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Response to reviewers 

We thank both reviewers for their positive comments, as well as their critical remarks, 
which have helped make the paper more organized, clearly expressed, and scientifically 
robust. As a whole, both reviewers suggested a more direct comparison of the three 
techniques, as well as a more direct statement of our evaluation criteria. To address this, we 
have made the following edits to the introduction: 

Page 2, line 89 now reads, 

“Lumping schemes could be improved by using laboratory data to define important groups 
of compounds, and assign experimentally-derived chemical and kinetic properties to each group  
to act as a surrogate species . ” 

The last paragraph of the introduction now reads, 

“The three methods (PMF, HCA, and GKP) have different mathematics but the same goals: 
to identify groups of compounds, and replace each group with a chemically meaningful 
surrogate. The three methods are evaluated in the following criteria: whether the resulting 
surrogates have chemically realistic behavior; whether the surrogates have the same 
range of chemical properties as the original data set; which subjective choices the researcher 
needs to make when implementing the method; and what other new information about the 
system can be learned. We additionally discuss the extent to which different methods 
agree in their identification of major groups of compounds. The output of these 
dimensionality-reduction techniques can be used to quickly analyze and interpret chamber 
experiments, and could be used to reduce the complexity of chemical mechanisms included in 
models.” 

Below we respond directly to specific reviewer comments. 

Anonymous Referee #1 

Koss et al. present three statistical/mathematical approaches to reducing the time series of 
multiple species observed or simulated in a laboratory chamber into chemically meaningful 
groups or clusters. The authors conclude that the PMF (positive matrix factorization) technique 
does not perform nearly as well as the HCA (hierarchical clustering) or GKP (gamma kinetics) 
techniques in binning compounds (observed or simulated) into proper generational groups that 
share common chemical ages. The manuscript is concise, well written. Figures are illustrative, 
support the reported conclusions. This review points to a few areas of ambiguity that should be 
addressed/clari ed. 

The work is appropriate for publication in ACP after these minor revisions. 

PMF does a poor job compared to HCA at assigning members into chemically meaningful 
groups. This result is a big deal given how widely PMF is used. More discussion and/or tests are 
needed to explain exactly why the PMF does not perform as well, that is, can PMF be modi ed 
so that it performs as well as HCA? Mathematically, matrix factorization and hierarchical 



clustering are similar. They certainly have the same intended goals. One difference is that with 
HCA each time series is normalized such that all compounds are more or less given equal 
weight, whereas PMF is biased towards those with higher signal to noise. Though it is not 
standard operation, it would be useful to re-run PMF on the∼400 TMB products but after 
normalizing each member such that they are given equal weight. Basically, feed the same input 
to HCA and to PMF. Let’s compare apples to apples. Doing so will rule out differing inputs as 
the reason for the different performance. Also, constrain PMF such that each member can 
belong to only one factor. 

We address three points mentioned by the reviewer in this comment: (1) usefulness of PMF, (2)                
mathematics of PMF vs HCA, (3) applying PMF to normalized data. 

(1) PMF works extremely well for many applications. For example, PMF has been used for              
many years to interpret data from aerosol mass spectrometry, and we do not dispute that               
these interpretations are useful and scientifically meaningful. Here, however, we show           
that PMF is not always the best choice of analysis tool for one specific, but important,                
application: chamber oxidation experiments.  

We do not conclude that PMF is broadly inferior to HCA. Our aim is that this work will                  
help researchers to choose an analysis technique, and interpret the results, depending            
on the features and goals of the experiment in question. To clarify this, we have edited in                 
section 2.2.1 (description of PMF): 

“PMF analysis of ambient air measurements has in many situations been shown to             
be robust and meaningful, and has contributed greatly to our understanding of            
atmospheric and aerosol chemistry. PMF is frequently used for source apportionment and            
characterization of organic aerosol in field studies, for example, to sort aerosol as more- or less-                
oxidized, or from a specific source such as biomass burning (Zhang et al., 2011). PMF is also                 
frequently applied to VOC measurements in field studies. In this application, each factor             
indicates a particular VOC class (which can be associated with a specific source) and its               
magnitude, which is a powerful tool to support regulation. 

Some aspects of atmospheric chemistry can complicate PMF analysis. Oxidation          
chemistry during transport from the source to the measurement location can change the             
chemical composition…” 
 

In the discussion of PMF, Section 3.1.2: 
 

“We conclude that in chamber experiments such as the one considered here, the 
PMF factors generally cannot be attributed to distinct chemical groups, oxidation generations, or 
chemical processes, but rather describe the average composition during specific time periods of 
the experiment.” 
 

“This could be a useful first-level simplification of the data, but suggests that PMF factors 
derived from chamber experiments cannot be used as surrogates for groups of reaction 
products within 3D models, because surrogate species should have chemical behavior that 
emulates real species.” 
 



And in the conclusion: 
 

“We found that PMF analysis of the chamber experiment described here did not sort 
species into clear generations, since different species formed in a single generation can exhibit 
highly variable reactivities.” 

 
(2) We agree with the reviewer that PMF and HCA have the same intended goals (at least in                 

this work), but note that they are not mathematically similar. PMF is a matrix              
decomposition technique; no linear algebra is involved in HCA. The PMF algorithm            
attempts to minimize a clearly defined error function; HCA has no error function. The              
PMF decomposition produces factors that purportedly describe fundamental features of          
the data set, but which do not necessarily resemble the original measurements. HCA             
groups compounds together by similar time-series behavior, and the resulting groups           
must resemble their constituent measurements.  

One of the fundamental features of PMF is that VOCs belong to multiple factors.              
Suppressing this feature so that PMF more resembles HCA defeats the purpose of the              
comparison: the mathematical differences between the different approaches result in a           
more, or less, scientifically meaningful reduction in complexity. 

We appreciate the reviewer’s comment about an “apples-to-apples” comparison. Now          
that we have more clearly presented in the introduction the goals of the data reduction,               
and the evaluation criteria, a more direct comparison of PMF and HCA (and GKP) is               
possible. The evaluation criteria are: 

1) whether the resulting surrogates have chemically realistic behavior 
2) whether the surrogates have the same range of chemical properties as the            

original data set 
3) which subjective choices the researcher needs to make when implementing the           

method 
4) what other new information about the system can be learned 

 
The last paragraph in section 3.1.2 (discussion of PMF results), has been edited to read,  
 
“We conclude that in chamber experiments such as the one considered here, the PMF              
factors generally cannot be attributed to distinct chemical groups, oxidation generations,           
or chemical processes. Surrogate species derived from PMF factors do not have            
chemically realistic behavior or the same range of chemical properties as the original             
data set. The information about the system that can be determined from PMF factors is               
the average composition during specific time periods of the experiment. The researcher            
must subjectively choose the number of factors. These factors are not chemically robust             
and this should be considered when comparing PMF factors between oxidation           
experiments or chemical systems.” 
 
The last paragraph in section 3.2.2 (discussion of HCA results) has been edited to read, 



“The surrogate species derived from HCA clusters have chemically realistic behavior,           
and have a similar range of chemical properties as the original data set. As with PMF,                
the choice of the number of clusters is subjective. In addition to defining surrogate              
species, HCA can be used to visualize the range of behavior and degree of similarity               
between all compounds in a data set. The clustering algorithm is thus a viable approach               
for describing a continuum of kinetic behavior and chemical properties.” 

A final paragraph in section 3.3.3 (discussion of GKP results) has been added, 

“Surrogate species defined by GKP have by definition kinetically realistic behavior. The            
resulting groups of compounds have a range of chemical properties similar to that of the               
original data set, regardless of whether they are grouped using HCA or grouped by              
similar k and m. The method of grouping is subjective, as is the choice of number of                 
clusters (if HCA is used) or the number of bins (if compounds are grouped by similar k                 
and m). A particular strength of GKP is the resulting kinetic characterization of each              
compound. The effective rate constant and generation number provide new information           
that can be used to assess proposed mechanisms or to guide the reactive behavior of               
surrogate species in a model.” 

(3) The PMF algorithm seeks to minimize the quality-of-fit parameter Q, which is the sum              
over elements of ((observed-reconstructed)/(error))^2: 

where is the difference between the observation of ion j at time iQ = ∑
m

i=1
∑
n

j=1
(e /σ )ij ij

2   eij             

and the PMF reconstruction, and is the standard deviation (noise) of that     σij        
measurement. It is the relative signal-to-noise ratio ( ) of each ion that matters for       /σeij ij        
the PMF fit: the ions with the highest signal-to-noise ratio are given the most weight in                
the fit, which are not necessarily the ions with highest signal overall. If each ion is                
multiplied by a normalizing factor, the respective errors must also be scaled; the        σij      
signal-to-noise ratio remains the same, and the result of the PMF fit does not change.  

We could create an artificial error matrix so that each compound has the same              
signal-to-noise ratio, and thereby give each compound equal weight in PMF analysis.            
However, this creates new problems. What artificial standard-deviation should be chosen           
for the whole dataset? It cannot be zero, and the results will change depending on the                
selected value. Additionally, very noisy, poorly-detected compounds would now have a           
disproportionate influence on the PMF solution. 

We think it is more useful to the atmospheric science community to present the results of                
PMF as it is typically implemented. The differences between PMF and HCA are features              
that should be considered in an evaluation. This is especially important because our             
findings have implications for the interpretation of PMF of ambient data (i.e. “aged”             
factors in ambient air are not a linear combination of more and less aged air masses).  

It would be helpful to make mirroring gures so that comparing the performance of each of the                 
three techniques is easier. For instance, make gure 7 for PMF look like gure 9 for HCA.                 



Include a gure like gure 6b (mass spectrum of each factor) but for HCA results as part of                  
gure 8. Same with GKP. Is the reason that PMF factors do not accurately represent chemical                
age groups is because each factor contains compounds with a wide range of amu (as shown in                 
gure 6)? Is this not the case for HCA (please show in gure 8). And also for GKP. 

We thank the reviewer for this very good suggestion.  

Each technique has a graphical description that is unique to that particular approach. For              
PMF, this is the comparison between the measured and reconstructed total signal, which             
is currently Figure 4c (previously Figure 6) . For HCA, this is the dendrogram, which is                
currently Figure 7a (previously Figure 8). For GKP, this is the best fit of the               
parameterization to the measurements, which is currently shown in Figure 10 (previously            
Figure 11). We kept these figures, because they are necessary for the discussion in              
each respective section. 

For the surrogate species derived from each approach, there are four graphical            
descriptions that can be directly compared: the time series, the mass spectra, the plot of               
k vs m, and the oxidation state plot (O:C vs num C). We decided that it would be best to                    
show all of these in a single figure at the end of the paper. The previous Figure 14                  
shows some of this information, but is missing the PMF results, time series, and mass               
spectra.  

We have revised the paper as follows: 

- A new section is added at the end of Results and Discussion: Section 3.4, 
Comparison of PMF, HCA, and GKP.  

- The new section 3.4 includes a revised Figure 13 (a revision of previous Figure 
14), and a paragraph discussing the figure. 

The new Figure 13 shows the k vs m plot, the oxidation state plot, the time series of                  
several surrogates, and the mass spectra of several surrogates, for PMF, HCA, and             
GKP.  

There are several possible ways to use PMF, HCA, and GKP to group compounds, that               
result in any number of groups. For example, PMF solutions were determined for one to               
ten factors. If we were to include all these possibilities in Figure 13, the figure would be                 
unreadably complex. Therefore, we chose to show just one possible grouping for each             
technique. For PMF, we chose to show the six-factor solution; for HCA, we chose to               
show the grouping where the precursor is separated from all product species; for GKP,              
we show two possible ways of grouping compounds, one using HCA, and the other              
using binning by k vs m. These choices of groupings are discussed the most extensively               
in the text.  

We also restricted the number of time series and mass spectra shown in Figure 13. The                
reason for this is legibility. The HCA solution has nine clusters containing two or more               
compounds and 10 with just one species. The GKP solutions have a similarly large              
number of groups. A figure with twenty time series in one panel isn’t readable. Because               



the PMF solution has 6 factors, we show the 6 groups with the highest total carbon                
concentration from the HCA and GKP solutions. The six largest groups account for about              
80% of the total carbon concentration in products in each case. 

 

 

The new Figure 13 and caption are shown below. 

 

Figure 13 Overall comparison of groups derived from PMF, HCA, and GKP of chamber data. The columns show, from left to right,                      
the results of A. PMF, B. HCA, C. GKP best-fits grouped using HCA, and D. measurements grouped by GKP fit parameters. The                      
rows show, from top to bottom, 1. the average carbon oxidation state and number of carbon atoms per molecule for each group, 2.                       
the time series of the six groups containing the most carbon, 3. the mass spectra of those six groups, and 4. the rate constant and                         
generation number of each group. Within each column, each chemical group is assigned a specific color. This color scheme is the                     
same for each plot within a column. The marker area is proportional to the averaged concentration (parts-per-billion carbon) of all                    
species in the group, with the marker size of the precursor (red) decreased by a factor of 2 for legibility. The marker area scheme is                         
consistent across all plots. PMF factors do not have kinetically realistic time series, therefore there is no plot A4. 



 

The text in section 3.3.3 (clustering of GKP) was edited to be consistent with the new location                 
and content of Figure 13: 

“Results from each approach, showing both kinetic characteristics (k and m) and chemical             
properties (oxidation state and carbon number) of each group, are given in Figure 13, which               
includes an overview and comparison of grouped species derived from PMF (Figure 13a), HCA              
(Figure 13b), and GKP (Figure 13c and d).” 

Discussion was added to section 3.4, Comparison of PMF, HCA, and GKP: 

“In all cases, the majority of the carbon can be represented by a manageable number of groups.                 
The relationship between oxidation state and number of carbon per molecule is similar,             
regardless of the grouping technique. The PMF factors have a smaller range of chemical              
properties than chemical groupings derived from HCA or GKP. The range of chemical properties              
is similar for HCA and GKP. The time-series of PMF factors are clearly different from those of                 
HCA- and GKP-derived groups, and have non-kinetically-realistic shapes with sharp maxima. 

