

Response to Aristeidis Georgoulias

Thank you for your useful suggestions. Our answers follow your comments (in *Italics*).

Comments/suggestions:

Dear authors, in support of your results I would like to bring your attention to a recent study on satellite-based tropospheric NO₂ trends and trend reversals (1996-2017). In this study, it is shown that several regions in the US experienced a trend reversal around the period 2000 from positive or neutral trends to negative ones. There are also results for selected megacities in the US (e.g. Los Angeles).

Georgoulias, A. K., van der A, R. J., Stammes, P., Boersma, K. F., and Eskes, H. J.: Trends and trend reversal detection in 2 decades of tropospheric NO₂ satellite observations, Atmos. Chem. Phys., 19, 6269-6294, <https://doi.org/10.5194/acp-19-6269-2019>, 2019.

Reply:

Thank you for providing a useful reference. Georgoulias et al. (2019) investigated the trends of mid-morning NO₂ tropospheric vertical column densities around the world at multi-spatial scales from 1996 – 2017 based on GOME, SCIAMACHY, GOME-2A, and GOME-2B products, confirming significant decreases of NO₂ TVCDs over the United States in the recent two decades. The paper is quite relevant to our work, and we will cite the paper during the revision of the manuscript.

References

Georgoulias, A. K., van der A, R. J., Stammes, P., Boersma, K. F., and Eskes, H. J.: Trends and trend reversal detection in 2 decades of tropospheric NO₂ satellite observations, *Atmos. Chem. Phys.*, 19, 6269-6294, 10.5194/acp-19-6269-2019, 2019.