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Abstract.  

Oxidation of organic compounds in the atmosphere produces an immensely complex mixture of product 

species, posing a challenge both for their measurement in laboratory studies and their inclusion in air quality and 

climate models. Mass spectrometry techniques can measure thousands of these species, giving insight into these 

chemical processes, but the data sets themselves are highly complex. Data reduction techniques that group 15 

compounds in a chemically and kinetically meaningful way provide a route to simplify the chemistry of these 

systems, but have not been systematically investigated. Here we evaluate three approaches to reducing the 

dimensionality of oxidation systems measured in an environmental chamber: positive matrix factorization (PMF), 

hierarchical clustering analysis (HCA), and a parameterization to describe kinetics in terms of multigenerational 

chemistry (gamma kinetics parameterization, GKP). The evaluation is implemented by means of two data sets: 20 

synthetic data consisting of a three-generation oxidation system with known rate constants, generation numbers, 

and chemical pathways; and the measured products of OH-initiated oxidation of a substituted aromatic compound 

in a chamber experiment. We find that PMF accounts for changes in the average composition of all products 

during specific periods of time, but does not sort compounds into generations or by another reproducible chemical 

process. HCA, on the other hand, can identify major groups of ions and patterns of behavior, and maintains bulk 25 
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chemical properties like carbon oxidation state that can be useful for modeling. The continuum of kinetic behavior 

observed in a typical chamber experiment can be parameterized by fitting species’ time traces to the GKP, which 

approximates the chemistry as a linear, first-order kinetic system. Fitted parameters for each species are the 

number of reaction steps with OH needed to produce the species (the generation) and an effective kinetic rate 

constant that describes the formation and loss rates of the species. The thousands of species detected in a typical 30 

laboratory chamber experiment can be organized into a much smaller number (10-30) of groups, each of which 

has characteristic chemical composition and kinetic behavior. This quantitative relationship between chemical 

and kinetic characteristics, and the significant reduction in the complexity of the system, provide an approach to 

understanding broad patterns of behavior in oxidation systems and could be exploited for mechanism development 

and atmospheric chemistry modeling.  35 

Introduction  

Air quality and climate change are major threats to the quality of millions of human lives across the globe 

(IPCC, 2014; Landrigan et al., 2018). An important scientific component of both topics is the photooxidation 

chemistry of organic compounds in the atmosphere, which can lead to the formation of ozone and fine particulate 

matter, both of which can affect the radiative budget of the atmosphere and can harm human health. A detailed 40 

understanding of this chemistry is necessary to predict and mitigate these effects. However, this is challenging 

because of the diversity and number of species involved. Gas-phase organic compounds emitted directly into the 

atmosphere have a wide range of functionality and reactivity, and oxidation of these precursors by O3, OH, or 

NO3 can further functionalize or fragment the molecules. The number and diversity of the product species 

increases with the number of generations of reaction, and key properties of these product species, such as 45 

volatility, reactivity, and concentration, can vary over orders of magnitude (Glasius and Goldstein, 2016; 

Goldstein and Galbally, 2007).  

This complexity presents several challenges. In order to fully characterize oxidation of organic compounds, 

analytical techniques must be able to detect hundreds to thousands of individual species and accommodate the 

diversity of functionality and concentration. Advances in instrumentation, especially high-resolution time-of-50 

flight chemical ionization mass spectrometry (CIMS), have enabled detection of a large number of oxidation 

products in chamber and field experiments.  CIMS involves the introduction of a reagent ion, which then reacts 

with the analyte, forming product ions that are detected with mass spectrometry. Chemical selectivity can be 

achieved through choice of the reagent ion, and fast, online measurement of air samples is possible. CIMS 
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instruments with high mass resolution (maximum FWHM m/Δm >3000) can unambiguously determine the 55 

elemental composition of most detected ions with m/z less than 200, and elemental compositions of ions with m/z 

>200 can usually be determined with some certainty (Junninen et al., 2010). The analytical capability of 

atmospheric CIMS instrumentation is rapidly improving, and modern instruments can have sensitivities on the 

order of 10000 cps ppbv-1 and resolution greater than 10000 m/Δm (Breitenlechner et al., 2017; Krechmer et al., 

2018), allowing the measurement of hundreds to thousands of species on a rapid time base (Isaacman-VanWertz 60 

et al., 2017; Müller et al., 2012).  

While this represents a major advance in our ability to detect and characterize trace atmospheric chemical 

components, these large data sets can be difficult and time-consuming to interpret, and it is not clear how the full 

information content from thousands of ions can be best used. Further, secondary ion processes, such as cluster 

formation or ion fragmentation, can occur within the mass spectrometer, complicating the mass spectra, and 65 

different CIMS techniques have differing chemical specificities that can be hard to predict. Data analysis 

techniques are therefore needed to efficiently reduce the amount of data to more manageable and interpretable 

sizes. Further, the interpretation of these measurements in terms of chemical mechanisms is often not 

straightforward. Most laboratory studies use CIMS measurements to support, refute, or suggest new chemical 

mechanisms; this is typically done by hand, focusing on several key species of interest. Data analysis techniques 70 

that allow for the extraction of useful chemical and mechanistic information from entire mass spectra are valuable 

and necessary, but have not been systematically explored. 

Simplification is also needed to incorporate oxidation chemistry into climate and air quality models. Large-

scale regional and global models (e.g., chemical transport models, earth system models) cannot currently 

incorporate a high level of chemical detail. Photochemical mechanisms commonly used to incorporate chemistry 75 

into regional and global models typically include 30-200 species and 100-400 reactions (Brown-Steiner et al., 

2018; Jimenez et al., 2003), which is much lower than the number of product species from individual precursors 

included in explicit chemistry mechanisms such as the Master Chemical Mechanism (300-1000+ product species, 

e.g. Bloss et al., 2005; Jenkin et al., 2003; Saunders et al., 2003) or GECKO-A (~105 species, Aumont et al., 

2005). In order to reduce the number of species in models, VOCs are represented by groups, or are “lumped,” and 80 

the choice of lumping criterion can affect the derived ozone, aerosol, and product VOC formation values (Jimenez 

et al., 2003; Zhang et al., 2012). In gas-phase mechanisms, compounds have been lumped by degree of 

unsaturation, emission rates, functional groups, or reactivity towards OH (Brown-Steiner et al., 2018; Crassier et 

al., 2000; Houweling et al., 1998; Jimenez et al., 2003). Similarly, secondary organic aerosol formation has been 

parameterized by lumping organic species by volatility, O:C ratio, number of carbon and oxygen atoms, or 85 
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polarity, and assigning kinetic properties to each group (Cappa and Wilson, 2012; Donahue et al., 2012; Lane et 

al., 2008; Pankow and Barsanti, 2009). Lumping schemes could be improved by using laboratory data to define 

important groups of compounds and assign experimentally-derived chemical and kinetic properties to each group.  

