality assurance for the essential climate variables
- 450 (QA4ECV) project, Atmos. Meas. Tech., 11, 6651-6678, https://doi.org/10.5194/amt-11-6651451 2018, 2018.
- 452 Chang V Wang V Zhang V Chan C Crowford L U Klah M M Diskin
- Cheng, Y., Wang, Y., Zhang, Y., Chen, G., Crawford, J. H., Kleb, M. M., Diskin, G. S., and
 Weinheimer, A. J.: Large biogenic contribution to boundary layer O₃-CO regression slope in
- 454 summer, Geophys. Res. Lett., 44, 7061-7068, https://doi.org/10.1002/2017GL074405, 2017.
- 455 Cheng, Y., Wang, Y., Zhang, Y., Crawford, J. H., Diskin, G. S., Weinheimer, A. J., and Fried, A.:
- 456 Estimator of surface ozone using formaldehyde and carbon monoxide concentrations over the
- 457 eastern United States in summer, J. Geophys. Res.-Atmos., 123, 7642-7655,
- 458 https://doi.org/10.1029/2018JD028452, 2018.
- 459 Choi, Y., Wang, Y., Zeng, T., Martin, R. V., Kurosu, T. P., and Chance, K.: Evidence of lightning
- 460 NO_x and convective transport of pollutants in satellite observations over North America,
- 461 Geophys. Res. Lett., 32, https://doi.org/10.1029/2004GL021436, 2005.
- 462 Choi, Y., Wang, Y., Yang, Q., Cunnold, D., Zeng, T., Shim, C., Luo, M., Eldering, A., Bucsela,
- 463 E., and Gleason, J.: Spring to summer northward migration of high O₃ over the western North
 464 Atlantic, Geophys. Res. Lett., 35, https://doi.org/10.1029/2007GL032276, 2008a.
- Choi, Y., Wang, Y., Zeng, T., Cunnold, D., Yang, E. S., Martin, R., Chance, K., Thouret, V., and
 Edgerton, E.: Springtime transitions of NO₂, CO, and O₃ over North America: Model evaluation
 and analysis, J. Geophys. Res.-Atmos., 113, https://doi.org/10.1029/2007JD009632, 2008b.
- 468 Choi, Y., Kim, H., Tong, D., and Lee, P.: Summertime weekly cycles of observed and modeled
- VO_x and O_3 concentrations as a function of satellite-derived ozone production sensitivity and land
- 470 use types over the Continental United States, Atmos. Chem. Phys., 12, 6291-6307,
- 471 https://doi.org/10.5194/acp-12-6291-2012, 2012.
- 472 Crouse, D. L., Peters, P. A., Hystad, P., Brook, J. R., van Donkelaar, A., Martin, R. V.,
- 473 Villeneuve, P. J., Jerrett, M., Goldberg, M. S., and Pope III, C. A.: Ambient PM_{2.5}, O₃, and NO₂
- 474 exposures and associations with mortality over 16 years of follow-up in the Canadian Census
- 475 Health and Environment Cohort (CanCHEC), Environ. Health Perspect., 123, 1180,
- 476 https://doi.org/10.1289/ehp.1409276, 2015.

- 477 De Gouw, J. A., Parrish, D. D., Frost, G. J., and Trainer, M.: Reduced emissions of CO2, NO_x,
- and SO₂ from US power plants owing to switch from coal to natural gas with combined cycle
- technology, Earth's Future, 2, 75-82, https://doi.org/10.1002/2013EF000196, 2014.
- 480 Drosoglou, T., Bais, A. F., Zyrichidou, I., Kouremeti, N., Poupkou, A., Liora, N., Giannaros, C.,
- 481 Koukouli, M. E., Balis, D., and Melas, D.: Comparisons of ground-based tropospheric NO₂
- 482 MAX-DOAS measurements to satellite observations with the aid of an air quality model over the
- Thessaloniki area, Greece, Atmos. Chem. Phys., 17, 5829-5849, https://doi.org/10.5194/acp-17-
- 484 5829-2017, 2017.
- 485 Drosoglou, T., Koukouli, M. E., Kouremeti, N., Bais, A. F., Zyrichidou, I., Balis, D., Xu, J., and
- Li, A.: MAX-DOAS NO₂ observations over Guangzhou, China; ground-based and satellite
 comparisons, Atmos. Meas. Tech., 11, 2239-2255, https://doi.org/10.5194/amt-11-2239-2018,
 2018.
- 489 EPA: PROFILE OF VERSION 1 OF THE 2014 NATIONAL EMISSIONS INVENTORY, U.S.
 490 Environmental Protection Agency, 2017.
- Air Pollutant Emissions Trends Data: https://www.epa.gov/air-emissions-inventories/air pollutant-emissions-trends-data, 2018.
- 493 Fisher, J. A., Jacob, D. J., Travis, K. R., Kim, P. S., Marais, E. A., Chan Miller, C., Yu, K., Zhu,
- 494 L., Yantosca, R. M., and Sulprizio, M. P.: Organic nitrate chemistry and its implications for
- 495 nitrogen budgets in an isoprene-and monoterpene-rich atmosphere: constraints from aircraft
- 496 (SEAC⁴RS) and ground-based (SOAS) observations in the Southeast US, Atmos. Chem. Phys.,
- 497 16, 5969-5991, https://doi.org/10.5194/acp-16-5969-2016, 2016.
- 498 Georgoulias, A. K., van der A, R. J., Stammes, P., Boersma, K. F., and Eskes, H. J.: Trends and
- trend reversal detection in 2 decades of tropospheric NO₂ satellite observations, Atmos. Chem.
- 500 Phys., 19, 6269-6294, https://doi.org/10.5194/acp-19-6269-2019, 2019.
- 501 Greenberg, N., Carel, R. S., Derazne, E., Bibi, H., Shpriz, M., Tzur, D., and Portnov, B. A.:
- 502 Different effects of long-term exposures to SO_2 and NO_2 air pollutants on asthma severity in
- 503 young adults, J. Toxicol. Environ. Health, A, 79, 342-351,
- 504 https://doi.org/10.1080/15287394.2016.1153548, 2016.
- 505 Greenberg, N., Carel, R. S., Derazne, E., Tiktinsky, A., Tzur, D., and Portnov, B. A.: Modeling
- 506 long-term effects attributed to nitrogen dioxide (NO₂) and sulfur dioxide (SO₂) exposure on
- asthma morbidity in a nationwide cohort in Israel, J. Toxicol. Environ. Health, A, 80, 326-337,
 https://doi.org/10.1080/15287394.2017.1313800, 2017.
- 509 Gu, D., Wang, Y., Smeltzer, C., and Liu, Z.: Reduction in NO_x emission trends over China:
- 510 Regional and seasonal variations, Environ. Sci. Technol., 47, 12912-12919,
- 511 https://doi.org/10.1021/es401727e, 2013.
- 512 Gu, D., Wang, Y., Smeltzer, C., and Boersma, K. F.: Anthropogenic emissions of NO_x over
- 513 China: Reconciling the difference of inverse modeling results using GOME-2 and OMI
- measurements, J. Geophys. Res.-Atmos., 119, 7732-7740,
- 515 https://doi.org/10.1002/2014JD021644, 2014.

- 516 Gu, D., Wang, Y., Yin, R., Zhang, Y., and Smeltzer, C.: Inverse modelling of NO_x emissions over
- 517 eastern China: uncertainties due to chemical non-linearity, Atmos. Meas. Tech., 9, 5193-5201, 518 https://doi.org/10.5104/cmt.0.5102.2016
- 518 https://doi.org/10.5194/amt-9-5193-2016, 2016.
- 519 Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and
- 520 Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1
- 521 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci.
- 522 Model Dev., 5, 1471-1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
- 523 Hassler, B., McDonald, B. C., Frost, G. J., Borbon, A., Carslaw, D. C., Civerolo, K., Granier, C.,
- 524 Monks, P. S., Monks, S., and Parrish, D. D.: Analysis of long-term observations of NO_x and CO
- 525 in megacities and application to constraining emissions inventories, Geophys. Res. Lett., 43, 9920 9930 https://doi.org/10.1002/2016GL.060804_2016
- 526 9920-9930, https://doi.org/10.1002/2016GL069894, 2016.
- 527 Heinrich, J., Thiering, E., Rzehak, P., Krämer, U., Hochadel, M., Rauchfuss, K. M., Gehring, U.,
- and Wichmann, H.-E.: Long-term exposure to NO_2 and PM_{10} and all-cause and cause-specific
- 529 mortality in a prospective cohort of women, Occup. Environ. Med., 70, 179-186,
- 530 https://doi.org/10.1136/oemed-2012-100876, 2013.
- Jiang, Z., McDonald, B. C., Worden, H., Worden, J. R., Miyazaki, K., Qu, Z., Henze, D. K.,
- Jones, D. B. A., Arellano, A. F., and Fischer, E. V.: Unexpected slowdown of US pollutant
- emission reduction in the past decade, Proc. Natl. Acad. Sci. U.S.A., 201801191,
- 534 https://doi.org/10.1073/pnas.1801191115, 2018.
- Kampa, M., and Castanas, E.: Human health effects of air pollution, Environ. Pollut., 151, 362367, https://doi.org/10.1016/j.envpol.2007.06.012, 2008.
- 537 Kebabian, P. L., Herndon, S. C., and Freedman, A.: Detection of nitrogen dioxide by cavity
- ttenuated phase shift spectroscopy, Anal. Chem., 77, 724-728,
- 539 https://doi.org/10.1021/ac048715y, 2005.
- Koo, J.-H., Wang, Y., Kurosu, T. P., Chance, K., Rozanov, A., Richter, A., Oltmans, S. J.,
 Thompson, A. M., Hair, J. W., and Fenn, M. A.: Characteristics of tropospheric ozone depletion
 events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements
 and satellite BrO observations, Atmos. Chem. Phys., 12, 9909-9922, https://doi.org/10.5194/acp12-9909-2012, 2012.
- 545 Krotkov, N. A., Lamsal, L. N., Celarier, E. A., Swartz, W. H., Marchenko, S. V., Bucsela, E. J.,
- Chan, K. L., Wenig, M., and Zara, M.: The version 3 OMI NO₂ standard product, Atmos. Meas.
 Tech., 10, 3133-3149, https://doi.org/10.5194/amt-10-3133-2017, 2017.
- 10.5194/amt-10-5155-2017, 2017.
- Lamsal, L. N., Martin, R. V., Padmanabhan, A., Van Donkelaar, A., Zhang, Q., Sioris, C. E.,
- 549 Chance, K., Kurosu, T. P., and Newchurch, M. J.: Application of satellite observations for timely 550 updates to global anthropogenic NO_x emission inventories, Geophys. Res. Lett., 38,
- 551 https://doi.org/10.1029/2010GL046476, 2011.
- Lamsal, L. N., Duncan, B. N., Yoshida, Y., Krotkov, N. A., Pickering, K. E., Streets, D. G., and
- Lu, Z.: US NO₂ trends (2005–2013): EPA Air Quality System (AQS) data versus improved
- observations from the Ozone Monitoring Instrument (OMI), Atmos. Environ., 110, 130-143,
- 555 https://doi.org/10.1016/j.atmosenv.2015.03.055, 2015.

- Laughner, J. L., Zhu, Q., and Cohen, R. C.: The Berkeley High Resolution Tropospheric NO₂
- product, Earth System Science Data, 10, 2069-2095, https://doi.org/10.5194/essd-10-2069-2018,
 2018.

Li, J., Mao, J., Fiore, A. M., Cohen, R. C., Crounse, J. D., Teng, A. P., Wennberg, P. O., Lee, B.
H., Lopez-Hilfiker, F. D., and Thornton, J. A.: Decadal changes in summertime reactive oxidized
nitrogen and surface ozone over the Southeast United States, Atmos. Chem. Phys., 18, 23412361, https://doi.org/10.5194/acp-18-2341-2018, 2018.

- 563 Li, J., Wang, Y., and Qu, H.: Dependence of summertime surface ozone on NO_x and VOC
- emissions over the United States: Peak time and value, Geophys. Res. Lett., 46, 3540-3550,
 https://doi.org/10.1029/2018GL081823, 2019.
- Liu, Z., Wang, Y., Vrekoussis, M., Richter, A., Wittrock, F., Burrows, J. P., Shao, M., Chang, C.