The PMF factors each contain many more compounds than the groups derived from HCA or               
GKP. Many of the same compounds are consistently grouped together by HCA and GKP,              
regardless of whether HCA, HCA of GKP, or binning of GKP is used. Additionally, the range of                 
kinetic properties, and the locations of major compound groups in kinetic space, are similar              
between the HCA and GKP approaches. This reproducibility suggests that these are chemically             
meaningful compound groupings. Some groups derived from HCA or GKP contain only a single              
species. These could be chemically important compounds whose unique behavior should be            
considered when modeling the system; conversely, they could be measurement outliers which            
should be discarded. The interpretation of these species is subjective. 

Regardless, the combination of fitting using the GKP and grouping based on kinetic behavior              
may provide a viable approach for greatly simplifying the time-dependent behavior of complex             
mixtures of reaction products in a laboratory oxidation system.” 

The way that HCA is described on page 12, it reads as if the technique also solves for the nal 
number of clusters needed to explain the variance of all input members. But it turns out (page 
23 line 465) that this nal cluster number is "chosen" by the user. How was this nal number 
objectively determined? There are eight clusters (gure 8), but that can easily be reduced 
further (6, 7 and 8 look pretty similar, as do 3 and 4; and conversely, each of the those eight can 
be split even further). PMF at most has 6 factors. GKP has 9. How are the nal 
group/factor/cluster number chosen for PMF and GKP? Perhaps the authors should choose the 
same number for the three techniques. This again, I think will present a fairer comparison of the 
three techniques. 

When using PMF, HCA, or GKP, the number of factors, clusters, or groups is              
subjectively chosen by the researcher. The method to appropriately determine the number of             
clusters is of course different depending if PMF, HCA, or GKP is used. We did consider (and                 
have discussed in the manuscript) how different numbers of factors or groups affect the              



interpretation of the data. For PMF, we considered solutions with one to ten factors. For HCA,                
we considered a range of threshold values to define clusters with distinctly different behavior.              
Results from groupings with 13 clusters (of which 5 have significant intensity) to 120 clusters (13                
significant clusters) are presented. In section 3.3.2, we extensively discuss different ways to             
group compounds using GKP, each of which results in a different number of groups.  

To clarify and expand this discussion, we have edited the text as follows: 

At the end of Section 2.2.1 (implementation of PMF), we inserted, 

“When PMF is used to reduce the complexity of a dataset, the number of factors must be                 
chosen by the researcher, a choice that is inherently subjective. Solutions were explored with              
one to ten factors for the synthetic dataset and the chamber data.” 

At the end of section 2.2.2 (implementation of HCA), we inserted, 

“Compounds must be grouped into a specific number of clusters in order to use HCA to define                 
surrogate species. The average chemical and kinetic properties of each cluster can be used to               
define a surrogate species. As with the number of factors from PMF, the number of clusters is                 
subjectively chosen by the researcher. The clusters could be selected by hand, or by choosing a                
threshold for distance dAB to automatically define clusters. We chose to use a threshold to               
define the number of clusters, and considered several different values of thresholds that result              
in different numbers of clusters. The effect of threshold value on the interpretation of the data is                 
discussed in Section 3.2.” 

At the end of section 2.2.3 (implementation of GKP), we inserted, 

“Compounds can be grouped by similar k and m to reduce the complexity of the dataset. The k,                  
m, and average chemical properties of the group can be used to define a surrogate species.                
The choice of the number of groups and the method of grouping are subjective. GKP could be                 
used alone, by binning compounds by similar k and m, or it could be used in combination with                  
another analysis technique, such as HCA. Several approaches to using GKP to define surrogate              
species are discussed in section 3.3.2.” 

In the overall comparison of all techniques, Figure 13, we show the six groups with the highest                 
carbon concentration derived from each technique. 

Finally, in section 4 (conclusion) at line 723, we added, 

“All three approaches require a subjective choice of the number of compound groups.” 

There are sections dedicated to PMF (section 3.1) conducted on both simulated and chamber 
data. Same with GKP (section 3.3). Why not HCA (section 3.2)? 

We have inserted a dedicated section for HCA of simulated data (Section 3.2.1). We moved the                
original Figure 3 (now Figure 6) to this section. This figure shows HCA applied to simulated data                 



and was originally used as a visual explanation of the algorithm. The description of the figure in                 
the text was also moved to this new section.  

We added the following discussion to section 3.2.1: 

“In this example with simulated data, HCA generally clusters together compounds of            
similar generation, though not perfectly. HCA clusters together compounds that have similar            
time-series behavior, and time-series behavior is determined not only by generation, but also by              
formation and reaction rate constants. For example, species B1, B2, and C2 all have fast               
formation and reaction rates, resulting in similar time-series. HCA groups these three species             
together. The algorithm suggests further that the first-generation products B1 and B2 are much              
more similar to one another, than they are to second-generation product C2. 

The results of HCA applied to synthetic data indicate several strengths and weaknesses of the               
HCA algorithm. Most importantly, the algorithm provides a clear way to visualize the behavior              
and relationships between all measurements in a dataset. The precursor compound can be             
included in the analysis, because data are normalized and the high intensity of the precursor               
does not skew the results. Compounds with similar kinetic properties are mostly grouped             
together, but some generational miscategorization still occurs. It may be difficult to use HCA to               
separate compounds which have different generation numbers but similar formation and           
reaction rates. 

HCA can be used to simplify the dataset, by replacing clusters of compounds with surrogates. If                
the surrogate time-series behavior is determined by averaging the time-series of the individual             
members of the cluster, then the surrogate will have chemically realistic behavior. As noted              
previously, the researcher must subjectively choose the number of clusters.” 

We added the following discussion to section 3.2.2 (HCA of chamber data): 

“There are some significant differences between the synthetic data set, and real-world            
data sets collected from chamber experiments. Most importantly, the actual chamber           
experiment includes many more species (ten species in the synthetic system, compared to             
thousands of detected ion masses and hundreds of measured species in the chamber             
experiment). The real chamber data set includes many non-meaningful measurements whose           
time-series have no structure. Additionally, many species in the real-world data set have much              
more similar time-series behavior to one another than any two of the species in the synthetic                
system. Conversely, there are also distinct outliers in the real-world data set, whose time-series              
behavior does not resemble any other compound. HCA effectively separates meaningful from            
non-meaningful measurements, groups together very similar compounds, and highlights         
outliers.” 

Minor Figure 1 bottom. legends needed.  

This has been corrected. 



page 7, line 167: "Teon" itself is PTFE and is trademarked and manufactured by a company 
called Chemours. Is the tubing PFA or PTFE? Manufactured by Chemours? If not, it is not 
Teon.  

The tubing is PFA; the name has been corrected, and similarly in section 2.1.2 (Teflon chamber 
to PFA chamber). 

Figure 2. Panel D. Not a great gure to highlight in main manuscript. Account for oscillation 
before including as main gure. I understand it is not included, but most people only look at 
gure and not read caption, will come away with wrong impression. Panel B not informative. 
This gure perhaps is introduced prematurely since hierarchical clustering since that section is 
far below.  

Both reviewers found this figure distracting and complicated. We moved Figure 2 to the 
supplemental information. Other researchers who are working with CIMS data may find it a 
useful guide.  

Page 12 line 290, Need hyphen in citation  

This has been corrected. 

Figure 8, 9 and 14 share the same color scheme. It would be nice to have a common legend 
and/or color-bar shown in each of these gures to remind the reader that these colors represent 
generation determined by HCA.  

The color in original Figures 8,9, and 14 (now 7,8, and 13) is only used to distinguish clusters,                  
and does not have anything to do with generation. The coloring in all figures that show                
simulated data is consistent (precursor in black, 1st generation in red, 2nd generation in yellow,               
and 3rd generation in blue). We edited the figure captions to clarify the use of color in all figures.  

Please make clear in each of the gure caption in the SI and main manuscript whether it is 
presenting simulated data or measured data. 

The figure captions have been edited according to the reviewer’s suggestion. 

Anonymous Referee #2 

The authors compare three different techniques for dimensionality reduction in mass 
spectrometry time series data sets, positive matrix factorization, hierarchical clustering, and 
gamma kinetics parameterization. They evaluate the behaviour of the three techniques on two 
data sets and conclude that PMF is not competitive compared to the two others. 

Overall the paper gives a good overview of the work, but requires some revision before being 
published. 

For the clustering, the authors chose agglomerative clustering using average linkage. However, 
they don’t provide all necessary information to reproduce the experiments or motivate their 
choices. Euclidean distance was used, why was this distance measure chosen? I can see it 



makes sense in some ways, however there are different metrics specific for time series, most 
notably dynamic time warping (DTW), which might make sense in this case. DTW compensates 
for shifts in the time series, so for particular use cases, this could make sense. Otherwise, there 
are more approaches to achieve a clustering, why choose this one? Agglomerative tends to be 
computationally faster than divisive, but this shouldn’t be a problem with data sets this size. 
Otherwise what about density-based clustering or really simple approaches such as K-Means? 

Here we address three points raised by the reviewer. 

(1) Why was Euclidean distance used? 

Simply put, we tried several distance measures and found that Euclidean distance resulted in 
the grouping that was most consistent, understandable, and insensitive to outlier points in 
time-series data.  

We added this to the text at line 306, 

“Other distance metrics are possible, including using a correlation coefficient or the sum of 
squared residuals. This particular approach was chosen because it resulted in the grouping that 
was most reproducible and understandable, and least sensitive to outlier points in the time 
series.” 

(2) Why was HCA used instead of some other clustering method? 

When we began this work, we did try several other approaches to clustering, including              
K-means. K-means is suited for data sets where there are several distinct, discrete groups. It               
also doesn’t handle outliers well: all compounds have to be assigned to a cluster. Density-based               
clustering is similar to K-means in that it identifies discrete groups of compounds; the              
implementation is a little different, and it is somewhat better equipped to handle outliers and               
strangely-shaped clusters.  

We found that K-means did not work well with this particular data set. In the chamber data set                  
described here, each sample is one chemical species, the variables are time t1, t2, t3, etc. and                 
the vector description of each sample is the normalized intensity at each of ~500 time points. In                 
this implementation k-means attempts to find clusters in 500-dimensional space. It is really not              
the optimal technique to do this, especially since there is a comparatively small number of               
samples (about 500 compounds). Additionally, the data describes a continuum of behavior,            
rather than distinct, discrete groups.  

We found HCA to be a method ideal for this type of data, which is why it is featured in the final                      
manuscript. It is easy to implement with time-series data, it returns not just groupings of               
compounds, but also a metric of the similarity of behavior, it can describe a continuum of                
behavior, and it handles outliers well. 

(3) Suggestion of dynamic time warping. 



This is a very interesting suggestion and could work well when combined with GKP. With this                
implementation it may be possible to remove the effect of different rate constants and group               
species by generation alone. More work is needed to explore this approach.  

Similarly, there exist a wide range of algorithms for PMF, which one was actually used here? 
And why this one? The authors give the library, but some details on the method would be 
necessary. 

We used the PMF Evaluation Tool v2.08. It is based off the PMF2 algorithm from Paatero 2007. 
This particular implementation is widely used in atmospheric science and therefore the 
evaluation of this particular technique is likely of the greatest interest to the atmospheric science 
community. We edited the text in section 2.2.1 (implementation of PMF) to read, 

“The algorithm was implemented using the PMF Evaluation Tool v2.08 (Ulbrich et al., 2009) 
using the PMF2 algorithm (Paatero, 2007). We chose this implementation because it is widely 
used in atmospheric science and has been optimized for atmospheric chemistry data.” 

The algorithm is a constrained least-squares approach and is already described in the text. 

On page 11, the authors give a formula for the quality of fit parameter Q, but half of the 
variables in the formula are not defined anywhere so the formula does not really make sense. 

This section now reads, 

“Briefly, the algorithm takes as input an m×n matrix of measured data M, containing n               
measured compounds at m time points, and a matrix of estimated error (one standard              
deviation, σ) for each point in the measured data matrix. The solution for a given number of                 
factors p is given as an m×p matrix G of factor time series, a p×n matrix F of factor profiles, and                     
a matrix E that contains the residual (M-GF). F and G are iteratively adjusted to minimize the                 
quality-of-fit parameter Q: 

(e /σ )Q = ∑
m

i=1
∑
n

j=1
ij ij

2  

where eij is the residual between the measurement and the PMF reconstruction of             
compound j at time point i, and σij is the estimated error of that measurement.”  

Also, when looking at algorithms such as PMF or clustering, it would be interesting to calculate 
performance measures and give them to get a feeling how well the clustering or factorization 
works. This could be simple reconstruction error or normalized mutual information (if there is a 
ground truth). 

The PMF algorithm includes a reconstruction error. In the text we call this the “residual” and                
state that for the chamber experiment it is quite low, about 2%, regardless of aging time. It is                  
consistently low for solutions with three or more factors. At line 410 we edited the text to note                  
that “residual” may also be called “reconstruction error”. Despite the low residual, the PMF              
factors do not seem to be a chemically realistic deconstruction of the data set.  