Several methods have been used to categorize mass spectra and to group compounds. We consider two 

methods previously used to reduce the dimensionality of complex atmospheric chemistry measurements, positive 90 

matrix factorization (PMF) and hierarchical clustering analysis (HCA). Both methods have seen substantial use 

in the simplification and interpretation of field measurements, but have seen far less use in the laboratory, and 

there has been little exploration of how they can be used to gain useful chemical or mechanistic information from 

laboratory mass spectrometric datasets. We additionally address a fundamental, underexplored problem in 

laboratory chamber studies: how to systematically characterize the kinetics of an oxidation system. The systematic 95 

characterization is achieved through the gamma kinetics parameterization (GKP) and can be used to group 

compounds based on similar kinetic properties. The three methods (PMF, HCA, and GKP) are evaluated in terms 

of their ability to reduce the complexity of the system, whether the derived groups of compounds have meaningful 

chemical and kinetic properties, and whether new information about the system can be learned. The output of 

these dimensionality-reduction techniques can be used to quickly analyze and interpret chamber experiments, and 100 

could be used to reduce the complexity of chemical mechanisms included in models. 

2 Methods 

2.1 Data collection 

We use two data sets: a synthetic data set describing a simple multigenerational kinetic system, and 

measurements of the OH-initiated oxidation of 1,2,4-trimethylbenzene in an environmental chamber. The 105 

synthetic dataset is useful for evaluating the various dimensionality-reduction schemes used here, because the 

reaction rate constants and generation of each species are known exactly. The chamber data demonstrates the 

application of the data reduction techniques to a real-world system measured with online mass spectrometry. 

2.1.1 Synthetic data set 

A schematic of the simple synthetic kinetic system is shown in Figure 1. The precursor molecule A reacts 110 

with OH to produce first-generation species (B), which in turn reacts with OH to produce second generation (C) 

and further to third-generation species (D). Only reactions with OH are considered. The system includes three 
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pathways with differing yields, and each pathway includes a product with a fast, a slow, and an intermediate OH 

rate constant. The different rate constants (randomly generated) and yields simulate a range of product behavior. 

To enable PMF measurements, artificial noise was added to the synthetic data. The noise is normally distributed 115 

with a standard deviation proportional to the square root of the signal. The proportionality constant, based on a 

typical PTR-MS sensitivity of 10,000 counts ppb-1 s-1, was chosen to generate signal-to-noise ratios between 10 

and 100, a reasonable range for chamber experiments.  

 
Figure 1 Schematic of reaction pathways with OH (top) of synthetic data and time series shown with linear and log 120 
concentration (bottom: left and right, respectively). Arrows represent a reaction with OH. Reaction rate constants with OH are 

written above the arrows (units are in 10-11 cm3 molecule-3 s-1). Precursor species A reacts at a rate of 5 ×10-11 cm3 molecule-3 

s-1 with yields of 0.6, 0.3, and 0.1 for the three pathways, respectively. Products of pathways 1, 2, and 3 are drawn with solid, 

short-dash, and long-dashed lines, respectively, and the first-, second-, and third-generation products are drawn in red, yellow, 

and blue. The total OH exposure is equal to 24 hours at an average OH concentration of 1.5×106 molecule cm-3. 125 
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2.1.2 Chamber oxidation of 1,2,4-trimethylbenzene 

An oxidation experiment was conducted in the Massachusetts Institute of Technology environmental 

chamber, which consists of a 7.5m3 Teflon enclosure. The chamber conditions were controlled at 20 °C and 2% 

relative humidity. The chamber is illuminated by forty-eight 40 W blacklights with a 300-400 nm spectrum 

peaking at 350 nm.  During experiments the chamber maintains a constant volume, and clean air is continuously 130 

added at a rate equal to the instrument sample flow (15 lpm). Additional details of chamber operation have been 

previously reported (Hunter et al., 2014).  

 Dry ammonium sulfate seed (which provide surface area onto which low-volatility vapors can condense) 

was first added to the chamber to reach a number concentration of 5.7×104 cm-3
 (19.7 µg m-3). Nitrous acid 

(HONO, the OH precursor) was added by bubbling clean air through a dropwise addition of H2SO4 to NaNO2 to 135 

reach a concentration of 45 ppbv in the chamber. Several ppbv of an unreactive tracer, hexaflurorobenzene, were 

added to provide a measure of chamber dilution. Three microliters of neat 1,2,4-trimethylbenzene (SigmaAldrich) 

were added by injection into a 70°C heated inlet with a flow rate of 15 lpm, resulting in an initial concentration 

of 69 ppbv in the chamber. The reagents were allowed to mix for 15 minutes, then the experiment was initiated 

by turning on lights to photolyze nitrous acid and generate OH. Measurements were conducted for seven hours. 140 

During this time three additional aliquots of nitrous acid (27 ppbv, 10 ppbv, and 18 ppbv) were added at regularly-

spaced intervals to roughly maintain the OH concentration. The OH concentration was determined by fitting a 

double-exponential function to the measured decrease of 1,2,4-trimethylbenzene, including a known dilution term 

(determined from hexafluorobenzene dilution) and an OH reaction term. A total atmospheric-equivalent exposure 

of 16.5 hours (assuming an average atmospheric OH concentration of 1.5×106 molecule cm-3) was achieved. 145 

CO and formaldehyde were measured by tunable infrared laser differential absorption spectroscopy 

(TILDAS, Aerodyne Research Inc.) Other gas-phase organic species were measured by chemical ionization, 

followed by analysis with high-resolution time-of-flight (HR-ToF) mass spectrometry. Three chemical ionization 

mass spectrometry (CIMS) techniques were used: I- reagent ion, H3O+ reagent ion, and NH4
+ reagent ion. The I- 

CIMS instrument is from Aerodyne Research Inc. and is described by Lee et al. (2014). H3O+ and NH4
+ CIMS 150 

involved proton-transfer-reaction mass-spectrometers with switchable reagent ion chemistry (PTR3-H3O+ and 

PTR3-NH4
+, Ionicon Analytik). The PTR3 H3O+ CIMS and NH4

+ CIMS techniques are described by 

Breitenlechner et al., 2017 and Zaytsev et al., 2019, respectively. H3O+ CIMS was also carried out using a second 

proton-transfer-reaction mass spectrometer (Vocus-2R-PTR, TOFWERK, A.G.), which is described by Krechmer 

et al., 2018. Total organic aerosol mass was measured using a high-resolution time-of-flight aerosol mass 155 

https://doi.org/10.5194/acp-2019-469
Preprint. Discussion started: 21 June 2019
c© Author(s) 2019. CC BY 4.0 License.



7 
 

spectrometer (AMS) from Aerodyne Research Inc. (DeCarlo et al., 2006), calibrated with ammonium nitrate and 

assuming a collection efficiency of 1. Organic aerosol accounted for approximately 2% of the secondary carbon, 

and individual ion measurements from the AMS are not considered separately. The TILDAS was calibrated 

directly for CO and formaldehyde. The Vocus-2R-PTR was calibrated directly for 1,2,4-trimethylbenzene and 

acetone. The PTR3 H3O+ CIMS was calibrated directly for 15 individual species and an average calibration factor 160 

was applied to other species. The PTR3-NH4
+ and I-CIMS were calibrated using a combination of direct 

calibration and collision-induced-dissociation (Lopez-Hilfiker et al., 2016; Zaytsev et al., 2019). We note however 

that the calibration of each instrument does not affect any results presented in this work, since the analysis 

techniques used examine the time-dependent behavior, and not the absolute concentrations, of the measured 

species. 165 

Sampling from the chamber to CIMS instruments was designed to reduce inlet losses of compounds as 

much as possible, within the physical constraints of the chamber. Each instrument used a 3/16” ID PFA Teflon 

line of 1m or less in length, with a flow of 2 LPM. Inlets extended 10cm into the chamber and no metal fittings 

were used. The PTR instruments additionally have instrument inlets and ion-molecule-reaction chambers that 

minimize gas contact with walls (Breitenlechner et al., 2017; Krechmer et al., 2018). In this study, CIMS inlet 170 

(including chamber and instrument inlet) loss timescales were 15 seconds or less for test compounds with 

saturation concentrations between 102 and 107 µg m3 and therefore wall interactions for these species are unlikely 

to affect the observed kinetics, which occur over tens of minutes (Krechmer et al., 2016). 