- Liu, Z., Wang, Y., Costabile, F., Amoroso, A., Zhao, C., Huey, L. G., Stickel, R., Liao, J., and
- 570 Zhu, T.: Evidence of aerosols as a media for rapid daytime HONO production over China,
- 571 Environ. Sci. Technol., 48, 14386-14391, https://doi.org/10.1021/es504163z, 2014.
- 572 Luo, C., Wang, Y., and Koshak, W. J.: Development of a self-consistent lightning NO_x
- simulation in large-scale 3-D models, J. Geophys. Res.-Atmos., 122, 3141-3154,
- 574 https://doi.org/10.1002/2016JD026225, 2017.
- 575 McDonald, B., McKeen, S., Cui, Y. Y., Ahmadov, R., Kim, S.-W., Frost, G. J., Pollack, I.,
- 576 Peischl, J., Ryerson, T. B., and Holloway, J.: Modeling Ozone in the Eastern US using a Fuel-
- 577 Based Mobile Source Emissions Inventory, Environ. Sci. Technol.,
- 578 https://doi.org/10.1021/acs.est.8b00778, 2018.
- 579 Miyazaki, K., Eskes, H., Sudo, K., Boersma, K. F., Bowman, K., and Kanaya, Y.: Decadal
- 580 changes in global surface NO_x emissions from multi-constituent satellite data assimilation, 581 Atmos. Chem. Phys, 17, 807-837, https://doi.org/10.5194/acp-17-807-2017, 2017.
- 582 Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D.,
- Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T.,
 and Zhang, H.: Anthropogenic and natural radiative forcing, in: Climate change 2013: The
 Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
- Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United
 Kingdom and New York, NY, USA, 659-740, 2013.
- Pandey, J. S., Kumar, R., and Devotta, S.: Health risks of NO₂, SPM and SO₂ in Delhi (India),
 Atmos. Environ., 39, 6868-6874, https://doi.org/10.1016/j.atmosenv.2005.08.004, 2005.
- 590 Price, C., and Rind, D.: A simple lightning parameterization for calculating global lightning
 591 distributions, J. Geophys. Res.-Atmos., 97, 9919-9933, https://doi.org/10.1029/92JD00719, 1992.
- 592 Russell, A. R., Valin, L. C., and Cohen, R. C.: Trends in OMI NO₂ observations over the United
- 593 States: effects of emission control technology and the economic recession, Atmos. Chem. Phys.,
- 594 12, 12197-12209, https://doi.org/10.5194/acp-12-12197-2012, 2012.

⁵⁶⁷ C., Liu, S. C., and Wang, H.: Exploring the missing source of glyoxal (CHOCHO) over China,
568 Geophys. Res. Lett., 39, https://doi.org/10.1029/2012GL051645, 2012.

- 595 Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to 596 climate change, John Wiley & Sons, Inc, Hoboken, New Jersey, 2016.
- 597 Silvern, R. F., Jacob, D. J., Mickley, L. J., Sulprizio, M. P., Travis, K. R., Marais, E. A., Cohen,
- 598 R. C., Laughner, J. L., Choi, S., Joiner, J., and Lamsal, L. N.: Using satellite observations of
- tropospheric NO_2 columns to infer long-term trends in US NO_x emissions: the importance of
- accounting for the free tropospheric NO_2 background, Atmos. Chem. Phys., 19, 8863-8878,
- 601 https://doi.org/10.5194/acp-19-8863-2019, 2019.
- Singh, A., and Agrawal, M.: Acid rain and its ecological consequences, J. Environ. Biol., 29, 15,
 2007.
- Tong, D., Lamsal, L., Pan, L., Ding, C., Kim, H., Lee, P., Chai, T., Pickering, K. E., and Stajner,
- 605 I.: Long-term NO_x trends over large cities in the United States during the great recession:
- 606 Comparison of satellite retrievals, ground observations, and emission inventories, Atmos.
- 607 Environ., 107, 70-84, https://doi.org/10.1016/j.atmosenv.2015.01.035, 2015.
- Valin, L. C., Russell, A. R., Hudman, R. C., and Cohen, R. C.: Effects of model resolution on the
- interpretation of satellite NO₂ observations, Atmos. Chem. Phys., 11, 11647-11655,
- 610 https://doi.org/10.5194/acp-11-11647-2011, 2011.
- 611 Wang, Y., Choi, Y., Zeng, T., Davis, D., Buhr, M., Huey, L. G., and Neff, W.: Assessing the
- 612 photochemical impact of snow NO_x emissions over Antarctica during ANTCI 2003, Atmos.
- 613 Environ., 41, 3944-3958, https://doi.org/10.1016/j.atmosenv.2007.01.056, 2007.
- 614 Wang, Y., Beirle, S., Lampel, J., Koukouli, M., De Smedt, I., Theys, N., Ang, L., Wu, D., Xie, P.,
- and Liu, C.: Validation of OMI, GOME-2A and GOME-2B tropospheric NO₂, SO₂ and HCHO
- 616 products using MAX-DOAS observations from 2011 to 2014 in Wuxi, China: investigation of the
- effects of priori profiles and aerosols on the satellite products, Atmos. Chem. Phys., 17, 5007,
- 618 https://doi.org/10.5194/acp-17-5007-2017, 2017.
- 619 Weinmayr, G., Romeo, E., De Sario, M., Weiland, S. K., and Forastiere, F.: Short-term effects of
- PM_{10} and NO₂ on respiratory health among children with asthma or asthma-like symptoms: a
- 621 systematic review and meta-analysis, Environ. Health Perspect., 118, 449-457,
- 622 https://doi.org/10.1289/ehp.0900844, 2009.
- King, J., Pleim, J., Mathur, R., Pouliot, G., Hogrefe, C., Gan, C. M., and Wei, C.: Historical
- gaseous and primary aerosol emissions in the United States from 1990 to 2010, Atmos. Chem.
 Phys., 13, 7531-7549, https://doi.org/10.5194/acp-13-7531-2013, 2013.
- Yang, Q., Wang, Y., Zhao, C., Liu, Z., Gustafson Jr, W. I., and Shao, M.: NO_x emission reduction
 and its effects on ozone during the 2008 Olympic Games, Environ. Sci. Technol., 45, 6404-6410,
 https://doi.org/10.1021/es200675v, 2011.
- Yienger, J. J., and Levy, H.: Empirical model of global soil-biogenic NO_x emissions, J. Geophys.
 Res.-Atmos., 100, 11447-11464, https://doi.org/10.1029/95JD00370, 1995.
- 631 Yu, K., Jacob, D. J., Fisher, J. A., Kim, P. S., Marais, E. A., Miller, C. C., Travis, K. R., Zhu, L.,
- 632 Yantosca, R. M., and Sulprizio, M. P.: Sensitivity to grid resolution in the ability of a chemical

- transport model to simulate observed oxidant chemistry under high-isoprene conditions, Atmos.
- 634 Chem. Phys., 16, 4369-4378, https://doi.org/10.5194/acp-16-4369-2016, 2016.

Zara, M., Boersma, K. F., De Smedt, I., Richter, A., Peters, E., Van Geffen, J. H. G. M., Beirle,
S., Wagner, T., Van Roozendael, M., and Marchenko, S.: Improved slant column density retrieval
of nitrogen dioxide and formaldehyde for OMI and GOME-2A from QA4ECV: intercomparison,
uncertainty characterization, and trends, Meas. Tech. Discuss, 1-47, https://doi.org/10.5194/amt11-4033-2018, 2018.

- 640 Zhang, R., Wang, Y., He, Q., Chen, L., Zhang, Y., Qu, H., Smeltzer, C., Li, J., Alvarado, L., and
- Vrekoussis, M.: Enhanced trans-Himalaya pollution transport to the Tibetan Plateau by cut-off
 low systems, Atmos. Chem. Phys., 17, 3083-3095, https://doi.org/10.5194/acp-17-3083-2017,
- 642 low system643 2017.
- Zhang, R., Wang, Y., Smeltzer, C., Qu, H., Koshak, W., and Boersma, K. F.: Comparing OMIbased and EPA AQS in situ NO₂ trends: towards understanding surface NO_x emission changes,
- 646 Atmos. Meas. Tech., 11, 3955-3967, https://doi.org/10.5194/amt-11-3955-2018, 2018.
- 647 Zhang, Y., and Wang, Y.: Climate-driven ground-level ozone extreme in the fall over the
- 648 Southeast United States, Proc. Natl. Acad. Sci. U.S.A., 113, 10025-10030,
- 649 https://doi.org/10.1073/pnas.1602563113, 2016.
- Zhao, C., and Wang, Y.: Assimilated inversion of NO_x emissions over east Asia using OMI NO₂
 column measurements, Geophys. Res. Lett., 36, https://doi.org/10.1029/2008GL037123, 2009.
- Zhao, C., Wang, Y., Choi, Y., and Zeng, T.: Summertime impact of convective transport and
- 653 lightning NO_x production over North America: modeling dependence on meteorological
- 654 simulations, Atmos. Chem. Phys., 9, 4315-4327, https://doi.org/10.5194/acp-9-4315-2009, 2009a.
- 55 Zhao, C., Wang, Y., and Zeng, T.: East China plains: A "basin" of ozone pollution, Environ. Sci.
- 656 Technol., 43, 1911-1915, https://doi.org/10.1021/es8027764, 2009b.
- 257 Zhao, C., Wang, Y., Yang, Q., Fu, R., Cunnold, D., and Choi, Y.: Impact of East Asian summer
- monsoon on the air quality over China: View from space, J. Geophys. Res.-Atmos., 115,
 https://doi.org/10.1029/2009JD012745, 2010.
- 660

661 Table 1. Summary of trends of satellite NO₂ TVCD products, NO₂ surface measurements, and EPA anthropogenic NO_x emissions during from different studies