The HCA algorithm does not lend itself to a reconstruction error. Unlike PMF, the algorithm does                
not seek to minimize an error term. Each species is assigned to a single cluster, and the                 
time-series of clusters necessarily resembles the individual cluster contributors. Normalized          
mutual information can provide a way to assess the quality of clustering. Unfortunately, we do               
not know the exact chemical identities and mechanistic relationships of all 464 compounds             
measured during the chamber experiment, so it isn’t possible to use NMI to assess the               
clustering as a whole. However, we can calculate NMI for the HCA of the synthetic system. We                 
calculated NMI for the synthetic system for solutions with one to ten clusters, evaluating the               
separation of different generations into distinct clusters. We also calculated NMI for the PMF              
solutions with 2 to 10 factors. We used the relative intensities of each generation in each factor                 
to calculate NMI. For example, if Factor 2 accounted for 40% of the total integrated intensity of                 
B1 and 80% of the total intensity of B2, we assigned a value of 1.2 for Generation B to Factor 2.                     
The results are: 

Number of clusters 
or factors 

PMF NMI HCA NMI 

2 0.402056 0.396705 

3 0.380505 0.466626 

4 0.436106 0.520791 

5 0.42733 0.682508 

6 0.441523 0.744987 

7 0.761499 0.834656 

8 0.733057 0.799452 

9 0.678975 0.755557 

10 0 0 

HCA has a higher NMI value in each case, except for when only 2 factors/clusters are chosen.                 
In this case, the PMF residual is high (13%).  

We have included this information in the text. Section 3.1.1. (PMF of synthetic data) now reads: 

“A set of PMF solutions for the synthetic data, including 2-10 factors, is shown in the 
Supplement (Figure S5). The quality of the PMF reconstruction can be evaluated in two ways: 
the residual between the PMF reconstruction and the original data (lower residual indicates 
better agreement), and the normalized mutual information (NMI) (Vinh et al., 2010) between 
PMF factors and photochemical generation. The PMF residual is high for the 2-factor solution 
(13%, on average), and low for 3- to 10-factor solutions (less than 5%). 

The normalized mutual information metric describes the correlation between PMF factors and 
generation. A value of 0 means no correlation, and a value of 1 indicates that generations are 
perfectly assigned to distinct factors. Because species can be assigned to multiple factors, we 
used the relative intensities of each generation in each factor as input to the NMI calculation. 
For instance, if PMF Factor 2 accounted for 66% of the total integrated intensity of 
first-generation product B1, 97% of the intensity of B2, and 12% of the intensity of B3, we 
assigned a value of 1.75 for first-generation products to Factor 2. The mutual information 
describes the probability that products of a particular generation are assigned to the same 



cluster. Mutual information must be normalized so that it can be compared between solutions 
with different numbers of factors or clusters. As the normalization factor, we used the arithmetic 
average of the generation and factor entropy, which is a quantity that describes the size and 
diversity of values in the two classification schemes (generation and PMF factor). 

            NMI values are provided in Table 1. For purposes of comparison, Table 1 also includes 
the NMI values calculated from hierarchical clustering analysis. HCA of the synthetic data set is 
described in section 3.2.1. Because there are only ten species in the synthetic data set, a 
solution with ten groups, each of which contains a single species, has no correlation between 
generation and groups, and the NMI is zero. 

Number of groups (PMF 
factors or HCA clusters) 

PMF NMI HCA NMI 

2 0.402 0.397 
3 0.381 0.467 
4 0.436 0.521 
5 0.427 0.683 
6 0.442 0.745 
7 0.761 0.835 
8 0.733 0.799 
9 0.679 0.756 
10 0 0 
Table 1. Synthetic data. Normalized mutual information index quantifying the correlation 
between PMF factor and photochemical generation. 

Figure 3 shows the four-factor solution. The four PMF factors are able to reconstruct the total 
signal with excellent agreement, but they do not correspond to the four original generations of 
compounds (precursor plus three product generations).  There is some relationship between 
early, middle, and late-generation species and the PMF factors (indicated by non-zero NMI 
values), but regardless of the selected rotational forcing, all PMF factors contain species from 
more than one generation. For instance, because both C1 and D2 are long-lived species, they 
are correlated over the time period of the experiment and so are assigned to the same factor. 
More importantly, many species are included in two or more PMF factors, despite being formed 
by only one pathway. Eight to ten factors (approximately the number of species in the dataset) 
are needed to separate generations, which is not a useful simplification of the data set (which is 
made up of only ten species).”  

Section 3.2.1 (HCA of synthetic data) reads: 

“The ability of HCA to separate compounds of different generations was quantified by the 
normalized mutual information (NMI). NMI values are provided in Table 1. For all solutions with 
more than 2 clusters (or factors), NMI values for HCA are higher than those of PMF, indicating 
that HCA more successfully sorts compounds by generation.” 

Another issue is repetition of experiments. While the agglomerative clustering should be mostly 
stable, PMF usually is not when using big enough data sets. So a single run would not be a 
reliable representation and multiple runs would be necessary. Additionally, this paper seems to 
base its results on two data sets, which cannot give any reliable or statistically sound 



performance representation for these approaches. Anything below at least 5 data sets won’t 
give you the proof you need for what you state in the conclusion. Either rerun the experiments a 
lot more times or restate in the conclusion that this gives an indication, but to proof it, many 
more experiments would be needed. 

The data in this paper were provided by a specialized instrumentation suite that was only               
available for a short period of time, so unfortunately we are not able to re-run all the                 
experiments. However, we argue that the results of this work are meaningful despite the low               
number of data sets used. 

First, in atmospheric chemistry, PMF is often run on single data sets, simply because it is not                 
possible to re-produce conditions in the ambient atmosphere. Nonetheless, PMF has been            
extremely valuable to the atmospheric science community, and the results are often clearly             
meaningful, even when only a single data set is used. 

Second, we assessed the stability of the PMF solution by running PMF several times with               
different random seed values. We found that the PMF solutions did not significantly change with               
seed value. We note this in section 2.2.2. 

Third, we make no definitive statements about what the various techniques can or cannot be               
used for, that would depend on analysis of many data sets. In our assessment of PMF, we claim                  
that the factors do not necessarily represent distinct chemical groups. We suggest HCA as a               
method to organize data in chamber experiments, and present GKP as a method to derive               
kinetic information from a chamber experiment. All of these statements can be (and are) clearly               
shown by one or two systems. 

To clarify the limitations of our data sets, we have added in the conclusion (line 753, in                 
discussion of future work), 

“The current analysis is based on two systems, a synthetic system and a chamber experiment,               
and more work is needed to see how these analysis approaches perform with other systems.” 

I would recommend improving the presentation, particularly the figures. It is not always straight 
forward to understand what is shown. For example Figure 14 on its own does not explain the 
meaning of the colours or the size of the dots. Also the labeling of part A, B, and C is not very 
standard and sometimes hard to understand. 

We made minor edits to the figure captions to always explain the color scheme and marker size. 
We made minor cosmetic changes to a few figures to improve legibility and colorblind- 
friendliness. Labels were added to Figure 3 (previously Figure 5), lines were thickened in Figure 
10 (previously Figure 11), and the color scheme was changed slightly in Figure 12 (previously 
Figure 13). Multi-panel figures are always labeled A, B, C, D from left to right, top to bottom. The 
panels A B C etc. are described in the caption of each figure.  

One specific question I have on Figure 2. I don’t see how the cluster of C happens,looking at the 
data in C, this does not seem to be a cluster, the highest gray line is faraway from all others and 



looks far too much as an outlier compared to the rest of the cluster. How does this compare to 
the rest of the data? Is everything else just evenfurther away? 

Both reviewers found this figure distracting and complicated. We moved Figure 2 to the 
supplemental information. Other researchers who are working with CIMS data may find it a 
useful guide.  
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Abstract.  

Oxidation of organic compounds in the atmosphere produces an immensely complex mixture of product 

species, posing a challenge both for their measurement in laboratory studies and their inclusion in air quality and 

climate models. Mass spectrometry techniques can measure thousands of these species, giving insight into these 15 

chemical processes, but the data sets themselves are highly complex. Data reduction techniques that group 

compounds in a chemically and kinetically meaningful way provide a route to simplify the chemistry of these 

systems, but have not been systematically investigated. Here we evaluate three approaches to reducing the 

dimensionality of oxidation systems measured in an environmental chamber: positive matrix factorization (PMF), 

hierarchical clustering analysis (HCA), and a parameterization to describe kinetics in terms of multigenerational 20 

chemistry (gamma kinetics parameterization, GKP). The evaluation is implemented by means of two data sets: 

synthetic data consisting of a three-generation oxidation system with known rate constants, generation numbers, 

and chemical pathways; and the measured products of OH-initiated oxidation of a substituted aromatic compound 

in a chamber experiment. We find that PMF accounts for changes in the average composition of all products 

during specific periods of time, but does not sort compounds into generations or by another reproducible chemical 25 
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process. HCA, on the other hand, can identify major groups of ions and patterns of behavior, and maintains bulk 

chemical properties like carbon oxidation state that can be useful for modeling. The continuum of kinetic behavior 

observed in a typical chamber experiment can be parameterized by fitting species’ time traces to the GKP, which 

approximates the chemistry as a linear, first-order kinetic system. Fitted parameters for each species are the 

number of reaction steps with OH needed to produce the species (the generation) and an effective kinetic rate 30 

constant that describes the formation and loss rates of the species. The thousands of species detected in a typical 

laboratory chamber experiment can be organized into a much smaller number (10-30) of groups, each of which 

has characteristic chemical composition and kinetic behavior. This quantitative relationship between chemical 

and kinetic characteristics, and the significant reduction in the complexity of the system, provide an approach to 

understanding broad patterns of behavior in oxidation systems and could be exploited for mechanism development 35 

and atmospheric chemistry modeling.  

Introduction  

Air quality and climate change are major threats to the quality of millions of human lives across the globe 

(IPCC, 2014; Landrigan et al., 2018). An important scientific component of both topics is the photooxidation 

chemistry of organic compounds in the atmosphere, which can lead to the formation of ozone and fine particulate 40 

matter, both of which can affect the radiative budget of the atmosphere and can harm human health. A detailed 

understanding of this chemistry is necessary to predict and mitigate these effects. However, this is challenging 

because of the diversity and number of species involved. Gas-phase organic compounds emitted directly into the 

atmosphere have a wide range of functionality and reactivity, and oxidation of these precursors by O3, OH, or 

NO3 can further functionalize or fragment the molecules. The number and diversity of the product species 45 

increases with the number of generations of reaction, and key properties of these product species, such as 

volatility, reactivity, and concentration, can vary over orders of magnitude (Glasius and Goldstein, 2016; 

Goldstein and Galbally, 2007).  

This complexity presents several challenges. In order to fully characterize oxidation of organic compounds, 

analytical techniques must be able to detect hundreds to thousands of individual species and accommodate the 50 

diversity of functionality and concentration. Advances in instrumentation, especially high-resolution time-of-

flight chemical ionization mass spectrometry (CIMS), have enabled detection of a large number of oxidation 

products in chamber and field experiments.  CIMS involves the introduction of a reagent ion, which then reacts 

with the analyte, forming product ions that are detected with mass spectrometry. Chemical selectivity can be 



3 
 

achieved through choice of the reagent ion, and fast, online measurement of air samples is possible. CIMS 55 

instruments with high mass resolution (maximum FWHM m/Δm >3000) can unambiguously determine the 

elemental composition of most detected ions with m/z less than 200, and the elemental compositions of ions with 

m/z >200 can usually be determined with some certainty (Junninen et al., 2010). The analytical capability of 

atmospheric CIMS instrumentation is rapidly improving, and modern instruments can have sensitivities on the 

order of 10000 cps ppbv-1 and resolution greater than 10000 m/Δm (Breitenlechner et al., 2017; Krechmer et al., 60 

2018), allowing the measurement of hundreds to thousands of species on a rapid time base (Isaacman-VanWertz 

et al., 2017; Müller et al., 2012).  

While this represents a major advance in our ability to detect and characterize trace atmospheric chemical 

components, these large data sets can be difficult and time-consuming to interpret, and it is not clear how the full 

information content from thousands of ions can be best used. Further, secondary ion processes, such as cluster 65 

formation or ion fragmentation, can occur within the mass spectrometer, complicating the mass spectra, and 

different CIMS techniques have differing chemical specificities that can be hard to predict. Data analysis 

techniques are therefore needed to efficiently reduce the amount of data to more manageable and interpretable 

sizes. Further, the interpretation of these measurements in terms of chemical mechanisms is often not 

straightforward. Most laboratory studies use CIMS measurements to support, refute, or suggest new chemical 70 

mechanisms; this is typically done by hand, focusing on several key species of interest. Data analysis techniques 

that allow for the extraction of useful chemical and mechanistic information from entire mass spectra are valuable 

and necessary, but have not been systematically explored. 