Chamber background for each measurement was determined from measurements taken prior to precursor 

injection, which is subtracted from each chamber measurement reported. All measurements were also corrected 175 

for dilution by normalizing to the hexafluorobenzene tracer (for gas-phase data) or to measured (NH4)2SO4 aerosol 

seed (for particle-phase data, which also corrects for wall loss and AMS collection efficiency).  

Between 1000 and 3000 peaks with variability above background were observed in the mass spectra from 

each CIMS instrument; these include chemistry-relevant ions related to oxidation products, as well as other ion 

signals from sources such as instrument ion sources, the hexafluorobenzene dilution tracer, tubing and inlets, and 180 

interferences from large neighboring peaks in the mass spectrum  (Cubison and Jimenez, 2015). Two data-

processing steps were used to identify the chemically relevant ions.  

First, the elemental formulas of all ions were determined. With the resolution of the instruments used 

here (~maximum 10000 m/Δm for Vocus-2R-PTR and PTR3; ~3000 for I-CIMS), elemental composition can 

become ambiguous at high m/z values. We first assigned all unambiguous peaks, where only one reasonable 185 

formula within 10ppm of the peak was possible, beginning with the largest peaks in order to identify and exclude 
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isotopes. Then, we used trends observed in Kendrick mass defect plots to suggest formulas for species expected 

at higher masses. Remaining peaks (<1% of instrument signal) were assigned the formula with the nearest mass 

that included C, H, N, and O, had nine or fewer carbon atoms, and had positive, integer double-bond-equivalency 

(again, beginning with the largest peaks and excluding isotopes). A mass defect plot showing unambiguous ions, 190 

and the complete set of ions, is shown in Figure S1.  

Second, chemically relevant ions were separated from all other ion signals using hierarchical clustering. 

Chemically relevant ions are those which result from oxidation products. They are enhanced above background 

during the oxidation experiment and do not have sudden, stepwise changes, which would indicate an instrument 

interference. A difference mass spectrum, which compares the average signal of each ion before chemistry is 195 

initiated to the average signal during oxidation, is a simple way to identify relevant ions, but can be misleading 

for ions with low signal-to-noise ratios or variability unrelated to oxidation chemistry. Hierarchical clustering 

provides an alternative method, involving the systematic examination of the time-dependent behavior all measured 

species. Chemically relevant ions exhibit a time dependence that is consistent with chemical kinetics (formation 

of the product, often followed by reactive loss) that is different from that of ions not resulting from oxidation. 200 

These two classes are clustered separately from each other, enabling the straightforward selection of only 

chemically relevant ions. The hierarchical clustering algorithm is described in section 2.2.2.  

An example for the PTR3 H3O+ mode instrument is shown in Figure 2. 1330 ions were detected and 

quantified. Of these, 251 have time-dependencies consistent with products of the oxidation of 1,2,4-

trimethylbenzene. Ten to twenty clusters were visually inspected to identify which ions should be excluded from 205 

further analysis.  This approach was used to identify chemically relevant ions and to exclude all background ions 

from each CIMS instrument. 
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Figure 2 Identification of chemically relevant ions within a mass spectrum (here, from the PTR3 H3O+ instrument) using 
hierarchical clustering analysis. A. Average mass spectrum showing chemically relevant ions in red and non-relevant ions in 210 
gray. B. Hierarchical cluster of ions. Relevant ions and the clusters they belong to are highlighted in red. Boxes are drawn 
around two example clusters, “C,” which includes non-relevant ions, and “D,” which includes relevant ions. C. Time series of 
all ions belonging to cluster “C.” The average is drawn in black. D. Time series of all ions belonging to cluster “D.” The 
average is drawn in black. The oscillating pattern is due to ion source stabilization after reagent-ion switching and was not 
included in final data.  215 

 

Compounds that were measured by more than one instrument, identified as having the same elemental 

composition (after correction for any reagent ion chemistry) and similar time-series behavior (Pearson’s R >0.9), 

were included only once in the data set with all product species. When selecting compounds measured by more 

than one instrument, data from PTR-MS instruments, which have the smallest calibration uncertainties, were used 220 

first, followed by I- CIMS and NH4
+ CIMS. In the final, combined data set, approximately half the carbon in 

oxidation products was measured by PTR-MS, with about 15% measured each by I- CIMS, NH4
+ CIMS, and 
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TILDAS, and an additional 2% by AMS. We recognize that there is a great deal of uncertainty associated with 

calibrating CIMS instrumentation and identifying detected ions. This is an active area of research that we do not 

attempt to address fully here. Calibration and identification of species measured by more than one instrument do 225 

not affect the major conclusions of this paper. 

2.2 Implementation of data simplification tools 

2.2.1 Positive Matrix Factorization (PMF)  

In atmospheric chemistry, PMF analysis typically involves representing a time series of mass spectra (or other 

chemical measurements), recorded as a matrix of m measurements by t time points, as a linear sum of “factors” 230 

(Paatero, 1997; Ulbrich et al., 2009; Zhang et al., 2011). Each factor is fixed in chemical composition, but varies 

in intensity over time. PMF is frequently used for source apportionment and characterization of organic aerosol 

in field studies, for example, to sort aerosol as more- or less- oxidized, or from a specific source such as biomass 

burning (Zhang et al., 2011). PMF is also frequently applied to VOC measurements in field studies. In this 

application, each factor indicates a particular VOC class (which can be associated with a specific source) and its 235 

magnitude, which is a powerful tool to support regulation. However, oxidation chemistry during transport from 

the source to the measurement location can change the chemical composition, causing a single source to appear 

as several factors, or causing oxidized species from several sources to be grouped together, and adding substantial 

uncertainty to the derived source profiles (Sauvage et al., 2009; Wang et al., 2013; Yuan et al., 2012). Factors 

including oxidation products, described as “secondary” or “long-lived species,” or that require correction for 240 

photochemistry have been reported in a number of studies from diverse locations (e.g. Abeleira et al., 2017; Sarkar 

et al., 2017; Shao et al., 2016; Stojić et al., 2015), but the interpretation of such factors within the context of a 

continually-evolving system is unclear. Finally, PMF has been applied to measurements of oxidizing chemical 

systems to greatly reduce the complexity of the dataset and identify key shifts in chemistry, including aerosol in 

laboratory experiments (e.g. Craven et al., 2012; Fortenberry et al., 2018), VOCs in chamber experiments (Rosati 245 

et al., 2019), and gas-phase highly-oxidized molecules in field studies (Massoli et al., 2018; Yan et al., 2016). 