Chudian	Detecto	Period 1 ¹		Period 2		Period 3		Slowdown
Studies	Datasets	Time	Trend $(yr^{-1})^2$	Time	Trend (yr ⁻¹)	Time	Trend (yr ⁻¹)	ratio ³
This study for CONUS "urban" sites ⁴	GOME-2B ⁵ (36 × 36 km ²)					2013 - 2017	$-8.2 \pm 3.0\%$	
	SCIAMACHY $(36 \times 36 \text{ km}^2)$	2003 - 2011	$-6.3 \pm 1.1\%$					
	OMI-NASA $(36 \times 36 \text{ km}^2)$	2005 - 2011	$-8.6 \pm 1.2\%$			2011 - 2016	-6.1 ± 3.6%	-29% ²
	OMI-BEHR $(36 \times 36 \text{ km}^2)$	2005 - 2011	$-8.2 \pm 1.3\%$			2011 - 2016	$-4.4 \pm 1.6\%$	-46%
	OMI-QA4ECV $(36 \times 36 \text{ km}^2)$	2005 - 2011	$-7.7 \pm 1.4\%$			2011 - 2017	$-4.2 \pm 0.5\%$	-46%
	Updated EPA NO _x emissions ⁶	2003 - 2011	$\textbf{-6.5} \pm \textbf{0.8\%}$			2011 - 2017	$-5.1 \pm 0.3\%$	-22%
	GOME-2B $(36 \times 36 \text{ km}^2)$					2013 - 2017	$-10.2 \pm 2.9\%$	
	SCIAMACHY $(36 \times 36 \text{ km}^2)$	2003 - 2011	$-7.6 \pm 1.1\%$					
This study for AQS	OMI-NASA $(36 \times 36 \text{ km}^2)$	2005 - 2011	$\textbf{-9.0} \pm \textbf{0.8\%}$			2011 - 2016	$-7.2 \pm 3.8\%$	-20%
"urban" sites	OMI-BEHR $(36 \times 36 \text{ km}^2)$	2005 - 2011	$-8.9 \pm 0.3\%$			2011 - 2016	$-6.2 \pm 2.6\%$	-30%
	OMI-QA4ECV $(36 \times 36 \text{ km}^2)$	2005 - 2011	$\textbf{-9.0} \pm \textbf{0.8\%}$			2011 - 2017	$-5.4 \pm 0.9\%$	-40%
	NO ₂ surface VMR ⁷	2003 - 2011	$-6.5 \pm 1.2\%$			2011 - 2017	$\textbf{-5.9} \pm \textbf{0.8\%}$	-9%
(Russell et al., 2012) ⁸	BEHR v2.1 NO ₂ TVCD (0.05°×0.05°)	2005 2007	-6 ± 5% (-6.2%) ⁹	2007 - 2009 -8 ± 5% (-8.4%) -10.0%	2009 - 2011	-3 ± 4% (-3.0%)	-52%	
$(Russell et al., 2012)^{\circ}$	Updated EPA NO _x emissions	2005 - 2007	-6.0%		-10.0%	2009 - 2011	-2.4%	-60%
	NASA v2.1 NO ₂ TVCD (pixels $< 50 \times 24$ km ²)		-7.3% (-7.6%)		-9.2% (-11.4%)		-2.8% (-4.4%)	-42%
$(T_{a}, a_{a}, a_{b}, a_{b}) = 2015) 10$	BEHR v2.1 NO ₂ TVCD (pixels $< 50 \times 24$ km ²)	2005 - 2007	-8.9% (-9.3%)	2008 - 2009	-9.1% (-11.8%)	2010 - 2012	-3.6% (-6.0%)	-35%
$(Tong et al., 2015)^{10}$	NO ₂ surface VMR		-6.0% (-6.2%)		-10.8% (-13.2%)		-3.4% (-5.4%)	-13%
	Updated EPA NO _x emissions		-6.0%		-10.0%		-3.4%	-43%
	NASA v2.1 NO ₂ TVCD (0.1°×0.1°)		-4.8 ± 1.9% (-5.1%)				-1.2 ± 1.2% (-1.2%)	-76%
(Lamsal et al., 2015) ¹¹	NO ₂ surface VMR	2005 - 2008	-3.7 ± 1.5% (-3.8%)			2010 - 2013	-2.1 ± 1.4% (-2.1%)	-45%
	Updated EPA NO _x emissions		-6.4%				-4.0%	-38%
	NASA v3 NO ₂ TVCD (0.5°×0.667°)		-10.2 ± 1.8% (-9.8%)				-3.2 ± 1.6% (-3.2%)	-67%
(Jiang et al., 2018) ¹¹	QA4ECV v2 NO2 TVCD (0.5°×0.667°)		-9.6 ± 1.7% (-9.3%)				-2.6 ± 1.8% (-2.6%)	-72%
	BEHR v2.1 NO ₂ TVCD (0.5°×0.667°)	2005 - 2009	-8.5 ± 1.8% (-8.2%)			2011-2015	-2.1 ± 1.6% (-2.1%)	-74%
	NO ₂ surface VMR		-6.6 ± 1.4% (-6.4%)				-2.6 ± 1.5% (-2.6%)	-59%
	Updated EPA NO _x emissions		-7.8%				-5.0%	-36%

 1 Since different studies used different time division methods, we list the period of each study in the table.

² Trends are based on an exponential model ($E(y) = E_0 \times r^{y-y_0}$: "y" denotes year and "y₀" denotes the initial year; "E(y)" denotes the value at year "y" and " E_0 " denotes the value at the initial year; r-1 is the relative trend).

664 ³ Slowdown ratios = Trend in "period 3" / Trend in "period 1" - 1.

⁴ Trends in our study are calculated based on the national seasonal trends shown in Table 3.

⁵ The information on satellite products used in this study is summarized in Table S2.

⁶We updated EPA anthropogenic NO_x emissions with the newest Continuous Emission Monitoring Systems (CEMS) datasets. Figure S2 shows the comparison between our updated and original EPA anthropogenic NO_x emissions (EPA, 2018).

⁷ Denote the averaged trends of 13:00 and 10:00 LT based on the values in Table 3.

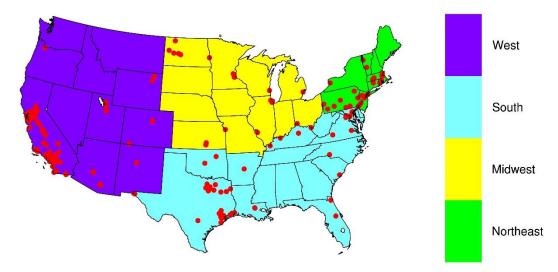
 8 The study used NO₂ TVCD from urban and power plant grid cells across the U.S.

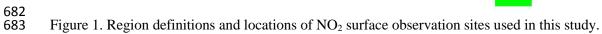
- ⁹ Since previous studies used linear models to calculate trends and the results are sensitive to their calculation methods and the selection of initial years, we recalculate the trends based on the above exponential model, which makes all the results
- 671 consistent. Our results are those bold numbers inside the parentheses, while the numbers in normal fonts are from the original publications.
- ¹⁰ The study uses NO₂ TVCD and surface concentrations from Los Angeles, Dallas, Houston, Atlanta, Philadelphia, Washington, D.C., New York, and Boston.
- ¹¹ The two studies used the EPA Air Quality System (AQS) NO₂ surface measurements and coincident satellite NO₂ TVCD data over the U.S.

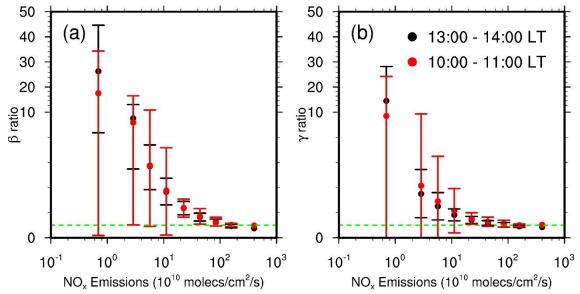
Table 2. Properties of urban and rural regions in July 2011

type	Surface area fraction ¹	Anthropogenic NO _x emissions $(\times 10^{10} \text{ molecules cm}^2 \text{ s}^{-1})$	β at 13:00 – 14:00 LT	γ at 13:00 – 14:00 LT	β at 10:00 – 11:00 LT	γ at 10:00 – 11:00 LT
Urban/CONUS ²	17.3%	29.9	2.5 ± 1.0	1.5 ± 0.4	2.6 ± 1.9	1.6 ± 1.2
Rural/CONUS	82.7%	2.7	16.9 ± 16.4	8.5 ± 11.7	12.2 ± 14.0	6.4 ± 11.6
Urban/AQS	87.7%	71.0	1.6 ± 0.8	1.2 ± 0.4	1.7 ± 1.1	1.3 ± 0.6
Rural/AQS	12.3%	5.7	8.7 ± 9.9	5.2 ± 8.8	5.4 ± 15.1	3.8 ± 11.7

¹ "Fraction" denotes the percentages of "urban" or "rural" data points for the whole CONUS or all AQS sites. ² "Urban-CONUS" denote CONUS "urban" grid cells; "Urban-AQS" denote AQS "urban" site grid cells.


676


Table 3. Summary of national trends of updated EPA anthropogenic NO_x emissions, AQS NO₂ surface concentrations at 13:00 - 14:00 and 10:00 - 11:00 LT, and satellite NO₂ TVCD products for 4 seasons


680 during different periods¹

		Spring		Sum	imer	Autu	Autumn		inter
		AQS site	CONUS	AQS site	CONUS	AQS site	CONUS	AQS site	CONUS
AQS NO ₂ VMR	2003 - 2011	$\textbf{-7.3} \pm 1.4\%$		$-7.4\pm0.9\%$		$\textbf{-6.7} \pm 1.8\%$		$-5.2 \pm 0.8\%$	
at 13:00 -14:00	2011 - 2017	$\textbf{-5.3} \pm 1.6\%$		$\textbf{-6.4} \pm 1.2\%$		$-7.3\pm2.5\%$		$\textbf{-6.0} \pm 2.8\%$	
AQS NO ₂ VMR	2003 - 2011	$\textbf{-7.1} \pm 1.6\%$		$-7.6 \pm 1.5\%$		$\textbf{-6.2} \pm 2.2\%$		$-4.4\pm1.6\%$	
at 10:00 - 11:00	2011 - 2017	$-4.4 \pm 1.4\%$		$\textbf{-6.1} \pm 1.8\%$		$\textbf{-6.3} \pm 2.5\%$		$\textbf{-5.2} \pm 2.4\%$	
SCIAMACIIV	2003 - 2011	$-8.8\pm3.4\%$	$\textbf{-6.9} \pm 1.1\%$	$-8.2\pm1.6\%$	$\textbf{-5.2} \pm 1.2\%$	$\textbf{-6.8} \pm \textbf{2.4\%}$	$\textbf{-5.6} \pm 2.1\%$	$\textbf{-6.4} \pm \textbf{7.4\%}$	$-7.5\pm5.5\%$
SCIAMACHY	2011 - 2017								
GOME2B	2003 - 2011								
GOME2B	2013 - 2017	$-10.2\pm7.8\%$	$\textbf{-8.3} \pm \textbf{16.9\%}$	$\textbf{-6.4} \pm 14.0\%$	$\textbf{-5.3} \pm 4.0\%$	$-10.5\pm41.6\%$	$\textbf{-6.9} \pm 13.2\%$	$\textbf{-13.6} \pm 15.1\%$	$-12.3\pm78.9\%$
	2005 - 2011	$-9.3\pm5.6\%$	$-8.3\pm4.6\%$	$-8.3 \pm 2.4\%$	$-5.9\pm5.2\%$	$-10.0\pm4.2\%$	$-7.4 \pm 2.4\%$	$-8.3 \pm 2.1\%$	$-9.3\pm5.2\%$
OMI-QA4ECV	2011 - 2017	$-5.3\pm6.0\%$	$-4.3\pm6.5\%$	$-4.2\pm3.0\%$	$-4.9\pm9.2\%$	$\textbf{-6.0} \pm 1.8\%$	$-3.8\pm1.8\%$	$\textbf{-6.1} \pm \textbf{25.6\%}$	$-3.8\pm3.5\%$
OMI-NASA	2005 - 2011	$-9.4\pm5.0\%$	$-9.6 \pm 5.3\%$	$-9.4\pm2.8\%$	$-7.1 \pm 2.9\%$	$-9.4 \pm 3.2\%$	$-8.1 \pm 2.8\%$	$-7.8 \pm 3.6\%$	$\textbf{-9.5} \pm 16.6\%$
OMI-NASA	2011 - 2016	$-4.4\pm18.9\%$	$-3.8\pm7.5\%$	$-5.7\pm6.7\%$	$-4.5\pm5.3\%$	$\textbf{-6.0} \pm 3.1\%$	$-4.6\pm3.9\%$	$-12.8\pm7.8\%$	$\textbf{-11.4} \pm \textbf{6.6\%}$
OMI-BEHR	2005 - 2011	$-9.1 \pm 5.3\%$	$-8.9\pm5.8\%$	$-8.7\pm2.4\%$	$-6.4 \pm 3.2\%$	$-9.2 \pm 3.2\%$	$-8.0\pm3.1\%$	$-8.5\pm10.6\%$	$-9.4\pm23.0\%$
	2011 - 2016	$-3.8\pm4.4\%$	$\textbf{-3.0} \pm 4.0\%$	$\textbf{-5.4} \pm 7.0\%$	$\textbf{-3.9}\pm6.6\%$	$-5.6 \pm 13.2\%$	$\textbf{-4.1} \pm \textbf{14.0\%}$	$\textbf{-9.9} \pm 5.2\%$	$\textbf{-6.7} \pm 5.9\%$
EPA	2003 - 2011				-6.5 ±	- 0.8%			
	2011 - 2017				-5.1 ±	= 0.3%			

¹ We calculate trends by using the exponential model described in Table 1.

685 686

Figure 2. Distributions of β (panel a) and γ (panel b) ratios as a function of anthropogenic NO_x emissions on weekdays for July 2011 over the CONUS. "13:00 – 14:00 LT" is for OMI, and

emissions on weekdays for July 2011 over the CONUS. "13:00 – 14:00 LT" is for OMI, and "10:00 – 11:00" LT is for SCIAMACHY and GOME-2A/2B. The data are binned into nine groups based on anthropogenic NO_x emissions: $E \in (0, 2^1), [2^1, 2^2), [2^2, 2^3), [2^3, 2^4), [2^4, 2^5), [2^5, 2^6), [2^6, 2^7), [2^7, 2^8), [2^8, 2^9) \times 10^{10}$ molecules cm⁻² s⁻¹. Here, (0, 2¹) denotes 0 < emissions < 2¹, and [2¹, 2²) denotes 2¹ ≤ emissions < 2², similar to other intervals. The green dashed line denotes a value of 1. Error bars denote standard deviations.