Simplification is also needed to incorporate oxidation chemistry into climate and air quality models. Large-

scale regional and global models (e.g., chemical transport models, earth system models) cannot currently 75 

incorporate a high level of chemical detail. Photochemical mechanisms commonly used to incorporate chemistry 

into regional and global models typically include 30-200 species and 100-400 reactions (Brown-Steiner et al., 

2018; Jimenez et al., 2003), which is much lower than the number of product species from individual precursors 

included in explicit chemistry mechanisms such as the Master Chemical Mechanism (300-1000+ product species, 

e.g. Bloss et al., 2005; Jenkin et al., 2003; Saunders et al., 2003) or GECKO-A (~105 species, Aumont et al., 80 

2005). In order to reduce the number of species in models, VOCs are represented by groups, or are “lumped,” and 

the choice of lumping criterion can affect the derived ozone, aerosol, and product VOC formation values (Jimenez 

et al., 2003; Zhang et al., 2012). In gas-phase mechanisms, compounds have been lumped by degree of 

unsaturation, emission rates, functional groups, or reactivity towards OH (Brown-Steiner et al., 2018; Crassier et 

al., 2000; Houweling et al., 1998; Jimenez et al., 2003; Gery et al., 1989; Carter, 1990; Stockwell et al., 1997). 85 
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Similarly, secondary organic aerosol formation has been parameterized by lumping organic species by volatility, 

O:C ratio, number of carbon and oxygen atoms, or polarity, and assigning kinetic properties to each group (Cappa 

and Wilson, 2012; Donahue et al., 2012; Lane et al., 2008; Pankow and Barsanti, 2009). Lumping schemes could 

be improved by using laboratory data to define important groups of compounds, and assign experimentally-

derived chemical and kinetic properties to each group to act as a surrogate species.  90 

Several methods have been used to categorize mass spectra and to group compounds. We consider two 

methods previously used to reduce the dimensionality of complex atmospheric chemistry measurements, positive 

matrix factorization (PMF) and hierarchical clustering analysis (HCA). Both methods have seen substantial use 

in the simplification and interpretation of field measurements, but have seen far less use in the laboratory, and 

there has been little exploration of how they can be used to gain useful chemical or mechanistic information from 95 

laboratory mass spectrometric datasets. We additionally address a fundamental, underexplored problem in 

laboratory chamber studies: how to systematically characterize the kinetics of an oxidation system. The systematic 

characterization is achieved through the gamma kinetics parameterization (GKP) and can be used to group 

compounds based on similar kinetic properties. The three methods (PMF, HCA, and GKP) have different 

mathematics but the same goals: to identify groups of compounds, and replace each group with a chemically 100 

meaningful surrogate. The three methods are evaluated in terms of the following criteria: whether the resulting 

surrogates have chemically realistic behavior; whether the surrogates have the same range of chemical properties 

as the original data set; which subjective choices the researcher needs to make when implementing the method; 

and what other new information about the system can be learned.in terms of their ability to reduce the complexity 

of the system, whether the derived groups of compounds have meaningful chemical and kinetic properties, and 105 

whether new information about the system can be learned. We additionally discuss the extent to which different 

methods agree in their identification of major groups of compounds. The output of these dimensionality-reduction 

techniques can be used to quickly analyze and interpret chamber experiments, and could be used to reduce the 

complexity of chemical mechanisms included in models. 

2 Methods 110 

2.1 Data collection 

We use two data sets: a synthetic data set describing a simple multigenerational kinetic system, and 

measurements of the OH-initiated oxidation of 1,2,4-trimethylbenzene in an environmental chamber. The 
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synthetic dataset is useful for evaluating the various dimensionality-reduction schemes used here, because the 

reaction rate constants and generation of each species are known exactly. The chamber data demonstrates the 115 

application of the data reduction techniques to a real-world system measured with online mass spectrometry. 

2.1.1 Synthetic data set 

A schematic of the simple synthetic kinetic system is shown in Figure 1. The precursor molecule A reacts 

with OH to produce first-generation species (B), which in turn reacts with OH to produce second generation (C) 

and further to third-generation species (D). Only reactions with OH are considered. The system includes three 120 

pathways with differing yields, and each pathway includes a product with a fast, a slow, and an intermediate OH 

rate constant. The different rate constants (randomly generated) and yields simulate a range of product behavior. 

To enable PMF measurements, artificial noise was added to the synthetic data. The noise is normally distributed 

with a standard deviation proportional to the square root of the signal. The proportionality constant, based on a 

typical PTR-MS sensitivity of 10,000 counts ppb-1 s-1, was chosen to generate signal-to-noise ratios between 10 125 

and 100, a reasonable range for chamber experiments.  
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Figure 1 Schematic of reaction pathways with OH (top) of synthetic data and time series shown with linear and log 

concentration (bottom: left and right, respectively). Arrows represent a reaction with OH. Reaction rate constants with OH are 

written above the arrows (units are in 10-11 cm3 molecule-3 s-1). Precursor species A reacts at a rate of 5 ×10-11 cm3 molecule-3 130 
s-1 with yields of 0.6, 0.3, and 0.1 for the three pathways, respectively. Products of pathways 1, 2, and 3 are drawn with solid, 

short-dash, and long-dashed lines, respectively, and the first-, second-, and third-generation products are drawn in red, yellow, 

and blue. The total OH exposure is equal to 24 hours at an average OH concentration of 1.5×106 molecule cm-3. 

2.1.2 Chamber oxidation of 1,2,4-trimethylbenzene 

An oxidation experiment was conducted in the MIT environmental chamber, which consists of a 7.5m3 135 

Teflon PFA enclosure. The chamber conditions were controlled at 20 °C and 2% relative humidity. The chamber 

is illuminated by forty-eight 40 W blacklights with a 300-400 nm spectrum peaking at 350 nm.  During 

experiments the chamber maintains a constant volume, and clean air is continuously added at a rate equal to the 

instrument sample flow (15 lpm). Additional details of chamber operation have been previously reported (Hunter 

et al., 2014).  140 
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 Dry ammonium sulfate seed (which provide surface area onto which low-volatility vapors can condense) 

was first added to the chamber to reach a number concentration of 5.7×104 cm-3
 (19.7 µg m-3). Nitrous acid 

(HONO, the OH precursor) was added by bubbling clean air through a dropwise addition of H2SO4 to NaNO2 to 

reach a concentration of 45 ppbv in the chamber. Several ppbv of an unreactive tracer, hexaflurorobenzene, were 

added to provide a measure of chamber dilution. Three microliters of neat 1,2,4-trimethylbenzene (SigmaAldrich) 145 

were added by injection into a 70°C heated inlet with a flow rate of 15 lpm, resulting in an initial concentration 

of 69 ppbv in the chamber. The reagents were allowed to mix for 15 minutes, then the experiment was initiated 

by turning on lights to photolyze nitrous acid and generate OH. Measurements were conducted for seven hours. 

During this time three additional aliquots of nitrous acid (27 ppbv, 10 ppbv, and 18 ppbv) were added at regularly-

spaced intervals to roughly maintain the OH concentration. The OH concentration was determined by fitting a 150 

double-exponential function to the measured decrease of 1,2,4-trimethylbenzene, including a known dilution term 

(determined from hexafluorobenzene dilution) and an OH reaction term. A total atmospheric-equivalent exposure 

of 16.5 hours (assuming an average atmospheric OH concentration of 1.5×106 molecule cm-3) was achieved. 

CO and formaldehyde were measured by tunable infrared laser differential absorption spectroscopy 

(TILDAS, Aerodyne Research Inc.) Other gas-phase organic species were measured by chemical ionization, 155 

followed by analysis with high-resolution time-of-flight (HR-ToF) mass spectrometry. Three chemical ionization 

mass spectrometry (CIMS) techniques were used: I- reagent ion, H3O+ reagent ion, and NH4
+ reagent ion. The I- 

CIMS instrument is from Aerodyne Research Inc. and is described by Lee et al. (2014). H3O+ and NH4
+ CIMS 

involved proton-transfer-reaction mass-spectrometers with switchable reagent ion chemistry (PTR3-H3O+ and 

PTR3-NH4
+, Ionicon Analytik). The PTR3 H3O+ CIMS and NH4

+ CIMS techniques are described by 160 

Breitenlechner et al., 2017 and Zaytsev et al., 2019, respectively. H3O+ CIMS was also carried out using a second 

proton-transfer-reaction mass spectrometer (Vocus-2R-PTR, TOFWERK, A.G.), which is described by Krechmer 

et al., 2018. Total organic aerosol mass was measured using a high-resolution time-of-flight aerosol mass 

spectrometer (AMS) from Aerodyne Research Inc. (DeCarlo et al., 2006), calibrated with ammonium nitrate and 

assuming a collection efficiency of 1. Organic aerosol accounted for approximately 2% of the secondary carbon, 165 

and individual ion measurements from the AMS are not considered separately. The TILDAS was calibrated 

directly for CO and formaldehyde. The Vocus-2R-PTR was calibrated directly for 1,2,4-trimethylbenzene and 

acetone. The PTR3 H3O+ CIMS was calibrated directly for 15 individual species and an average calibration factor 

was applied to other species. The PTR3-NH4
+ and I-CIMS were calibrated using a combination of direct 

calibration and collision-induced-dissociation (Lopez-Hilfiker et al., 2016; Zaytsev et al., 2019). We note however 170 

that the calibration of each instrument does not affect any results presented in this work, since the analysis 
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techniques used examine the time-dependent behavior, and not the absolute concentrations, of the measured 

species. 

Sampling from the chamber to CIMS instruments was designed to reduce inlet losses of compounds as 

much as possible, within the physical constraints of the chamber. Each instrument used a 3/16” ID PFA Teflon 175 

line of 1m or less in length, with a flow of 2 LPM. Inlets extended 10cm into the chamber and no metal fittings 

were used. The PTR instruments additionally have instrument inlets and ion-molecule-reaction chambers that 

minimize gas contact with walls (Breitenlechner et al., 2017; Krechmer et al., 2018). In this study, CIMS inlet 

(including chamber and instrument inlet) loss timescales were 15 seconds or less for test compounds with 

saturation concentrations between 102 and 107 µg m3 and therefore wall interactions for these species are unlikely 180 

to affect the observed kinetics, which occur over tens of minutes (Krechmer et al., 2016). 

Chamber background for each measurement was determined from measurements taken prior to precursor 

injection, which is are subtracted from each chamber measurement reported. All measurements were also 

corrected for dilution by normalizing to the hexafluorobenzene tracer (for gas-phase data) or to measured 

(NH4)2SO4 aerosol seed (for particle-phase data, which also corrects for wall loss and AMS collection efficiency).  185 

Between 1000 and 3000 peaks with variability above background were observed in the mass spectra from 

each CIMS instrument; these include chemistry-relevant ions related to oxidation products, as well as other ion 

signals from sources such as instrument ion sources, the hexafluorobenzene dilution tracer, tubing and inlets, and 

interferences from large neighboring peaks in the mass spectrum  (Cubison and Jimenez, 2015). Two data-

processing steps were used to identify the chemically relevant ions.  190 

First, the elemental formulas of all ions were determined. With the resolution of the instruments used 

here (~maximum 10000 m/Δm for Vocus-2R-PTR and PTR3; ~3000 for I-CIMS), elemental composition can 

become ambiguous at high m/z values. We first assigned all unambiguous peaks, where only one reasonable 

formula within 10ppm of the peak was possible, beginning with the largest peaks in order to identify and exclude 

isotopes. Then, we used trends observed in Kendrick mass defect plots to suggest formulas for species expected 195 

at higher masses. Remaining peaks (<1% of instrument signal) were assigned the formula with the nearest mass 

that included C, H, N, and O, had nine or fewer carbon atoms, and had positive, integer double-bond-equivalency 

(again, beginning with the largest peaks and excluding isotopes). A mass defect plot showing unambiguous ions, 

and the complete set of ions, is shown in Figure S1.  

Second, chemically relevant ions were separated from all other ion signals using hierarchical clustering. 200 

Chemically relevant ions are those which result from oxidation products. They are enhanced above background 

during the oxidation experiment and do not have sudden, stepwise changes, which would indicate an instrument 
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interference. A difference mass spectrum, which compares the average signal of each ion before chemistry is 

initiated to the average signal during oxidation, is a simple way to identify relevant ions, but can be misleading 

for ions with low signal-to-noise ratios or variability unrelated to oxidation chemistry. Hierarchical clustering 205 

provides an alternative method, involving the systematic examination of the time-dependent behavior all measured 

species. Chemically relevant ions exhibit a time dependence that is consistent with chemical kinetics (formation 

of the product, often followed by reactive loss) that is different from that of ions not resulting from oxidation. 

These two classes are clustered separately from each other, enabling the straightforward selection of only 

chemically relevant ions. The hierarchical clustering algorithm is described in section 2.2.2. An example for the 210 

PTR3 H3O+ mode instrument is shown in Figure S2.   

An example for the PTR3 H3O+ mode instrument is shown in Figure 2. 1330 ions were detected and 

quantified. Of these, 251 have time-dependencies consistent with products of the oxidation of 1,2,4-

trimethylbenzene. Ten to twenty clusters were visually inspected to identify which ions should be excluded from 

further analysis.  This approach was used to identify chemically relevant ions and to exclude all background ions 215 

from each CIMS instrument. 
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Figure 2 Identification of chemically relevant ions within a mass spectrum (here, from the PTR3 H3O+ instrument) using 
hierarchical clustering analysis. A. Average mass spectrum showing chemically relevant ions in red and non-relevant ions in 
gray. B. Hierarchical cluster of ions. Relevant ions and the clusters they belong to are highlighted in red. Boxes are drawn 220 
around two example clusters, “C,” which includes non-relevant ions, and “D,” which includes relevant ions. C. Time series of 
all ions belonging to cluster “C.” The average is drawn in black. D. Time series of all ions belonging to cluster “D.” The 
average is drawn in black. The oscillating pattern is due to ion source stabilization after reagent-ion switching and was not 
included in final data.  

 225 

Compounds that were measured by more than one instrument, identified as having the same elemental 

composition (after correction for any reagent ion chemistry) and similar time-series behavior (Pearson’s R >0.9), 

were included only once in the data set with all product species. When selecting compounds measured by more 

than one instrument, data from PTR-MS instruments, which have the smallest calibration uncertainties, were used 

first, followed by I- CIMS and NH4
+ CIMS. In the final, combined data set, approximately half the carbon in 230 

oxidation products was measured by PTR-MS, with about 15% measured each by I- CIMS, NH4
+ CIMS, and 
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TILDAS, and an additional 2% by AMS. We recognize that there is a great deal of uncertainty associated with 

calibrating CIMS instrumentation and identifying detected ions. This is an active area of research that we do not 

attempt to address fully here. Calibration and identification of species measured by more than one instrument do 

not affect the major conclusions of this paper. 235 

2.2 Implementation of data simplification tools 

2.2.1 Positive Matrix Factorization (PMF)  

In atmospheric chemistry, PMF analysis typically involves representing a time series of mass spectra (or other 

chemical measurements), recorded as a matrix of m measurements by t time points, as a linear sum of “factors” 

(Paatero, 1997; Ulbrich et al., 2009; Zhang et al., 2011). Each factor is fixed in chemical composition, but varies 240 

in intensity over time.  