Therefore, it is important to understand whether PMF analysis of an oxidizing system returns chemically distinct, 

reproducible factors that correspond to a physical or chemical aspect of the system.  

The algorithm was implemented using the PMF Evaluation Tool v2.08 (Ulbrich et al., 2009) using the 

PMF2 algorithm (Paatero, 2007). Briefly, the algorithm takes as input an m×n matrix of measured data M, with 250 

m mass spectra at n time points, and a matrix of estimated error (one standard deviation, σ) for each point in the 
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measured data matrix. The solution for a given number of factors p is given as an m×p matrix G of factor time 

series, a p×n matrix F of factor profiles, and a matrix E that contains the residual (M-GF). F and G are iteratively 

adjusted to minimize the quality-of-fit parameter Q: 

𝑄𝑄 =  ���𝑒𝑒𝑖𝑖𝑖𝑖 𝜎𝜎𝑖𝑖𝑖𝑖⁄ �2
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

 255 

 

The factors and their profiles are constrained to be non-negative. The measured data matrix M for the 

synthetic dataset was constructed using all ten species (precursor plus 9 products) with artificial noise. The 

measured data matrix M for the chamber dataset was constructed using all measured product species (defined as 

all chemically-relevant ions from CIMS instruments, plus total organic aerosol, CO, and formaldehyde), after 260 

background subtraction, dilution correction, and calibration in units of parts-per-billion carbon (ppbC). Duplicate 

measurements of individual species from multiple instruments were excluded. Although calibrated data are used 

here, because PMF operates on the unitless quality-of-fit parameter Q, the results are not sensitive to calibration, 

only to the signal-to-noise ratio of the individual measurements.  

Because the precursor compound (1,2,4-trimethylbenzene) has an average intensity an order of 265 

magnitude larger than any other species, and therefore a very high signal-to-noise ratio, if it is included in M the 

quality-of-fit parameter Q and the resulting solution are dominated by the precursor. As this is not of interest, the 

precursor was also excluded in PMF analysis. Data were interpolated to 500 points evenly-spaced with respect to 

OH exposure (0-16.5 atmospheric-equivalent hours).  

The matrix of estimated errors for the synthetic dataset was taken as the standard deviation used to generate 270 

the artificial noise. The matrix of estimated errors for the chamber dataset was generated by smoothing the data 

using a running 20-minute linear best-fit, and subtracting this smoothed data from the original measurement. The 

standard deviation of the residual within a 20 minute window was determined for each time point. Signal-to-noise 

ratios for both synthetic and chamber data are shown in Figure S2. The overall relationship between the standard 

deviation determined for chamber data and the measured concentration is reasonable (Figure S3).  275 

Solutions were explored with one to ten factors for the synthetic dataset and the chamber data. Rotational 

forcing, which examines linear combinations of possible solutions using the parameter fPeak, was explored 

through fPeak values between -1 and 1. The selected fPeak was chosen to avoid factor time-series with multiple 

maxima, which are not physically realistic in the chamber system. Solutions were also explored using different 

random initialization values, or seeds. No significant differences were found between solutions with random seed 280 

values 1-10.  
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2.2.2 Hierarchical Clustering Analysis (HCA) 

A second technique is to group or cluster individual measurements based on the similarity of their 

behavior over time. While a measurement of a single chemical species can contribute to more than one PMF 

factor, it can belong to only one cluster. Several approaches to clustering exist. The approach we consider here is 285 

agglomerative hierarchical clustering, which describes the degree of similarity between any two measurements 

and can be used to sort species into categories of behavior (Bar-Joseph et al., 2001; Müllner, 2011). Hierarchical 

clustering analysis (HCA) has been used to group particles based on the similarity between individual mass spectra 

determined by aerosol mass spectrometers (Marcolli et al., 2006; Murphy et al., 2003; Rebotier and Prather, 2007), 

describe time-series of thermally-desorbed organics measured by CIMS (Sánchez-López et al., 2014; Sánchez 290 

López et al., 2016), and recently to determine the appropriate number of PMF factors used to analyze PTR-MS 

data from chamber studies (Rosati et al., 2019). It has not yet been used to group compounds with similar time-

varying behaviors to understand chemical transformation in an oxidation system. In this work we show how this 

technique can be implemented, and assess its ability to reduce the complexity of a dataset while maintaining 

chemical information. 295 

Agglomerative hierarchical clustering sorts measurements by similar time-series behavior, and displays 

the relative similarity between measurements. First, all measurements were normalized, so that the time-series 

behavior could be directly compared despite differences in absolute concentrations or detection efficiencies. Data 

are noisy, and noise can contribute to the absolute highest point in a time series. To account for this, we normalized 

data to the average of the 10 points surrounding the highest point in each time series. Then, the distance between 300 

each pair of measurements A and B was determined. The distance describes the dissimilarity between any two 

time series measurements: two identical time series have a distance of zero, and measurements with different time-

series behavior have larger distance values. Distance was calculated by summing the differences between the 

normalized measurement intensities A and B over all time points t: 

 𝑑𝑑𝐴𝐴𝐴𝐴  = ∑ 𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴𝑡𝑡 − 𝐵𝐵𝑡𝑡)𝑡𝑡 .  305 

The algorithm begins with the distances between all original measurements. The pair of measurements s 

and t with the lowest distance value is found, and these two measurements are assigned to a new cluster u. The 

two original measurements s and t are removed from the set, and the new cluster u is added. Then, the distances 

between the new cluster u and all the remaining measurements are determined. The algorithm then iteratively 

searches for the next smallest distance value and combines the pair into a new cluster. As the algorithm iterates, 310 

new clusters can be formed from two original measurements, from an original measurement and a cluster, or from 
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two clusters. The distance between the new cluster u and any other measurement or cluster in the set v, is calculated 

as the average of the distances between each of the “n” individual members of u and “m” individual members of 

v, over all points i in cluster u and points j in cluster v: 

𝑑𝑑𝑢𝑢𝑢𝑢 =  �
𝑑𝑑(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑗𝑗)
𝑚𝑚 × 𝑛𝑛

𝑖𝑖,𝑗𝑗

 315 

 The algorithm continues until only one cluster remains. Clustering was implemented using the open-source 

scipy.cluster.hierarchy.linkage package (SciPy.org, 2018). The relationships between each of the different 

measurements and clusters are visualized using a dendrogram. 