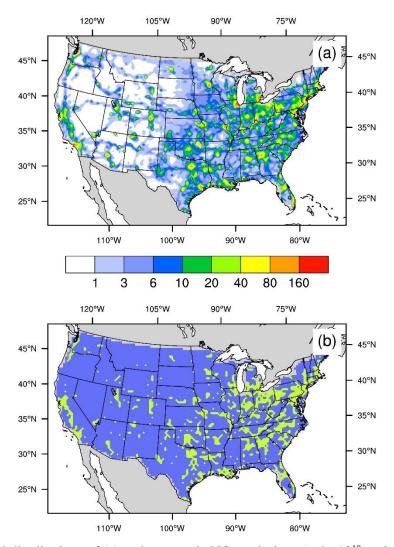
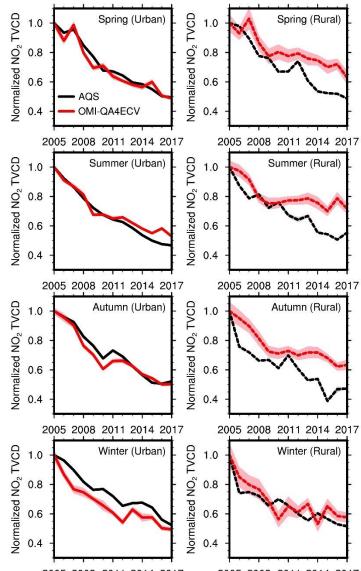
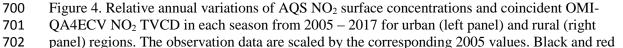
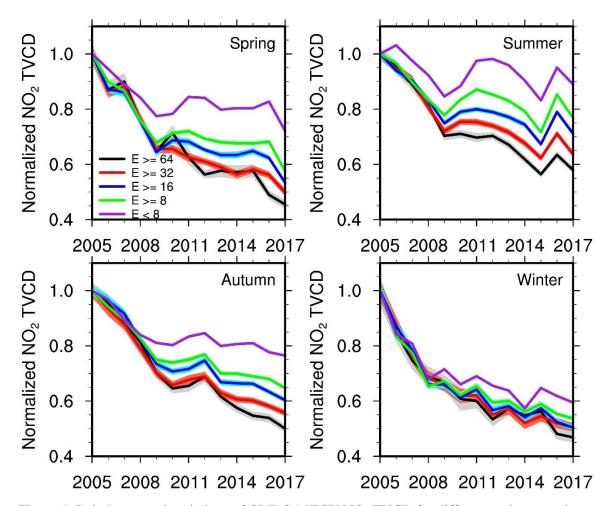
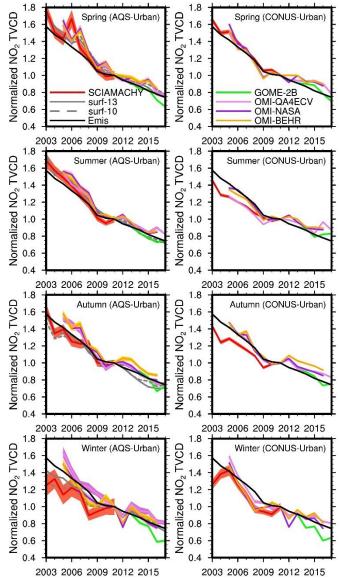




Figure 3. Spatial distributions of (a) anthropogenic NO_x emissions (unit: 10^{10} molecules cm⁻² s⁻¹) and (b) "urban" regions satisfying our selection criteria. In (b), light green and blue denote the

resulting urban and rural regions, respectively.



2005 2008 2011 2014 2017 2005 2008 2011 2014 2017


703 lines denote AQS surface observations and OMI-QA4ECV NO₂ TVCDs, respectively. Shading in

- a lighter color is added to show the standard deviation of the results; when uncertainty is small
- 705 due in part to a large number of data points, shading area may not show up.

707 708

Figure 5. Relative annual variations of OMI-QA4ECV NO₂ TVCD for different anthropogenic NO_x -emission groups based on NEI2011 in each season from 2005 – 2017. "E >= 64" denotes 709 grid cells with anthropogenic NO_x emissions over 64×10^{10} molecules cm⁻² s⁻¹. "E >= 32" 710 denotes grid cells with anthropogenic NO_x emissions equal to or larger than 32×10^{10} molecules 711 cm⁻² s⁻¹ but less than 64×10^{10} molecules cm⁻² s⁻¹. "E >= 16" and "E >= 8" have similar meanings 712 713 as "E >= 32". "E < 8" denotes grid cells with anthropogenic NO_x emissions less than 8×10^{10} molecules cm⁻² s⁻¹. Shading in a lighter color is added to show the standard deviation of the 714 715 results; when uncertainty is small due in part to a large number of data points, shading area may 716 not show up.

719 Figure 6. Relative variations of AQS NO₂ surface measurements at 13:00-14:00 and 10:00-11:00 720 LT, updated EPA anthropogenic NO_x emissions, and satellite NO_2 TVCD data over the AQS 721 urban sites (left column) and the CONUS urban regions (right column) for 4 seasons. AOS NO₂ surface measurements are not included in the right column. All datasets are scaled by their 722 723 corresponding values in 2011 except for GOME-2B. For GOME-2B, we firstly normalized the 724 values in each season to the corresponding 2013 values and plotted the relative changes from the 725 2013 EPA point of each season to make the GOME-2B relative variations comparable to the other datasets. Shading in a lighter color is added to show the standard deviation of the results; 726 727 when uncertainty is small due in part to a large number of data points, shading area may not show 728 up.

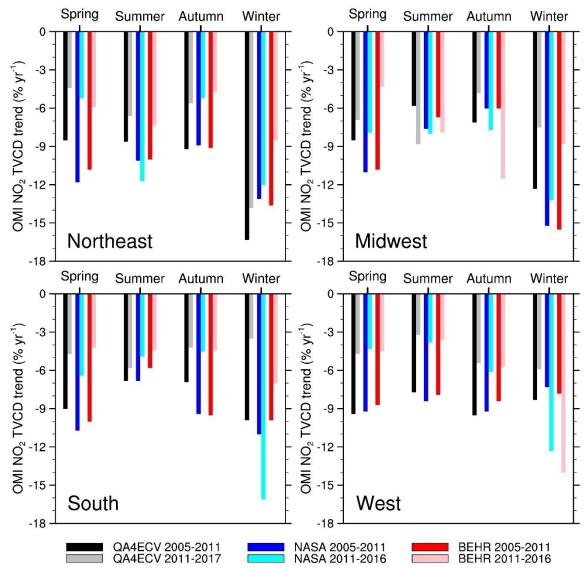


Figure 7. Pre- and post-2011 OMI NO₂ TVCD trends for 4 seasons in the urban regions of
Northeast, Midwest, South, and West. Black bars denote OMI-QA4ECV NO₂ TVCD trends from
2005 – 2011; gray bars denote the corresponding trends during 2011 – 2017. Blue bars denote
OMI-NASA trends from 2005 – 2011; cyan bars denote NASA-OMI trends from 2011 – 2016.
Red bars denote BEHR-OMI trends from 2005 – 2011; pink bars denote OMI-BEHR trends from
2011 – 2016.

2 3 4 5	Inferring the anthropogenic NO _x emission trend over the United States during 2003 - 2017 from satellite observations: Was there a flattening of the emission trend after the Great Recession?
6	Jianfeng Li ^{1, a} , Yuhang Wang ^{1*}
7 8	¹ School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
9	^a Now at Pacific Northwest National Laboratory, Richland, WA, USA
10	* Correspondence to Yuhang Wang (yuhang.wang@eas.gatech.edu)
11	

SUPPORTING INFORMATION AVAILABLE

13 Table Captions

- Table S1. Summary of major satellite instruments for remote sensing of atmospheric NO₂ VCD in
 the past decade
- 16 Table S2. Summary of satellite NO₂ TVCD products and their retrieval information
- 17 Table S3. Selection criteria for satellite NO₂ TVCD pixel data
- 18 Table S4. Summary of annual trends of AQS NO₂ surface concentrations and satellite NO₂ TVCD
- 19 products in each region during different periods

Table S1. Summary of major satellite instruments for remote sensing of atmospheric NO₂ VCD in the past decade 20

Instrument	Satellite	Launch date	End date	Operator	Equator crossing time (local time)	UV/Vis Spectral range (nm)	Spectral resolution (nm)	Swath length (km)	Nadir pixel resolution (km × km)	Global coverage (days)
SCIAMACHY	ENVISAT ¹	03/01/2002 ²	04/08/2012 ²	ESA ³	$10:00^{1}$	$240 - 805^4$	$0.24 - 0.48^4$	960 ⁵	60×30^5	6 ⁵
GOME-2A	MetOp-A ⁶	10/19/20066	in operation	EUMETSAT ⁷	9:30 ⁸	$240 - 790^8$	$0.26 - 0.51^8$	1920 before Jul. 15 th , 2013; 960 after Jul. 15 th , 2013 ⁸	80×40 before Jul. 15 th , 2013; 40 × 40 after Jul. 15 th , 2013 ⁸	1.5 ⁹
GOME-2B	MetOp-B ⁶	09/17/20126	In operation	EUMETSAT	9:30 ⁸	$240 - 790^{8}$	0.26 – 0.51 ⁸	1920 ⁸	$80 imes 40^8$	1.5 ⁹
OMI	EOS-Aura ¹⁰	07/15200410	In operation	NASA	13:45 ¹⁰	$270 - 500^{11}$	0.45 - 1.011	260011	24×13^{11}	1^{11}

¹ Refer to https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat 21

² Refer to https://en.wikipedia.org/wiki/Envisat 22

³ The European Space Agency 23

 ⁴ Refer to http://www.iup.uni-bremen.de/sciamachy/instrument/performance/index.html
 ⁵ Refer to Boersma et al. (2008), Boersma et al. (2009), and Lee et al. (2009) 24

25

⁶ Refer to https://www.eumetsat.int/website/home/Satellites/CurrentSatellites/Metop/index.html 26

⁷ The European Organization for the Exploitation of Meteorological Satellites 27

28 ⁸ Refer to EUMETSAT (2015)

⁹ Refer to Lee et al. (2009) and Wang et al. (2017) 29

¹⁰ Refer to https://aura.gsfc.nasa.gov/ 30

31 ¹¹ Refer to https://aura.gsfc.nasa.gov/omi.html 32 Table S2. Summary of satellite NO₂ TVCD products and their retrieval information

NO ₂ TVCD products	Version	Available period	DOAS fitting method	Stratosphere– troposphere separation	Fitting window (nm)	Albedo / reflectance	A priori profiles	Radiative transfer model	Cloud	
GOME-2B	TM4NO2A (2.3)	12/20/2012 – current	Intensity fit ¹	Assimilation of satellite total slant columns in the TM4 model ^{2, 3}	$405 - 465^{1}$	Climatology albedo from 3 years of OMI data ⁴	$TM4 (2^{\circ} \times 3^{\circ})^2$	DAK ²	FRESCO+ (Oxygen A-band around 760 nm) ⁵	1.
SCIAMACHY	QA4ECV (v1.1)	08/02/2002			$425 - 465^{6}$	Climatology albedo based on SCIAMACHY ⁸		DAK	FRESCO+	>]
GOME-2A	QA4ECV (v1.1)	02/01/2007 - 12/31/2016	- Optical Density ^{1, 6}	Assimilation of OMI total slant columns in the TM5 - MP model ^{6, 7}	405 - 465 ^{1, 6}	Climatology albedo based on GOME-2A ⁸	TM5-MP $(1^{\circ} \times 1^{\circ})^{6}$		FRESCO+	
OMI- QA4ECV	QA4ECV (v1.1)	10/012004 – Current			$405 - 465^{1, 6}$	Climatology albedo from 5 years of OMI data ⁶	-		Improved O_2 - O_2 (477 nm) ⁹	
OMI-NASA	SPv3	01/01/2005 07/31/2017	Stepwise intensity fit with monthly	Based on OMI total slant columns over regions with low estimated TVCD	402 - 465 ^{1, 10}	OMI climatology albedo ¹⁰	$\begin{array}{c} \text{GMI} \\ (1^{\circ} \times 1.25^{\circ})^{10} \end{array}$	TMORAD ¹⁰	O ₂ -O ₂ (477	SPv2 under cloud betwo
OMI-BEHR ¹³	v3.0B	01/01/2005 07/31/2017	averaged solar irradiance spectrum ^{1, 10}	contributions (TVCD contributions less than 0.3×10^{15} molecules/cm ²) ¹⁰	402 - 403	Based on MCD43D BRDF product (for land) and model parameterization (for ocean)	WRF-Chem (12 km)	TMORAD	nm) ^{10, 11}	

 $\frac{1}{1}$ Refer to Zara et al. (2018)

34 ² Refer to Boersma et al. (2011). "TM4" is the Tracer Model, version 4. "DAK" is the Doubling-Adding KNMI (DAK) radiative transfer model.