PMF analysis of ambient air measurements has in many situations been shown to be robust and meaningful, 

and has contributed greatly to our understanding of atmospheric and aerosol chemistry. PMF is frequently used 

for source apportionment and characterization of organic aerosol in field studies, for example, to sort aerosol as 

more- or less- oxidized, or from a specific source such as biomass burning (Zhang et al., 2011). PMF is also 245 

frequently applied to VOC measurements in field studies. In this application, each factor indicates a particular 

VOC class (which can be associated with a specific source) and its magnitude, which is a powerful tool to support 

regulation.  

Some aspects of atmospheric chemistry can complicate PMF analysis. However, oOxidation chemistry during 

transport from the source to the measurement location can change the chemical composition, causing a single 250 

source to appear as several factors, or causing oxidized species from several sources to be grouped together, and 

adding substantial uncertainty to the derived source profiles (Sauvage et al., 2009; Wang et al., 2013; Yuan et al., 

2012). Factors including oxidation products, described as “secondary” or “long-lived species,” or that require 

correction for photochemistry have been reported in a number of studies from diverse locations (e.g. Abeleira et 

al., 2017; Sarkar et al., 2017; Shao et al., 2016; Stojić et al., 2015), but the interpretation of such factors within 255 

the context of a continually-evolving system is unclear.  

Finally, PMF has been applied to measurements of oxidizing chemical systems to greatly reduce the 

complexity of the dataset and identify key shifts in chemistry, including aerosol in laboratory experiments (e.g. 

Craven et al., 2012; Fortenberry et al., 2018), VOCs in chamber experiments (Rosati et al., 2019), and gas-phase 

highly-oxidized molecules in field studies (Massoli et al., 2018; Yan et al., 2016). Therefore, it is important to 260 



12 
 

understand whether PMF analysis of an oxidizing system returns chemically distinct, reproducible factors that 

correspond to a physical or chemical aspect of the system.  

The algorithm was implemented using the PMF Evaluation Tool v2.08 (Ulbrich et al., 2009) using the 

PMF2 algorithm (Paatero, 2007). We chose this implementation because it is widely used in atmospheric science 

and has been optimized for atmospheric chemistry data. Briefly, the algorithm takes as input an m×n matrix of 265 

measured data M, containing n measured compounds at m time points, and a matrix of estimated error (one 

standard deviation, σ) for each point in the measured data matrix. The solution for a given number of factors p is 

given as an m×p matrix G of factor time series, a p×n matrix F of factor profiles, and a matrix E that contains the 

residual (M-GF). F and G are iteratively adjusted to minimize the quality-of-fit parameter Q: Briefly, the algorithm 

takes as input an m×n matrix of measured data M, with m mass spectra at n time points, and a matrix of estimated 270 

error (one standard deviation, σ) for each point in the measured data matrix. The solution for a given number of 

factors p is given as an m×p matrix G of factor time series, a p×n matrix F of factor profiles, and a matrix E that 

contains the residual (M-GF). F and G are iteratively adjusted to minimize the quality-of-fit parameter Q: 

𝑄𝑄 =  ���𝑒𝑒𝑖𝑖𝑖𝑖 𝜎𝜎𝑖𝑖𝑖𝑖⁄ �2
𝑛𝑛

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

 

where eij is the residual between the measurement and the PMF reconstruction of compound j at time point i, and 275 

σij is the estimated error of that measurement. 

The factors and their profiles are constrained to be non-negative. The measured data matrix M for the 

synthetic dataset was constructed using all ten species (precursor plus 9 products) with artificial noise. The 

measured data matrix M for the chamber dataset was constructed using all measured product species (defined as 

all chemically-relevant ions from CIMS instruments, plus total organic aerosol, CO, and formaldehyde), after 280 

background subtraction, dilution correction, and calibration in units of parts-per-billion carbon (ppbC). Duplicate 

measurements of individual species from multiple instruments were excluded. Although calibrated data are used 

here, because PMF operates on the unitless quality-of-fit parameter Q, the results are not sensitive to calibration, 

only to the signal-to-noise ratio of the individual measurements.  

Because the precursor compound (1,2,4-trimethylbenzene) has an average intensity an order of 285 

magnitude larger than any other species, and therefore a very high signal-to-noise ratio, if it is included in M the 

quality-of-fit parameter Q and the resulting solution are dominated by the precursor. As this is not of interest, the 

precursor was also excluded in PMF analysis. Data were interpolated to 500 points evenly-spaced with respect to 

OH exposure (0-16.5 atmospheric-equivalent hours).  
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The matrix of estimated errors for the synthetic dataset was taken as the standard deviation used to generate 290 

the artificial noise. The matrix of estimated errors for the chamber dataset was generated by smoothing the data 

using a running 20-minute linear best-fit, and subtracting this smoothed data from the original measurement. The 

standard deviation of the residual within a 20 minute window was determined for each time point. Signal-to-noise 

ratios for both synthetic and chamber data are shown in Figure S2S3. The overall relationship between the standard 

deviation determined for chamber data and the measured concentration is reasonable (Figure S3S4).  295 

Solutions were explored with one to ten factors for the synthetic dataset and the chamber data. Rotational 

forcing, which examines linear combinations of possible solutions using the parameter fPeak, was explored 

through fPeak values between -1 and 1. The selected fPeak was chosen to avoid factor time-series with multiple 

maxima, which are not physically realistic in the chamber system. Solutions were also explored using different 

random initialization values, or seeds. No significant differences were found between solutions with random seed 300 

values 1-10.  

When PMF is used to reduce the complexity of a dataset, the number of factors must be chosen by the 

researcher, a choice that is inherently subjective. Solutions were explored with one to ten factors for the synthetic 

dataset and the chamber data. 

2.2.2 Hierarchical Clustering Analysis (HCA) 305 

A second technique is to group or cluster individual measurements based on the similarity of their 

behavior over time. While a measurement of a single chemical species can contribute to more than one PMF 

factor, it can belong to only one cluster. Several approaches to clustering exist. The approach we consider here is 

agglomerative hierarchical clustering, which describes the degree of similarity between any two measurements 

and can be used to sort species into categories of behavior (Bar-Joseph et al., 2001; Müllner, 2011). Hierarchical 310 

clustering analysis (HCA) has been used to group aerosol particles based on the similarity between individual 

mass spectra determined by aerosol mass spectrometers (Marcolli et al., 2006; Murphy et al., 2003; Rebotier and 

Prather, 2007), describe time-series of thermally-desorbed organics measured by CIMS (Sánchez-López et al., 

2014; Sánchez-López et al., 2016), and recently to determine the appropriate number of PMF factors used to 

analyze PTR-MS data from chamber studies (Rosati et al., 2019). It To our knowledge it has not yet been used to 315 

group compounds with similar time-varying behaviors to understand chemical transformation in an oxidation 

system. In this work we show how this technique can be implemented, and assess its ability to reduce the 

complexity of a dataset while maintaining chemical information. 
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Agglomerative hierarchical clustering sorts measurements by similar time-series behavior, and displays 

the relative similarity between measurements. First, all measurements were normalized, so that the time-series 320 

behavior could be directly compared despite differences in absolute concentrations or detection efficiencies. Data 

are noisy, and noise can contribute to the absolute highest point in a time series. To account for this, we normalized 

data to the average of the 10 points surrounding the highest point in each time series. Then, the distance between 

each pair of measurements A and B was determined. The distance describes the dissimilarity between any two 

time series measurements: two identical time series have a distance of zero, and measurements with different time-325 

series behavior have larger distance values. Distance was calculated by summing the differences between the 

normalized measurement intensities A and B over all time points t: 

 𝑑𝑑𝐴𝐴𝐴𝐴  = ∑ 𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴𝑡𝑡 − 𝐵𝐵𝑡𝑡)𝑡𝑡 .  

Other distance metrics are possible, including using a correlation coefficient or the sum of squared 

residuals. This particular approach was chosen because it resulted in the grouping that was most reproducible and 330 

understandable, and least sensitive to outlier points in the time series. 

The algorithm begins with the distances between all original measurements. The pair of measurements s 

and t with the lowest distance value is found, and these two measurements are assigned to a new cluster u. The 

two original measurements s and t are removed from the set, and the new cluster u is added. Then, the distances 

between the new cluster u and all the remaining measurements are determined. The algorithm then iteratively 335 

searches for the next smallest distance value and combines the pair into a new cluster. As the algorithm iterates, 

new clusters can be formed from two original measurements, from an original measurement and a cluster, or from 

two clusters. The distance between the new cluster u and any other measurement or cluster in the set v, is calculated 

as the average of the distances between each of the “n” individual members of u and “m” individual members of 

v, over all points i in cluster u and points j in cluster v: 340 

𝑑𝑑𝑢𝑢𝑢𝑢 =  �
𝑑𝑑(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖)
𝑚𝑚 × 𝑛𝑛

𝑖𝑖,𝑖𝑖

 

 The algorithm continues until only one cluster remains. Clustering was implemented using the open-source 

scipy.cluster.hierarchy.linkage package (SciPy.org, 2018). The relationships between each of the different 

measurements and clusters are visualized using a dendrogram. 

An example of the use of HCA to cluster chemical species within complex oxidation mixtures is shown 345 

in Figure 3 using the synthetic dataset. Species D1 and D3, with very similar time-series behavior, are the two 

most closely related compounds and are assigned to cluster D*. The next two most similar groups are species D2 

and cluster D*, which are assigned to a new, higher-level cluster. Species are clustered together until all have been 
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grouped into a single cluster. Compounds must be grouped into a specific number of clusters in order to use HCA 

to define surrogate species. The average chemical and kinetic properties of each cluster can be used to define a 350 

surrogate species. As with the number of factors from PMF, the number of clusters is subjectively chosen by the 

researcher. The clusters could be selected by hand, or by choosing a threshold for distance dAB to automatically 

define clusters. We chose to use a threshold to define the number of clusters, and considered several different 

values of thresholds that result in different numbers of clusters. The effect of threshold value on the interpretation 

of the data is discussed in Section 3.2.  355 
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Figure  Hierarchical clustering procedure. First, second, and third-generation species are shown in red, yellow, and blue, 

respectively. A. Time series data. B. Time series of species C1 and D2 normalized between 0 and 1. The gray shaded area is 

integrated to give the distance between the two time series. C. Matrix showing the relative distance between each pair of 

species. D. Hierarchical cluster relationship; D1 and D3 are the most similar species, and so are the first to be clustered together 360 
(forming a new cluster D*).  

2.2.3 Gamma Kinetics Parameterization (GKP) 

To date, bulk characterization of oxidation products in photochemical chamber experiments has largely 

focused on their chemical composition, and not their reactivity or mechanistic relationship. A few studies have 

derived kinetic information from time-series data (Smith et al., 2009; Wilson et al., 2012), but this has been limited 365 

to aerosol-aging experiments and not to atmospheric oxidation generally. A chamber oxidation experiment with 

speciated mass spectrometric measurements also contains a great deal of kinetic information, because the rates of 

formation and decay of each species are measured. In this work we show how the kinetic behavior of any particular 

measurement can be parameterized using a simple function, the gamma kinetics parameterization (GKP), which 

describes a system of first-order linear multi-step reactions. The function returns parameters that describe 370 

generation number (how many OH addition steps are needed on average to create the molecule), and reactivity 

(the relative rates of formation and decay), which are shown to correlate with key chemical characteristics. 

Grouping by similar kinetic parameters suggests a new, experimentally-derived approach to lumping mechanisms. 

A multigeneration reaction system can be described as a linear system of first-order reactions: 

X0
𝑘𝑘0→ X1

𝑘𝑘1→ X2
𝑘𝑘2→ … Xm

𝑘𝑘𝑚𝑚�� Xm+1
𝑘𝑘𝑚𝑚+1�⎯⎯� …  (Eq. 1) 375 

where ki is the rate constant and m is the number of reactions needed to produce species Xm (i.e., the generation 

number). When all ki’s are equal, the series of differential equations that describe the kinetics of Eq. 1 can be 

solved analytically, with the time dependence of any compound Xm described by: 

[X𝑚𝑚](𝑡𝑡) = 𝑎𝑎(𝑘𝑘𝑡𝑡)𝑚𝑚𝑒𝑒−𝑘𝑘𝑡𝑡 (Eq. 2) 

where a is a scaling factor that depends on both instrument sensitivity and stoichiometric yield (Smith et al., 2009; 380 

Wilson et al., 2012; Zhou and Zhuang, 2007). This function is related to the probability density function of the 

gamma distribution, a continuous probability distribution that has been previously used in chemistry to 

characterize protein kinetics (Pogliani et al., 1996; Zhou and Zhuang, 2007). 

 Oxidation reactions in a chamber experiment can be parameterized as a linear system of reactions, but 

the reactions between organic compounds and OH are bimolecular. This can be adjusted to a pseudo-first-order 385 
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system by considering the integrated OH exposure [OH]∆𝑡𝑡 = ∫ [OH]𝑑𝑑𝑡𝑡𝑡𝑡
0  instead of reaction time t. In this case, 

the observed behavior of an organic compound X that reacts with OH in the chamber can be parameterized by:  

[X𝑚𝑚](𝑡𝑡) = 𝑎𝑎(𝑘𝑘[OH]∆𝑡𝑡)𝑚𝑚𝑒𝑒−𝑘𝑘[OH]∆𝑡𝑡 (Eq. 3) 

where k is the second-order rate constant (units of cm3 molecule-1 s-1), m is the number of reactions with OH 

needed to produce the compound (generation number), and [OH]Δt is the integrated OH exposure (units of 390 

molecule s cm-3). This parameterization is exact in the situation where all rate constants k in the system are equal, 

and is an approximation otherwise, in which k is an effective rate constant representing the overall rate of reactions 

in the pathway.  