An example of the use of HCA to cluster chemical species within complex oxidation mixtures is shown 

in Figure 3 using the synthetic dataset. Species D1 and D3, with very similar time-series behavior, are the two 320 

most closely related compounds and are assigned to cluster D*. The next two most similar groups are species D2 

and cluster D*, which are assigned to a new, higher-level cluster. Species are clustered together until all have been 

grouped into a single cluster. 
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Figure 3 Hierarchical clustering procedure. First, second, and third-generation species are shown in red, yellow, and blue, 325 
respectively. A. Time series data. B. Time series of species C1 and D2 normalized between 0 and 1. The gray shaded area is 

integrated to give the distance between the two time series. C. Matrix showing the relative distance between each pair of 

species. D. Hierarchical cluster relationship; D1 and D3 are the most similar species, and so are the first to be clustered together 

(forming a new cluster D*).  
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2.2.3 Gamma Kinetics Parameterization (GKP) 330 

To date, bulk characterization of oxidation products in photochemical chamber experiments has largely 

focused on their chemical composition, and not their reactivity or mechanistic relationship. A few studies have 

derived kinetic information from time-series data (Smith et al., 2009; Wilson et al., 2012), but this has been limited 

to aerosol-aging experiments and not to atmospheric oxidation generally. A chamber oxidation experiment with 

speciated mass spectrometric measurements also contains a great deal of kinetic information, because the rates of 335 

formation and decay of each species are measured. In this work we show how the kinetic behavior of any particular 

measurement can be parameterized using a simple function, the gamma kinetics parameterization (GKP), which 

describes a system of first-order linear multi-step reactions. The function returns parameters that describe 

generation number (how many OH addition steps are needed on average to create the molecule), and reactivity 

(the relative rates of formation and decay), which are shown to correlate with key chemical characteristics. 340 

Grouping by similar kinetic parameters suggests a new, experimentally-derived approach to lumping mechanisms. 

A multigeneration reaction system can be described as a linear system of first-order reactions: 

X0
𝑘𝑘0→ X1

𝑘𝑘1→ X2
𝑘𝑘2→ … Xm

𝑘𝑘𝑚𝑚�� Xm+1
𝑘𝑘𝑚𝑚+1�⎯⎯� …  (Eq. 1) 

where ki is the rate constant and m is the number of reactions needed to produce species Xm (i.e., the generation 

number). When all ki’s are equal, the series of differential equations that describe the kinetics of Eq. 1 can be 345 

solved analytically, with the time dependence of any compound Xm described by: 

[X𝑚𝑚](𝑡𝑡) = 𝑎𝑎(𝑘𝑘𝑘𝑘)𝑚𝑚𝑒𝑒−𝑘𝑘𝑘𝑘 (Eq. 2) 

where a is a scaling factor that depends on both instrument sensitivity and stoichiometric yield (Smith et al., 2009; 

Wilson et al., 2012; Zhou and Zhuang, 2007). This function is related to the probability density function of the 

gamma distribution, a continuous probability distribution that has been previously used in chemistry to 350 

characterize protein kinetics (Pogliani et al., 1996; Zhou and Zhuang, 2007). 

 Oxidation reactions in a chamber experiment can be parameterized as a linear system of reactions, but 

the reactions between organic compounds and OH are bimolecular. This can be adjusted to a pseudo-first-order 

system by considering the integrated OH exposure [OH]∆𝑡𝑡 = ∫ [OH]𝑑𝑑𝑑𝑑𝑡𝑡
0  instead of reaction time t. In this case, 

the observed behavior of an organic compound X that reacts with OH in the chamber can be parameterized by:  355 

[X𝑚𝑚](𝑡𝑡) = 𝑎𝑎(𝑘𝑘[OH]∆𝑡𝑡)𝑚𝑚𝑒𝑒−𝑘𝑘[OH]∆𝑡𝑡 (Eq. 3) 

where k is the second-order rate constant (units of cm3 molecule-1 s-1), m is the number of reactions with OH 

needed to produce the compound (generation number), and [OH]Δt is the integrated OH exposure (units of 

molecule s cm-3). This parameterization is exact in the situation where all rate constants k in the system are equal, 
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and is an approximation otherwise, in which k is an effective rate constant representing the overall rate of reactions 360 

in the pathway.  

Figure 4 illustrates how the parameters a, k, and m relate to the shape of the function described in Figure 

3. The parameter m (Figure 4a) returns the generation number and is determined by the curvature of [X] as 

[OH]Δt→0 (Zhou and Zhuang, 2007).  

Eq. 3 can be fit to time-dependent concentration (or ion intensity) data to return a, k, and m. The fitted 365 

value of m can be affected by noise or by fitting to a too-long timestep (Zhou and Zhuang, 2007). The optimum 

timestep depends on the signal-to-noise ratio of the data and the compound’s reaction rate, but can be determined 

empirically. The fit can also be improved by integrating the data with respect to OH exposure over the 

experimental time period, and fitting the integrated form of Eq. 3, which reduces random Gaussian noise (Section 

S1). When all rate constants within a reaction sequence are not identical (which is typically the case), there is no 370 

direct analytical relationship between the effective rate constant k (Figure 4b) and the individual rate constants in 

the pathway. However, the effective rate constant k provides a rough measure of the reactivity of the compound 

and its precursors. A higher effective k indicates higher formation and/or reaction rates, and is affected by rate-

limiting steps (see Figure 10c for an example). The scaling constant a (Figure 4c) ensures that the returned values 

of k and m are insensitive to instrument calibration and stoichiometric yields. 375 

 

https://doi.org/10.5194/acp-2019-469
Preprint. Discussion started: 21 June 2019
c© Author(s) 2019. CC BY 4.0 License.



17 
 

 
Figure 4 Illustration of the relationships between the different GKP parameters (m, k, and a) and the time dependence of a 

given species. A. Parameterizations with different generation m. In the subpanel, the traces with m=2 and m=3 have been 

scaled to allow comparison of the curvature, which differs with generation. B. Parameterizations with different rate constant 380 
k. Increasing k does not change the shape of the curve, but causes the maximum to occur at smaller OH exposures. C. 

Parameterizations with different scaling constant a, which changes neither curvature nor location of the maximum, but only 

the height of the curve. 
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3 Results and discussion 

3.1 PMF 385 

3.1.1 PMF of synthetic data  

A set of PMF solutions for the synthetic data, including 2-10 factors, is shown in the Supplement (Figure S4). 

Figure 5 shows the four-factor solution. The four PMF factors are able to reconstruct the total signal with excellent 

agreement, but they do not correspond to the four original generations of compounds (precursor plus three product 

generations).  There is some relationship between early, middle, and late-generation species and the PMF factors, 390 

but regardless of the selected rotational forcing, all PMF factors contain species from more than one generation. 

For instance, because both C1 and D2 are long-lived species, they are correlated over the time period of the 

experiment and so are assigned to the same factor. More importantly, many species are included in two or more 

PMF factors, despite being formed by only one pathway. Eight to ten factors (approximately the number of species 

in the dataset) are needed to separate generations, which is not a useful simplification of the data set (which is 395 

made up of only ten species).  
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Figure 5 Results from PMF analysis of the synthetic data set, showing the 4-factor solution. A. Total intensity of synthetic 

data compared to stacked time-series of PMF factors. B. Profiles of PMF factors, illustrating that factors do not correspond to 

individual generations. Solutions with different numbers of factors are given in the supplemental information. 400 

3.1.2 PMF of chamber data 

Figure 6 illustrates positive matrix factorization of chamber data, including 463 individual calibrated 

product species from CIMS, optical, and AMS instruments; these exclude the precursor and overlapped species, 

and are corrected for background and dilution. A three-factor, four-factor, and six-factor solution are shown. 