35 ³Refer to Williams et al. (2009)

 $36 \qquad {}^{4} \text{ Refer to Kleipool et al. (2008)}$

- 37 ⁵ Refer to Wang et al. (2017) and Wang et al. (2008)
- ⁶ Refer to Boersma et al. (2018)
- **39** ⁷ Refer to Williams et al. (2017)
- 40 ⁸ Refer to Tilstra et al. (2017)
- 41 9 Refer to Veefkind et al. (2016)

42 ¹⁰ Refer to Bucsela et al. (2013), Bucsela et al. (2016), Krotkov et al. (2017), and Marchenko et al. (2015). "TMORAD" is the TMOS radiative transfer model.

43 ¹¹ Refer to Acarreta et al. (2004)

44 12 Refer to Lamsal et al. (2014), Oetjen et al. (2013), and Tong et al. (2015)

¹³ Refer to Laughner et al. (2018). OMI-BEHR uses the SCD from OMI-NASA SPv3 but updates inputs for the AMF calculation, such as a prior NO₂ vertical profiles and surface reflectance. Besides, OMI-BEHR only provides NO₂ TVCD over the contiguous

46 United States (CONUS). As in this study, we used the OMI-NASA datasets archived in the OMI-BEHR product, so we only obtained OMI-NASA datasets extended to July 31, 2017.

47 ¹⁴ Average uncertainty over the CONUS is calculated based on the file from http://behr.cchem.berkeley.edu/behr/BEHR-us-uncertainty.hdf

Uncertainty

 1.0×10^{15} molecules/cm² + 25%²

35% - 45% over polluted scenes; > 100% over background regions (Pacific Ocean)⁶

Pv2.1 TVCD has uncertainties of about 30% der clear-sky conditions to about 60% under oudy conditions¹², and the relative difference tween SPv3 and SPv2.1 is less than ~20%¹⁰.

~ 45% on average¹⁴

48 Table S3. Selection criteria for satellite NO₂ TVCD pixel data

NO ₂ TVCD products	Period	Solar zenith angle	albedo	Cloud radiance fraction	Snow or ice covered	AMFtrop/AMFgeo	Flag for retrieval success	Retrieval quality flag	Rows in swath
GOME-2B	01/01/2013 - 12/31/2017	< 80°	<= 0.3	<= 50%	No	> 0.2	Yes		All
SCIAMACHY	01/01/2003 - 12/31/2011	$< 80^{\circ}$	<= 0.3	<= 50%	No	> 0.2	Yes		All
GOME-2A	01/01/2008 - 12/31/2016	$< 80^{\circ}$	<= 0.3	<= 50%	No	> 0.2	Yes		All
OMI- QA4ECV ¹	01/01/2005 - 12/31/2017	< 80°	<= 0.3	<= 50%	No	> 0.2	Yes		6 - 21
OMI-NASA ¹	01/01/2005 - 12/31/2016	$< 80^{\circ}$	<= 0.3	<= 50%			Yes	Yes	6-21
OMI-BEHR ¹	01/01/2005 - 12/31/2016	< 80°	<= 0.3	<= 50%			Yes	Yes	6 - 21

49 ¹ Rows 6-21 are selected to remove the anomalies developed in the OMI sensor (Boersma et al., 2018; Zhang et al., 2018).

50	Table S4. Summary of annual trends of AQS NO ₂ surface concentrations and satellite NO ₂ TVC	CD products in each region during different periods ¹

		Nort	heast	Mid	west	So	uth	W	est
		AQS site	CONUS	AQS site	CONUS	AQS site	CONUS	AQS site	CONUS
AQS NO ₂ VMR	2003 - 2011	$\textbf{-6.8} \pm 0.7\%$		$-6.1 \pm 1.2\%$		$\textbf{-6.6} \pm 0.7\%$		$-7.6 \pm 1.2\%$	
at 13:00 -14:00	2011 - 2017	$\textbf{-8.0} \pm 1.2\%$		$\textbf{-6.4} \pm \textbf{0.8\%}$		$\textbf{-5.8} \pm 0.6\%$		$\textbf{-7.2} \pm 1.6\%$	
AQS NO ₂ VMR	2003 - 2011	$-6.6 \pm 0.5\%$		$-5.8\pm1.5\%$		$-6.5 \pm 1.3\%$		$-7.1 \pm 1.6\%$	
at 10:00 – 11:00	2011 - 2017	$\textbf{-7.6} \pm 1.0\%$		$\textbf{-6.8} \pm \textbf{0.5\%}$		$\textbf{-5.7}\pm0.1\%$		$\textbf{-6.1} \pm 1.1\%$	
SCIAMACHY	2003 - 2011	$-17.1 \pm 2.7\%$	$-11.0 \pm 3.3\%$	$-12.9\pm6.8\%$	$\textbf{-6.5} \pm \textbf{0.8\%}$	$\textbf{-9.1} \pm 1.0\%$	$\textbf{-6.2} \pm 1.5\%$	$\textbf{-9.1} \pm 1.8\%$	$\textbf{-7.0} \pm 1.4\%$
SCIAMACHY	2011 - 2017								
COME2D	2003 - 2011								
GOME2B	2013 - 2017	$-11.4\pm3.7\%$	$-10.8\pm3.9\%$	$\textbf{-9.9} \pm 13.1\%$	$\textbf{-4.4} \pm 27.2\%$	$-8.9\pm3.0\%$	$-7.5\pm3.6\%$	$\textbf{-11.8} \pm 3.0\%$	$-10.6\pm2.3\%$
	2005 - 2011	$-14.2\pm6.3\%$	$-10.6\pm3.8\%$	$\textbf{-9.2} \pm \textbf{4.2\%}$	$-8.4\pm2.8\%$	$\textbf{-9.2}\pm2.7\%$	$\textbf{-8.2} \pm 1.5\%$	$-10.5\pm1.6\%$	$\textbf{-8.7}\pm0.9\%$
OMI-QA4ECV	2011 - 2017	$\textbf{-18.0} \pm \textbf{16.2\%}$	$\textbf{-7.6} \pm 4.2\%$	$-7.6\pm3.3\%$	$\textbf{-7.0} \pm 1.7\%$	$-4.8 \pm 1.4\%$	$-4.6 \pm 1.0\%$	$\textbf{-6.4} \pm 1.4\%$	$-4.8 \pm 1.2\%$
	2005 - 2011	$-11.8 \pm 1.3\%$	$\textbf{-11.0} \pm 1.8\%$	$-10.9\pm4.8\%$	$\textbf{-10.0} \pm \textbf{4.1\%}$	$-10.0 \pm 3.5\%$	$-9.5\pm1.9\%$	$-10.2\pm1.8\%$	$-8.5\pm0.9\%$
OMI-NASA	2011 - 2016	$\textbf{-10.0} \pm \textbf{4.9\%}$	$\textbf{-8.5} \pm \textbf{3.8\%}$	$-13.2\pm3.2\%$	$-9.2\pm2.7\%$	$0.3 \pm 19.2\%$	$\textbf{-8.0} \pm 5.5\%$	$\textbf{-9.0} \pm 5.7\%$	$\textbf{-6.6} \pm 3.9\%$
	2005 - 2011	$-11.8 \pm 1.8\%$	$-10.9 \pm 1.9\%$	$-12.2\pm7.3\%$	$-9.8\pm4.4\%$	$-9.5 \pm 3.1\%$	$-8.8\pm2.0\%$	$\textbf{-9.9} \pm 1.1\%$	$-8.2\pm0.4\%$
OMI-BEHR	2011 - 2016	$\textbf{-8.2} \pm \textbf{3.4\%}$	$\textbf{-6.6} \pm 1.7\%$	$-27.4\pm24.3\%$	$-8.1\pm3.0\%$	$-7.2 \pm 2.3\%$	$-5.0\pm1.3\%$	$-13.2 \pm 14.5\%$	$\textbf{-7.0} \pm \textbf{4.8\%}$

¹ Annual trends are the averages of regional seasonal trends (e.g, Figure 7).

53 **References**

- 54 Acarreta, J. R., de Haan, J. F., and Stammes, P.: Cloud pressure retrieval using the O₂-O₂
- absorption band at 477 nm, J. Geophys. Res.-Atmos., 109,
- 56 https://doi.org/10.1029/2003JD003915, 2004.
- 57 Boersma, K. F., Jacob, D. J., Eskes, H. J., Pinder, R. W., Wang, J., and Van Der A, R. J.:
- 58 Intercomparison of SCIAMACHY and OMI tropospheric NO₂ columns: Observing the diurnal
- evolution of chemistry and emissions from space, J. Geophys. Res.-Atmos., 113,
- 60 https://doi.org/10.1029/2007JD008816, 2008.
- 61 Boersma, K. F., Jacob, D. J., Trainic, M., Rudich, Y., De Smedt, I., Dirksen, R., and Eskes, H. J.:
- 62 Validation of urban NO₂ concentrations and their diurnal and seasonal variations observed from
- 63 the SCIAMACHY and OMI sensors using in situ surface measurements in Israeli cities, Atmos.
- 64 Chem. Phys., 9, 3867-3879, https://doi.org/10.5194/acp-9-3867-2009, 2009.
- 65 Boersma, K. F., Eskes, H. J., Dirksen, R. J., Veefkind, J. P., Stammes, P., Huijnen, V., Kleipool,
- 66 Q. L., Sneep, M., Claas, J., and Leitão, J.: An improved tropospheric NO₂ column retrieval
- algorithm for the Ozone Monitoring Instrument, Atmos. Meas. Tech., 4, 1905-1928,
- 68 https://doi.org/10.5194/amt-4-1905-2011, 2011.
- 69 Boersma, K. F., Eskes, H. J., Richter, A., De Smedt, I., Lorente, A., Beirle, S., van Geffen, J. H.,
- 70 Zara, M., Peters, E., and Roozendael, M. V.: Improving algorithms and uncertainty estimates for
- satellite NO₂ retrievals: results from the quality assurance for the essential climate variables
- 72 (QA4ECV) project, Atmos. Meas. Tech., 11, 6651-6678, https://doi.org/10.5194/amt-11-6651-
- 73 2018, 2018.
- 74 Bucsela, E. J., Krotkov, N. A., Celarier, E. A., Lamsal, L. N., Swartz, W. H., Bhartia, P. K.,
- 75 Boersma, K. F., Veefkind, J. P., Gleason, J. F., and Pickering, K. E.: A new stratospheric and
- tropospheric NO₂ retrieval algorithm for nadir-viewing satellite instruments: applications to OMI,
- 77 Atmos. Meas. Tech., 6, 2607-2626, https://doi.org/10.5194/amt-6-2607-2013, 2013.
- 78 Bucsela, E. J., Celarier, E. A., Gleason, J. L., Krotkov, N. A., Lamsal, L. N., Marchenko, S. V.,
- and Swartz, W. H.: OMNO2 README Document Data Product Version 3.0, NASA, 38, 2016.
- 80 EUMETSAT: GOME_FACTSHEET, Germany, 33, 2015.
- 81 Kleipool, Q. L., Dobber, M. R., de Haan, J. F., and Levelt, P. F.: Earth surface reflectance
- 82 climatology from 3 years of OMI data, J. Geophys. Res.-Atmos., 113,
- 83 https://doi.org/10.1029/2008JD010290, 2008.
- 84 Krotkov, N. A., Lamsal, L. N., Celarier, E. A., Swartz, W. H., Marchenko, S. V., Bucsela, E. J.,
- 85 Chan, K. L., Wenig, M., and Zara, M.: The version 3 OMI NO₂ standard product, Atmos. Meas.
- 86 Tech., 10, 3133-3149, https://doi.org/10.5194/amt-10-3133-2017, 2017.
- 87 Lamsal, L. N., Krotkov, N. A., Celarier, E. A., Swartz, W. H., Pickering, K. E., Bucsela, E. J.,
- 88 Gleason, J. F., Martin, R. V., Philip, S., and Irie, H.: Evaluation of OMI operational standard NO₂