Figure 2Figure 4 illustrates how the parameters a, k, and m relate to the shape of the function described 

in Figure Equation 3. The parameter m (Figure 2Figure 4a) returns the generation number and is determined by 395 

the curvature of [X] as [OH]Δt→0 (Zhou and Zhuang, 2007).  

Eq. 3 can be fit to time-dependent concentration (or ion intensity) data to return a, k, and m. The fitted 

value of m can be affected by noise or by fitting to a too-long timestep (Zhou and Zhuang, 2007). The optimum 

timestep depends on the signal-to-noise ratio of the data and the compound’s reaction rate, but can be determined 

empirically. The fit can also be improved by integrating the data with respect to OH exposure over the 400 

experimental time period, and fitting the integrated form of Eq. 3, which reduces random Gaussian noise (Section 

S1). When all rate constants within a reaction sequence are not identical (which is typically the case), there is no 

direct analytical relationship between the effective rate constant k (Figure 2Figure 4b) and the individual rate 

constants in the pathway. However, the effective rate constant k provides a rough measure of the reactivity of the 

compound and its precursors. A higher effective k indicates higher formation and/or reaction rates, and is affected 405 

by rate-limiting steps (see Figure 10c for an example). The scaling constant a (Figure 2Figure 4c) ensures that the 

returned values of k and m are insensitive to instrument calibration and stoichiometric yields. 

 Compounds can be grouped by similar k and m in order to reduce the complexity of the dataset. The k, 

m, and average chemical properties of the group can be used to define a surrogate species. The choice of the 

number of groups and the method of grouping are subjective. GKP could be used alone, by binning compounds 410 

by similar k and m, or it could be used in combination with another analysis technique, such as HCA. Several 

approaches to using GKP to define surrogate species are discussed in section 3.3.2. 
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Figure 2 Illustration of the relationships between the different GKP parameters (m, k, and a) and the time dependence of a 

given species, using synthetic data. A. Parameterizations with different generation m. In the subpanel, the traces with m=2 and 415 
m=3 have been scaled to allow comparison of the curvature, which differs with generation. B. Parameterizations with different 

rate constant k. Increasing k does not change the shape of the curve, but causes the maximum to occur at smaller lower OH 

exposures. C. Parameterizations with different scaling constant a, which changes neither curvature nor location of the 

maximum, but only the height of the curve. 
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3 Results and discussion 420 

3.1 PMF 

3.1.1 PMF of synthetic data  

A set of PMF solutions for the synthetic data, including 2-10 factors, is shown in the Supplement (Figure S4S5). 

The quality of the PMF reconstruction can be evaluated in two ways: the residual between the PMF reconstruction 

and the original data (lower residual indicates better agreement), and the normalized mutual information (NMI) ( 425 

Vinh et al., 2010) between PMF factors and photochemical generation. The PMF residual is high for the 2-factor 

solution (13%, on average), and low for 3- to 10-factor solutions (less than 5%).  

The normalized mutual information metric describes the correlation between PMF factors and 

generation. A value of 0 means no correlation, and a value of 1 indicates that generations are perfectly assigned 

to distinct factors. Because species can be assigned to multiple factors, we used the relative intensities of each 430 

generation in each factor as input to the NMI calculation. For instance, if PMF Factor 2 accounted for 66% of the 

total integrated intensity of first-generation product B1, 97% of the intensity of B2, and 12% of the intensity of 

B3, we assigned a value of 1.75 for first-generation products to Factor 2. The mutual information describes the 

probability that products of a particular generation are assigned to the same cluster. Mutual information must be 

normalized so that it can be compared between solutions with different numbers of factors or clusters. As the 435 

normalization factor, we used the arithmetic average of the generation and factor entropy, which is a quantity that 

describes the size and diversity of values in the two classification schemes (generation and PMF factor). 

  NMI values are provided in Table 1. For purposes of comparison, Table 1 also includes the NMI values 

calculated from hierarchical clustering analysis. HCA of the synthetic data set is described in section 3.2.1. 

Because there are only ten species in the synthetic data set, a solution with ten groups, each of which contains a 440 

single species, has no correlation between generation and groups, and the NMI is zero. 

Number of groups (PMF factors 

or HCA clusters) 

PMF NMI HCA NMI 

2 0.402 0.397 

3 0.381 0.467 

4 0.436 0.521 

5 0.427 0.683 

6 0.442 0.745 
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7 0.761 0.835 

8 0.733 0.799 

9 0.679 0.756 

10 0 0 
Table 1 Synthetic data. Normalized mutual information index quantifying the correlation between PMF factor or HCA cluster 
and photochemical generation. 

Figure 3Figure 5 shows the four-factor solution. The four PMF factors are able to reconstruct the total 

signal with excellent agreement, but they do not correspond to the four original generations of compounds 445 

(precursor plus three product generations).  There is some relationship between early, middle, and late-generation 

species and the PMF factors (indicated by non-zero NMI values), but regardless of the selected rotational forcing, 

all PMF factors contain species from more than one generation. For instance, because both C1 and D2 are long-

lived species, they are correlated over the time period of the experiment and so are assigned to the same factor. 

More importantly, many species are included in two or more PMF factors, despite being formed by only one 450 

pathway. Eight to ten factors (approximately the number of species in the dataset) are needed to separate 

generations, which is not a useful simplification of the data set (which is made up of only ten species).  
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Figure 3 Results from PMF analysis of the synthetic data set, showing the 4-factor solution. A. Total intensity of synthetic 455 
data compared to stacked time-series of PMF factors. B. Profiles of PMF factors, illustrating that factors do not correspond to 

individual generations. The shaded background corresponds to generation: precursor (black), first-generation (red), second-

generation (yellow), third-generation (blue). The color of the mass spectra corresponds to panel A. Solutions with different 

numbers of factors are given in the supplemental information. 

3.1.2 PMF of chamber data 460 

Figure 4Figure 6 illustrates positive matrix factorization of chamber data, including 463 individual 

calibrated product species from CIMS, optical, and AMS instruments; these exclude the precursor and overlapped 

species, and are corrected for background and dilution. A three-factor, four-factor, and six-factor solution are 

shown. Additional solutions are shown in Figure S5S6. In each of the solutions, a linear combination of PMF 
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factors can reconstruct the measured intensity with negligible residual (also called reconstruction error) (within 465 

10 ppbC, or about 2%, for each solution, regardless of aging time). Each solution includes factors that peak in 

intensity at early, middle and late times. There are no factors that retain a consistent time-series or chemical profile 

between solutions with different numbers of factors, and in fact the time series do not have shapes consistent with 

chemical kinetics. Rather, each solution includes factors that peak in intensity at roughly regularly-spaced 

intervals, apportioning the time series into discrete pieces (Figure 4Figure 6a). This suggests that the PMF factors 470 

are not physically chemically meaningful, even though the data are fit with low residual.  

As in the PMF solution of the synthetic data set, most species appear in the profiles of more than one 

factor (Figure 4Figure 6b). The time series of acetone (from calibrated m/z 59 C3H6OH+ measured by PTR-MS), 

a species with large signal and a long lifetime against OH, is shown in Figure 4Figure 6c as an example. As 

oxidative aging progresses, acetone and other long-lived species, including butadione, acetic acid, and CO, are 475 

successively assigned to later-peaking factors, although mechanisms suggest that compounds such as butadione 

are formed in the first 1-2 generations of reaction (Bloss et al., 2005a; Jenkin et al., 2003; Li and Wang, 2014). 

Relatedly, two compounds that are formed in the same generation but exhibit different reactivity are not 

necessarily assigned to the same factor.  

   480 



23 
 

 
Figure 4 Positive matrix factorization of chamber data, showing solutions with three, four, and six factors. A. Time series of 

PMF factors. B. Compositional profiles of factors, shown as combined mass spectra from all instruments with CO, CH2O, and 

CIMS measurements at their exact molecular masses and OA shown with a molecular mass of -1. C. Apportionment of the 

concentration of acetone (a long-lived oxidation product signal) across all factors. Within each column, the assigned color of 485 
each factor is consistent.  

As in the PMF analysis of the synthetic data set (Figure 3Figure 5), factors do not correspond to generations, and long-lived 

species (such as acetone) are assigned to successively later-peaking factors over the course of the time series. Within each 

column, the assigned color of each factor is consistent. 

 The chemical composition of each PMF profile can be summarized by calculating the average carbon 490 

oxidation state, and average number of carbon atoms per molecule in the factor (Figure 5Figure 7). The 

contribution of each species to the average is weighted by its intensity in the factor profile. As the precursor 

species becomes more oxygenated and fragments to smaller product species, the average composition moves 

towards CO and CO2, which are in the upper right corner of Figure 5Figure 7 (Kroll et al., 2011). This trajectory 
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is observed from early- to late-peaking PMF factors, as expected. Regardless of the number of factors chosen for 495 

the solution, the average chemical composition of each factor falls within the same range of oxidation state and 

molecular size. The various PMF factors appear to show the average composition of the mixture during early, 

moderate, and high OH exposures. This is consistent with the time series of PMF factors, which appear at discrete 

intervals (Figure 4Figure 6), and with the calculated average compositions of the mixture at specific time periods, 

which fall within the range of the PMF factors (Figure 5Figure 7). In other words, solutions with a larger number 500 

of factors do not add new groups of species not represented by solutions with smaller number of factors, even 

though the PMF residuals are low.  

 
Figure 5 Average carbon oxidation state and number of carbon atoms per molecule in each PMF factor from analysis of 

chamber data, for solutions with three, four, and six factors. Also noted is the average composition of the mixture during low 505 
(1 hour atmospheric equivalent aging), medium (8-9 hours), and high (15-16 hours) OH exposures. Factors cover a relatively 

small region in this chemical space, which is unaffected by the number of factors chosen for the solution. 

We conclude that in chamber experiments such as the one considered here, the PMF factors generally 

cannot be attributed to distinct chemical groups, oxidation generations, or chemical processes, but rather describe 
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the average composition during specific time periods of the experiment.. Surrogate species derived from PMF 510 

factors do not have chemically realistic behavior or the same range of chemical properties as the original data set. 

The information about the system that can be determined from PMF factors is the average composition during 

specific time periods of the experiment. The researcher must subjectively choose the number of factors. These 

factors are not chemically robust and this should be considered when comparing PMF factors between oxidation 

experiments or chemical systems. PMF is certainly well-suited for cases in which groups of compounds have 515 

distinct and constant composition (Ulbrich et al., 2009), such as field measurements near fresh emission sources, 

and/or when using instruments that classify mixtures into a small number of types (e.g., the AMS). However, in 

a chamber oxidation experiment there are instead continuous, dynamic changes in composition as a function of 

time. Species created in the same oxidation generation often do not have similar time-series behavior, given 

differences in reactivity of different co-generated species. This could be a useful first-level simplification of the 520 

data, but suggests that PMF factors derived from chamber experiments cannot be used as surrogates for groups of 

reaction products within 3D models, because surrogate species should have chemical behavior that emulates real 

species.  

3.2 HCA 

Hierarchical clustering can be used to identify major chemical groups in processed data. This could be 525 

used to reduce the complexity of a dataset, by analyzing the chemical properties of the clusters rather than 

individual species.  

3.2.1 HCA of synthetic data 

An example of the use of HCA to cluster chemical species within complex oxidation mixtures is shown 

in Figure 3 Figure 6 using the synthetic dataset. Species D1 and D3, with very similar time-series behavior, are 530 

the two most closely related compounds and are assigned to cluster D*. The next two most similar groups are 

species D2 and cluster D*, which are assigned to a new, higher-level cluster. Species are clustered together until 

all have been grouped into a single cluster. 
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Figure 6 Hierarchical clustering procedure applied to synthetic data. First, second, and third-generation species are shown in 535 
red, yellow, and blue, respectively, and the precursor is shown in black. A. Time series data. B. Time series of species C1 and 
D2 normalized between 0 and 1. The gray shaded area is integrated to give the distance between the two time series. C. Matrix 
showing the relative distance between each pair of species. D. Hierarchical cluster relationship; D1 and D3 are the most similar 
species, and so are the first to be clustered together (forming a new cluster D*) 

 540 

In this example with simulated data, HCA generally clusters together compounds of similar generation, 

though not perfectly. HCA clusters together compounds that have similar time-series behavior, and time-series 

behavior is determined not only by generation, but also by formation and reaction rate constants. For example, 
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species B1, B2, and C2 all have fast formation and reaction rates, resulting in similar time-series. HCA groups 

these three species together. The algorithm suggests further that the first-generation products B1 and B2 are much 545 

more similar to one another, than they are to second-generation product C2.  

The ability of HCA to separate compounds of different generations was quantified by the normalized 

mutual information (NMI). NMI values are provided in Table 1. For all solutions with more than 2 clusters (or 

factors), NMI values for HCA are higher than those of PMF, indicating that HCA more successfully sorts 

compounds by generation.  550 

The results of HCA applied to synthetic data indicate several strengths and weaknesses of the HCA 

algorithm. Most importantly, the algorithm provides a clear way to visualize the behavior and relationships 

between all measurements in a dataset. The precursor compound can be included in the analysis, because data are 

normalized and the high intensity of the precursor does not skew the results. Compounds with similar kinetic 

properties are mostly grouped together, but some generational miscategorization still occurs. It may be difficult 555 

to use HCA to separate compounds which have different generation numbers but similar formation and reaction 

rates. 

HCA can be used to simplify the dataset, by replacing clusters of compounds with surrogates. If the 

surrogate time-series behavior is determined by averaging the time-series of the individual members of the cluster, 

then the surrogate will have chemically realistic behavior. As noted previously, the researcher must subjectively 560 

choose the number of clusters. 