Additional solutions are shown in Figure S5. In each of the solutions, a linear combination of PMF factors can 405 

reconstruct the measured intensity with negligible residual (within 10 ppbC, or about 2%, for each solution, 

regardless of aging time). Each solution includes factors that peak in intensity at early, middle and late times. 
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There are no factors that retain a consistent time-series or chemical profile between solutions with different 

numbers of factors, and in fact the time series do not have shapes consistent with chemical kinetics. Rather, each 

solution includes factors that peak in intensity at roughly regularly-spaced intervals, apportioning the time series 410 

into discrete pieces (Figure 6a). This suggests that the PMF factors are not physically meaningful, even though 

the data are fit with low residual.  

As in the PMF solution of the synthetic data set, most species appear in the profiles of more than one 

factor (Figure 6b). The time series of acetone (from calibrated m/z 59 C3H6OH+ measured by PTR-MS), a species 

with large signal and a long lifetime against OH, is shown in Figure 6c as an example. As oxidative aging 415 

progresses, acetone and other long-lived species, including butadione, acetic acid, and CO, are successively 

assigned to later-peaking factors, although mechanisms suggest that compounds such as butadione are formed in 

the first 1-2 generations of reaction (Bloss et al., 2005a; Jenkin et al., 2003; Li and Wang, 2014). Relatedly, two 

compounds that are formed in the same generation but exhibit different reactivity are not necessarily assigned to 

the same factor.  420 
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Figure 6 Positive matrix factorization of chamber data, showing solutions with three, four, and six factors. A. Time series of 

PMF factors. B. Compositional profiles of factors, shown as combined mass spectra from all instruments with CO, CH2O, and 

CIMS measurements at their exact molecular masses and OA shown with a molecular mass of -1. C. Apportionment of the 425 
concentration of acetone (a long-lived oxidation product signal) across all factors. As in the PMF analysis of the synthetic data 

set (Figure 5), factors do not correspond to generations, and long-lived species (such as acetone) are assigned to successively 

later-peaking factors over the course of the time series. 

 The chemical composition of each PMF profile can be summarized by calculating the average carbon 

oxidation state, and average number of carbon atoms per molecule in the factor (Figure 7). The contribution of 430 

each species to the average is weighted by its intensity in the factor profile. As the precursor species becomes 

more oxygenated and fragments to smaller product species, the average composition moves towards CO and CO2, 

which are in the upper right corner of Figure 7 (Kroll et al., 2011). This trajectory is observed from early- to late-

peaking PMF factors, as expected. Regardless of the number of factors chosen for the solution, the average 

chemical composition of each factor falls within the same range of oxidation state and molecular size. The various 435 

PMF factors appear to show the average composition of the mixture during early, moderate, and high OH 
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exposures. This is consistent with the time series of PMF factors, which appear at discrete intervals (Figure 6), 

and with the calculated average compositions of the mixture at specific time periods, which fall within the range 

of the PMF factors (Figure 7). In other words, solutions with a larger number of factors do not add new groups of 

species not represented by solutions with smaller number of factors, even though the PMF residuals are low.  440 

 
Figure 7 Average carbon oxidation state and number of carbon atoms per molecule in each PMF factor for solutions with 

three, four, and six factors. Also noted is the average composition of the mixture during low (1 hour atmospheric equivalent 

aging), medium (8-9 hours), and high (15-16 hours) OH exposures. Factors cover a relatively small region in this chemical 

space, which is unaffected by the number of factors chosen for the solution. 445 

We conclude that the PMF factors generally cannot be attributed to distinct chemical groups, oxidation 

generations, or chemical processes, but rather describe the average composition during specific time periods of 

the experiment. These factors are not robust and this should be considered when comparing PMF factors between 

oxidation experiments or chemical systems. PMF is certainly well-suited for cases in which groups of compounds 

have distinct and constant composition (Ulbrich et al., 2009), such as field measurements near fresh emission 450 

sources, and/or when using instruments that classify mixtures into a small number of types (e.g., the AMS). 
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However, in a chamber oxidation experiment there are instead continuous, dynamic changes in composition as a 

function of time. Species created in the same oxidation generation often do not have similar time-series behavior, 

given differences in reactivity of different co-generated species. This could be a useful first-level simplification 

of the data, but suggests that PMF factors cannot be used as surrogates for groups of reaction products within 3D 455 

models, because surrogate species should have chemical behavior that emulates real species.  

3.2 HCA 

Hierarchical clustering can be used to identify major chemical groups in processed data. This could be 

used to reduce the complexity of a dataset, by analyzing the chemical properties of the clusters rather than 

individual species. A diagram showing the hierarchical distance between all species measured in the chamber 460 

study is shown in Figure 8. This data set includes measured, calibrated, background-subtracted species from all 

instruments, and excludes overlaps. We use calibrated data here, but an advantage of this method is that it is 

insensitive to calibration: data are normalized, and only relative behavior is important. Individual species are 

arrayed across the bottom, and their accumulation into clusters is denoted by gray lines linking species and 

clusters. As with PMF, the user must choose the number of groups (factors or clusters) in the solution. Here we 465 

have selected a maximum threshold relative distance that places the precursor, 1,2,4-trimethylbenzene, in a cluster 

separate from all product species. The individual clusters that fall below this threshold are distinguished by color 

in Figure 8a. The resulting groups include ten individual species that do not fall into a cluster (including the 

precursor, 1,2,4-trimethylbenzene), and 9 clusters that incorporate at least two species. Figure 8b shows the time 

series of a selection of these clusters (all time series are included in Figure S6). The cluster average was determined 470 

by summing the individual species contributors to the cluster, weighted by parts-per-billion carbon.  
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Figure 8 A. Hierarchical cluster relationship of all measured species. Clusters are colored at a relative distance cut-off (gray 

dashed line) that separates 1,2,4-trimethylbenzene from all other products, with gray lines showing linkages between species 

and clusters. B. Time series of eight example clusters. The x-axis in each plot is OH exposure, and the y-axis is the normalized 475 
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intensity. The cluster average is shown by a thick, colored line, and individual species contributors are shown as thinner gray 

lines.  

 The chemical properties of each cluster, described as average oxidation state and number of carbon atoms 

per molecule, are shown in Figure 9. Clusters lie on a diagonal trajectory between the precursor and highly 

oxidized, small molecules (CO and CO2), and clusters that peak earlier in time appear closer to the precursor. This 480 

indicates that species with similar time-series behavior have similar chemical properties. Compared to the 

chemical properties of the PMF factors (Figure 6), the clusters lie along the same diagonal trajectory, but are 

substantially more varied in terms of average carbon number and oxidation state, and cover a wider range of 

chemical space. As the threshold for separating clusters is lowered, resulting in more clusters with fewer species 

per cluster, a wider range of chemical properties is observed (Figure S7). This is in contrast to PMF analysis, in 485 

which increasing numbers of factors does not increase the range of chemical properties (Figure 7). As shown in 

Section 2.2.1., increasing the number of PMF factors provided the average composition of the mixture at more 

time points. HCA does not always separate generations perfectly (as can be seen in Figure 3d), but the generational 

mixing is not as severe as with PMF, and can be reduced by choosing a lower threshold for separating clusters. 

The clustering algorithm is thus a viable approach for describing a continuum of kinetic behavior and chemical 490 

properties, although the choice of number of clusters is subjective.  
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Figure 9 Average oxidation state and number of carbon atoms per molecule for each cluster determined from HCA. Color is 

the same as in Figure 8. The contribution of each species to the cluster average is weighted by parts-per-billion-carbon 

(averaged over the entire experiment). Marker area is proportional to the averaged concentration (parts-per-billion carbon) of 495 
all species in the cluster, with the marker size of the precursor (red) decreased by a factor of 2 for legibility. Clusters cover a 

substantially wider area of chemical space than PMF factors (Figure 7). 