- column retrievals using in situ and surface-based NO₂ observations, Atmos. Chem. Phys., 14,
- 90 11587-11609, https://doi.org/10.5194/acp-14-11587-2014, 2014.
- Laughner, J. L., Zhu, Q., and Cohen, R. C.: The Berkeley High Resolution Tropospheric NO₂
- product, Earth System Science Data, 10, 2069-2095, https://doi.org/10.5194/essd-10-2069-2018,
 2018.
- Lee, C., Martin, R. V., van Donkelaar, A., Richter, A., Burrows, J. P., and Kim, Y. J.: Remote
- Sensing of Tropospheric Trace Gases (NO₂ and SO₂) from SCIAMACHY, in: Atmospheric and
 Biological Environmental Monitoring, Springer, 63-72, 2009.
- 97 Marchenko, S., Krotkov, N. A., Lamsal, L. N., Celarier, E. A., Swartz, W. H., and Bucsela, E. J.:
- 98 Revising the slant column density retrieval of nitrogen dioxide observed by the Ozone
- 99 Monitoring Instrument, J. Geophys. Res.-Atmos., 120, 5670-5692,
- 100 https://doi.org/10.1002/2014JD022913, 2015.
- 101 Oetjen, H., Baidar, S., Krotkov, N. A., Lamsal, L. N., Lechner, M., and Volkamer, R.: Airborne
- 102 MAX-DOAS measurements over California: Testing the NASA OMI tropospheric NO₂ product,
- 103 J. Geophys. Res.-Atmos., 118, 7400-7413, https://doi.org/10.1002/jgrd.50550, 2013.
- 104 Tilstra, L. G., Tuinder, O. N. E., Wang, P., and Stammes, P.: Surface reflectivity climatologies
- 105 from UV to NIR determined from Earth observations by GOME-2 and SCIAMACHY, J.
- 106 Geophys. Res.-Atmos., 122, 4084-4111, https://doi.org/10.1002/2016JD025940, 2017.
- 107 Tong, D., Lamsal, L., Pan, L., Ding, C., Kim, H., Lee, P., Chai, T., Pickering, K. E., and Stajner,
- 108 I.: Long-term NO_x trends over large cities in the United States during the great recession:
- 109 Comparison of satellite retrievals, ground observations, and emission inventories, Atmos.
- 110 Environ., 107, 70-84, https://doi.org/10.1016/j.atmosenv.2015.01.035, 2015.
- 111 Veefkind, J. P., de Haan, J. F., Sneep, M., and Levelt, P. F.: Improvements to the OMI O₂–O₂
- 112 operational cloud algorithm and comparisons with ground-based radar–lidar observations, Atmos.
- 113 Meas. Tech., 9, 6035-6049, https://doi.org/10.5194/amt-9-6035-2016, 2016.
- 114 Wang, P., Stammes, P., van der A, R., Pinardi, G., and van Roozendael, M.: FRESCO+: an
- improved O₂ A-band cloud retrieval algorithm for tropospheric trace gas retrievals, Atmos.
- 116 Chem. Phys., 8, 6565-6576, https://doi.org/10.5194/acp-8-6565-2008, 2008.
- 117 Wang, Y., Beirle, S., Lampel, J., Koukouli, M., De Smedt, I., Theys, N., Ang, L., Wu, D., Xie, P.,
- and Liu, C.: Validation of OMI, GOME-2A and GOME-2B tropospheric NO₂, SO₂ and HCHO
- products using MAX-DOAS observations from 2011 to 2014 in Wuxi, China: investigation of the
- 120 effects of priori profiles and aerosols on the satellite products, Atmos. Chem. Phys., 17, 5007,
- 121 https://doi.org/10.5194/acp-17-5007-2017, 2017.
- 122 Williams, J. E., Scheele, M. P., van Velthoven, P. F. J., Cammas, J.-P., Thouret, V., Galy-Lacaux,
- 123 C., and Volz-Thomas, A.: The influence of biogenic emissions from Africa on tropical
- tropospheric ozone during 2006: a global modeling study, Atmos. Chem. Phys., 9, 5729-5749,
- 125 https://doi.org/10.5194/acp-9-5729-2009, 2009.

- 126 Williams, J. E., Boersma, K. F., Sager, P. L., and Verstraeten, W. W.: The high-resolution version
- 127 of TM5-MP for optimized satellite retrievals: description and validation, Geoscientific Model
- 128 Development, 10, 721-750, https://doi.org/10.5194/gmd-10-721-2017, 2017.

129 Zara, M., Boersma, K. F., De Smedt, I., Richter, A., Peters, E., Van Geffen, J. H. G. M., Beirle,

- 130 S., Wagner, T., Van Roozendael, M., and Marchenko, S.: Improved slant column density retrieval
- 131 of nitrogen dioxide and formaldehyde for OMI and GOME-2A from QA4ECV: intercomparison,
- uncertainty characterization, and trends, Meas. Tech. Discuss, 1-47, https://doi.org/10.5194/amt-
- 133 11-4033-2018, 2018.
- 134 Zhang, R., Wang, Y., Smeltzer, C., Qu, H., Koshak, W., and Boersma, K. F.: Comparing OMI-
- 135 based and EPA AQS in situ NO_2 trends: towards understanding surface NO_x emission changes,
- 136 Atmos. Meas. Tech., 11, 3955-3967, https://doi.org/10.5194/amt-11-3955-2018, 2018.

Inferring the anthropogenic NO_x emission trend over the United States during 2003 - 2017 from satellite observations: Was there a flattening of the emission trend after the Great Recession?

Jianfeng Li^{1, a}, Yuhang Wang^{1*}

¹School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA

9 <u>a Now at Pacific Northwest National Laboratory, Richland, WA, USA</u>

- 10 * *Correspondence to* Yuhang Wang (yuhang.wang@eas.gatech.edu)
- 11

6

1

13 Figure Captions

Figure S1. Annual variation of NO_3^- wet deposition fluxes for each season from 2003 - 2017. The

15 fluxes were scaled by the corresponding values in 2003. Shaded regions denote standard

16 deviations. Monthly NO_3^- wet deposition observations are obtained from

17 https://nadp.slh.wisc.edu/data/NTN/ntnAllsites.aspx (last access, September 29, 2019).

18 Figure S2. Comparison between original EPA anthropogenic NO_x emissions and updated EPA

19 anthropogenic NO_x emissions with the newest Continuous Emission Monitoring Systems

20 (CEMS) measurements.

Figure S3. Daily OMI NO₂ TVCDs for July 2011 (a) and 2012 (b) in Atlanta $(33.755^{\circ} \text{ N}, 84.39^{\circ} \text{ N})$

22 W). Black circles are weekday values, and red circles are weekend values. We find significant

23 daily variations of NO₂ TVCD from (a) and (b). The number of available measurements in July

24 2011 is much less than July 2012. We find clear larger NO₂ TVCD values on weekdays than on

weekends in July 2011, but the difference between weekday and weekday TVCDs in July 2012are not so obvious.

27 Figure S4. Hourly averaged ratios of FEM (a) and CAPS (b) to FRM NO₂ measurements in each

28 season, respectively. The FEM/FRM ratios are computed from coincident FRM and FEM

29 measurements from 2013 – 2015 at 4 sites. The CAPS/FRM ratios are calculated based on

30 coincident CAPS and FRM data from 2015 – 2016 at 3 sites.

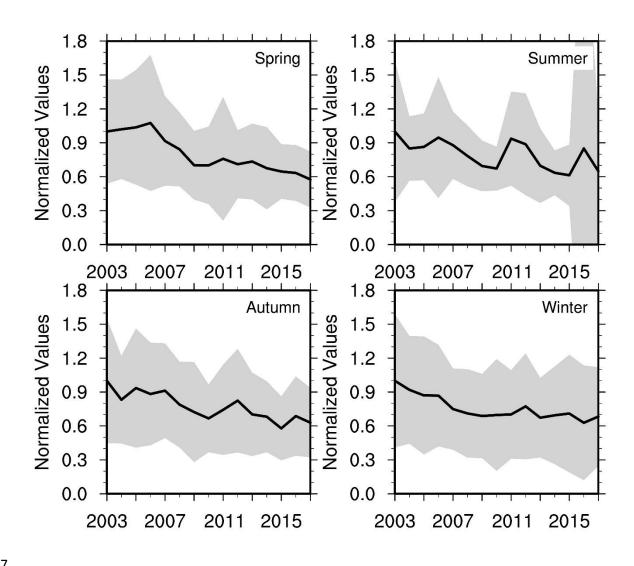
31 Figure S5. Annual variations of AQS NO₂ surface concentrations at different hours on weekdays

32 in spring (a, b), summer (c, d), autumn (e, f), and winter (g, h). Left panels show absolute NO₂

33 concentrations, and right panels are their relative variations normalized to 2011. To conduct

reliable and consistent comparisons, we only used monitoring sites satisfying the seasonal *RCI* <

35 50% and continuity criteria on weekdays from 2003 - 2017.


36	Figure S6. Distributions of (a) NO ₂ TVCD fraction that is in the boundary layer (< 2810 m) at
37	13:00 - 14:00, (b) NO ₂ TVCD fraction in the boundary layer (< 1290 m) at 10:00 - 11:00, (c) the
38	fraction of soil NO _x emissions in all surface sources (anthropogenic + soil) on weekdays for July
39	2011. As the lifetime of NO ₂ in the free troposphere (several days ~ 2 weeks) is much longer than
40	that in the boundary layer (~ 10 hours), local lightning NO_x emissions cannot represent NO_2
41	VCDs in the free troposphere. In this study, we apply NO ₂ VCD in the free troposphere to
42	analyze the impact of lighting NO_x on the nonlinear relationships between anthropogenic NO_x
43	emissions and NO ₂ TVCDs and use lightning NO _x and NO ₂ VCD in the free troposphere
44	interchangeably in the following.
45	Figure S7. (a) Distributions of the fractions of surface NO _x emissions emitted by soil
46	("SoilNOx"), the portions of NO ₂ TVCDs in the boundary layer ("PBLVCD"), and the fractions
47	of NO ₂ TVCDs from anthropogenic NO _x emissions ("AnthroVCD") as functions of NEI2011
48	anthropogenic NO_x emissions at 13:00 – 14:00 LT on weekdays for July 2011 over the CONUS.
49	The fraction of NO ₂ TVCDs from anthropogenic NO _x emissions is equal to $(1 - 1)^{-1}$
50	$\frac{E_{soil}}{E_{soil}+E_{anthropogenic}} \times \left(\frac{TVCD_{boundary}}{TVCD_{boundary}+TVCD_{free}}\right), \text{ where } E_{soil} \text{ denotes soil NO}_{x} \text{ emissions,}$
51	$E_{anthropogenic}$ denotes anthropogenic NO _x emissions, $TVCD_{boundary}$ denotes NO ₂ TVCDs in the
52	boundary layer, and $TVCD_{free}$ denotes NO ₂ TVCDs in the free troposphere. The calculated data
53	are grouped into 9 bins as in Figure 2. (b) Same as (a), but for 10:00 – 11:00 LT. (c) Distributions
54	of β_{Emis} , γ_{Emis} , β , and γ as functions of anthropogenic NO _x emissions at 13:00 – 14:00 LT on
55	weekdays for July 2011 over the CONUS. β and γ are the same as Figure 2. β_{Emis} and γ_{Emis} denote
56	β and γ values when no other factors are taken into consideration except for soil NO _x emissions,
57	anthropogenic NO _x emissions, and NO ₂ in the free troposphere. $\beta_{Emis} =$
58	$\frac{15\%}{(E_{anthropogenic} + E_{soil})} = \left(\frac{E_{anthropogenic} + E_{soil}}{E_{soil}}\right) \left(\frac{TVCD_{boundary} + TVCD_{free}}{TVCD_{i}}\right),$

$$58 \qquad \frac{15\%}{15\%} = \left(\frac{E_{anthropogenic} + E_{soil}}{E_{anthropogenic}}\right) \left(\frac{TVCD_{boundary}}{TVCD_{boundary} + TVCD_{free}}\right) = \left(\frac{E_{anthropogenic}}{E_{anthropogenic}}\right) \left(\frac{TVCD_{boundary} + TVCD_{free}}{TVCD_{boundary}}\right),$$