3.2.2 HCA of chamber data 

There are some significant differences between the synthetic data set, and real-world data sets collected 

from chamber experiments. Most importantly, the actual chamber experiment includes many more species (ten 

species in the synthetic system, compared to thousands of detected ion masses and hundreds of measured species 565 

in the chamber experiment). The real chamber data set includes many non-meaningful measurements whose time-

series have no structure. Additionally, many species in the real-world data set have much more similar time-series 

behavior to one another than any two of the species in the synthetic system. Conversely, there are also distinct 

outliers in the real-world data set, whose time-series behavior does not resemble any other compound. HCA 

effectively separates meaningful from non-meaningful measurements, groups together very similar compounds, 570 

and highlights outliers. 

A diagram showing the hierarchical distance between all species measured in the chamber study is shown 

in Figure 7Figure 8. This data set includes measured, calibrated, background-subtracted species from all 
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instruments, and excludes overlaps. We use calibrated data here, but an advantage of this method is that it is 

insensitive to calibration: data are normalized, and only relative behavior is important. In Figure 7a, individual 575 

species are arrayed across the bottom, and their accumulation into clusters is denoted by gray lines linking species 

and clusters. As with PMF, the user must choose the number of groups (factors or clusters) in the solution. Here 

we have selected a maximum threshold relative distance that places the precursor, 1,2,4-trimethylbenzene, in a 

cluster separate from all product species. The individual clusters that fall below this threshold are distinguished 

by color in Figure 7Figure 8a. The resulting groups include ten individual species that do not fall into a cluster 580 

(including the precursor, 1,2,4-trimethylbenzene), and 9 clusters that incorporate at least two species. Figure 

7Figure 8b shows the time series of a selection of these clusters (all time series are included in Figure S6S7). The 

cluster average was determined by summing the individual species contributors to the cluster, weighted by parts-

per-billion carbon.  
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 585 
Figure 7 A. Hierarchical cluster relationship of all measured species from the chamber experiment. Clusters are colored at a 

relative distance cut-off (gray dashed line) that separates 1,2,4-trimethylbenzene from all other products, with gray lines 

showing linkages between species and clusters. The individual clusters are distinguished by different colors. B. Time series of 

eight example clusters. The x-axis in each plot is OH exposure, and the y-axis is the normalized intensity. The cluster average 
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is shown by a thick, colored line, and individual species contributors are shown as thinner gray lines. The cColors corresponds 590 
to those in to Panel A. 

 The chemical properties of each cluster, described as average oxidation state and average number of 

carbon atoms per molecule, are shown in Figure 8Figure 9. Clusters lie on a diagonal trajectory between the 

precursor and highly oxidized, small molecules (CO and CO2), and clusters that peak earlier in time appear closer 

to the precursor. This indicates that species with similar time-series behavior have similar chemical properties. 595 

Compared to the chemical properties of the PMF factors (Figure 5Figure 6), the clusters lie along the same 

diagonal trajectory, but are substantially more varied in terms of average carbon number and oxidation state, and 

cover a wider range of chemical space. As the threshold for separating clusters is lowered, resulting in more 

clusters with fewer species per cluster, a wider range of chemical properties is observed (Figure S7S8). This is in 

contrast to PMF analysis, in which increasing numbers of factors does not increase the range of chemical 600 

properties (Figure 5Figure 7). As shown in Section 2.2.1., increasing the number of PMF factors provided the 

average composition of the mixture at more time points. HCA does not always separate generations perfectly (as 

can be seen in Table 1 and Figure 6d), but the generational mixing is not as severe as with PMF, and can be 

reduced by choosing a lower threshold for separating clusters.  

The surrogate species derived from HCA clusters have chemically realistic behavior, and have a similar 605 

range of chemical properties as the original data set. As with PMF, the choice of the number of clusters is 

subjective. In addition to defining surrogate species, HCA can be used to visualize the range of behavior and 

degree of similarity between all compounds in a data set. The clustering algorithm is thus a viable approach for 

describing a continuum of kinetic behavior and chemical properties, although the choice of number of clusters is 

subjective.  610 
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Figure 8 Average oxidation state and number of carbon atoms per molecule for each cluster determined from HCA of chamber 

data. Color The individual clusters are distinguished by color, and the color scheme is the same as in Figure 7Figure 8. The 

contribution of each species to the cluster average is weighted by parts-per-billion-carbon (averaged over the entire 

experiment). Marker area is proportional to the averaged concentration (parts-per-billion carbon) of all species in the cluster, 615 
with the marker size of the precursor (red) decreased by a factor of 2 for legibility. Clusters cover a substantially wider area of 

chemical space than PMF factors (Figure 5Figure 7). 

3.3 GKP 

3.3.1 GKP fit to synthetic data 

The gamma kinetics parameterization (GKP, Eq. 3) provides a method for determining kinetic and mechanistic 620 

information from chamber experiments. The parameterization returns an effective rate constant k and generation 

number m. To investigate the extent to which fitting kinetic data to Eq. 3 yields reasonable values for rate constants 

(k) and generation number (m), we first apply the parameterization to the synthetic data set described in section 

2.1.2, which has known rates and generation numbers. Figure 9Figure 10a shows the time series of synthetic data 

and the parameterized best-fit, using integrated signal as described in Section S1. The parameterization can 625 

reproduce a range of kinetic behavior, even in situations where the formation and loss rate constants km are very 
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different (for which the assumption of uniform reactivities is poor). Figure 9Figure 10b shows the fitted generation 

compared to the actual generation. The actual generation numbers are correctly returned in all cases (with errors 

within 12%). Figure 9Figure 10c shows the parameterized k compared to actual pathway-average km rate constants 

in the pathway. The effective rate constant k cannot be calculated directly from the actual km in the system, but is 630 

rather a best-fit value in the approximation of equal km. The returned values of k are in the same range as the actual 

km, and are larger for pathways that generally involve faster rate constants. The average rate constant in a particular 

pathway and the fitted effective rate constant k are similar, except when the pathway includes a very slow step. In 

this case the fitted value of k is closer to that of the rate-limiting step (Figure 9Figure 10c). We conclude that the 

fit parameters m and k are reasonable, physically meaningful values that provide information on the kinetics of 635 

the system.  

 
Figure 9 Best fit of the gamma kinetic parameterization to synthetic data (GKP, Eq.3). A. Time series of synthetic data (colored 

lines) and best-fit (black lines). First-generation species are shown in red, second-generation in yellow, and third-generation 

in blue. The relative rate constants are indicated by short arrows (slow rate constant) or long arrows (fast rate constant). B. 640 
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Fitted generation compared to actual generation. The colors correspond to the generations shown in panel A. C. Effective rate 

constant compared to the average of the rate constants in the pathway that produces each particular species. Pathways that 

include slow steps are shown with open circles.  

3.3.2 GKP fit to chamber data  

The GKP was applied to the chamber data, with the time dependence of all measured compounds fit to 645 

Eq. 3. More than 95% of measured compounds are fit with a correlation coefficient R2 of 0.9 or higher, meaning 

the function generally describes well the kinetic behavior of species measured in oxidation systems. Examples of 

fitted chamber measurements are shown in Figure 10Figure 11. In some cases, non-integer values of m are 

returned, which may occur for several reasons.  

First, noise can contribute to uncertainty in m. At low generations (m=1-2), the standard deviation of the 650 

fit is about 0.1, and at high generations (m≥3) is somewhat higher, with standard deviation up to 0.8 (Figure S8S9). 

Especially for measurements with low signal-to-noise ratios and limited data near the beginning of the experiment, 

m may not be fit with high precision. For example, the fits using m=3 and m=5 to C5H6O6 (Figure 10Figure 11i) 

are not significantly worse than m=4.  

Second, the generation number can be distorted if the compound is produced by or reacts significantly 655 

via channels other than OH reaction (e.g., by ozone reaction, NO3 radical reaction, or photolysis), in which case 

the assumption of linear, first-order kinetics with respect to OH exposure is not necessarily applicable. For 

example, C6H8O2 (Figure 10Figure 11c) may correspond to 3,4-dimethyl-2(5H)-furanone (Bloss et al., 2005b), 

which reacts with O3 under experimental conditions at a comparable rate to OH, or dimethylbutanedial (Li and 

Wang, 2014), which has a high photolysis rate. In Figure 10Figure 11b and c, the curves are also distorted due to 660 

repeat injections of HONO, which abruptly changes the NO concentration in the experiment and clearly affects 

the reaction of these compounds. Any of these processes can distort the shape of the curve, making it more difficult 

to fit m correctly. Because m is related to the slow (rate-limiting) steps in a mechanism, specifically OH additions, 

it is not affected by faster radical chemistry such as autooxidation and intramolecular arrangements.  

Finally, if the compound is produced by more than one pathway with a differing number of reaction 665 

steps, such as butadione (Figure 10Figure 11d), the resulting generation parameter is non-integer. This is also 

demonstrated using a synthetic system in Figure S9S10.  

 In addition, if physical (non-chemical) processes have a major influence on species concentrations, and 

occur on the same time scale as the chemical reaction, they may impact the fitted kinetic parameters. In particular, 

delays caused by strong interactions of gas-phase compounds with surfaces (chamber walls or instrument inlets) 670 
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can shift the fitted m to higher values and the fitted k towards the time constant of the surface interaction. As noted 

above, the timescales of surface equilibration processes in the present experiments are <15s, much shorter than 

the timescales of the chemical changes observed. Thus such processes are unlikely to affect the analysis of the 

present chamber results, but could introduce substantial errors if they occur over longer timescales, or are 

competing against much more rapid chemical transformations. GKP analysis is therefore only valid when the 675 

equilibration times of such processes are short compared to the timescales of the chemical processes being studied.  

 
Figure 10 Measured species from chamber experiment (red) and kinetic GKP best fit (black). Data in panels A, C and E are 

from Vocus-2R-PTR; in panels B and D from PTR3-H3O+, in panels F, G, and I from I- CIMS, and in panel H from TILDAS. 
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The data gaps in panels F, G, and I arise from the I-CIMS instrument measuring particle-phase composition, measurements 680 
that are not considered in this work.  

The fitted values of k and m for all species are shown in Figure 11Figure 12. The returned k fall within 

one order of magnitude of the OH rate constant of the precursor species (kTMB = 3.2×10-11 cm-3 molecule-1 s-1). 

Most “m” are between 1 and 2, meaning most measured compounds are produced after one or two reaction steps 

(assuming OH is the dominant oxidant). Major modes at integer values of m are observed Whenif the data are 685 

restricted to fast-reacting compounds, major modes at integer values of m are observed (black bars in Figure 

11Figure 12). However, when all compounds are considered, major modes at integer values are not observed, 

which suggests that many compounds are formed by more than one pathway, and/or have significant reactions 

with O3 or another oxidant. The generation numbers of compounds with m>=4 are less certain due to data gaps, 

limited experimental duration, and low signal-to-noise ratio in the fits. Higher-generation (m>2) compounds are 690 

uniformly the fast-reacting (high k) species. Conversely, no species are observed with high m (>2) and low k. This 

area of the diagram corresponds to slow-forming, slow-reacting species that are created after multiple OH 

additions; such species are unlikely to be formed at observable concentrations within the timeframe of the 

experiment. Were the experiment to be run at higher OH exposures, it is possible that these species would be 

observed as well.  695 
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Figure 11 Parameterized rate constant and generation number for 463 species detected during the chamber experiment OH-
initiated oxidation of trimethylbenzene. Marker area corresponds to log(ppb carbon) of detected species, averaged over the 
duration of the experiment. “Fast-reacting” species, defined as having an effective rate constant at least 75% that of the 
precursor, are highlighted as black bars in the histogram of m. These tend to center on integer values of generation number. 700 

The kinetic parameters derived from fitting the gamma distribution are correlated with individual species’ 

chemical composition. Figure 12Figure 13 shows that species that involve the fastest reactions (high values of 

effective rate constant, k) and earliest formation (lowest values of m) tend to be large and relatively unoxidized, 

with oxidation states similar to that of the 1,2,4-trimethylbenzene precursor. Species that form or react slowly 

(low values of k) or that form in later generations (higher values of m) tend to be smaller and more oxidized.  705 
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Figure 12 Relationships of kinetic parameters (from the GKP of chamber data) with key chemical properties of reactive 
species.  A. Generation (m) and rate (k) values of 1,2,4-trimethylbenzene precursor and products, colored by number of carbon 
atoms. B. Same as A, but k and m colored by carbon oxidation state. Marker area corresponds to log(ppb carbon). The early 
generation and fast-reacting products tend to have higher numbers of carbon atoms and are less oxidized, while later generation 710 
and slow-reacting products tend to be smaller and more oxidized.  

 

3.3.3 Clustering of GKP results 

The GKP can be used not only to describe individual species, but also to group compounds and reduce 

the complexity of the system. If compounds are grouped by similar k and m, compounds in the group will have 715 

similar chemical composition and similar kinetic behavior, and the chemical and kinetic properties of the groups 

will include a range of variability similar to the individual species. Here we test three methods of using GKP to 

group compounds: (1) fitting the GKP to time-series of HCA-derived clusters; (2) using HCA to cluster 

compounds based on their GKP-derived time-series (based on fitted values k and m); and (3) using fixed bins to 

group compounds based on k and m. Groups derived from PMF analysis cannot be fit with the GKP because the 720 

factor time series are not consistent with chemical kinetics. 

Results from each approach, showing both kinetic characteristics (k and m) and chemical properties 

(oxidation state and carbon number) of each group, are given in Figure 14 Figure 13, which includes an overview 

and comparison of grouped species derived from PMF (Figure 13a), HCA (Figure 13b), and GKP (Figure 13c and 

d). Figure 14a 13b shows results from applying the GKP to HCA data. For each of the nine HCA clusters 725 

(described in Section 3.2.2), the GKP was fit to the cluster’s average time series, determined from a carbon-
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weighted average of the time series of all individual species in the cluster. This provided values of k and m for 

each cluster. (For the ten species that did not fit into any cluster, the k and m of these were determined as well). 