3.3 GKP 

3.3.1 GKP fit to synthetic data 

The gamma kinetics parameterization (GKP, Eq. 3) provides a method for determining kinetic and mechanistic 500 

information from chamber experiments. The parameterization returns an effective rate constant k and generation 

number m. To investigate the extent to which fitting kinetic data to Eq. 3 yields reasonable values for rate constants 

(k) and generation number (m), we first apply the parameterization to the synthetic data set described in section 

2.1.2, which has known rates and generation numbers. Figure 10a shows the time series of synthetic data and the 

parameterized best-fit, using integrated signal as described in Section S1. The parameterization can reproduce a 505 

range of kinetic behavior, even in situations where the formation and loss rate constants km are very different (for 

which the assumption of uniform reactivities is poor). Figure 10b shows the fitted generation compared to the 
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actual generation. The actual generation numbers are correctly returned in all cases (with errors within 12%). 

Figure 10c shows the parameterized k compared to actual km rate constants in the pathway. The effective rate 

constant k cannot be calculated directly from the actual km in the system, but is rather a best-fit value in the 510 

approximation of equal km. The returned values of k are in the same range as the actual km, and are larger for 

pathways that generally involve faster rate constants. The average rate constant in a particular pathway and the 

fitted effective rate constant k are similar, except when the pathway includes a very slow step. In this case the 

fitted value of k is closer to that of the rate-limiting step (Figure 10c). We conclude that the fit parameters m and 

k are reasonable, physically meaningful values that provide information on the kinetics of the system.  515 

 
Figure 10 Best fit of the gamma kinetic parameterization to synthetic data (GKP, Eq.3). A. Time series of synthetic data 

(colored lines) and best-fit (black lines). The relative rate constants are indicated by short arrows (slow rate constant) or long 

arrows (fast rate constant). B. Fitted generation compared to actual generation. The colors correspond to the generations shown 

in panel A. C. Effective rate constant compared to the average of the rate constants in the pathway that produces each particular 520 
species. Pathways that include slow steps are shown with open circles.  
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3.3.2 GKP fit to chamber data  

The GKP was applied to the chamber data, with the time dependence of all measured compounds fit to 

Eq. 3. More than 95% of measured compounds are fit with a correlation coefficient R2 of 0.9 or higher, meaning 

the function generally describes well the kinetic behavior of species measured in oxidation systems. Examples of 525 

fitted chamber measurements are shown in Figure 11. In some cases, non-integer values of m are returned, which 

may occur for several reasons.  

First, noise can contribute to uncertainty in m. At low generations (m=1-2), the standard deviation of the 

fit is about 0.1, and at high generations (m≥3) is somewhat higher, with standard deviation up to 0.8 (Figure S8). 

Especially for measurements with low signal-to-noise ratios and limited data near the beginning of the experiment, 530 

m may not be fit with high precision. For example, the fits using m=3 and m=5 to C5H6O6 (Figure 11i) are not 

significantly worse than m=4.  

Second, the generation number can be distorted if the compound is produced by or reacts significantly 

via channels other than OH reaction (e.g., ozone, NO3 radical, or photolysis), in which case the assumption of 

linear, first-order kinetics with respect to OH exposure is not necessarily applicable. For example, C6H8O2 (Figure 535 

11c) may correspond to 3,4-dimethyl-2(5H)-furanone (Bloss et al., 2005b), which reacts with O3 under 

experimental conditions at a comparable rate to OH, or dimethylbutanedial (Li and Wang, 2014), which has a 

high photolysis rate. In Figure 11b and c, the curves are also distorted due to repeat injections of HONO, which 

abruptly changes the NO concentration in the experiment and clearly affects the reaction of these compounds. 

Any of these processes can distort the shape of the curve, making it more difficult to fit m correctly. Because m is 540 

related to the slow (rate-limiting) steps in a mechanism, specifically OH additions, it is not affected by faster 

radical chemistry such as autooxidation and intramolecular arrangements.  

Finally, if the compound is produced by more than one pathway with a differing number of reaction 

steps, such as butadione (Figure 11d), the resulting generation parameter is non-integer. This is also demonstrated 

using a synthetic system in Figure S9.  545 

 In addition, if physical (non-chemical) processes have a major influence on species concentrations, and 

occur on the same time scale as the chemical reaction, they may impact the fitted kinetic parameters. In particular, 

delays caused by strong interactions of gas-phase compounds with surfaces (chamber walls or instrument inlets) 

can shift the fitted m to higher values and the fitted k towards the time constant of the surface interaction. As noted 

above, the timescales of surface equilibration processes in the present experiments are <15s, much shorter than 550 

the timescales of the chemical changes observed. Thus such processes are unlikely to affect the analysis of the 

present chamber results, but could introduce substantial errors if they occur over longer timescales, or are 
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competing against much more rapid chemical transformations. GKP analysis is therefore only valid when the 

equilibration times of such processes are short compared to the timescales of the chemical processes being studied.  

 555 
Figure 11 Measured species from chamber experiment (red) and kinetic best fit (black). Data in panels A, C and E are from 

Vocus-2R-PTR; in panels B and D from PTR3-H3O+, in panels F, G, and I from I- CIMS, and in panel H from TILDAS. The 

data gaps in panels F, G, and I arise from the I-CIMS instrument measuring particle-phase composition, measurements that are 

not considered in this work.  

The fitted values of k and m for all species are shown in Figure 12. The returned k fall within one order 560 

of magnitude of the OH rate constant of the precursor species (kTMB = 3.2×10-11 cm-3 molecule-1 s-1). Most “m” 
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are between 1 and 2, meaning most measured compounds are produced after one or two reaction steps (assuming 

OH is the dominant oxidant). Major modes at integer values of m are observed if the data are restricted to fast-

reacting compounds (black bars in Figure 12). However, when all compounds are considered, major modes at 

integer values are not observed, which suggests that many compounds are formed by more than one pathway, 565 

and/or have significant reactions with O3 or another oxidant. The generation number of compounds with m>=4 

are less certain due to data gaps, limited experimental duration, and low signal-to-noise ratio in the fits. Higher-

generation (m>2) compounds are uniformly the fast-reacting (high k) species. Conversely, no species are observed 

with high m (>2) and low k. This area of the diagram corresponds to slow-forming, slow-reacting species that are 

created after multiple OH additions; such species are unlikely to be formed at observable concentrations within 570 

the timeframe of the experiment. Were the experiment to be run at higher OH exposures, it is possible that these 

species would be observed as well.  
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Figure 12 Parameterized rate constant and generation number for 463 species detected during OH-initiated oxidation of 
trimethylbenzene. Marker area corresponds to log(ppb carbon) of detected species, averaged over the duration of the 575 
experiment. “Fast-reacting” species, defined as having an effective rate constant at least 75% that of the precursor, are 
highlighted as black bars in the histogram of m. These tend to center on integer values of generation number. 