59 and
$$\gamma_{Emis} = \frac{15\%}{15\% \times \left(\frac{E_{anthropogenic}}{E_{anthropogenic} + E_{soil}}\right)} = \left(\frac{E_{anthropogenic} + E_{soil}}{E_{anthropogenic}}\right)$$
. It is noteworthy that here we

60	assume no interactions between the boundary layer and the free troposphere, boundary-layer NO_x
61	are only related to soil and anthropogenic NO_x emissions, and lightning NO_x only affect NO_2 in
62	the free troposphere. The assumptions are reasonable as the time scale (~ 1 week) of the
63	interactions between the boundary layer and the free troposphere are is much longer than NO _x
64	lifetime in the boundary layer, and in this study, only a small fraction of lightning NO_x is
65	distributed into the boundary layer in this study. Therefore, β_{Emis} and γ_{Emis} roughly represent the
66	contributions of background sources (lightning NO _x and soil NO _x) to β and γ values. The
67	differences between β (γ) and β_{Emis} (γ_{Emis}) indicate the contribution of non-emission factors to β
68	(γ) values, such as chemistry, transport, <u>NO₂ hydrolysis on aerosols</u> , and dry and wet deposition s .
69	(d) Same as (c), but for 10:00 – 11:00 LT. From (c) and (d) this figure, we find that both
70	background sources (lightning NO_x + soil NO_x) and non-emission factors are important when
71	considering the nonlinear relationships among NO _x emissions, NO ₂ surface concentrations, and
72	NO_2 TVCDs in low-anthropogenic- NO_x emission regions. (e) Distribution of NO_x chemical
73	lifetimes as functions of anthropogenic NO _x emissions at 11:00 – 14:00 LT on weekdays for July
74	2011 over the CONUS. "Standard_surf" denotes NO_x chemical lifetimes at the surface layer from
75	the standard REAM simulation ("group 1" in Section 3.1); "Standard_trop" denotes average NO _x
76	chemical lifetimes in the troposphere for "group 1"; "Reduce_surf" denotes NOx chemical
77	lifetimes at the surface layer for "group 2" with anthropogenic NO_x emissions reduced by 15%;
78	"Reduce_trop" denotes average NOx chemical lifetimes in the troposphere for "group 2". In this
79	study, we used the lifetimes at 11:00 – 14:00 LT but not 13:00 – 14:00 LT to partly include the
80	accumulation effect of NO _x emissions: NO ₂ TVCD and NO ₂ surface concentrations at $13:00 - 100$
81	<u>14:00 LT are not only affected by NO_x emissions at 13:00 – 14:00 LT but also by NO_x emissions</u>
82	before that due to the NO _x chemical lifetime of several hours in daytime. (f) Same as (e), but for
83	8:00 – 11:00 LT. (g) Relative changes of NO _x chemical lifetimes at 11:00 – 14:00 LT on
I	

- 84 weekdays for July 2011 over the CONUS due to the 15% decrease of anthropogenic NO_x
- 85 emissions in "group 2". "Surface" denotes the relative changes of NO_x chemical lifetimes at the
- 86 <u>surface</u>, while "Troposphere" denotes the relative changes of average NO_x chemical lifetimes in
- 87 <u>the troposphere. We first calculated the relative changes in each grid cell via</u> $\frac{lifetime_{Reduce}}{lifetime_{standard}} 1$,
- 88 and then binned the calculated data into 9 groups as Figure 2. (h) Same as (g), but for 8:00 –
- 89 <u>11:00 LT. In the chemical lifetime calculation, we included sinks from the reaction of $OH + NO_2$ </u>
- 90 and net losses due to organic nitrate production from the reactions of RO₂ with NO or NO₂ except
- 91 for peroxyacyl nitrates (PANs), because PANs can be either a source or sink of NO_x depending
- 92 on transport and chemistry. Only accounting for the sink from the reaction of $OH + NO_2$ produces
- 93 significant different lifetimes in low-anthropogenic-NO_x emission bins and has less impact on
- 94 <u>high-anthropogenic-NO_x emission regions, which, however, does not affect our conclusions</u>
- 95 derived from subpanels (g) and (h) (the mean relative differences of chemical lifetimes between
- 96 <u>"group 1" and "group 2" are still < 10% in all bins): the chemical nonlinearity contributes little to</u>
- 97 β and γ values in low-anthropogenic-NO_x emission regions. Although not shown here, the
- 98 impacts of NO₂ hydrolysis and NO₂ dry deposition on β and γ values are even smaller than those
- 99 of chemical nonlinearity. Therefore, the differences between $\beta(\gamma)$ and $\beta_{\text{Emis}}(\gamma_{\text{Emis}})$ in low-
- 100 <u>anthropogenic-NO_x emission bins in (c) and (d) mainly indicate the contribution of transport to β </u>
- 101 (γ) values. Error bars in (a), (b), (g), and (h) denote standard deviations.
- 102 Figure S8. Same as Figure 4, but for AQS NO₂ surface concentrations and coincident GOME-2A
- 103 NO₂ TVCD data during 2008 2016.
- 104 Figure S9. Relative variations of OMI-QA4ECV NO₂ TVCD data for urban regions (black lines)
- and the whole CONUS (red lines) from 2005 2017 in 4 seasons.
- 106

108 Figure S1. Annual variation of NO_3^- wet deposition fluxes for each season from 2003 - 2017. The

- 109 fluxes were scaled by the corresponding values in 2003. Shaded regions denote standard
- deviations. Monthly NO₃⁻ wet deposition observations are obtained from
- 111 https://nadp.slh.wisc.edu/data/NTN/ntnAllsites.aspx (last access, September 29, 2019).

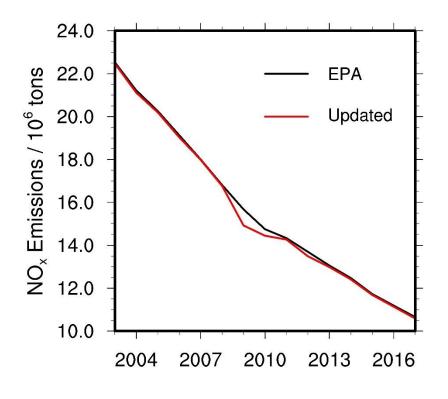


Figure S2. Comparison between original EPA anthropogenic NO_x emissions and updated EPA
anthropogenic NO_x emissions with the newest Continuous Emission Monitoring Systems
(CEMS) measurements.

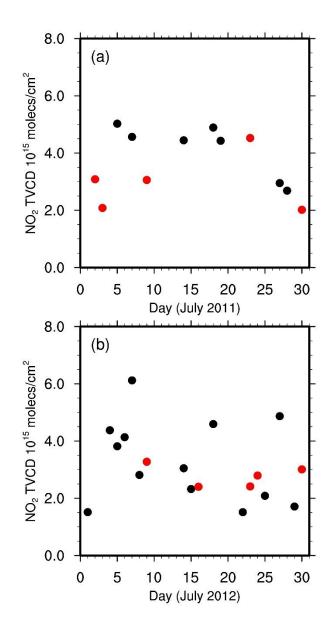
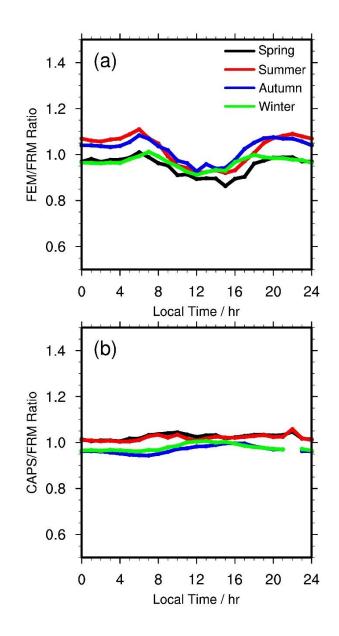
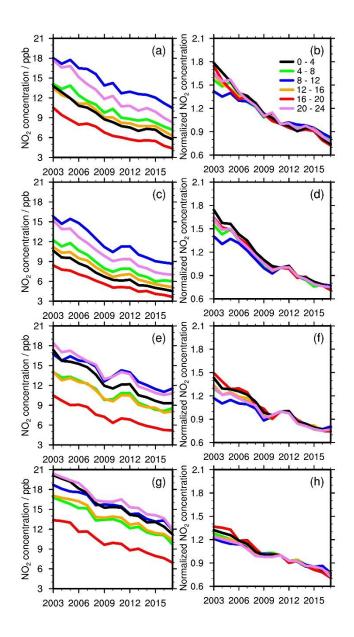
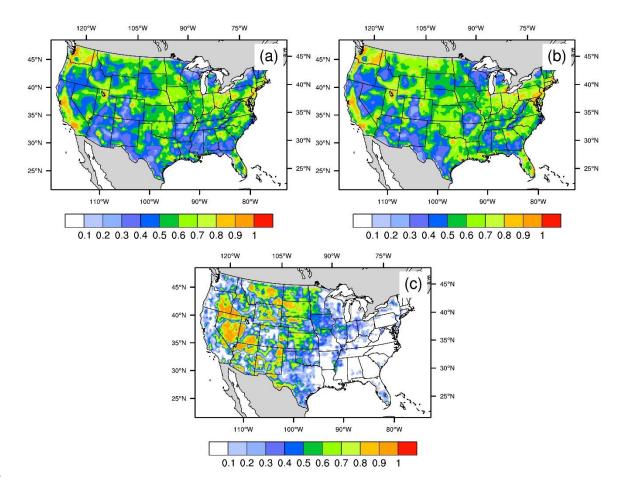



Figure S3. Daily OMI NO₂ TVCDs for July 2011 (a) and 2012 (b) in Atlanta (33.755° N, 84.39°
W). Black circles are weekday values, and red circles are weekend values. We find significant
daily variations of NO₂ TVCD from (a) and (b). The number of available measurements in July
2011 is much less than July 2012. We find clear larger NO₂ TVCD values on weekdays than on
weekends in July 2011, but the difference between weekday and weekday TVCDs in July 2012
are not so obvious.



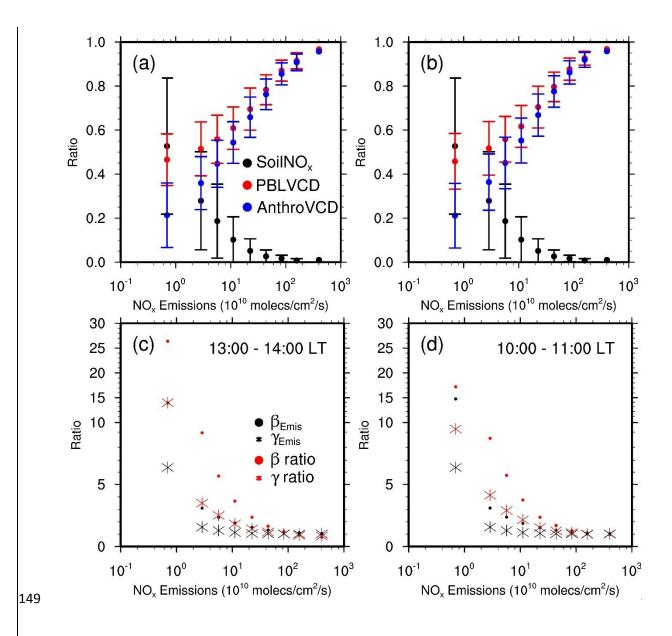
126 Figure S4. Hourly averaged ratios of FEM (a) and CAPS (b) to FRM NO₂ measurements in each

season, respectively. The FEM/FRM ratios are computed from coincident FRM and FEM


128 measurements from 2013 – 2015 at 4 sites. The CAPS/FRM ratios are calculated based on

129 coincident CAPS and FRM data from 2015 – 2016 at 3 sites.