Figure 14b 13c shows the reversed approach, the application of HCA to GKP results. Here, the time-series of each 

individual species was fit with GKP, and the distances between the time-series of the best fits were determined 730 

and used as input into the HCA algorithm. The k and m of the resulting cluster were calculated by averaging the 

k and m of the individual compounds in the cluster, weighted by parts-per-billion carbon. A potential advantage 

of this approach is that the GKP fitting reduces the noise of the signals used in HCA analysis, possibly allowing 

for more precise determinations of clusters. Finally, shown in Figure 14c 13d are results from an alternate 

approach for grouping compounds by GKP parameters (k and m), binning all the species by their values of k and 735 

m. This is analogous to the 2D-volatility basis set developed by Donahue et al. (2011, 2012), which bins species 

based on saturation mass concentration and O:C ratio.  

Surrogate species defined by GKP have by definition kinetically realistic behavior. The resulting groups 

of compounds have a range of chemical properties similar to that of the original data set, regardless of whether 

they are grouped using HCA or grouped by similar k and m. The method of grouping is subjective, as is the choice 740 

of number of clusters (if HCA is used) or the number of bins (if compounds are grouped by similar k and m). A 

particular strength of GKP is the resulting kinetic characterization of each compound. The effective rate constant 

and generation number provide new information that can be used to assess proposed mechanisms or to guide the 

reactive behavior of surrogate species in a model. 

In all cases, the majority of the carbon can be represented by a manageable number of groups, each of 745 

which has a specific chemical composition, effective rate constant, and generation number.  Moreover, the kinetic 

and chemical properties of the derived groups are quite similar across all three grouping approaches. The overall 

kinetics, as well as the width and trajectory in chemical space, of the various groups do not vary with the approach 

used. This suggests that such dimensionality-reduction techniques, which involve a combination of fitting using 

the GKP and grouping based on kinetic behavior, may provide a viable approach for greatly simplifying the time-750 

dependent behavior of complex mixtures of reaction products in a laboratory oxidation system. 
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Figure 14 Chemical and kinetic properties of groups of compounds. Marker area is proportional to the averaged concentration 
(parts-per-billion) of all species in the cluster, with the marker size of the precursor (red) decreased by a factor of 2 for 
legibility. A. Kinetic and chemical properties (top and bottom, respectively) of clusters derived from HCA analysis of all 755 
compounds’ time dependences. B. Kinetic and chemical properties of clusters derived from HCA analysis of the fitted GKP 
time dependence of each compound. C. Kinetic and chemical properties of groups derived from binning compounds by k and 
m. Regardless of the method used, the major groups of compounds have consistent chemical and kinetic properties. 

3.4 Comparison of PMF, HCA, and GKP 

A comparison of compound groups derived from PMF, HCA, and GKP is shown in Figure 13. This 760 

figure shows the chemical properties (oxidation state vs. number of carbon atoms), time series, mass spectra, and 

kinetic properties (k vs m) of the compound groups. For each technique, solutions with different numbers of groups 

are possible. Figure 13 shows the solution discussed most extensively in the text: the six-factor solution for PMF; 

the HCA solution with nine major clusters; and the two GKP solutions discussed in section 3.3.3, which have 

seven major clusters and twenty-five bins, respectively. For clarity, the time series and mass spectra for only six 765 

groups derived from HCA and GKP are shown. These six groups contain cumulatively about 80% of the total 

product carbon in the system.  
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Figure 13 Overall comparison of groups derived from PMF, HCA, and GKP of chamber data. The columns show, from left 770 
to right, the results of A. PMF, B. HCA, C. GKP best-fits grouped using HCA, and D. measurements grouped by GKP fit 
parameters. The rows show, from top to bottom, 1. the average carbon oxidation state and number of carbon atoms per molecule 
for each group, 2. the time series of the six groups containing the most carbon, 3. the mass spectra of those six groups, and 4. 
the rate constant and generation number of each group. Within each column, each chemical group is assigned a specific color. 
This color scheme is the same for each plot within a column. The marker area is proportional to the averaged concentration 775 
(ppb carbon) of all species in the group, with the marker size of the precursor (red) decreased by a factor of 2 for legibility. 
The marker area scheme is consistent across all plots. PMF factors do not have kinetically realistic time series, therefore there 
is no plot A4. 
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In all cases, the majority of the carbon can be represented by a manageable number of groups. The 

relationship between oxidation state and number of carbon per molecule is similar, regardless of the grouping 780 

technique. The PMF factors have a smaller range of chemical properties than chemical groupings derived from 

HCA or GKP. The range of chemical properties is similar for HCA and GKP. The time-series of PMF factors are 

clearly different from those of HCA- and GKP-derived groups, and have non-kinetically-realistic shapes with 

sharp maxima. 

The PMF factors each contain many more compounds than the groups derived from HCA or GKP. Many 785 

of the same compounds are consistently grouped together by HCA and GKP, regardless of whether HCA, HCA 

of GKP, or binning of GKP is used. Additionally, the range of kinetic properties, and the locations of major 

compound groups in kinetic space, are similar between the HCA and GKP approaches. This reproducibility 

suggests that these are chemically meaningful compound groupings. Some groups derived from HCA or GKP 

contain only a single species. These could be chemically important compounds whose unique behavior should be 790 

considered when modeling the system; conversely, they could be measurement outliers which should be discarded. 

The interpretation of these species is subjective.  

Regardless, the combination of fitting using the GKP and grouping based on kinetic behavior may 

provide a viable approach for greatly simplifying the time-dependent behavior of complex mixtures of reaction 

products in a laboratory oxidation system. 795 

4 Conclusions 

Hundreds to thousands of individual chemical species can be produced in a typical organic photooxidation 

chamber experiment. This chemical complexity presents a number of analytical challenges, including organizing 

and processing large mass spectrometric data sets, identifying major groups of compounds, providing kinetic and 

mechanistic information, and simplifying the chemistry in a way that can be implemented in large-scale regional 800 

and global models.  

In this paper, we evaluated three methods to simplify a description of atmospheric chemistry in chamber 

studies. The methods explored include positive matrix factorization (PMF), which represents data as a linear sum 

of factors, hierarchical clustering analysis (HCA), which describes similarity of species in terms of their time-

series behavior, and the gamma kinetics parameterization (GKP), which characterizes species in terms of effective 805 

rate constant and generation. All three approaches require a subjective choice of the number of compound groups. 
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Because PMF is so widely used in atmospheric chemistry to characterize organic aerosol and for source 

apportionment in field studies, it is important to understand how oxidation systems are described by PMF. We 

find found that PMF analysis of the chamber experiment described here doesdid not sort species into clear 

generations, since different species formed in a single generation can exhibit highly variable reactivities. Oxidized 810 

factors appearing in PMF analysis of chamber studies, and in ambient air, may be able to reproduce observations 

as a linear sum of a “fresh” factor and a “highly aged” factor with low residual, but these factors do not necessarily 

represent distinct chemical groups. This is because PMF assumes constant factor composition, which is useful 

when distinguishing fresh emission sources, but does not apply to evolving oxidation systems.  

Hierarchical clustering, which also does not depend on calibration, can be used to quickly identify major 815 

groups of ions and patterns of behavior. The derived clusters maintain more chemical information (including 

average oxidation state and molecular size) than do PMF factors. HCA is therefore useful to identify chemically 

meaningful ions in mass spectrometry data, and to group compounds into a smaller number of groups with 

consistent chemical characteristics.  

A continuum of kinetic behavior is observed and can be described using the gamma kinetics parameterization 820 

of individual species (or clusters of species). The parameterization is derived from first-order kinetics and thus 

provides a physically meaningful fit to the kinetics of the species. The two returned parameters, effective rate 

constant and generation number, correlate with oxidation state and molecular size. The parameterization provides 

a way to derive mechanistic information from an oxidation system, in addition to describing chemical 

composition.  825 

Future directions of this work include evaluation of mechanisms, mechanism development, and applications 

to lumping schemes in models. The current analysis is based on two systems, a synthetic system and a chamber 

experiment, and more work is needed to see how these analysis approaches perform with other systems. The 

gamma kinetics parameterization can be used to support complex chemical mechanisms, by determining whether 

the experimentally determined generation and rate constants are consistent with a proposed pathway or 830 

mechanism. Further, with well-calibrated, high-quality laboratory data, it may be possible to derive yields, 

formation rate constants, and reaction rate constants separately, which would be invaluable in model and 

mechanism development. Finally, HCA-derived clusters, or groups of compounds with similar effective rate 

constant and generation, could be used as surrogates or “lumps” in aerosol or air quality models, as an 

experimentally supported way of simplifying a complex system. 835 
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Figure S1  
Chamber data.Ions measured by Vocus-2R-PTR during chamber experiment. 
A. Kendrick mass defect plot of unambiguously identified ions (Vocus-2R-PTR instrument).  
B. Kendrick mass defect plot of all ions.  
Markers are sized and colored by peak area. In subplot A, a line has been drawn through large, 
unambiguously identified peaks C9H13On

+ with n between 1 and 4. In subplot B, the series has been 
extended to include n>4. The identities of other peaks with m/z >200 were suggested in a similar way, 
by identifying trends in ion formulas with m/z<200 and extending the series to larger m/z.  

 

 

 
 
  



Figure S2 
Identification of chemically relevant ions within a mass spectrum (here, from the PTR3 H3O+ instrument 
during a chamber experiment) using hierarchical clustering analysis. A. Average mass spectrum showing 
chemically relevant ions in red and non-relevant ions in gray. B. Hierarchical cluster of ions. Relevant 
ions and the clusters they belong to are highlighted in red. Boxes are drawn around two example 
clusters, “C,” which includes non-relevant ions, and “D,” which includes relevant ions. C. Time series of 
all ions belonging to cluster “C.” The average is drawn in black. D. Time series of all ions belonging to 
cluster “D.” The average is drawn in black. The oscillating pattern is due to ion source stabilization after 
reagent-ion switching and was not included in final data. 1330 ions were detected and quantified. Of 
these, 251 have time-dependencies consistent with products of the oxidation of 1,2,4-trimethylbenzene. 
Ten to twenty clusters were visually inspected to identify which ions should be excluded from further 
analysis. 

 

 
  



Figure S2S3 
Signal-to-noise ratios for the synthetic data system (left) and chamber data (right). For PMF, species with 
SNR<2 are downweighted by a factor of 2, and species with SNR<0.2 are downweighted by a factor of 
10.  

 
 

Figure S3S4 
Relationship between standard deviation and signal for all chamber measurements.  

  



Figure S4 S5  
Time series and factor profiles of PMF analysis of synthetic data 

 

 
 
  



Figure S5S6 
PMF results for chamber data. Three- to eight-factor solutions are shown. No solution was found for two 
factors.  

 

 
 
  



Figure S6S7 
Time series of all clusters and individual species from HCA analysis of chamber data. Individual species 
are shown as thin lines. Cluster averages are shown as thick lines, and the individual species contributing 
to that cluster are included as thin gray lines. In each plot, the y-axis is normalized intensity and the x-
axis is OH exposure. 

 
 
  



Figure S7S8 
Clustering results of chamber data at different relative distances. 

 

 

 
  



Figure S8S9 
Chamber data. Standard deviation of fit parameter for m and k. Chamber data is shown. 

 
  



Figure S9S10 
Parameterized generation for non-linear systems, using synthetic data. 
The reaction pathway for two different synthetic systems is shown at the top. The rate constants are in 
units of 10-11 cm3 molecule-3 s-1. 
A. Time series of reactant species in synthetic system 1. B. Parameterized generation numbers for 
synthetic system 1. C. Time series of reactant species in synthetic system 2. D. Parameterized generation 
numbers for synthetic system 2. 

  



S1 Best methods for determining generation number  
 
The best fit parameterization of m can be improved with two methods: one, by fitting to early data; and 
two, by reducing noise.  
The generation number m is determined from the curvature of the initial growth of the product species. 
Based on the method of fitting, the curve fit algorithm can return an incorrect value of m. For example, 
the following two species were fit using least squares, which is the default method in many software 
packages.  

 
Figure S1.1 

The left two panels of Figure S1.1 show the full time series of synthetic data, and the right two panels 
expand the boxed inset. This figure shows that the fit is poorer for early time points. Later data are fit 
better, because they have higher values and are therefore weighted more heavily in least-squares 
fitting. The result is an artificially low returned value of m. This issue can be solved by fitting to early 
data only. The optimal number of points to fit differs based on the k and m of the species in question. If 
two few points are fit, then no trend is discernable; if too many points are fit, then m is underpredicted.  



 
Figure S1.2 

Figure S1.2 shows the returned value of m as a function of number of data points fit, using species “C3” 
from the synthetic system as an example. Based on the typical noise level of our data, we chose to 
exclude fits with fewer than 100 data points. The largest returned value of m is the most accurate.  
 
The fit can be further improved by reducing noise. Mass spectrometers typically exhibit a Poisson noise 
distribution, where values are normally distributed about the actual signal. This noise should cancel out 
in the integration of a measurement, resulting in a smoother curve. The integral of Eq. 2 is: 
 
∫[𝑋𝑋]𝑑𝑑𝑑𝑑 =  𝑎𝑎

𝑘𝑘
�1 − Г(𝑚𝑚,𝑘𝑘𝑘𝑘)

Г(𝑚𝑚)
� (Eq. S1) 

where Г(𝑚𝑚,𝑘𝑘𝑑𝑑) and Г(𝑚𝑚) are the partial and complete gamma functions, respectively. Eq. S1 can be fit 
to integrated data, using for time t the OH exposure OHΔt. The returned values of m as a function of 
points fit, using integrated data, is shown in Figure S1.3. This returns a more accurate value of m using 
fewer data points.  

 
Figure S1.3 
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