The kinetic parameters derived from fitting the gamma distribution are correlated with individual species’ 

chemical composition. Figure 13 shows that species that involve the fastest reactions (high values of effective rate 

constant, k) and earliest formation (lowest values of m) tend to be large and relatively unoxidized, with oxidation 580 

states similar to that of the 1,2,4-trimethylbenzene precursor. Species that form or react slowly (low values of k) 

or that form in later generations (higher values of m) tend to be smaller and more oxidized.  

https://doi.org/10.5194/acp-2019-469
Preprint. Discussion started: 21 June 2019
c© Author(s) 2019. CC BY 4.0 License.



32 
 

 
Figure 13 Relationships of kinetic parameters (from the GKP) with key chemical properties of reactive species.  A. Generation 
(m) and rate (k) values of 1,2,4-trimethylbenzene precursor and products, colored by number of carbon atoms. B. Same as A, 585 
but k and m colored by carbon oxidation state. Marker area corresponds to log(parts-per-billion carbon). The early generation 
and fast-reacting products tend to have higher numbers of carbon atoms and are less oxidized, while later generation and slow-
reacting products tend to be smaller and more oxidized.  

 

3.3.2 Clustering of GKP results 590 

The GKP can be used not only to describe individual species, but also to group compounds and reduce 

the complexity of the system. If compounds are grouped by similar k and m, compounds in the group will have 

similar chemical composition and similar kinetic behavior, and the chemical and kinetic properties of the groups 

will include a range of variability similar to the individual species. Here we test three methods of using GKP to 

group compounds: (1) fitting the GKP to time-series of HCA-derived clusters; (2) using HCA to cluster 595 

compounds based on their GKP-derived time-series (based on fitted values k and m); and (3) using fixed bins to 

group compounds based on k and m. Groups derived from PMF analysis cannot be fit with the GKP because the 

factor time series are not consistent with chemical kinetics. 

Results from each approach, showing both kinetic characteristics (k and m) and chemical properties 

(oxidation state and carbon number) of each group, are given in Figure 14. Figure 14a shows results from applying 600 

the GKP to HCA data. For each of the nine HCA clusters (described in Section 3.2), the GKP was fit to the 

cluster’s average time series, determined from a carbon-weighted average of the time series of all individual 

species in the cluster. This provided values of k and m for each cluster. (For the ten species that did not fit into 
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any cluster, the k and m of these were determined as well). Figure 14b shows the reversed approach, the application 

of HCA to GKP results. Here, the time-series of each individual species was fit with GKP, and the distances 605 

between the time-series of the best fits were determined and used as input into the HCA algorithm. The k and m 

of the resulting cluster were calculated by averaging the k and m of the individual compounds in the cluster, 

weighted by parts-per-billion carbon. A potential advantage of this approach is that the GKP fitting reduces the 

noise of the signals used in HCA analysis, possibly allowing for more precise determinations of clusters. Finally, 

shown in Figure 14c are results from an alternate approach for grouping compounds by GKP parameters (k and 610 

m), binning all the species by their values of k and m. This is analogous to the 2D-volatility basis set developed 

by Donahue et al. (2011, 2012), which bins species based on saturation mass concentration and O:C ratio.  

In all cases, the majority of the carbon can be represented by a manageable number of groups, each of 

which has a specific chemical composition, effective rate constant, and generation number.  Moreover, the kinetic 

and chemical properties of the derived groups are quite similar across all three grouping approaches. The overall 615 

kinetics, as well as the width and trajectory in chemical space, of the various groups do not vary with the approach 

used. This suggests that such dimensionality-reduction techniques, which involve a combination of fitting using 

the GKP and grouping based on kinetic behavior, may provide a viable approach for greatly simplifying the time-

dependent behavior of complex mixtures of reaction products in a laboratory oxidation system. 
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 620 
Figure 14 Chemical and kinetic properties of groups of compounds. Marker area is proportional to the averaged concentration 
(parts-per-billion) of all species in the cluster, with the marker size of the precursor (red) decreased by a factor of 2 for 
legibility. A. Kinetic and chemical properties (top and bottom, respectively) of clusters derived from HCA analysis of all 
compounds’ time dependences. B. Kinetic and chemical properties of clusters derived from HCA analysis of the fitted GKP 
time dependence of each compound. C. Kinetic and chemical properties of groups derived from binning compounds by k and 625 
m. Regardless of the method used, the major groups of compounds have consistent chemical and kinetic properties. 

4 Conclusions 

Hundreds to thousands of individual chemical species can be produced in a typical organic photooxidation 

chamber experiment. This chemical complexity presents a number of analytical challenges, including organizing 

and processing large mass spectrometric data sets, identifying major groups of compounds, providing kinetic and 630 

mechanistic information, and simplifying the chemistry in a way that can be implemented in large-scale regional 

and global models.  

In this paper, we evaluate three methods to simplify a description of atmospheric chemistry in chamber 

studies. The methods explored include positive matrix factorization (PMF), which represents data as a linear sum 
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of factors, hierarchical clustering analysis (HCA), which describes similarity of species in terms of their time-635 

series behavior, and the gamma kinetics parameterization (GKP), which characterizes species in terms of effective 

rate constant and generation.  

Because PMF is so widely used in atmospheric chemistry to characterize organic aerosol and for source 

apportionment in field studies, it is important to understand how oxidation systems are described by PMF. We 

find that PMF does not sort species into clear generations, since different species formed in a single generation 640 

can exhibit highly variable reactivities. Oxidized factors appearing in PMF analysis of chamber studies, and in 

ambient air, may be able to reproduce observations as a linear sum of a “fresh” factor and a “highly aged” factor 

with low residual, but these factors do not necessarily represent distinct chemical groups. This is because PMF 

assumes constant factor composition, which is useful when distinguishing fresh emission sources, but does not 

apply to evolving oxidation systems.  645 

Hierarchical clustering, which also does not depend on calibration, can be used to quickly identify major 

groups of ions and patterns of behavior. The derived clusters maintain more chemical information (including 

average oxidation state and molecular size) than do PMF factors. HCA is therefore useful to identify chemically 

meaningful ions in mass spectrometry data, and to group compounds into a smaller number of groups with 

consistent chemical characteristics.  650 

A continuum of kinetic behavior is observed and can be described using the gamma kinetics parameterization 

of individual species (or clusters of species). The parameterization is derived from first-order kinetics and thus 

provides a physically meaningful fit to the kinetics of the species. The two returned parameters, effective rate 

constant and generation number, correlate with oxidation state and molecular size. The parameterization provides 

a way to derive mechanistic information from an oxidation system, in addition to describing chemical 655 

composition.  

Future directions of this work include evaluation of mechanisms, mechanism development, and applications 

to lumping schemes in models. The gamma kinetics parameterization can be used to support complex chemical 

mechanisms, by determining whether the experimentally determined generation and rate constants are consistent 

with a proposed pathway or mechanism. Further, with well-calibrated, high-quality laboratory data, it may be 660 

possible to derive yields, formation rate constants, and reaction rate constants separately, which would be 

invaluable in model and mechanism development. Finally, HCA-derived clusters, or groups of compounds with 

similar effective rate constant and generation, could be used as surrogates or “lumps” in aerosol or air quality 

models, as an experimentally supported way of simplifying a complex system. 
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