131


Figure S5. Annual variations of AQS NO₂ surface concentrations at different hours on weekdays in spring (a, b), summer (c, d), autumn (e, f), and winter (g, h). Left panels show absolute NO₂ concentrations, and right panels are their relative variations normalized to 2011. To conduct reliable and consistent comparisons, we only used monitoring sites satisfying the seasonal RCI <50% and continuity criteria on weekdays from 2003 – 2017.

138

139 Figure S6. Distributions of (a) NO₂ TVCD fraction that is in the boundary layer (< 2810 m) at 140 13:00 - 14:00, (b) NO₂ TVCD fraction in the boundary layer (< 1290 m) at 10:00 - 11:00, (c) the 141 fraction of soil NO_x emissions in all surface sources (anthropogenic + soil) on weekdays for July 2011. As the lifetime of NO₂ in the free troposphere (several days ~ 2 weeks) is much longer than 142 143 that in the boundary layer (~ 10 hours), local lightning NO_x emissions cannot represent NO₂ 144 VCDs in the free troposphere. In this study, we apply NO_2 VCD in the free troposphere to 145 analyze the impact of lighting NO_x on the nonlinear relationships between anthropogenic NO_x 146 emissions and NO₂ TVCDs and use lightning NO_x and NO₂ VCD in the free troposphere 147 interchangeably in the following.

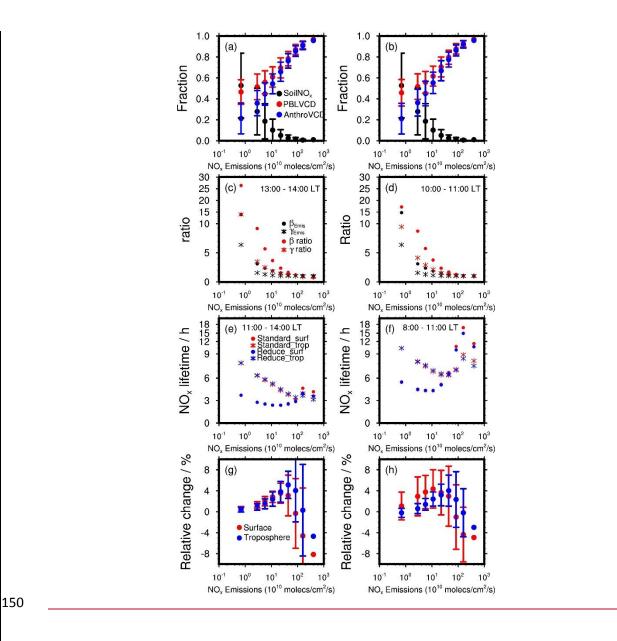


Figure S7. (a) Distributions of the fractions of surface NO_x emissions emitted by soil

152 ("SoilNO_x"), the portions of NO₂ TVCDs in the boundary layer ("PBLVCD"), and the fractions

- 153 of NO₂ TVCDs from anthropogenic NO_x emissions ("AnthroVCD") as functions of NEI2011
- anthropogenic NO_x emissions at 13:00 14:00 LT on weekdays for July 2011 over the CONUS.

155 The fraction of NO₂ TVCDs from anthropogenic NO_x emissions is equal to $(1 - 1)^{-1}$

156
$$\frac{E_{soil}}{E_{soil}+E_{anthropogenic}} \times \left(\frac{TVCD_{boundary}}{TVCD_{boundary}+TVCD_{free}}\right)$$
, where E_{soil} denotes soil NO_x emissions,

157 $E_{anthropogenic}$ denotes anthropogenic NO_x emissions, $TVCD_{boundary}$ denotes NO₂ TVCDs in the

boundary layer, and *TVCD*_{free} denotes NO₂ TVCDs in the free troposphere. The calculated data

are grouped into 9 bins as in Figure 2. (b) Same as (a), but for 10:00 – 11:00 LT. (c) Distributions

- 160 of β_{Emis} , γ_{Emis} , β , and γ as functions of anthropogenic NO_x emissions at 13:00 14:00 LT on
- 161 weekdays for July 2011 over the CONUS. β and γ are the same as Figure 2. β_{Emis} and γ_{Emis} denote
- 162 β and γ values when no other factors are taken into consideration except for soil NO_x emissions,

anthropogenic NO_x emissions, and NO₂ in the free troposphere. $\beta_{Emis} =$

164
$$\frac{15\%}{15\% \times \left(\frac{E_{anthropogenic}}{E_{anthropogenic}+E_{soil}}\right) \left(\frac{TVCD_{boundary}}{TVCD_{boundary}+TVCD_{free}}\right)} = \left(\frac{E_{anthropogenic}+E_{soil}}{E_{anthropogenic}}\right) \left(\frac{TVCD_{boundary}+TVCD_{free}}{TVCD_{boundary}}\right),$$

165 and
$$\gamma_{Emis} = \frac{15\%}{15\% \times \left(\frac{E_{anthropogenic}}{E_{anthropogenic} + E_{soil}}\right)} = \left(\frac{E_{anthropogenic} + E_{soil}}{E_{anthropogenic}}\right)$$
. It is noteworthy that here we

166 assume no interactions between the boundary layer and the free troposphere, boundary-layer NO_x 167 are only related to soil and anthropogenic NO_x emissions, and lightning NO_x only affect NO_2 in 168 the free troposphere. The assumptions are reasonable as the time scale (~ 1 week) of the 169 interactions between the boundary layer and the free troposphere $\frac{are}{re}$ is much longer than NO_x 170 lifetime in the boundary layer, and in this study, only a small fraction of lightning NO_x is 171 distributed into the boundary layer in this study. Therefore, β_{Emis} and γ_{Emis} roughly represent the 172 contributions of background sources (lightning NO_x and soil NO_x) to β and γ values. The 173 differences between β (γ) and β_{Emis} (γ_{Emis}) indicate the contribution of non-emission factors to β 174 (γ) values, such as chemistry, transport, NO₂ hydrolysis on aerosols, and dry and wet depositions. 175 (d) Same as (c), but for 10:00 - 11:00 LT. From (c) and (d)this figure, we find that both 176 background sources (lightning NO_x + soil NO_x) and non-emission factors are important when 177 considering the nonlinear relationships among NO_x emissions, NO₂ surface concentrations, and 178 NO₂ TVCDs in low-anthropogenic-NO_x emission regions. (e) Distribution of NO_x chemical 179 lifetimes as functions of anthropogenic NO_x emissions at 11:00 - 14:00 LT on weekdays for July 2011 over the CONUS. "Standard surf" denotes NOx chemical lifetimes at the surface layer from 180

181	the standard REAM simulation ("group 1" in Section 3.1); "Standard_trop" denotes average NO _x
182	chemical lifetimes in the troposphere for "group 1"; "Reduce_surf" denotes NOx chemical
183	lifetimes at the surface layer for "group 2" with anthropogenic NO _x emissions reduced by 15%;
184	"Reduce_trop" denotes average NOx chemical lifetimes in the troposphere for "group 2". In this
185	study, we used the lifetimes at 11:00 – 14:00 LT but not 13:00 – 14:00 LT to partly include the
186	accumulation effect of NO _x emissions: NO ₂ TVCD and NO ₂ surface concentrations at 13:00 –
187	<u>14:00 LT are not only affected by NO_x emissions at 13:00 – 14:00 LT but also by NO_x emissions</u>
188	before that due to the NO _x chemical lifetime of several hours in daytime. (f) Same as (e), but for
189	8:00 – 11:00 LT. (g) Relative changes of NO _x chemical lifetimes at 11:00 – 14:00 LT on
190	weekdays for July 2011 over the CONUS due to the 15% decrease of anthropogenic NO _x
191	emissions in "group 2". "Surface" denotes the relative changes of NO _x chemical lifetimes at the
192	surface, while "Troposphere" denotes the relative changes of average NO _x chemical lifetimes in
193	the troposphere. We first calculated the relative changes in each grid cell via $\frac{lifetime_{Reduce}}{lifetime_{Standard}} - 1$,
194	and then binned the calculated data into 9 groups as Figure 2. (h) Same as (g), but for 8:00 -
195	<u>11:00 LT. In the chemical lifetime calculation, we included sinks from the reaction of $OH + NO_2$</u>
196	and net losses due to organic nitrate production from the reactions of RO2 with NO or NO2 except
197	for peroxyacyl nitrates (PANs), because PANs can be either a source or sink of NO _x depending
198	on transport and chemistry. Only accounting for the sink from the reaction of OH + NO ₂ produces
199	significant different lifetimes in low-anthropogenic-NO _x emission bins and has less impact on
200	high-anthropogenic-NO _x emission regions, which, however, does not affect our conclusions
201	derived from subpanels (g) and (h) (the mean relative differences of chemical lifetimes between
202	"group 1" and "group 2" are still < 10% in all bins): the chemical nonlinearity contributes little to
203	β and γ values in low-anthropogenic-NO _x emission regions. Although not shown here, the
204	impacts of NO ₂ hydrolysis and NO ₂ dry deposition on β and γ values are even smaller than those
205	of chemical nonlinearity. Therefore, the differences between β (γ) and β_{Emis} (γ_{Emis}) in low-

- 206 anthropogenic-NO_x emission bins in (c) and (d) mainly indicate the contribution of transport to β
- 207 (γ) values. Error bars in (a), (b), (g), and (h) denote standard deviations.

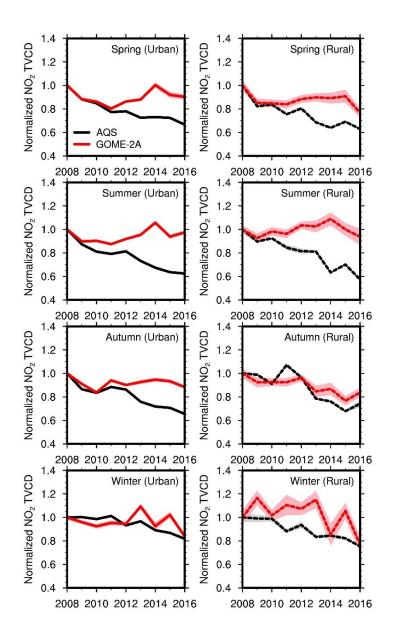


Figure S8. Same as Figure 4, but for AQS NO₂ surface concentrations and coincident GOME-2A
NO₂ TVCD data during 2008 – 2016.

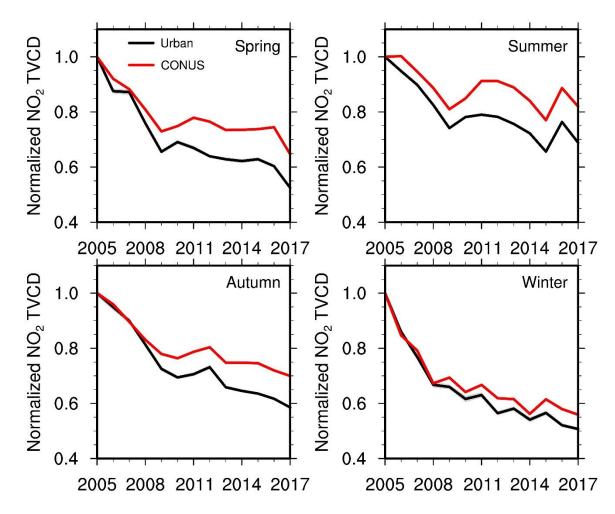


Figure S9. Relative variations of OMI-QA4ECV NO₂ TVCD data for urban regions (black lines)
 and the whole CONUS (red lines) from 2005 – 2017 in 4 seasons.